kern_proc.c revision 1.114.2.1 1 /* $NetBSD: kern_proc.c,v 1.114.2.1 2007/08/28 18:43:44 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.114.2.1 2007/08/28 18:43:44 matt Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112 /*
113 * There are two locks on global process state.
114 *
115 * 1. proclist_lock is an adaptive mutex and is used when modifying
116 * or examining process state from a process context. It protects
117 * the internal tables, all of the process lists, and a number of
118 * members of struct proc.
119 *
120 * 2. proclist_mutex is used when allproc must be traversed from an
121 * interrupt context, or when changing the state of processes. The
122 * proclist_lock should always be used in preference. In some cases,
123 * both locks need to be held.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is approximately as following:
141 *
142 * kernel_lock
143 * -> proclist_lock
144 * -> proc::p_mutex
145 * -> proclist_mutex
146 * -> proc::p_smutex
147 * -> proc::p_stmutex
148 *
149 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 * platform are made MP safe. Currently it blocks interrupts at
151 * IPL_SCHED and below.
152 *
153 * XXX The two process locks (p_smutex + p_mutex), and the two global
154 * state locks (proclist_lock + proclist_mutex) should be merged
155 * together. However, to do so requires interrupts that interrupts
156 * be run with LWP context.
157 */
158 kmutex_t proclist_lock;
159 kmutex_t proclist_mutex;
160
161 /*
162 * pid to proc lookup is done by indexing the pid_table array.
163 * Since pid numbers are only allocated when an empty slot
164 * has been found, there is no need to search any lists ever.
165 * (an orphaned pgrp will lock the slot, a session will lock
166 * the pgrp with the same number.)
167 * If the table is too small it is reallocated with twice the
168 * previous size and the entries 'unzipped' into the two halves.
169 * A linked list of free entries is passed through the pt_proc
170 * field of 'free' items - set odd to be an invalid ptr.
171 */
172
173 struct pid_table {
174 struct proc *pt_proc;
175 struct pgrp *pt_pgrp;
176 };
177 #if 1 /* strongly typed cast - should be a noop */
178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 #else
180 #define p2u(p) ((uint)p)
181 #endif
182 #define P_VALID(p) (!(p2u(p) & 1))
183 #define P_NEXT(p) (p2u(p) >> 1)
184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185
186 #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 static struct pid_table *pid_table;
188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 static uint pid_alloc_lim; /* max we allocate before growing table */
190 static uint pid_alloc_cnt; /* number of allocated pids */
191
192 /* links through free slots - never empty! */
193 static uint next_free_pt, last_free_pt;
194 static pid_t pid_max = PID_MAX; /* largest value we allocate */
195
196 /* Components of the first process -- never freed. */
197
198 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
199
200 struct session session0 = {
201 .s_count = 1,
202 .s_sid = 0,
203 };
204 struct pgrp pgrp0 = {
205 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
206 .pg_session = &session0,
207 };
208 struct filedesc0 filedesc0;
209 struct cwdinfo cwdi0 = {
210 .cwdi_cmask = CMASK, /* see cmask below */
211 .cwdi_refcnt = 1,
212 };
213 struct plimit limit0 = {
214 .pl_corename = defcorename,
215 .p_refcnt = 1,
216 .pl_rlimit = {
217 [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
218 .rlim_cur = RLIM_INFINITY,
219 .rlim_max = RLIM_INFINITY,
220 },
221 },
222 };
223 struct pstats pstat0;
224 struct vmspace vmspace0;
225 struct sigacts sigacts0;
226 struct turnstile turnstile0;
227 struct proc proc0 = {
228 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
229 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
230 .p_nlwps = 1,
231 .p_nrlwps = 1,
232 .p_nlwpid = 1, /* must match lwp.l_lid */
233 .p_refcnt = 1,
234 .p_pgrp = &pgrp0,
235 .p_comm = "system",
236 /*
237 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
238 * when they exit. init(8) can easily wait them out for us.
239 */
240 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
241 .p_stat = SACTIVE,
242 .p_nice = NZERO,
243 .p_emul = &emul_netbsd,
244 .p_cwdi = &cwdi0,
245 .p_limit = &limit0,
246 .p_fd = &filedesc0.fd_fd,
247 .p_vmspace = &vmspace0,
248 .p_stats = &pstat0,
249 .p_sigacts = &sigacts0,
250 };
251 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
252 #ifndef LWP0_CPU_INFO
253 .l_cpu = LWP0_CPU_INFO,
254 #endif
255 .l_proc = &proc0,
256 .l_lid = 1,
257 .l_flag = LW_INMEM | LW_SYSTEM,
258 .l_stat = LSONPROC,
259 .l_ts = &turnstile0,
260 .l_syncobj = &sched_syncobj,
261 .l_refcnt = 1,
262 .l_priority = PRIBIO,
263 .l_usrpri = PRIBIO,
264 .l_inheritedprio = MAXPRI,
265 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
266 .l_name = __UNCONST("swapper"),
267 };
268 kauth_cred_t cred0;
269
270 extern struct user *proc0paddr;
271
272 int nofile = NOFILE;
273 int maxuprc = MAXUPRC;
274 int cmask = CMASK;
275
276 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
277 &pool_allocator_nointr, IPL_NONE);
278 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
279 &pool_allocator_nointr, IPL_NONE);
280 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
281 &pool_allocator_nointr, IPL_NONE);
282 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
283 &pool_allocator_nointr, IPL_NONE);
284 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
285 &pool_allocator_nointr, IPL_NONE);
286
287 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
288 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
289 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
290
291 /*
292 * The process list descriptors, used during pid allocation and
293 * by sysctl. No locking on this data structure is needed since
294 * it is completely static.
