kern_proc.c revision 1.115 1 /* $NetBSD: kern_proc.c,v 1.115 2007/09/06 23:58:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.115 2007/09/06 23:58:57 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112 /*
113 * There are two locks on global process state.
114 *
115 * 1. proclist_lock is an adaptive mutex and is used when modifying
116 * or examining process state from a process context. It protects
117 * the internal tables, all of the process lists, and a number of
118 * members of struct proc.
119 *
120 * 2. proclist_mutex is used when allproc must be traversed from an
121 * interrupt context, or when changing the state of processes. The
122 * proclist_lock should always be used in preference. In some cases,
123 * both locks need to be held.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is approximately as following:
141 *
142 * kernel_lock
143 * -> proclist_lock
144 * -> proc::p_mutex
145 * -> proclist_mutex
146 * -> proc::p_smutex
147 * -> proc::p_stmutex
148 *
149 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 * platform are made MP safe. Currently it blocks interrupts at
151 * IPL_SCHED and below.
152 *
153 * XXX The two process locks (p_smutex + p_mutex), and the two global
154 * state locks (proclist_lock + proclist_mutex) should be merged
155 * together. However, to do so requires interrupts that interrupts
156 * be run with LWP context.
157 */
158 kmutex_t proclist_lock;
159 kmutex_t proclist_mutex;
160
161 /*
162 * pid to proc lookup is done by indexing the pid_table array.
163 * Since pid numbers are only allocated when an empty slot
164 * has been found, there is no need to search any lists ever.
165 * (an orphaned pgrp will lock the slot, a session will lock
166 * the pgrp with the same number.)
167 * If the table is too small it is reallocated with twice the
168 * previous size and the entries 'unzipped' into the two halves.
169 * A linked list of free entries is passed through the pt_proc
170 * field of 'free' items - set odd to be an invalid ptr.
171 */
172
173 struct pid_table {
174 struct proc *pt_proc;
175 struct pgrp *pt_pgrp;
176 };
177 #if 1 /* strongly typed cast - should be a noop */
178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 #else
180 #define p2u(p) ((uint)p)
181 #endif
182 #define P_VALID(p) (!(p2u(p) & 1))
183 #define P_NEXT(p) (p2u(p) >> 1)
184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185
186 #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 static struct pid_table *pid_table;
188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 static uint pid_alloc_lim; /* max we allocate before growing table */
190 static uint pid_alloc_cnt; /* number of allocated pids */
191
192 /* links through free slots - never empty! */
193 static uint next_free_pt, last_free_pt;
194 static pid_t pid_max = PID_MAX; /* largest value we allocate */
195
196 /* Components of the first process -- never freed. */
197 struct session session0;
198 struct pgrp pgrp0;
199 struct proc proc0;
200 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
201 kauth_cred_t cred0;
202 struct filedesc0 filedesc0;
203 struct cwdinfo cwdi0;
204 struct plimit limit0;
205 struct pstats pstat0;
206 struct vmspace vmspace0;
207 struct sigacts sigacts0;
208 struct turnstile turnstile0;
209
210 extern struct user *proc0paddr;
211
212 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
213
214 int nofile = NOFILE;
215 int maxuprc = MAXUPRC;
216 int cmask = CMASK;
217
218 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
219 &pool_allocator_nointr, IPL_NONE);
220 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
221 &pool_allocator_nointr, IPL_NONE);
222 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
223 &pool_allocator_nointr, IPL_NONE);
224 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
225 &pool_allocator_nointr, IPL_NONE);
226 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
227 &pool_allocator_nointr, IPL_NONE);
228
229 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
230 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
231 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
232
233 /*
234 * The process list descriptors, used during pid allocation and
235 * by sysctl. No locking on this data structure is needed since
236 * it is completely static.
237 */
238 const struct proclist_desc proclists[] = {
239 { &allproc },
240 { &zombproc },
241 { NULL },
242 };
243
244 static void orphanpg(struct pgrp *);
245 static void pg_delete(pid_t);
246
247 static specificdata_domain_t proc_specificdata_domain;
248
249 /*
250 * Initialize global process hashing structures.
