kern_proc.c revision 1.114.2.5 1 /* $NetBSD: kern_proc.c,v 1.114.2.5 2008/01/09 01:56:06 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.114.2.5 2008/01/09 01:56:06 matt Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_extern.h>
105
106 /*
107 * Other process lists
108 */
109
110 struct proclist allproc;
111 struct proclist zombproc; /* resources have been freed */
112
113 /*
114 * There are two locks on global process state.
115 *
116 * 1. proclist_lock is an adaptive mutex and is used when modifying
117 * or examining process state from a process context. It protects
118 * the internal tables, all of the process lists, and a number of
119 * members of struct proc.
120 *
121 * 2. proclist_mutex is used when allproc must be traversed from an
122 * interrupt context, or when changing the state of processes. The
123 * proclist_lock should always be used in preference. In some cases,
124 * both locks need to be held.
125 *
126 * proclist_lock proclist_mutex structure
127 * --------------- --------------- -----------------
128 * x zombproc
129 * x x pid_table
130 * x proc::p_pptr
131 * x proc::p_sibling
132 * x proc::p_children
133 * x alllwp
134 * x x allproc
135 * x x proc::p_pgrp
136 * x x proc::p_pglist
137 * x x proc::p_session
138 * x x proc::p_list
139 * x lwp::l_list
140 *
141 * The lock order for processes and LWPs is approximately as following:
142 *
143 * kernel_lock
144 * -> proclist_lock
145 * -> proc::p_mutex
146 * -> proclist_mutex
147 * -> proc::p_smutex
148 * -> proc::p_stmutex
149 *
150 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
151 * platform are made MP safe. Currently it blocks interrupts at
152 * IPL_SCHED and below.
153 *
154 * XXX The two process locks (p_smutex + p_mutex), and the two global
155 * state locks (proclist_lock + proclist_mutex) should be merged
156 * together. However, to do so requires interrupts that interrupts
157 * be run with LWP context.
158 */
159 kmutex_t proclist_lock;
160 kmutex_t proclist_mutex;
161
162 /*
163 * pid to proc lookup is done by indexing the pid_table array.
164 * Since pid numbers are only allocated when an empty slot
165 * has been found, there is no need to search any lists ever.
166 * (an orphaned pgrp will lock the slot, a session will lock
167 * the pgrp with the same number.)
168 * If the table is too small it is reallocated with twice the
169 * previous size and the entries 'unzipped' into the two halves.
170 * A linked list of free entries is passed through the pt_proc
171 * field of 'free' items - set odd to be an invalid ptr.
172 */
173
174 struct pid_table {
175 struct proc *pt_proc;
176 struct pgrp *pt_pgrp;
177 };
178 #if 1 /* strongly typed cast - should be a noop */
179 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
180 #else
181 #define p2u(p) ((uint)p)
182 #endif
183 #define P_VALID(p) (!(p2u(p) & 1))
184 #define P_NEXT(p) (p2u(p) >> 1)
185 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
186
187 #define INITIAL_PID_TABLE_SIZE (1 << 5)
188 static struct pid_table *pid_table;
189 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
190 static uint pid_alloc_lim; /* max we allocate before growing table */
191 static uint pid_alloc_cnt; /* number of allocated pids */
192
193 /* links through free slots - never empty! */
194 static uint next_free_pt, last_free_pt;
195 static pid_t pid_max = PID_MAX; /* largest value we allocate */
196
197 /* Components of the first process -- never freed. */
198
199 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
200
201 struct session session0 = {
202 .s_count = 1,
203 .s_sid = 0,
204 };
205 struct pgrp pgrp0 = {
206 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
207 .pg_session = &session0,
208 };
209 struct filedesc0 filedesc0;
210 struct cwdinfo cwdi0 = {
211 .cwdi_cmask = CMASK, /* see cmask below */
212 .cwdi_refcnt = 1,
213 };
214 struct plimit limit0 = {
215 .pl_corename = defcorename,
216 .pl_refcnt = 1,
217 .pl_rlimit = {
218 [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
219 .rlim_cur = RLIM_INFINITY,
220 .rlim_max = RLIM_INFINITY,
221 },
222 },
223 };
224 struct pstats pstat0;
225 struct vmspace vmspace0;
226 struct sigacts sigacts0;
227 struct turnstile turnstile0;
228 struct proc proc0 = {
229 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
230 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
231 .p_nlwps = 1,
232 .p_nrlwps = 1,
233 .p_nlwpid = 1, /* must match lwp0.l_lid */
234 .p_pgrp = &pgrp0,
235 .p_comm = "system",
236 /*
237 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
238 * when they exit. init(8) can easily wait them out for us.