295 */
296 const struct proclist_desc proclists[] = {
297 { &allproc },
298 { &zombproc },
299 { NULL },
300 };
301
302 static void orphanpg(struct pgrp *);
303 static void pg_delete(pid_t);
304
305 static specificdata_domain_t proc_specificdata_domain;
306
307 /*
308 * Initialize global process hashing structures.
309 */
310 void
311 procinit(void)
312 {
313 const struct proclist_desc *pd;
314 int i;
315 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
316
317 for (pd = proclists; pd->pd_list != NULL; pd++)
318 LIST_INIT(pd->pd_list);
319
320 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
321 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
322
323 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
324 M_PROC, M_WAITOK);
325 /* Set free list running through table...
326 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
327 for (i = 0; i <= pid_tbl_mask; i++) {
328 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
329 pid_table[i].pt_pgrp = 0;
330 }
331 /* slot 0 is just grabbed */
332 next_free_pt = 1;
333 /* Need to fix last entry. */
334 last_free_pt = pid_tbl_mask;
335 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
336 /* point at which we grow table - to avoid reusing pids too often */
337 pid_alloc_lim = pid_tbl_mask - 1;
338 #undef LINK_EMPTY
339
340 LIST_INIT(&alllwp);
341
342 uihashtbl =
343 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
344
345 proc_specificdata_domain = specificdata_domain_create();
346 KASSERT(proc_specificdata_domain != NULL);
347 }
348
349 /*
350 * Initialize process 0.
351 */
352 void
353 proc0_init(void)
354 {
355 struct proc *p;
356 struct pgrp *pg;
357 struct session *sess;
358 struct lwp *l;
359 rlim_t lim;
360
361 p = &proc0;
362 pg = &pgrp0;
363 sess = &session0;
364 l = &lwp0;
365
366 /*
367 * XXX p_rasmutex is run at IPL_SCHED, because of lock order
368 * issues (kernel_lock -> p_rasmutex). Ideally ras_lookup
369 * should operate "lock free".
370 */
371 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
372 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
373 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_SCHED);
374 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
375 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
376
377 cv_init(&p->p_refcv, "drainref");
378 cv_init(&p->p_waitcv, "wait");
379 cv_init(&p->p_lwpcv, "lwpwait");
380
381 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
382
383 pid_table[0].pt_proc = p;
384 LIST_INSERT_HEAD(&allproc, p, p_list);
385 LIST_INSERT_HEAD(&alllwp, l, l_list);
386
387 pid_table[0].pt_pgrp = pg;
388 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
389
390 #ifdef __HAVE_SYSCALL_INTERN
391 (*p->p_emul->e_syscall_intern)(p);
392 #endif
393
394 callout_init(&l->l_tsleep_ch, 0);
395 cv_init(&l->l_sigcv, "sigwait");
396
397 /* Create credentials. */
398 cred0 = kauth_cred_alloc();
399 p->p_cred = cred0;
400 kauth_cred_hold(cred0);
401 l->l_cred = cred0;
402
403 /* Create the CWD info. */
404 rw_init(&cwdi0.cwdi_lock);
405
406 /* Create the limits structures. */
407 mutex_init(&limit0.p_lock, MUTEX_DEFAULT, IPL_NONE);
408
409 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
410 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
411 maxfiles < nofile ? maxfiles : nofile;
412
413 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
414 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
415 maxproc < maxuprc ? maxproc : maxuprc;
416
417 lim = ptoa(uvmexp.free);
418 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
419 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
420 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
421
422 /* Configure virtual memory system, set vm rlimits. */
423 uvm_init_limits(p);
424
425 /* Initialize file descriptor table for proc0. */
426 fdinit1(&filedesc0);
427
428 /*
429 * Initialize proc0's vmspace, which uses the kernel pmap.
430 * All kernel processes (which never have user space mappings)
431 * share proc0's vmspace, and thus, the kernel pmap.
432 */
433 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
434 trunc_page(VM_MAX_ADDRESS));
435
436 l->l_addr = proc0paddr; /* XXX */
437
438 /* Initialize signal state for proc0. */
439 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
440 siginit(p);
441
442 proc_initspecific(p);
443 lwp_initspecific(l);
444
445 SYSCALL_TIME_LWP_INIT(l);
446 }
447
448 /*
449 * Check that the specified process group is in the session of the
450 * specified process.
451 * Treats -ve ids as process ids.
452 * Used to validate TIOCSPGRP requests.
453 */
454 int
455 pgid_in_session(struct proc *p, pid_t pg_id)
456 {
457 struct pgrp *pgrp;
458 struct session *session;
459 int error;
460
461 mutex_enter(&proclist_lock);
462 if (pg_id < 0) {
463 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
464 if (p1 == NULL)
465 return EINVAL;
466 pgrp = p1->p_pgrp;
467 } else {
468 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
469 if (pgrp == NULL)
470 return EINVAL;
471 }
472 session = pgrp->pg_session;
473 if (session != p->p_pgrp->pg_session)
474 error = EPERM;
475 else
476 error = 0;
477 mutex_exit(&proclist_lock);
478
479 return error;
480 }
481
482 /*
483 * Is p an inferior of q?