251 */
252 void
253 procinit(void)
254 {
255 const struct proclist_desc *pd;
256 int i;
257 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
258
259 for (pd = proclists; pd->pd_list != NULL; pd++)
260 LIST_INIT(pd->pd_list);
261
262 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
263 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
264
265 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
266 M_PROC, M_WAITOK);
267 /* Set free list running through table...
268 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
269 for (i = 0; i <= pid_tbl_mask; i++) {
270 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
271 pid_table[i].pt_pgrp = 0;
272 }
273 /* slot 0 is just grabbed */
274 next_free_pt = 1;
275 /* Need to fix last entry. */
276 last_free_pt = pid_tbl_mask;
277 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
278 /* point at which we grow table - to avoid reusing pids too often */
279 pid_alloc_lim = pid_tbl_mask - 1;
280 #undef LINK_EMPTY
281
282 LIST_INIT(&alllwp);
283
284 uihashtbl =
285 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
286
287 proc_specificdata_domain = specificdata_domain_create();
288 KASSERT(proc_specificdata_domain != NULL);
289 }
290
291 /*
292 * Initialize process 0.
293 */
294 void
295 proc0_init(void)
296 {
297 struct proc *p;
298 struct pgrp *pg;
299 struct session *sess;
300 struct lwp *l;
301 u_int i;
302 rlim_t lim;
303
304 p = &proc0;
305 pg = &pgrp0;
306 sess = &session0;
307 l = &lwp0;
308
309 /*
310 * XXX p_rasmutex is run at IPL_SCHED, because of lock order
311 * issues (kernel_lock -> p_rasmutex). Ideally ras_lookup
312 * should operate "lock free".
313 */
314 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
315 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
316 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_SCHED);
317 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
318 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
319
320 cv_init(&p->p_refcv, "drainref");
321 cv_init(&p->p_waitcv, "wait");
322 cv_init(&p->p_lwpcv, "lwpwait");
323
324 LIST_INIT(&p->p_lwps);
325 LIST_INIT(&p->p_sigwaiters);
326 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
327
328 p->p_nlwps = 1;
329 p->p_nrlwps = 1;
330 p->p_nlwpid = l->l_lid;
331 p->p_refcnt = 1;
332
333 pid_table[0].pt_proc = p;
334 LIST_INSERT_HEAD(&allproc, p, p_list);
335 LIST_INSERT_HEAD(&alllwp, l, l_list);
336
337 p->p_pgrp = pg;
338 pid_table[0].pt_pgrp = pg;
339 LIST_INIT(&pg->pg_members);
340 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
341
342 pg->pg_session = sess;
343 sess->s_count = 1;
344 sess->s_sid = 0;
345 sess->s_leader = p;
346
347 /*
348 * Set P_NOCLDWAIT so that kernel threads are reparented to
349 * init(8) when they exit. init(8) can easily wait them out
350 * for us.