239 */
240 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
241 .p_stat = SACTIVE,
242 .p_nice = NZERO,
243 .p_emul = &emul_netbsd,
244 .p_cwdi = &cwdi0,
245 .p_limit = &limit0,
246 .p_fd = &filedesc0.fd_fd,
247 .p_vmspace = &vmspace0,
248 .p_stats = &pstat0,
249 .p_sigacts = &sigacts0,
250 };
251 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
252 #ifdef LWP0_CPU_INFO
253 .l_cpu = LWP0_CPU_INFO,
254 #endif
255 .l_proc = &proc0,
256 .l_lid = 1,
257 .l_flag = LW_INMEM | LW_SYSTEM,
258 .l_stat = LSONPROC,
259 .l_ts = &turnstile0,
260 .l_syncobj = &sched_syncobj,
261 .l_refcnt = 1,
262 .l_priority = PRI_USER + NPRI_USER - 1,
263 .l_inheritedprio = -1,
264 .l_class = SCHED_OTHER,
265 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
266 .l_name = __UNCONST("swapper"),
267 };
268 kauth_cred_t cred0;
269
270 extern struct user *proc0paddr;
271
272 int nofile = NOFILE;
273 int maxuprc = MAXUPRC;
274 int cmask = CMASK;
275
276 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
277 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
278 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
279
280 /*
281 * The process list descriptors, used during pid allocation and
282 * by sysctl. No locking on this data structure is needed since
283 * it is completely static.
284 */
285 const struct proclist_desc proclists[] = {
286 { &allproc },
287 { &zombproc },
288 { NULL },
289 };
290
291 static void orphanpg(struct pgrp *);
292 static void pg_delete(pid_t);
293
294 static specificdata_domain_t proc_specificdata_domain;
295
296 static pool_cache_t proc_cache;
297 static pool_cache_t pgrp_cache;
298 static pool_cache_t session_cache;
299
300 /*
301 * Initialize global process hashing structures.
302 */
303 void
304 procinit(void)
305 {
306 const struct proclist_desc *pd;
307 int i;
308 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
309
310 for (pd = proclists; pd->pd_list != NULL; pd++)
311 LIST_INIT(pd->pd_list);
312
313 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
314 mutex_init(&proclist_mutex, MUTEX_DEFAULT, IPL_SCHED);
315
316 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
317 M_PROC, M_WAITOK);
318 /* Set free list running through table...
319 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
320 for (i = 0; i <= pid_tbl_mask; i++) {
321 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
322 pid_table[i].pt_pgrp = 0;
323 }
324 /* slot 0 is just grabbed */
325 next_free_pt = 1;
326 /* Need to fix last entry. */
327 last_free_pt = pid_tbl_mask;
328 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
329 /* point at which we grow table - to avoid reusing pids too often */
330 pid_alloc_lim = pid_tbl_mask - 1;
331 #undef LINK_EMPTY
332
333 uihashtbl =
334 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
335
336 proc_specificdata_domain = specificdata_domain_create();
337 KASSERT(proc_specificdata_domain != NULL);
338
339 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
340 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
341 pgrp_cache = pool_cache_init(sizeof(struct pgrp), 0, 0, 0,
342 "pgrppl", NULL, IPL_NONE, NULL, NULL, NULL);
343 session_cache = pool_cache_init(sizeof(struct session), 0, 0, 0,
344 "sessionpl", NULL, IPL_NONE, NULL, NULL, NULL);
345 }
346
347 /*
348 * Initialize process 0.
349 */
350 void
351 proc0_init(void)
352 {
353 struct proc *p;
354 struct pgrp *pg;
355 struct session *sess;
356 struct lwp *l;
357 rlim_t lim;
358
359 p = &proc0;
360 pg = &pgrp0;
361 sess = &session0;
362 l = &lwp0;
363
364 KASSERT(l->l_lid == p->p_nlwpid);
365
366 mutex_init(&p->p_smutex, MUTEX_DEFAULT, IPL_SCHED);
367 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
368 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
369 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
370 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
371
372 rw_init(&p->p_reflock);
373 cv_init(&p->p_waitcv, "wait");
374 cv_init(&p->p_lwpcv, "lwpwait");
375
376 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
377
378 pid_table[0].pt_proc = p;
379 LIST_INSERT_HEAD(&allproc, p, p_list);
380 LIST_INSERT_HEAD(&alllwp, l, l_list);
381
382 pid_table[0].pt_pgrp = pg;
383 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
384
385 #ifdef __HAVE_SYSCALL_INTERN
386 (*p->p_emul->e_syscall_intern)(p);
387 #endif
388
389 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
390 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
391 cv_init(&l->l_sigcv, "sigwait");
392
393 /* Create credentials. */
394 cred0 = kauth_cred_alloc();
395 p->p_cred = cred0;
396 kauth_cred_hold(cred0);
397 l->l_cred = cred0;
398
399 /* Create the CWD info. */
400 rw_init(&cwdi0.cwdi_lock);
401
402 /* Create the limits structures. */
403 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
404
405 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
406 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
407 maxfiles < nofile ? maxfiles : nofile;
408
409 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
410 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
411 maxproc < maxuprc ? maxproc : maxuprc;
412
413 lim = ptoa(uvmexp.free);
414 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
415 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
416 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
417
418 /* Configure virtual memory system, set vm rlimits. */
419 uvm_init_limits(p);
420
421 /* Initialize file descriptor table for proc0. */
422 fdinit1(&filedesc0);
423
424 /*
425 * Initialize proc0's vmspace, which uses the kernel pmap.
426 * All kernel processes (which never have user space mappings)
427 * share proc0's vmspace, and thus, the kernel pmap.