484 *
485 * Call with the proclist_lock held.
486 */
487 int
488 inferior(struct proc *p, struct proc *q)
489 {
490
491 for (; p != q; p = p->p_pptr)
492 if (p->p_pid == 0)
493 return 0;
494 return 1;
495 }
496
497 /*
498 * Locate a process by number
499 */
500 struct proc *
501 p_find(pid_t pid, uint flags)
502 {
503 struct proc *p;
504 char stat;
505
506 if (!(flags & PFIND_LOCKED))
507 mutex_enter(&proclist_lock);
508
509 p = pid_table[pid & pid_tbl_mask].pt_proc;
510
511 /* Only allow live processes to be found by pid. */
512 /* XXXSMP p_stat */
513 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
514 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
515 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
516 if (flags & PFIND_UNLOCK_OK)
517 mutex_exit(&proclist_lock);
518 return p;
519 }
520 if (flags & PFIND_UNLOCK_FAIL)
521 mutex_exit(&proclist_lock);
522 return NULL;
523 }
524
525
526 /*
527 * Locate a process group by number
528 */
529 struct pgrp *
530 pg_find(pid_t pgid, uint flags)
531 {
532 struct pgrp *pg;
533
534 if (!(flags & PFIND_LOCKED))
535 mutex_enter(&proclist_lock);
536 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
537 /*
538 * Can't look up a pgrp that only exists because the session
539 * hasn't died yet (traditional)
540 */
541 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
542 if (flags & PFIND_UNLOCK_FAIL)
543 mutex_exit(&proclist_lock);
544 return NULL;
545 }
546
547 if (flags & PFIND_UNLOCK_OK)
548 mutex_exit(&proclist_lock);
549 return pg;
550 }
551
552 static void
553 expand_pid_table(void)
554 {
555 uint pt_size = pid_tbl_mask + 1;
556 struct pid_table *n_pt, *new_pt;
557 struct proc *proc;
558 struct pgrp *pgrp;
559 int i;
560 pid_t pid;
561
562 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
563
564 mutex_enter(&proclist_lock);
565 if (pt_size != pid_tbl_mask + 1) {
566 /* Another process beat us to it... */
567 mutex_exit(&proclist_lock);
568 FREE(new_pt, M_PROC);
569 return;
570 }
571
572 /*
573 * Copy entries from old table into new one.
574 * If 'pid' is 'odd' we need to place in the upper half,
575 * even pid's to the lower half.
576 * Free items stay in the low half so we don't have to
577 * fixup the reference to them.
578 * We stuff free items on the front of the freelist
579 * because we can't write to unmodified entries.
580 * Processing the table backwards maintains a semblance
581 * of issueing pid numbers that increase with time.
582 */
583 i = pt_size - 1;
584 n_pt = new_pt + i;
585 for (; ; i--, n_pt--) {
586 proc = pid_table[i].pt_proc;
587 pgrp = pid_table[i].pt_pgrp;
588 if (!P_VALID(proc)) {
589 /* Up 'use count' so that link is valid */
590 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
591 proc = P_FREE(pid);
592 if (pgrp)
593 pid = pgrp->pg_id;
594 } else
595 pid = proc->p_pid;
596
597 /* Save entry in appropriate half of table */
598 n_pt[pid & pt_size].pt_proc = proc;
599 n_pt[pid & pt_size].pt_pgrp = pgrp;
600
601 /* Put other piece on start of free list */
602 pid = (pid ^ pt_size) & ~pid_tbl_mask;
603 n_pt[pid & pt_size].pt_proc =
604 P_FREE((pid & ~pt_size) | next_free_pt);
605 n_pt[pid & pt_size].pt_pgrp = 0;
606 next_free_pt = i | (pid & pt_size);
607 if (i == 0)
608 break;
609 }
610
611 /* Switch tables */
612 mutex_enter(&proclist_mutex);
613 n_pt = pid_table;
614 pid_table = new_pt;
615 mutex_exit(&proclist_mutex);
616 pid_tbl_mask = pt_size * 2 - 1;
617
618 /*
619 * pid_max starts as PID_MAX (= 30000), once we have 16384
620 * allocated pids we need it to be larger!
621 */
622 if (pid_tbl_mask > PID_MAX) {
623 pid_max = pid_tbl_mask * 2 + 1;
624 pid_alloc_lim |= pid_alloc_lim << 1;
625 } else
626 pid_alloc_lim <<= 1; /* doubles number of free slots... */
627
628 mutex_exit(&proclist_lock);
629 FREE(n_pt, M_PROC);
630 }
631
632 struct proc *
633 proc_alloc(void)
634 {
635 struct proc *p;
636 int nxt;
637 pid_t pid;
638 struct pid_table *pt;
639
640 p = pool_get(&proc_pool, PR_WAITOK);
641 p->p_stat = SIDL; /* protect against others */
642
643 proc_initspecific(p);
644 /* allocate next free pid */
645
646 for (;;expand_pid_table()) {
647 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
648 /* ensure pids cycle through 2000+ values */
649 continue;
650 mutex_enter(&proclist_lock);
651 pt = &pid_table[next_free_pt];
652 #ifdef DIAGNOSTIC
653 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
654 panic("proc_alloc: slot busy");
655 #endif
656 nxt = P_NEXT(pt->pt_proc);
657 if (nxt & pid_tbl_mask)
658 break;
659 /* Table full - expand (NB last entry not used....) */
660 mutex_exit(&proclist_lock);
661 }
662
663 /* pid is 'saved use count' + 'size' + entry */
664 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
665 if ((uint)pid > (uint)pid_max)
666 pid &= pid_tbl_mask;
667 p->p_pid = pid;
668 next_free_pt = nxt & pid_tbl_mask;
669
670 /* Grab table slot */
671 mutex_enter(&proclist_mutex);
672 pt->pt_proc = p;
673 mutex_exit(&proclist_mutex);
674 pid_alloc_cnt++;
675
676 mutex_exit(&proclist_lock);
677
678 return p;
679 }
680
681 /*
682 * Free last resources of a process - called from proc_free (in kern_exit.c)
683 *
684 * Called with the proclist_lock held, and releases upon exit.