351 */
352 p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
353 p->p_stat = SACTIVE;
354 p->p_nice = NZERO;
355 p->p_emul = &emul_netbsd;
356 #ifdef __HAVE_SYSCALL_INTERN
357 (*p->p_emul->e_syscall_intern)(p);
358 #endif
359 strlcpy(p->p_comm, "system", sizeof(p->p_comm));
360
361 l->l_flag = LW_INMEM | LW_SYSTEM;
362 l->l_stat = LSONPROC;
363 l->l_ts = &turnstile0;
364 l->l_syncobj = &sched_syncobj;
365 l->l_refcnt = 1;
366 l->l_cpu = curcpu();
367 l->l_priority = PRIBIO;
368 l->l_usrpri = PRIBIO;
369 l->l_inheritedprio = MAXPRI;
370 SLIST_INIT(&l->l_pi_lenders);
371 l->l_name = __UNCONST("swapper");
372
373 callout_init(&l->l_timeout_ch, 0);
374 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
375 cv_init(&l->l_sigcv, "sigwait");
376
377 /* Create credentials. */
378 cred0 = kauth_cred_alloc();
379 p->p_cred = cred0;
380 kauth_cred_hold(cred0);
381 l->l_cred = cred0;
382
383 /* Create the CWD info. */
384 p->p_cwdi = &cwdi0;
385 cwdi0.cwdi_cmask = cmask;
386 cwdi0.cwdi_refcnt = 1;
387 rw_init(&cwdi0.cwdi_lock);
388
389 /* Create the limits structures. */
390 p->p_limit = &limit0;
391 mutex_init(&limit0.p_lock, MUTEX_DEFAULT, IPL_NONE);
392 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
393 limit0.pl_rlimit[i].rlim_cur =
394 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
395
396 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
397 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
398 maxfiles < nofile ? maxfiles : nofile;
399
400 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
401 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
402 maxproc < maxuprc ? maxproc : maxuprc;
403
404 lim = ptoa(uvmexp.free);
405 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
406 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
407 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
408 limit0.pl_corename = defcorename;
409 limit0.p_refcnt = 1;
410
411 /* Configure virtual memory system, set vm rlimits. */
412 uvm_init_limits(p);
413
414 /* Initialize file descriptor table for proc0. */
415 p->p_fd = &filedesc0.fd_fd;
416 fdinit1(&filedesc0);
417
418 /*
419 * Initialize proc0's vmspace, which uses the kernel pmap.
420 * All kernel processes (which never have user space mappings)
421 * share proc0's vmspace, and thus, the kernel pmap.
422 */
423 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
424 trunc_page(VM_MAX_ADDRESS));
425 p->p_vmspace = &vmspace0;
426
427 l->l_addr = proc0paddr; /* XXX */
428
429 p->p_stats = &pstat0;
430
431 /* Initialize signal state for proc0. */
432 p->p_sigacts = &sigacts0;
433 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
434 siginit(p);
435
436 proc_initspecific(p);
437 lwp_initspecific(l);
438
439 SYSCALL_TIME_LWP_INIT(l);
440 }
441
442 /*
443 * Check that the specified process group is in the session of the
444 * specified process.
445 * Treats -ve ids as process ids.
446 * Used to validate TIOCSPGRP requests.
447 */
448 int
449 pgid_in_session(struct proc *p, pid_t pg_id)
450 {
451 struct pgrp *pgrp;
452 struct session *session;
453 int error;
454
455 mutex_enter(&proclist_lock);
456 if (pg_id < 0) {
457 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
458 if (p1 == NULL)
459 return EINVAL;
460 pgrp = p1->p_pgrp;
461 } else {
462 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
463 if (pgrp == NULL)
464 return EINVAL;
465 }
466 session = pgrp->pg_session;
467 if (session != p->p_pgrp->pg_session)
468 error = EPERM;
469 else
470 error = 0;
471 mutex_exit(&proclist_lock);
472
473 return error;
474 }
475
476 /*
477 * Is p an inferior of q?
478 *
479 * Call with the proclist_lock held.