428 */
429 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
430 trunc_page(VM_MAX_ADDRESS));
431
432 l->l_addr = proc0paddr; /* XXX */
433
434 /* Initialize signal state for proc0. XXX IPL_SCHED */
435 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
436 siginit(p);
437
438 proc_initspecific(p);
439 lwp_initspecific(l);
440
441 SYSCALL_TIME_LWP_INIT(l);
442 }
443
444 /*
445 * Check that the specified process group is in the session of the
446 * specified process.
447 * Treats -ve ids as process ids.
448 * Used to validate TIOCSPGRP requests.
449 */
450 int
451 pgid_in_session(struct proc *p, pid_t pg_id)
452 {
453 struct pgrp *pgrp;
454 struct session *session;
455 int error;
456
457 mutex_enter(&proclist_lock);
458 if (pg_id < 0) {
459 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
460 if (p1 == NULL)
461 return EINVAL;
462 pgrp = p1->p_pgrp;
463 } else {
464 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
465 if (pgrp == NULL)
466 return EINVAL;
467 }
468 session = pgrp->pg_session;
469 if (session != p->p_pgrp->pg_session)
470 error = EPERM;
471 else
472 error = 0;
473 mutex_exit(&proclist_lock);
474
475 return error;
476 }
477
478 /*
479 * Is p an inferior of q?
480 *
481 * Call with the proclist_lock held.
482 */
483 int
484 inferior(struct proc *p, struct proc *q)
485 {
486
487 for (; p != q; p = p->p_pptr)
488 if (p->p_pid == 0)
489 return 0;
490 return 1;
491 }
492
493 /*
494 * Locate a process by number
495 */
496 struct proc *
497 p_find(pid_t pid, uint flags)
498 {
499 struct proc *p;
500 char stat;
501
502 if (!(flags & PFIND_LOCKED))
503 mutex_enter(&proclist_lock);
504
505 p = pid_table[pid & pid_tbl_mask].pt_proc;
506
507 /* Only allow live processes to be found by pid. */
508 /* XXXSMP p_stat */
509 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
510 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
511 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
512 if (flags & PFIND_UNLOCK_OK)
513 mutex_exit(&proclist_lock);
514 return p;
515 }
516 if (flags & PFIND_UNLOCK_FAIL)
517 mutex_exit(&proclist_lock);
518 return NULL;
519 }
520
521
522 /*
523 * Locate a process group by number
524 */
525 struct pgrp *
526 pg_find(pid_t pgid, uint flags)
527 {
528 struct pgrp *pg;
529
530 if (!(flags & PFIND_LOCKED))
531 mutex_enter(&proclist_lock);
532 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
533 /*
534 * Can't look up a pgrp that only exists because the session
535 * hasn't died yet (traditional)
536 */
537 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
538 if (flags & PFIND_UNLOCK_FAIL)
539 mutex_exit(&proclist_lock);
540 return NULL;
541 }
542
543 if (flags & PFIND_UNLOCK_OK)
544 mutex_exit(&proclist_lock);
545 return pg;
546 }
547
548 static void
549 expand_pid_table(void)
550 {
551 uint pt_size = pid_tbl_mask + 1;
552 struct pid_table *n_pt, *new_pt;
553 struct proc *proc;
554 struct pgrp *pgrp;
555 int i;
556 pid_t pid;
557
558 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
559
560 mutex_enter(&proclist_lock);
561 if (pt_size != pid_tbl_mask + 1) {
562 /* Another process beat us to it... */
563 mutex_exit(&proclist_lock);
564 FREE(new_pt, M_PROC);
565 return;
566 }
567
568 /*
569 * Copy entries from old table into new one.
570 * If 'pid' is 'odd' we need to place in the upper half,
571 * even pid's to the lower half.
572 * Free items stay in the low half so we don't have to
573 * fixup the reference to them.
574 * We stuff free items on the front of the freelist
575 * because we can't write to unmodified entries.
576 * Processing the table backwards maintains a semblance
577 * of issueing pid numbers that increase with time.
578 */
579 i = pt_size - 1;
580 n_pt = new_pt + i;
581 for (; ; i--, n_pt--) {
582 proc = pid_table[i].pt_proc;
583 pgrp = pid_table[i].pt_pgrp;
584 if (!P_VALID(proc)) {
585 /* Up 'use count' so that link is valid */
586 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
587 proc = P_FREE(pid);
588 if (pgrp)
589 pid = pgrp->pg_id;
590 } else
591 pid = proc->p_pid;
592
593 /* Save entry in appropriate half of table */
594 n_pt[pid & pt_size].pt_proc = proc;
595 n_pt[pid & pt_size].pt_pgrp = pgrp;
596
597 /* Put other piece on start of free list */
598 pid = (pid ^ pt_size) & ~pid_tbl_mask;
599 n_pt[pid & pt_size].pt_proc =
600 P_FREE((pid & ~pt_size) | next_free_pt);
601 n_pt[pid & pt_size].pt_pgrp = 0;
602 next_free_pt = i | (pid & pt_size);
603 if (i == 0)
604 break;
605 }
606
607 /* Switch tables */
608 mutex_enter(&proclist_mutex);
609 n_pt = pid_table;
610 pid_table = new_pt;
611 mutex_exit(&proclist_mutex);
612 pid_tbl_mask = pt_size * 2 - 1;
613
614 /*
615 * pid_max starts as PID_MAX (= 30000), once we have 16384
616 * allocated pids we need it to be larger!