685 */
686 void
687 proc_free_mem(struct proc *p)
688 {
689 pid_t pid = p->p_pid;
690 struct pid_table *pt;
691
692 KASSERT(mutex_owned(&proclist_lock));
693
694 pt = &pid_table[pid & pid_tbl_mask];
695 #ifdef DIAGNOSTIC
696 if (__predict_false(pt->pt_proc != p))
697 panic("proc_free: pid_table mismatch, pid %x, proc %p",
698 pid, p);
699 #endif
700 mutex_enter(&proclist_mutex);
701 /* save pid use count in slot */
702 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
703
704 if (pt->pt_pgrp == NULL) {
705 /* link last freed entry onto ours */
706 pid &= pid_tbl_mask;
707 pt = &pid_table[last_free_pt];
708 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
709 last_free_pt = pid;
710 pid_alloc_cnt--;
711 }
712 mutex_exit(&proclist_mutex);
713
714 nprocs--;
715 mutex_exit(&proclist_lock);
716
717 pool_put(&proc_pool, p);
718 }
719
720 /*
721 * Move p to a new or existing process group (and session)
722 *
723 * If we are creating a new pgrp, the pgid should equal
724 * the calling process' pid.
725 * If is only valid to enter a process group that is in the session
726 * of the process.
727 * Also mksess should only be set if we are creating a process group
728 *
729 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
730 * SYSV setpgrp support for hpux.
731 */
732 int
733 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
734 {
735 struct pgrp *new_pgrp, *pgrp;
736 struct session *sess;
737 struct proc *p;
738 int rval;
739 pid_t pg_id = NO_PGID;
740
741 if (mksess)
742 sess = pool_get(&session_pool, PR_WAITOK);
743 else
744 sess = NULL;
745
746 /* Allocate data areas we might need before doing any validity checks */
747 mutex_enter(&proclist_lock); /* Because pid_table might change */
748 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
749 mutex_exit(&proclist_lock);
750 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
751 mutex_enter(&proclist_lock);
752 } else
753 new_pgrp = NULL;
754 rval = EPERM; /* most common error (to save typing) */
755
756 /* Check pgrp exists or can be created */
757 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
758 if (pgrp != NULL && pgrp->pg_id != pgid)
759 goto done;
760
761 /* Can only set another process under restricted circumstances. */
762 if (pid != curp->p_pid) {
763 /* must exist and be one of our children... */
764 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
765 !inferior(p, curp)) {
766 rval = ESRCH;
767 goto done;
768 }
769 /* ... in the same session... */
770 if (sess != NULL || p->p_session != curp->p_session)
771 goto done;
772 /* ... existing pgid must be in same session ... */
773 if (pgrp != NULL && pgrp->pg_session != p->p_session)
774 goto done;
775 /* ... and not done an exec. */
776 if (p->p_flag & PK_EXEC) {
777 rval = EACCES;
778 goto done;
779 }
780 } else {
781 /* ... setsid() cannot re-enter a pgrp */
782 if (mksess && (curp->p_pgid == curp->p_pid ||
783 pg_find(curp->p_pid, PFIND_LOCKED)))
784 goto done;
785 p = curp;
786 }
787
788 /* Changing the process group/session of a session
789 leader is definitely off limits. */
790 if (SESS_LEADER(p)) {
791 if (sess == NULL && p->p_pgrp == pgrp)
792 /* unless it's a definite noop */
793 rval = 0;
794 goto done;
795 }
796
797 /* Can only create a process group with id of process */
798 if (pgrp == NULL && pgid != pid)
799 goto done;
800
801 /* Can only create a session if creating pgrp */
802 if (sess != NULL && pgrp != NULL)
803 goto done;
804
805 /* Check we allocated memory for a pgrp... */
806 if (pgrp == NULL && new_pgrp == NULL)
807 goto done;
808
809 /* Don't attach to 'zombie' pgrp */
810 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
811 goto done;
812
813 /* Expect to succeed now */
814 rval = 0;
815
816 if (pgrp == p->p_pgrp)
817 /* nothing to do */
818 goto done;
819
820 /* Ok all setup, link up required structures */
821
822 if (pgrp == NULL) {
823 pgrp = new_pgrp;
824 new_pgrp = 0;
825 if (sess != NULL) {
826 sess->s_sid = p->p_pid;
827 sess->s_leader = p;
828 sess->s_count = 1;
829 sess->s_ttyvp = NULL;
830 sess->s_ttyp = NULL;
831 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
832 memcpy(sess->s_login, p->p_session->s_login,
833 sizeof(sess->s_login));
834 p->p_lflag &= ~PL_CONTROLT;
835 } else {
836 sess = p->p_pgrp->pg_session;
837 SESSHOLD(sess);
838 }
839 pgrp->pg_session = sess;
840 sess = 0;
841
842 pgrp->pg_id = pgid;
843 LIST_INIT(&pgrp->pg_members);
844 #ifdef DIAGNOSTIC
845 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
846 panic("enterpgrp: pgrp table slot in use");
847 if (__predict_false(mksess && p != curp))
848 panic("enterpgrp: mksession and p != curproc");
849 #endif
850 mutex_enter(&proclist_mutex);
851 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
852 pgrp->pg_jobc = 0;
853 } else
854 mutex_enter(&proclist_mutex);
855
856 #ifdef notyet
857 /*
858 * If there's a controlling terminal for the current session, we
859 * have to interlock with it. See ttread().