480 */
481 int
482 inferior(struct proc *p, struct proc *q)
483 {
484
485 for (; p != q; p = p->p_pptr)
486 if (p->p_pid == 0)
487 return 0;
488 return 1;
489 }
490
491 /*
492 * Locate a process by number
493 */
494 struct proc *
495 p_find(pid_t pid, uint flags)
496 {
497 struct proc *p;
498 char stat;
499
500 if (!(flags & PFIND_LOCKED))
501 mutex_enter(&proclist_lock);
502
503 p = pid_table[pid & pid_tbl_mask].pt_proc;
504
505 /* Only allow live processes to be found by pid. */
506 /* XXXSMP p_stat */
507 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
508 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
509 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
510 if (flags & PFIND_UNLOCK_OK)
511 mutex_exit(&proclist_lock);
512 return p;
513 }
514 if (flags & PFIND_UNLOCK_FAIL)
515 mutex_exit(&proclist_lock);
516 return NULL;
517 }
518
519
520 /*
521 * Locate a process group by number
522 */
523 struct pgrp *
524 pg_find(pid_t pgid, uint flags)
525 {
526 struct pgrp *pg;
527
528 if (!(flags & PFIND_LOCKED))
529 mutex_enter(&proclist_lock);
530 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
531 /*
532 * Can't look up a pgrp that only exists because the session
533 * hasn't died yet (traditional)
534 */
535 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
536 if (flags & PFIND_UNLOCK_FAIL)
537 mutex_exit(&proclist_lock);
538 return NULL;
539 }
540
541 if (flags & PFIND_UNLOCK_OK)
542 mutex_exit(&proclist_lock);
543 return pg;
544 }
545
546 static void
547 expand_pid_table(void)
548 {
549 uint pt_size = pid_tbl_mask + 1;
550 struct pid_table *n_pt, *new_pt;
551 struct proc *proc;
552 struct pgrp *pgrp;
553 int i;
554 pid_t pid;
555
556 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
557
558 mutex_enter(&proclist_lock);
559 if (pt_size != pid_tbl_mask + 1) {
560 /* Another process beat us to it... */
561 mutex_exit(&proclist_lock);
562 FREE(new_pt, M_PROC);
563 return;
564 }
565
566 /*
567 * Copy entries from old table into new one.
568 * If 'pid' is 'odd' we need to place in the upper half,
569 * even pid's to the lower half.
570 * Free items stay in the low half so we don't have to
571 * fixup the reference to them.
572 * We stuff free items on the front of the freelist
573 * because we can't write to unmodified entries.
574 * Processing the table backwards maintains a semblance
575 * of issueing pid numbers that increase with time.
576 */
577 i = pt_size - 1;
578 n_pt = new_pt + i;
579 for (; ; i--, n_pt--) {
580 proc = pid_table[i].pt_proc;
581 pgrp = pid_table[i].pt_pgrp;
582 if (!P_VALID(proc)) {
583 /* Up 'use count' so that link is valid */
584 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
585 proc = P_FREE(pid);
586 if (pgrp)
587 pid = pgrp->pg_id;
588 } else
589 pid = proc->p_pid;
590
591 /* Save entry in appropriate half of table */
592 n_pt[pid & pt_size].pt_proc = proc;
593 n_pt[pid & pt_size].pt_pgrp = pgrp;
594
595 /* Put other piece on start of free list */
596 pid = (pid ^ pt_size) & ~pid_tbl_mask;
597 n_pt[pid & pt_size].pt_proc =
598 P_FREE((pid & ~pt_size) | next_free_pt);
599 n_pt[pid & pt_size].pt_pgrp = 0;
600 next_free_pt = i | (pid & pt_size);
601 if (i == 0)
602 break;
603 }
604
605 /* Switch tables */
606 mutex_enter(&proclist_mutex);
607 n_pt = pid_table;
608 pid_table = new_pt;
609 mutex_exit(&proclist_mutex);
610 pid_tbl_mask = pt_size * 2 - 1;
611
612 /*
613 * pid_max starts as PID_MAX (= 30000), once we have 16384
614 * allocated pids we need it to be larger!