617 */
618 if (pid_tbl_mask > PID_MAX) {
619 pid_max = pid_tbl_mask * 2 + 1;
620 pid_alloc_lim |= pid_alloc_lim << 1;
621 } else
622 pid_alloc_lim <<= 1; /* doubles number of free slots... */
623
624 mutex_exit(&proclist_lock);
625 FREE(n_pt, M_PROC);
626 }
627
628 struct proc *
629 proc_alloc(void)
630 {
631 struct proc *p;
632 int nxt;
633 pid_t pid;
634 struct pid_table *pt;
635
636 p = pool_cache_get(proc_cache, PR_WAITOK);
637 p->p_stat = SIDL; /* protect against others */
638
639 proc_initspecific(p);
640 /* allocate next free pid */
641
642 for (;;expand_pid_table()) {
643 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
644 /* ensure pids cycle through 2000+ values */
645 continue;
646 mutex_enter(&proclist_lock);
647 pt = &pid_table[next_free_pt];
648 #ifdef DIAGNOSTIC
649 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
650 panic("proc_alloc: slot busy");
651 #endif
652 nxt = P_NEXT(pt->pt_proc);
653 if (nxt & pid_tbl_mask)
654 break;
655 /* Table full - expand (NB last entry not used....) */
656 mutex_exit(&proclist_lock);
657 }
658
659 /* pid is 'saved use count' + 'size' + entry */
660 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
661 if ((uint)pid > (uint)pid_max)
662 pid &= pid_tbl_mask;
663 p->p_pid = pid;
664 next_free_pt = nxt & pid_tbl_mask;
665
666 /* Grab table slot */
667 mutex_enter(&proclist_mutex);
668 pt->pt_proc = p;
669 mutex_exit(&proclist_mutex);
670 pid_alloc_cnt++;
671
672 mutex_exit(&proclist_lock);
673
674 return p;
675 }
676
677 /*
678 * Free a process id - called from proc_free (in kern_exit.c)
679 *
680 * Called with the proclist_lock held.
681 */
682 void
683 proc_free_pid(struct proc *p)
684 {
685 pid_t pid = p->p_pid;
686 struct pid_table *pt;
687
688 KASSERT(mutex_owned(&proclist_lock));
689
690 pt = &pid_table[pid & pid_tbl_mask];
691 #ifdef DIAGNOSTIC
692 if (__predict_false(pt->pt_proc != p))
693 panic("proc_free: pid_table mismatch, pid %x, proc %p",
694 pid, p);
695 #endif
696 mutex_enter(&proclist_mutex);
697 /* save pid use count in slot */
698 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
699
700 if (pt->pt_pgrp == NULL) {
701 /* link last freed entry onto ours */
702 pid &= pid_tbl_mask;
703 pt = &pid_table[last_free_pt];
704 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
705 last_free_pt = pid;
706 pid_alloc_cnt--;
707 }
708 mutex_exit(&proclist_mutex);
709
710 atomic_dec_uint(&nprocs);
711 }
712
713 void
714 proc_free_mem(struct proc *p)
715 {
716
717 pool_cache_put(proc_cache, p);
718 }
719
720 /*
721 * Move p to a new or existing process group (and session)
722 *
723 * If we are creating a new pgrp, the pgid should equal
724 * the calling process' pid.
725 * If is only valid to enter a process group that is in the session
726 * of the process.
727 * Also mksess should only be set if we are creating a process group
728 *
729 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
730 * SYSV setpgrp support for hpux.