860 */
861 if (p->p_session->s_ttyvp != NULL) {
862 tp = p->p_session->s_ttyp;
863 mutex_enter(&tp->t_mutex);
864 } else
865 tp = NULL;
866 #endif
867
868 /*
869 * Adjust eligibility of affected pgrps to participate in job control.
870 * Increment eligibility counts before decrementing, otherwise we
871 * could reach 0 spuriously during the first call.
872 */
873 fixjobc(p, pgrp, 1);
874 fixjobc(p, p->p_pgrp, 0);
875
876 /* Move process to requested group. */
877 LIST_REMOVE(p, p_pglist);
878 if (LIST_EMPTY(&p->p_pgrp->pg_members))
879 /* defer delete until we've dumped the lock */
880 pg_id = p->p_pgrp->pg_id;
881 p->p_pgrp = pgrp;
882 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
883 mutex_exit(&proclist_mutex);
884
885 #ifdef notyet
886 /* Done with the swap; we can release the tty mutex. */
887 if (tp != NULL)
888 mutex_exit(&tp->t_mutex);
889 #endif
890
891 done:
892 if (pg_id != NO_PGID)
893 pg_delete(pg_id);
894 mutex_exit(&proclist_lock);
895 if (sess != NULL)
896 pool_put(&session_pool, sess);
897 if (new_pgrp != NULL)
898 pool_put(&pgrp_pool, new_pgrp);
899 #ifdef DEBUG_PGRP
900 if (__predict_false(rval))
901 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
902 pid, pgid, mksess, curp->p_pid, rval);
903 #endif
904 return rval;
905 }
906
907 /*
908 * Remove a process from its process group. Must be called with the
909 * proclist_lock held.
910 */
911 void
912 leavepgrp(struct proc *p)
913 {
914 struct pgrp *pgrp;
915
916 KASSERT(mutex_owned(&proclist_lock));
917
918 /*
919 * If there's a controlling terminal for the session, we have to
920 * interlock with it. See ttread().
921 */
922 mutex_enter(&proclist_mutex);
923 #ifdef notyet
924 if (p_>p_session->s_ttyvp != NULL) {
925 tp = p->p_session->s_ttyp;
926 mutex_enter(&tp->t_mutex);
927 } else
928 tp = NULL;
929 #endif
930
931 pgrp = p->p_pgrp;
932 LIST_REMOVE(p, p_pglist);
933 p->p_pgrp = NULL;
934
935 #ifdef notyet
936 if (tp != NULL)
937 mutex_exit(&tp->t_mutex);
938 #endif
939 mutex_exit(&proclist_mutex);
940
941 if (LIST_EMPTY(&pgrp->pg_members))
942 pg_delete(pgrp->pg_id);
943 }
944
945 /*
946 * Free a process group. Must be called with the proclist_lock held.
947 */
948 static void
949 pg_free(pid_t pg_id)
950 {
951 struct pgrp *pgrp;
952 struct pid_table *pt;
953
954 KASSERT(mutex_owned(&proclist_lock));
955
956 pt = &pid_table[pg_id & pid_tbl_mask];
957 pgrp = pt->pt_pgrp;
958 #ifdef DIAGNOSTIC
959 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
960 || !LIST_EMPTY(&pgrp->pg_members)))
961 panic("pg_free: process group absent or has members");
962 #endif
963 pt->pt_pgrp = 0;
964
965 if (!P_VALID(pt->pt_proc)) {
966 /* orphaned pgrp, put slot onto free list */
967 #ifdef DIAGNOSTIC
968 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
969 panic("pg_free: process slot on free list");
970 #endif
971 mutex_enter(&proclist_mutex);
972 pg_id &= pid_tbl_mask;
973 pt = &pid_table[last_free_pt];
974 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
975 mutex_exit(&proclist_mutex);
976 last_free_pt = pg_id;
977 pid_alloc_cnt--;
978 }
979 pool_put(&pgrp_pool, pgrp);
980 }
981
982 /*
983 * Delete a process group. Must be called with the proclist_lock held.