615 */
616 if (pid_tbl_mask > PID_MAX) {
617 pid_max = pid_tbl_mask * 2 + 1;
618 pid_alloc_lim |= pid_alloc_lim << 1;
619 } else
620 pid_alloc_lim <<= 1; /* doubles number of free slots... */
621
622 mutex_exit(&proclist_lock);
623 FREE(n_pt, M_PROC);
624 }
625
626 struct proc *
627 proc_alloc(void)
628 {
629 struct proc *p;
630 int nxt;
631 pid_t pid;
632 struct pid_table *pt;
633
634 p = pool_get(&proc_pool, PR_WAITOK);
635 p->p_stat = SIDL; /* protect against others */
636
637 proc_initspecific(p);
638 /* allocate next free pid */
639
640 for (;;expand_pid_table()) {
641 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
642 /* ensure pids cycle through 2000+ values */
643 continue;
644 mutex_enter(&proclist_lock);
645 pt = &pid_table[next_free_pt];
646 #ifdef DIAGNOSTIC
647 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
648 panic("proc_alloc: slot busy");
649 #endif
650 nxt = P_NEXT(pt->pt_proc);
651 if (nxt & pid_tbl_mask)
652 break;
653 /* Table full - expand (NB last entry not used....) */
654 mutex_exit(&proclist_lock);
655 }
656
657 /* pid is 'saved use count' + 'size' + entry */
658 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
659 if ((uint)pid > (uint)pid_max)
660 pid &= pid_tbl_mask;
661 p->p_pid = pid;
662 next_free_pt = nxt & pid_tbl_mask;
663
664 /* Grab table slot */
665 mutex_enter(&proclist_mutex);
666 pt->pt_proc = p;
667 mutex_exit(&proclist_mutex);
668 pid_alloc_cnt++;
669
670 mutex_exit(&proclist_lock);
671
672 return p;
673 }
674
675 /*
676 * Free last resources of a process - called from proc_free (in kern_exit.c)
677 *
678 * Called with the proclist_lock held, and releases upon exit.
679 */
680 void
681 proc_free_mem(struct proc *p)
682 {
683 pid_t pid = p->p_pid;
684 struct pid_table *pt;
685
686 KASSERT(mutex_owned(&proclist_lock));
687
688 pt = &pid_table[pid & pid_tbl_mask];
689 #ifdef DIAGNOSTIC
690 if (__predict_false(pt->pt_proc != p))
691 panic("proc_free: pid_table mismatch, pid %x, proc %p",
692 pid, p);
693 #endif
694 mutex_enter(&proclist_mutex);
695 /* save pid use count in slot */
696 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
697
698 if (pt->pt_pgrp == NULL) {
699 /* link last freed entry onto ours */
700 pid &= pid_tbl_mask;
701 pt = &pid_table[last_free_pt];
702 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
703 last_free_pt = pid;
704 pid_alloc_cnt--;
705 }
706 mutex_exit(&proclist_mutex);
707
708 nprocs--;
709 mutex_exit(&proclist_lock);
710
711 pool_put(&proc_pool, p);
712 }
713
714 /*
715 * Move p to a new or existing process group (and session)
716 *
717 * If we are creating a new pgrp, the pgid should equal
718 * the calling process' pid.
719 * If is only valid to enter a process group that is in the session
720 * of the process.
721 * Also mksess should only be set if we are creating a process group
722 *
723 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
724 * SYSV setpgrp support for hpux.
725 */
726 int
727 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
728 {
729 struct pgrp *new_pgrp, *pgrp;
730 struct session *sess;
731 struct proc *p;
732 int rval;
733 pid_t pg_id = NO_PGID;
734
735 if (mksess)
736 sess = pool_get(&session_pool, PR_WAITOK);
737 else
738 sess = NULL;
739
740 /* Allocate data areas we might need before doing any validity checks */
741 mutex_enter(&proclist_lock); /* Because pid_table might change */
742 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
743 mutex_exit(&proclist_lock);
744 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
745 mutex_enter(&proclist_lock);
746 } else
747 new_pgrp = NULL;
748 rval = EPERM; /* most common error (to save typing) */
749
750 /* Check pgrp exists or can be created */
751 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
752 if (pgrp != NULL && pgrp->pg_id != pgid)
753 goto done;
754
755 /* Can only set another process under restricted circumstances. */
756 if (pid != curp->p_pid) {
757 /* must exist and be one of our children... */