731 */
732 int
733 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
734 {
735 struct pgrp *new_pgrp, *pgrp;
736 struct session *sess;
737 struct proc *p;
738 int rval;
739 pid_t pg_id = NO_PGID;
740
741 if (mksess)
742 sess = pool_cache_get(session_cache, PR_WAITOK);
743 else
744 sess = NULL;
745
746 /* Allocate data areas we might need before doing any validity checks */
747 mutex_enter(&proclist_lock); /* Because pid_table might change */
748 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
749 mutex_exit(&proclist_lock);
750 new_pgrp = pool_cache_get(pgrp_cache, PR_WAITOK);
751 mutex_enter(&proclist_lock);
752 } else
753 new_pgrp = NULL;
754 rval = EPERM; /* most common error (to save typing) */
755
756 /* Check pgrp exists or can be created */
757 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
758 if (pgrp != NULL && pgrp->pg_id != pgid)
759 goto done;
760
761 /* Can only set another process under restricted circumstances. */
762 if (pid != curp->p_pid) {
763 /* must exist and be one of our children... */
764 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
765 !inferior(p, curp)) {
766 rval = ESRCH;
767 goto done;
768 }
769 /* ... in the same session... */
770 if (sess != NULL || p->p_session != curp->p_session)
771 goto done;
772 /* ... existing pgid must be in same session ... */
773 if (pgrp != NULL && pgrp->pg_session != p->p_session)
774 goto done;
775 /* ... and not done an exec. */
776 if (p->p_flag & PK_EXEC) {
777 rval = EACCES;
778 goto done;
779 }
780 } else {
781 /* ... setsid() cannot re-enter a pgrp */
782 if (mksess && (curp->p_pgid == curp->p_pid ||
783 pg_find(curp->p_pid, PFIND_LOCKED)))
784 goto done;
785 p = curp;
786 }
787
788 /* Changing the process group/session of a session
789 leader is definitely off limits. */
790 if (SESS_LEADER(p)) {
791 if (sess == NULL && p->p_pgrp == pgrp)
792 /* unless it's a definite noop */
793 rval = 0;
794 goto done;
795 }
796
797 /* Can only create a process group with id of process */
798 if (pgrp == NULL && pgid != pid)
799 goto done;
800
801 /* Can only create a session if creating pgrp */
802 if (sess != NULL && pgrp != NULL)
803 goto done;
804
805 /* Check we allocated memory for a pgrp... */
806 if (pgrp == NULL && new_pgrp == NULL)
807 goto done;
808
809 /* Don't attach to 'zombie' pgrp */
810 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
811 goto done;
812
813 /* Expect to succeed now */
814 rval = 0;
815
816 if (pgrp == p->p_pgrp)
817 /* nothing to do */
818 goto done;
819
820 /* Ok all setup, link up required structures */
821
822 if (pgrp == NULL) {
823 pgrp = new_pgrp;
824 new_pgrp = 0;
825 if (sess != NULL) {
826 sess->s_sid = p->p_pid;
827 sess->s_leader = p;
828 sess->s_count = 1;
829 sess->s_ttyvp = NULL;
830 sess->s_ttyp = NULL;
831 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
832 memcpy(sess->s_login, p->p_session->s_login,
833 sizeof(sess->s_login));
834 p->p_lflag &= ~PL_CONTROLT;
835 } else {
836 sess = p->p_pgrp->pg_session;
837 SESSHOLD(sess);
838 }
839 pgrp->pg_session = sess;
840 sess = 0;
841
842 pgrp->pg_id = pgid;
843 LIST_INIT(&pgrp->pg_members);
844 #ifdef DIAGNOSTIC
845 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
846 panic("enterpgrp: pgrp table slot in use");
847 if (__predict_false(mksess && p != curp))
848 panic("enterpgrp: mksession and p != curproc");
849 #endif
850 mutex_enter(&proclist_mutex);
851 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
852 pgrp->pg_jobc = 0;
853 } else
854 mutex_enter(&proclist_mutex);
855
856 /* Interlock with tty subsystem. */
857 mutex_spin_enter(&tty_lock);
858
859 /*
860 * Adjust eligibility of affected pgrps to participate in job control.
861 * Increment eligibility counts before decrementing, otherwise we
862 * could reach 0 spuriously during the first call.
863 */
864 fixjobc(p, pgrp, 1);
865 fixjobc(p, p->p_pgrp, 0);
866
867 /* Move process to requested group. */
868 LIST_REMOVE(p, p_pglist);
869 if (LIST_EMPTY(&p->p_pgrp->pg_members))
870 /* defer delete until we've dumped the lock */
871 pg_id = p->p_pgrp->pg_id;
872 p->p_pgrp = pgrp;
873 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
874
875 /* Done with the swap; we can release the tty mutex. */
876 mutex_spin_exit(&tty_lock);
877
878 mutex_exit(&proclist_mutex);
879
880 done:
881 if (pg_id != NO_PGID)
882 pg_delete(pg_id);
883 mutex_exit(&proclist_lock);
884 if (sess != NULL)
885 pool_cache_put(session_cache, sess);
886 if (new_pgrp != NULL)
887 pool_cache_put(pgrp_cache, new_pgrp);
888 #ifdef DEBUG_PGRP
889 if (__predict_false(rval))
890 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
891 pid, pgid, mksess, curp->p_pid, rval);
892 #endif
893 return rval;
894 }
895
896 /*
897 * Remove a process from its process group. Must be called with the
898 * proclist_lock held.
899 */
900 void
901 leavepgrp(struct proc *p)
902 {
903 struct pgrp *pgrp;
904
905 KASSERT(mutex_owned(&proclist_lock));
906
907 mutex_enter(&proclist_mutex);
908 mutex_spin_enter(&tty_lock);
909 pgrp = p->p_pgrp;
910 LIST_REMOVE(p, p_pglist);
911 p->p_pgrp = NULL;
912 mutex_spin_exit(&tty_lock);
913 mutex_exit(&proclist_mutex);
914
915 if (LIST_EMPTY(&pgrp->pg_members))
916 pg_delete(pgrp->pg_id);
917 }
918
919 /*
920 * Free a process group. Must be called with the proclist_lock held.