984 */
985 static void
986 pg_delete(pid_t pg_id)
987 {
988 struct pgrp *pgrp;
989 struct tty *ttyp;
990 struct session *ss;
991 int is_pgrp_leader;
992
993 KASSERT(mutex_owned(&proclist_lock));
994
995 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
996 if (pgrp == NULL || pgrp->pg_id != pg_id ||
997 !LIST_EMPTY(&pgrp->pg_members))
998 return;
999
1000 ss = pgrp->pg_session;
1001
1002 /* Remove reference (if any) from tty to this process group */
1003 ttyp = ss->s_ttyp;
1004 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
1005 ttyp->t_pgrp = NULL;
1006 #ifdef DIAGNOSTIC
1007 if (ttyp->t_session != ss)
1008 panic("pg_delete: wrong session on terminal");
1009 #endif
1010 }
1011
1012 /*
1013 * The leading process group in a session is freed
1014 * by sessdelete() if last reference.
1015 */
1016 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1017 SESSRELE(ss);
1018
1019 if (is_pgrp_leader)
1020 return;
1021
1022 pg_free(pg_id);
1023 }
1024
1025 /*
1026 * Delete session - called from SESSRELE when s_count becomes zero.
1027 * Must be called with the proclist_lock held.
1028 */
1029 void
1030 sessdelete(struct session *ss)
1031 {
1032
1033 KASSERT(mutex_owned(&proclist_lock));
1034
1035 /*
1036 * We keep the pgrp with the same id as the session in
1037 * order to stop a process being given the same pid.
1038 * Since the pgrp holds a reference to the session, it
1039 * must be a 'zombie' pgrp by now.
1040 */
1041 pg_free(ss->s_sid);
1042 pool_put(&session_pool, ss);
1043 }
1044
1045 /*
1046 * Adjust pgrp jobc counters when specified process changes process group.
1047 * We count the number of processes in each process group that "qualify"
1048 * the group for terminal job control (those with a parent in a different
1049 * process group of the same session). If that count reaches zero, the
1050 * process group becomes orphaned. Check both the specified process'
1051 * process group and that of its children.
1052 * entering == 0 => p is leaving specified group.
1053 * entering == 1 => p is entering specified group.
1054 *
1055 * Call with proclist_lock held.
1056 */
1057 void
1058 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1059 {
1060 struct pgrp *hispgrp;
1061 struct session *mysession = pgrp->pg_session;
1062 struct proc *child;
1063
1064 KASSERT(mutex_owned(&proclist_lock));
1065 KASSERT(mutex_owned(&proclist_mutex));
1066
1067 /*
1068 * Check p's parent to see whether p qualifies its own process
1069 * group; if so, adjust count for p's process group.
1070 */
1071 hispgrp = p->p_pptr->p_pgrp;
1072 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1073 if (entering) {
1074 mutex_enter(&p->p_smutex);
1075 p->p_sflag &= ~PS_ORPHANPG;
1076 mutex_exit(&p->p_smutex);
1077 pgrp->pg_jobc++;
1078 } else if (--pgrp->pg_jobc == 0)
1079 orphanpg(pgrp);
1080 }
1081
1082 /*
1083 * Check this process' children to see whether they qualify
1084 * their process groups; if so, adjust counts for children's
1085 * process groups.
1086 */
1087 LIST_FOREACH(child, &p->p_children, p_sibling) {
1088 hispgrp = child->p_pgrp;
1089 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1090 !P_ZOMBIE(child)) {
1091 if (entering) {
1092 mutex_enter(&child->p_smutex);
1093 child->p_sflag &= ~PS_ORPHANPG;
1094 mutex_exit(&child->p_smutex);
1095 hispgrp->pg_jobc++;
1096 } else if (--hispgrp->pg_jobc == 0)
1097 orphanpg(hispgrp);
1098 }
1099 }
1100 }
1101
1102 /*
1103 * A process group has become orphaned;
1104 * if there are any stopped processes in the group,
1105 * hang-up all process in that group.
1106 *
1107 * Call with proclist_lock held.
1108 */
1109 static void
1110 orphanpg(struct pgrp *pg)
1111 {
1112 struct proc *p;
1113 int doit;
1114
1115 KASSERT(mutex_owned(&proclist_lock));
1116 KASSERT(mutex_owned(&proclist_mutex));
1117
1118 doit = 0;
1119
1120 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1121 mutex_enter(&p->p_smutex);
1122 if (p->p_stat == SSTOP) {
1123 doit = 1;
1124 p->p_sflag |= PS_ORPHANPG;
1125 }
1126 mutex_exit(&p->p_smutex);
1127 }
1128
1129 if (doit) {
1130 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1131 psignal(p, SIGHUP);
1132 psignal(p, SIGCONT);
1133 }
1134 }
1135 }
1136
1137 #ifdef DDB
1138 #include <ddb/db_output.h>
1139 void pidtbl_dump(void);
1140 void
1141 pidtbl_dump(void)
1142 {
1143 struct pid_table *pt;
1144 struct proc *p;
1145 struct pgrp *pgrp;
1146 int id;
1147
1148 db_printf("pid table %p size %x, next %x, last %x\n",
1149 pid_table, pid_tbl_mask+1,
1150 next_free_pt, last_free_pt);
1151 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1152 p = pt->pt_proc;
1153 if (!P_VALID(p) && !pt->pt_pgrp)
1154 continue;
1155 db_printf(" id %x: ", id);
1156 if (P_VALID(p))
1157 db_printf("proc %p id %d (0x%x) %s\n",
1158 p, p->p_pid, p->p_pid, p->p_comm);
1159 else
1160 db_printf("next %x use %x\n",
1161 P_NEXT(p) & pid_tbl_mask,
1162 P_NEXT(p) & ~pid_tbl_mask);
1163 if ((pgrp = pt->pt_pgrp)) {
1164 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1165 pgrp->pg_session, pgrp->pg_session->s_sid,
1166 pgrp->pg_session->s_count,
1167 pgrp->pg_session->s_login);
1168 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1169 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1170 pgrp->pg_members.lh_first);
1171 for (p = pgrp->pg_members.lh_first; p != 0;
1172 p = p->p_pglist.le_next) {
1173 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1174 p->p_pid, p, p->p_pgrp, p->p_comm);
1175 }
1176 }
1177 }
1178 }
1179 #endif /* DDB */
1180
1181 #ifdef KSTACK_CHECK_MAGIC
1182 #include <sys/user.h>
1183
1184 #define KSTACK_MAGIC 0xdeadbeaf
1185
1186 /* XXX should be per process basis? */
1187 int kstackleftmin = KSTACK_SIZE;
1188 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1189 less than this */
1190
1191 void
1192 kstack_setup_magic(const struct lwp *l)
1193 {
1194 uint32_t *ip;
1195 uint32_t const *end;
1196
1197 KASSERT(l != NULL);
1198 KASSERT(l != &lwp0);
1199
1200 /*
1201 * fill all the stack with magic number
1202 * so that later modification on it can be detected.