758 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
759 !inferior(p, curp)) {
760 rval = ESRCH;
761 goto done;
762 }
763 /* ... in the same session... */
764 if (sess != NULL || p->p_session != curp->p_session)
765 goto done;
766 /* ... existing pgid must be in same session ... */
767 if (pgrp != NULL && pgrp->pg_session != p->p_session)
768 goto done;
769 /* ... and not done an exec. */
770 if (p->p_flag & PK_EXEC) {
771 rval = EACCES;
772 goto done;
773 }
774 } else {
775 /* ... setsid() cannot re-enter a pgrp */
776 if (mksess && (curp->p_pgid == curp->p_pid ||
777 pg_find(curp->p_pid, PFIND_LOCKED)))
778 goto done;
779 p = curp;
780 }
781
782 /* Changing the process group/session of a session
783 leader is definitely off limits. */
784 if (SESS_LEADER(p)) {
785 if (sess == NULL && p->p_pgrp == pgrp)
786 /* unless it's a definite noop */
787 rval = 0;
788 goto done;
789 }
790
791 /* Can only create a process group with id of process */
792 if (pgrp == NULL && pgid != pid)
793 goto done;
794
795 /* Can only create a session if creating pgrp */
796 if (sess != NULL && pgrp != NULL)
797 goto done;
798
799 /* Check we allocated memory for a pgrp... */
800 if (pgrp == NULL && new_pgrp == NULL)
801 goto done;
802
803 /* Don't attach to 'zombie' pgrp */
804 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
805 goto done;
806
807 /* Expect to succeed now */
808 rval = 0;
809
810 if (pgrp == p->p_pgrp)
811 /* nothing to do */
812 goto done;
813
814 /* Ok all setup, link up required structures */
815
816 if (pgrp == NULL) {
817 pgrp = new_pgrp;
818 new_pgrp = 0;
819 if (sess != NULL) {
820 sess->s_sid = p->p_pid;
821 sess->s_leader = p;
822 sess->s_count = 1;
823 sess->s_ttyvp = NULL;
824 sess->s_ttyp = NULL;
825 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
826 memcpy(sess->s_login, p->p_session->s_login,
827 sizeof(sess->s_login));
828 p->p_lflag &= ~PL_CONTROLT;
829 } else {
830 sess = p->p_pgrp->pg_session;
831 SESSHOLD(sess);
832 }
833 pgrp->pg_session = sess;
834 sess = 0;
835
836 pgrp->pg_id = pgid;
837 LIST_INIT(&pgrp->pg_members);
838 #ifdef DIAGNOSTIC
839 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
840 panic("enterpgrp: pgrp table slot in use");
841 if (__predict_false(mksess && p != curp))
842 panic("enterpgrp: mksession and p != curproc");
843 #endif
844 mutex_enter(&proclist_mutex);
845 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
846 pgrp->pg_jobc = 0;
847 } else
848 mutex_enter(&proclist_mutex);
849
850 #ifdef notyet
851 /*
852 * If there's a controlling terminal for the current session, we
853 * have to interlock with it. See ttread().
854 */
855 if (p->p_session->s_ttyvp != NULL) {
856 tp = p->p_session->s_ttyp;
857 mutex_enter(&tp->t_mutex);
858 } else
859 tp = NULL;
860 #endif
861
862 /*
863 * Adjust eligibility of affected pgrps to participate in job control.
864 * Increment eligibility counts before decrementing, otherwise we
865 * could reach 0 spuriously during the first call.
866 */
867 fixjobc(p, pgrp, 1);
868 fixjobc(p, p->p_pgrp, 0);
869
870 /* Move process to requested group. */
871 LIST_REMOVE(p, p_pglist);
872 if (LIST_EMPTY(&p->p_pgrp->pg_members))
873 /* defer delete until we've dumped the lock */
874 pg_id = p->p_pgrp->pg_id;
875 p->p_pgrp = pgrp;
876 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
877 mutex_exit(&proclist_mutex);
878
879 #ifdef notyet
880 /* Done with the swap; we can release the tty mutex. */
881 if (tp != NULL)
882 mutex_exit(&tp->t_mutex);
883 #endif
884
885 done:
886 if (pg_id != NO_PGID)
887 pg_delete(pg_id);
888 mutex_exit(&proclist_lock);
889 if (sess != NULL)
890 pool_put(&session_pool, sess);
891 if (new_pgrp != NULL)
892 pool_put(&pgrp_pool, new_pgrp);
893 #ifdef DEBUG_PGRP
894 if (__predict_false(rval))
895 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
896 pid, pgid, mksess, curp->p_pid, rval);
897 #endif
898 return rval;
899 }
900
901 /*
902 * Remove a process from its process group. Must be called with the
903 * proclist_lock held.