921 */
922 static void
923 pg_free(pid_t pg_id)
924 {
925 struct pgrp *pgrp;
926 struct pid_table *pt;
927
928 KASSERT(mutex_owned(&proclist_lock));
929
930 pt = &pid_table[pg_id & pid_tbl_mask];
931 pgrp = pt->pt_pgrp;
932 #ifdef DIAGNOSTIC
933 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
934 || !LIST_EMPTY(&pgrp->pg_members)))
935 panic("pg_free: process group absent or has members");
936 #endif
937 pt->pt_pgrp = 0;
938
939 if (!P_VALID(pt->pt_proc)) {
940 /* orphaned pgrp, put slot onto free list */
941 #ifdef DIAGNOSTIC
942 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
943 panic("pg_free: process slot on free list");
944 #endif
945 mutex_enter(&proclist_mutex);
946 pg_id &= pid_tbl_mask;
947 pt = &pid_table[last_free_pt];
948 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
949 mutex_exit(&proclist_mutex);
950 last_free_pt = pg_id;
951 pid_alloc_cnt--;
952 }
953 pool_cache_put(pgrp_cache, pgrp);
954 }
955
956 /*
957 * Delete a process group. Must be called with the proclist_lock held.
958 */
959 static void
960 pg_delete(pid_t pg_id)
961 {
962 struct pgrp *pgrp;
963 struct tty *ttyp;
964 struct session *ss;
965 int is_pgrp_leader;
966
967 KASSERT(mutex_owned(&proclist_lock));
968
969 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
970 if (pgrp == NULL || pgrp->pg_id != pg_id ||
971 !LIST_EMPTY(&pgrp->pg_members))
972 return;
973
974 ss = pgrp->pg_session;
975
976 /* Remove reference (if any) from tty to this process group */
977 mutex_spin_enter(&tty_lock);
978 ttyp = ss->s_ttyp;
979 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
980 ttyp->t_pgrp = NULL;
981 #ifdef DIAGNOSTIC
982 if (ttyp->t_session != ss)
983 panic("pg_delete: wrong session on terminal");
984 #endif
985 }
986 mutex_spin_exit(&tty_lock);
987
988 /*
989 * The leading process group in a session is freed
990 * by sessdelete() if last reference.
991 */
992 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
993 SESSRELE(ss);
994
995 if (is_pgrp_leader)
996 return;
997
998 pg_free(pg_id);
999 }
1000
1001 /*
1002 * Delete session - called from SESSRELE when s_count becomes zero.
1003 * Must be called with the proclist_lock held.
1004 */
1005 void
1006 sessdelete(struct session *ss)
1007 {
1008
1009 KASSERT(mutex_owned(&proclist_lock));
1010
1011 /*
1012 * We keep the pgrp with the same id as the session in
1013 * order to stop a process being given the same pid.
1014 * Since the pgrp holds a reference to the session, it
1015 * must be a 'zombie' pgrp by now.
1016 */
1017 pg_free(ss->s_sid);
1018 pool_cache_put(session_cache, ss);
1019 }
1020
1021 /*
1022 * Adjust pgrp jobc counters when specified process changes process group.
1023 * We count the number of processes in each process group that "qualify"
1024 * the group for terminal job control (those with a parent in a different
1025 * process group of the same session). If that count reaches zero, the
1026 * process group becomes orphaned. Check both the specified process'
1027 * process group and that of its children.
1028 * entering == 0 => p is leaving specified group.
1029 * entering == 1 => p is entering specified group.
1030 *
1031 * Call with proclist_lock held.
1032 */
1033 void
1034 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1035 {
1036 struct pgrp *hispgrp;
1037 struct session *mysession = pgrp->pg_session;
1038 struct proc *child;
1039
1040 KASSERT(mutex_owned(&proclist_lock));
1041 KASSERT(mutex_owned(&proclist_mutex));
1042
1043 /*
1044 * Check p's parent to see whether p qualifies its own process
1045 * group; if so, adjust count for p's process group.
1046 */
1047 hispgrp = p->p_pptr->p_pgrp;
1048 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1049 if (entering) {
1050 mutex_enter(&p->p_smutex);
1051 p->p_sflag &= ~PS_ORPHANPG;
1052 mutex_exit(&p->p_smutex);
1053 pgrp->pg_jobc++;
1054 } else if (--pgrp->pg_jobc == 0)
1055 orphanpg(pgrp);
1056 }
1057
1058 /*
1059 * Check this process' children to see whether they qualify
1060 * their process groups; if so, adjust counts for children's
1061 * process groups.
1062 */
1063 LIST_FOREACH(child, &p->p_children, p_sibling) {
1064 hispgrp = child->p_pgrp;
1065 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1066 !P_ZOMBIE(child)) {
1067 if (entering) {
1068 mutex_enter(&child->p_smutex);
1069 child->p_sflag &= ~PS_ORPHANPG;
1070 mutex_exit(&child->p_smutex);
1071 hispgrp->pg_jobc++;
1072 } else if (--hispgrp->pg_jobc == 0)
1073 orphanpg(hispgrp);
1074 }
1075 }
1076 }
1077
1078 /*
1079 * A process group has become orphaned;
1080 * if there are any stopped processes in the group,
1081 * hang-up all process in that group.
1082 *
1083 * Call with proclist_lock held.