1203 */
1204 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1205 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1206 for (; ip < end; ip++) {
1207 *ip = KSTACK_MAGIC;
1208 }
1209 }
1210
1211 void
1212 kstack_check_magic(const struct lwp *l)
1213 {
1214 uint32_t const *ip, *end;
1215 int stackleft;
1216
1217 KASSERT(l != NULL);
1218
1219 /* don't check proc0 */ /*XXX*/
1220 if (l == &lwp0)
1221 return;
1222
1223 #ifdef __MACHINE_STACK_GROWS_UP
1224 /* stack grows upwards (eg. hppa) */
1225 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1226 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1227 for (ip--; ip >= end; ip--)
1228 if (*ip != KSTACK_MAGIC)
1229 break;
1230
1231 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1232 #else /* __MACHINE_STACK_GROWS_UP */
1233 /* stack grows downwards (eg. i386) */
1234 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1235 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1236 for (; ip < end; ip++)
1237 if (*ip != KSTACK_MAGIC)
1238 break;
1239
1240 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1241 #endif /* __MACHINE_STACK_GROWS_UP */
1242
1243 if (kstackleftmin > stackleft) {
1244 kstackleftmin = stackleft;
1245 if (stackleft < kstackleftthres)
1246 printf("warning: kernel stack left %d bytes"
1247 "(pid %u:lid %u)\n", stackleft,
1248 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1249 }
1250
1251 if (stackleft <= 0) {
1252 panic("magic on the top of kernel stack changed for "
1253 "pid %u, lid %u: maybe kernel stack overflow",
1254 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1255 }
1256 }
1257 #endif /* KSTACK_CHECK_MAGIC */
1258
1259 /*
1260 * XXXSMP this is bust, it grabs a read lock and then messes about
1261 * with allproc.
1262 */
1263 int
1264 proclist_foreach_call(struct proclist *list,
1265 int (*callback)(struct proc *, void *arg), void *arg)
1266 {
1267 struct proc marker;
1268 struct proc *p;
1269 struct lwp * const l = curlwp;
1270 int ret = 0;
1271
1272 marker.p_flag = PK_MARKER;
1273 uvm_lwp_hold(l);
1274 mutex_enter(&proclist_lock);
1275 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1276 if (p->p_flag & PK_MARKER) {
1277 p = LIST_NEXT(p, p_list);
1278 continue;
1279 }
1280 LIST_INSERT_AFTER(p, &marker, p_list);
1281 ret = (*callback)(p, arg);
1282 KASSERT(mutex_owned(&proclist_lock));
1283 p = LIST_NEXT(&marker, p_list);
1284 LIST_REMOVE(&marker, p_list);
1285 }
1286 mutex_exit(&proclist_lock);
1287 uvm_lwp_rele(l);
1288
1289 return ret;
1290 }
1291
1292 int
1293 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1294 {
1295
1296 /* XXXCDC: how should locking work here? */
1297
1298 /* curproc exception is for coredump. */
1299
1300 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1301 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1302 return EFAULT;
1303 }
1304
1305 uvmspace_addref(p->p_vmspace);
1306 *vm = p->p_vmspace;
1307
1308 return 0;
1309 }
1310
1311 /*
1312 * Acquire a write lock on the process credential.