904 */
905 void
906 leavepgrp(struct proc *p)
907 {
908 struct pgrp *pgrp;
909
910 KASSERT(mutex_owned(&proclist_lock));
911
912 /*
913 * If there's a controlling terminal for the session, we have to
914 * interlock with it. See ttread().
915 */
916 mutex_enter(&proclist_mutex);
917 #ifdef notyet
918 if (p_>p_session->s_ttyvp != NULL) {
919 tp = p->p_session->s_ttyp;
920 mutex_enter(&tp->t_mutex);
921 } else
922 tp = NULL;
923 #endif
924
925 pgrp = p->p_pgrp;
926 LIST_REMOVE(p, p_pglist);
927 p->p_pgrp = NULL;
928
929 #ifdef notyet
930 if (tp != NULL)
931 mutex_exit(&tp->t_mutex);
932 #endif
933 mutex_exit(&proclist_mutex);
934
935 if (LIST_EMPTY(&pgrp->pg_members))
936 pg_delete(pgrp->pg_id);
937 }
938
939 /*
940 * Free a process group. Must be called with the proclist_lock held.
941 */
942 static void
943 pg_free(pid_t pg_id)
944 {
945 struct pgrp *pgrp;
946 struct pid_table *pt;
947
948 KASSERT(mutex_owned(&proclist_lock));
949
950 pt = &pid_table[pg_id & pid_tbl_mask];
951 pgrp = pt->pt_pgrp;
952 #ifdef DIAGNOSTIC
953 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
954 || !LIST_EMPTY(&pgrp->pg_members)))
955 panic("pg_free: process group absent or has members");
956 #endif
957 pt->pt_pgrp = 0;
958
959 if (!P_VALID(pt->pt_proc)) {
960 /* orphaned pgrp, put slot onto free list */
961 #ifdef DIAGNOSTIC
962 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
963 panic("pg_free: process slot on free list");
964 #endif
965 mutex_enter(&proclist_mutex);
966 pg_id &= pid_tbl_mask;
967 pt = &pid_table[last_free_pt];
968 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
969 mutex_exit(&proclist_mutex);
970 last_free_pt = pg_id;
971 pid_alloc_cnt--;
972 }
973 pool_put(&pgrp_pool, pgrp);
974 }
975
976 /*
977 * Delete a process group. Must be called with the proclist_lock held.
978 */
979 static void
980 pg_delete(pid_t pg_id)
981 {
982 struct pgrp *pgrp;
983 struct tty *ttyp;
984 struct session *ss;
985 int is_pgrp_leader;
986
987 KASSERT(mutex_owned(&proclist_lock));
988
989 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
990 if (pgrp == NULL || pgrp->pg_id != pg_id ||
991 !LIST_EMPTY(&pgrp->pg_members))
992 return;
993
994 ss = pgrp->pg_session;
995
996 /* Remove reference (if any) from tty to this process group */
997 ttyp = ss->s_ttyp;
998 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
999 ttyp->t_pgrp = NULL;
1000 #ifdef DIAGNOSTIC
1001 if (ttyp->t_session != ss)
1002 panic("pg_delete: wrong session on terminal");
1003 #endif
1004 }
1005
1006 /*
1007 * The leading process group in a session is freed
1008 * by sessdelete() if last reference.
1009 */
1010 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1011 SESSRELE(ss);
1012
1013 if (is_pgrp_leader)
1014 return;
1015
1016 pg_free(pg_id);
1017 }
1018
1019 /*
1020 * Delete session - called from SESSRELE when s_count becomes zero.
1021 * Must be called with the proclist_lock held.