1084 */
1085 static void
1086 orphanpg(struct pgrp *pg)
1087 {
1088 struct proc *p;
1089 int doit;
1090
1091 KASSERT(mutex_owned(&proclist_lock));
1092 KASSERT(mutex_owned(&proclist_mutex));
1093
1094 doit = 0;
1095
1096 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1097 mutex_enter(&p->p_smutex);
1098 if (p->p_stat == SSTOP) {
1099 doit = 1;
1100 p->p_sflag |= PS_ORPHANPG;
1101 }
1102 mutex_exit(&p->p_smutex);
1103 }
1104
1105 if (doit) {
1106 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1107 psignal(p, SIGHUP);
1108 psignal(p, SIGCONT);
1109 }
1110 }
1111 }
1112
1113 #ifdef DDB
1114 #include <ddb/db_output.h>
1115 void pidtbl_dump(void);
1116 void
1117 pidtbl_dump(void)
1118 {
1119 struct pid_table *pt;
1120 struct proc *p;
1121 struct pgrp *pgrp;
1122 int id;
1123
1124 db_printf("pid table %p size %x, next %x, last %x\n",
1125 pid_table, pid_tbl_mask+1,
1126 next_free_pt, last_free_pt);
1127 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1128 p = pt->pt_proc;
1129 if (!P_VALID(p) && !pt->pt_pgrp)
1130 continue;
1131 db_printf(" id %x: ", id);
1132 if (P_VALID(p))
1133 db_printf("proc %p id %d (0x%x) %s\n",
1134 p, p->p_pid, p->p_pid, p->p_comm);
1135 else
1136 db_printf("next %x use %x\n",
1137 P_NEXT(p) & pid_tbl_mask,
1138 P_NEXT(p) & ~pid_tbl_mask);
1139 if ((pgrp = pt->pt_pgrp)) {
1140 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1141 pgrp->pg_session, pgrp->pg_session->s_sid,
1142 pgrp->pg_session->s_count,
1143 pgrp->pg_session->s_login);
1144 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1145 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1146 pgrp->pg_members.lh_first);
1147 for (p = pgrp->pg_members.lh_first; p != 0;
1148 p = p->p_pglist.le_next) {
1149 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1150 p->p_pid, p, p->p_pgrp, p->p_comm);
1151 }
1152 }
1153 }
1154 }
1155 #endif /* DDB */
1156
1157 #ifdef KSTACK_CHECK_MAGIC
1158 #include <sys/user.h>
1159
1160 #define KSTACK_MAGIC 0xdeadbeaf
1161
1162 /* XXX should be per process basis? */
1163 int kstackleftmin = KSTACK_SIZE;
1164 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1165 less than this */
1166
1167 void
1168 kstack_setup_magic(const struct lwp *l)
1169 {
1170 uint32_t *ip;
1171 uint32_t const *end;
1172
1173 KASSERT(l != NULL);
1174 KASSERT(l != &lwp0);
1175
1176 /*
1177 * fill all the stack with magic number
1178 * so that later modification on it can be detected.
1179 */
1180 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1181 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1182 for (; ip < end; ip++) {
1183 *ip = KSTACK_MAGIC;
1184 }
1185 }
1186
1187 void
1188 kstack_check_magic(const struct lwp *l)
1189 {
1190 uint32_t const *ip, *end;
1191 int stackleft;
1192
1193 KASSERT(l != NULL);
1194
1195 /* don't check proc0 */ /*XXX*/
1196 if (l == &lwp0)
1197 return;
1198
1199 #ifdef __MACHINE_STACK_GROWS_UP
1200 /* stack grows upwards (eg. hppa) */
1201 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1202 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1203 for (ip--; ip >= end; ip--)
1204 if (*ip != KSTACK_MAGIC)
1205 break;
1206
1207 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1208 #else /* __MACHINE_STACK_GROWS_UP */
1209 /* stack grows downwards (eg. i386) */
1210 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1211 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1212 for (; ip < end; ip++)
1213 if (*ip != KSTACK_MAGIC)
1214 break;
1215
1216 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1217 #endif /* __MACHINE_STACK_GROWS_UP */
1218
1219 if (kstackleftmin > stackleft) {
1220 kstackleftmin = stackleft;
1221 if (stackleft < kstackleftthres)
1222 printf("warning: kernel stack left %d bytes"
1223 "(pid %u:lid %u)\n", stackleft,
1224 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1225 }
1226
1227 if (stackleft <= 0) {
1228 panic("magic on the top of kernel stack changed for "
1229 "pid %u, lid %u: maybe kernel stack overflow",
1230 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1231 }
1232 }
1233 #endif /* KSTACK_CHECK_MAGIC */
1234
1235 /*
1236 * XXXSMP this is bust, it grabs a read lock and then messes about
1237 * with allproc.