1313 */
1314 void
1315 proc_crmod_enter(void)
1316 {
1317 struct lwp *l = curlwp;
1318 struct proc *p = l->l_proc;
1319 struct plimit *lim;
1320 kauth_cred_t oc;
1321 char *cn;
1322
1323 mutex_enter(&p->p_mutex);
1324
1325 /* Ensure the LWP cached credentials are up to date. */
1326 if ((oc = l->l_cred) != p->p_cred) {
1327 kauth_cred_hold(p->p_cred);
1328 l->l_cred = p->p_cred;
1329 kauth_cred_free(oc);
1330 }
1331
1332 /* Reset what needs to be reset in plimit. */
1333 lim = p->p_limit;
1334 if (lim->pl_corename != defcorename) {
1335 if (lim->p_refcnt > 1 &&
1336 (lim->p_lflags & PL_SHAREMOD) == 0) {
1337 p->p_limit = limcopy(p);
1338 limfree(lim);
1339 lim = p->p_limit;
1340 }
1341 mutex_enter(&lim->p_lock);
1342 cn = lim->pl_corename;
1343 lim->pl_corename = defcorename;
1344 mutex_exit(&lim->p_lock);
1345 if (cn != defcorename)
1346 free(cn, M_TEMP);
1347 }
1348 }
1349
1350 /*
1351 * Set in a new process credential, and drop the write lock. The credential
1352 * must have a reference already. Optionally, free a no-longer required
1353 * credential. The scheduler also needs to inspect p_cred, so we also
1354 * briefly acquire the sched state mutex.
1355 */
1356 void
1357 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1358 {
1359 struct lwp *l = curlwp;
1360 struct proc *p = l->l_proc;
1361 kauth_cred_t oc;
1362
1363 /* Is there a new credential to set in? */
1364 if (scred != NULL) {
1365 mutex_enter(&p->p_smutex);
1366 p->p_cred = scred;
1367 mutex_exit(&p->p_smutex);
1368
1369 /* Ensure the LWP cached credentials are up to date. */
1370 if ((oc = l->l_cred) != scred) {
1371 kauth_cred_hold(scred);
1372 l->l_cred = scred;
1373 }
1374 } else
1375 oc = NULL; /* XXXgcc */
1376
1377 if (sugid) {
1378 /*
1379 * Mark process as having changed credentials, stops
1380 * tracing etc.
1381 */
1382 p->p_flag |= PK_SUGID;
1383 }
1384
1385 mutex_exit(&p->p_mutex);
1386
1387 /* If there is a credential to be released, free it now. */
1388 if (fcred != NULL) {
1389 KASSERT(scred != NULL);
1390 kauth_cred_free(fcred);
1391 if (oc != scred)
1392 kauth_cred_free(oc);
1393 }
1394 }
1395
1396 /*
1397 * Acquire a reference on a process, to prevent it from exiting or execing.
1398 */
1399 int
1400 proc_addref(struct proc *p)
1401 {
1402
1403 KASSERT(mutex_owned(&p->p_mutex));
1404
1405 if (p->p_refcnt <= 0)
1406 return EAGAIN;
1407 p->p_refcnt++;
1408
1409 return 0;
1410 }
1411
1412 /*
1413 * Release a reference on a process.
1414 */
1415 void
1416 proc_delref(struct proc *p)
1417 {
1418
1419 KASSERT(mutex_owned(&p->p_mutex));
1420
1421 if (p->p_refcnt < 0) {
1422 if (++p->p_refcnt == 0)
1423 cv_broadcast(&p->p_refcv);
1424 } else {
1425 p->p_refcnt--;
1426 KASSERT(p->p_refcnt != 0);
1427 }
1428 }
1429
1430 /*
1431 * Wait for all references on the process to drain, and prevent new
1432 * references from being acquired.
1433 */
1434 void
1435 proc_drainrefs(struct proc *p)
1436 {
1437
1438 KASSERT(mutex_owned(&p->p_mutex));
1439 KASSERT(p->p_refcnt >= 0);
1440
1441 /*
1442 * The process itself holds the last reference. Once it's released,
1443 * no new references will be granted. If we have already locked out
1444 * new references (refcnt <= 0), potentially due to a failed exec,
1445 * there is nothing more to do.
1446 */
1447 if (p->p_refcnt == 0)
1448 return;
1449 p->p_refcnt = 1 - p->p_refcnt;
1450 while (p->p_refcnt != 0)
1451 cv_wait(&p->p_refcv, &p->p_mutex);
1452 }
1453
1454 /*
1455 * proc_specific_key_create --
1456 * Create a key for subsystem proc-specific data.
1457 */
1458 int
1459 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1460 {
1461
1462 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1463 }
1464
1465 /*
1466 * proc_specific_key_delete --
1467 * Delete a key for subsystem proc-specific data.
1468 */
1469 void
1470 proc_specific_key_delete(specificdata_key_t key)
1471 {
1472
1473 specificdata_key_delete(proc_specificdata_domain, key);
1474 }
1475
1476 /*
1477 * proc_initspecific --
1478 * Initialize a proc's specificdata container.
1479 */
1480 void
1481 proc_initspecific(struct proc *p)
1482 {
1483 int error;
1484
1485 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1486 KASSERT(error == 0);
1487 }
1488
1489 /*
1490 * proc_finispecific --
1491 * Finalize a proc's specificdata container.
1492 */
1493 void
1494 proc_finispecific(struct proc *p)
1495 {
1496
1497 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1498 }
1499
1500 /*
1501 * proc_getspecific --
1502 * Return proc-specific data corresponding to the specified key.
1503 */
1504 void *
1505 proc_getspecific(struct proc *p, specificdata_key_t key)
1506 {
1507
1508 return (specificdata_getspecific(proc_specificdata_domain,
1509 &p->p_specdataref, key));
1510 }
1511
1512 /*
1513 * proc_setspecific --
1514 * Set proc-specific data corresponding to the specified key.
1515 */
1516 void
1517 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1518 {
1519
1520 specificdata_setspecific(proc_specificdata_domain,
1521 &p->p_specdataref, key, data);
1522 }
1523