1238 */
1239 int
1240 proclist_foreach_call(struct proclist *list,
1241 int (*callback)(struct proc *, void *arg), void *arg)
1242 {
1243 struct proc marker;
1244 struct proc *p;
1245 struct lwp * const l = curlwp;
1246 int ret = 0;
1247
1248 marker.p_flag = PK_MARKER;
1249 uvm_lwp_hold(l);
1250 mutex_enter(&proclist_lock);
1251 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1252 if (p->p_flag & PK_MARKER) {
1253 p = LIST_NEXT(p, p_list);
1254 continue;
1255 }
1256 LIST_INSERT_AFTER(p, &marker, p_list);
1257 ret = (*callback)(p, arg);
1258 KASSERT(mutex_owned(&proclist_lock));
1259 p = LIST_NEXT(&marker, p_list);
1260 LIST_REMOVE(&marker, p_list);
1261 }
1262 mutex_exit(&proclist_lock);
1263 uvm_lwp_rele(l);
1264
1265 return ret;
1266 }
1267
1268 int
1269 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1270 {
1271
1272 /* XXXCDC: how should locking work here? */
1273
1274 /* curproc exception is for coredump. */
1275
1276 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1277 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1278 return EFAULT;
1279 }
1280
1281 uvmspace_addref(p->p_vmspace);
1282 *vm = p->p_vmspace;
1283
1284 return 0;
1285 }
1286
1287 /*
1288 * Acquire a write lock on the process credential.
1289 */
1290 void
1291 proc_crmod_enter(void)
1292 {
1293 struct lwp *l = curlwp;
1294 struct proc *p = l->l_proc;
1295 struct plimit *lim;
1296 kauth_cred_t oc;
1297 char *cn;
1298
1299 /* Reset what needs to be reset in plimit. */
1300 if (p->p_limit->pl_corename != defcorename) {
1301 lim_privatise(p, false);
1302 lim = p->p_limit;
1303 mutex_enter(&lim->pl_lock);
1304 cn = lim->pl_corename;
1305 lim->pl_corename = defcorename;
1306 mutex_exit(&lim->pl_lock);
1307 if (cn != defcorename)
1308 free(cn, M_TEMP);
1309 }
1310
1311 mutex_enter(&p->p_mutex);
1312
1313 /* Ensure the LWP cached credentials are up to date. */
1314 if ((oc = l->l_cred) != p->p_cred) {
1315 kauth_cred_hold(p->p_cred);
1316 l->l_cred = p->p_cred;
1317 kauth_cred_free(oc);
1318 }
1319
1320 }
1321
1322 /*
1323 * Set in a new process credential, and drop the write lock. The credential
1324 * must have a reference already. Optionally, free a no-longer required
1325 * credential. The scheduler also needs to inspect p_cred, so we also
1326 * briefly acquire the sched state mutex.
1327 */
1328 void
1329 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1330 {
1331 struct lwp *l = curlwp;
1332 struct proc *p = l->l_proc;
1333 kauth_cred_t oc;
1334
1335 /* Is there a new credential to set in? */
1336 if (scred != NULL) {
1337 mutex_enter(&p->p_smutex);
1338 p->p_cred = scred;
1339 mutex_exit(&p->p_smutex);
1340
1341 /* Ensure the LWP cached credentials are up to date. */
1342 if ((oc = l->l_cred) != scred) {
1343 kauth_cred_hold(scred);
1344 l->l_cred = scred;
1345 }
1346 } else
1347 oc = NULL; /* XXXgcc */
1348
1349 if (sugid) {
1350 /*
1351 * Mark process as having changed credentials, stops
1352 * tracing etc.
1353 */
1354 p->p_flag |= PK_SUGID;
1355 }
1356
1357 mutex_exit(&p->p_mutex);
1358
1359 /* If there is a credential to be released, free it now. */
1360 if (fcred != NULL) {
1361 KASSERT(scred != NULL);
1362 kauth_cred_free(fcred);
1363 if (oc != scred)
1364 kauth_cred_free(oc);
1365 }
1366 }
1367
1368 /*
1369 * proc_specific_key_create --
1370 * Create a key for subsystem proc-specific data.
1371 */
1372 int
1373 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1374 {
1375
1376 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1377 }
1378
1379 /*
1380 * proc_specific_key_delete --
1381 * Delete a key for subsystem proc-specific data.
1382 */
1383 void
1384 proc_specific_key_delete(specificdata_key_t key)
1385 {
1386
1387 specificdata_key_delete(proc_specificdata_domain, key);
1388 }
1389
1390 /*
1391 * proc_initspecific --
1392 * Initialize a proc's specificdata container.
1393 */
1394 void
1395 proc_initspecific(struct proc *p)
1396 {
1397 int error;
1398
1399 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1400 KASSERT(error == 0);
1401 }
1402
1403 /*
1404 * proc_finispecific --
1405 * Finalize a proc's specificdata container.
1406 */
1407 void
1408 proc_finispecific(struct proc *p)
1409 {
1410
1411 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1412 }
1413
1414 /*
1415 * proc_getspecific --
1416 * Return proc-specific data corresponding to the specified key.
1417 */
1418 void *
1419 proc_getspecific(struct proc *p, specificdata_key_t key)
1420 {
1421
1422 return (specificdata_getspecific(proc_specificdata_domain,
1423 &p->p_specdataref, key));
1424 }
1425
1426 /*
1427 * proc_setspecific --
1428 * Set proc-specific data corresponding to the specified key.
1429 */
1430 void
1431 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1432 {
1433
1434 specificdata_setspecific(proc_specificdata_domain,
1435 &p->p_specdataref, key, data);
1436 }
1437