1022 */
1023 void
1024 sessdelete(struct session *ss)
1025 {
1026
1027 KASSERT(mutex_owned(&proclist_lock));
1028
1029 /*
1030 * We keep the pgrp with the same id as the session in
1031 * order to stop a process being given the same pid.
1032 * Since the pgrp holds a reference to the session, it
1033 * must be a 'zombie' pgrp by now.
1034 */
1035 pg_free(ss->s_sid);
1036 pool_put(&session_pool, ss);
1037 }
1038
1039 /*
1040 * Adjust pgrp jobc counters when specified process changes process group.
1041 * We count the number of processes in each process group that "qualify"
1042 * the group for terminal job control (those with a parent in a different
1043 * process group of the same session). If that count reaches zero, the
1044 * process group becomes orphaned. Check both the specified process'
1045 * process group and that of its children.
1046 * entering == 0 => p is leaving specified group.
1047 * entering == 1 => p is entering specified group.
1048 *
1049 * Call with proclist_lock held.
1050 */
1051 void
1052 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1053 {
1054 struct pgrp *hispgrp;
1055 struct session *mysession = pgrp->pg_session;
1056 struct proc *child;
1057
1058 KASSERT(mutex_owned(&proclist_lock));
1059 KASSERT(mutex_owned(&proclist_mutex));
1060
1061 /*
1062 * Check p's parent to see whether p qualifies its own process
1063 * group; if so, adjust count for p's process group.
1064 */
1065 hispgrp = p->p_pptr->p_pgrp;
1066 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1067 if (entering) {
1068 mutex_enter(&p->p_smutex);
1069 p->p_sflag &= ~PS_ORPHANPG;
1070 mutex_exit(&p->p_smutex);
1071 pgrp->pg_jobc++;
1072 } else if (--pgrp->pg_jobc == 0)
1073 orphanpg(pgrp);
1074 }
1075
1076 /*
1077 * Check this process' children to see whether they qualify
1078 * their process groups; if so, adjust counts for children's
1079 * process groups.
1080 */
1081 LIST_FOREACH(child, &p->p_children, p_sibling) {
1082 hispgrp = child->p_pgrp;
1083 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1084 !P_ZOMBIE(child)) {
1085 if (entering) {
1086 mutex_enter(&child->p_smutex);
1087 child->p_sflag &= ~PS_ORPHANPG;
1088 mutex_exit(&child->p_smutex);
1089 hispgrp->pg_jobc++;
1090 } else if (--hispgrp->pg_jobc == 0)
1091 orphanpg(hispgrp);
1092 }
1093 }
1094 }
1095
1096 /*
1097 * A process group has become orphaned;
1098 * if there are any stopped processes in the group,
1099 * hang-up all process in that group.
1100 *
1101 * Call with proclist_lock held.
1102 */
1103 static void
1104 orphanpg(struct pgrp *pg)
1105 {
1106 struct proc *p;
1107 int doit;
1108
1109 KASSERT(mutex_owned(&proclist_lock));
1110 KASSERT(mutex_owned(&proclist_mutex));
1111
1112 doit = 0;
1113
1114 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1115 mutex_enter(&p->p_smutex);
1116 if (p->p_stat == SSTOP) {
1117 doit = 1;
1118 p->p_sflag |= PS_ORPHANPG;
1119 }
1120 mutex_exit(&p->p_smutex);
1121 }
1122
1123 if (doit) {
1124 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1125 psignal(p, SIGHUP);
1126 psignal(p, SIGCONT);
1127 }
1128 }
1129 }
1130
1131 #ifdef DDB
1132 #include <ddb/db_output.h>
1133 void pidtbl_dump(void);
1134 void
1135 pidtbl_dump(void)
1136 {
1137 struct pid_table *pt;
1138 struct proc *p;
1139 struct pgrp *pgrp;
1140 int id;
1141
1142 db_printf("pid table %p size %x, next %x, last %x\n",
1143 pid_table, pid_tbl_mask+1,
1144 next_free_pt, last_free_pt);
1145 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1146 p = pt->pt_proc;
1147 if (!P_VALID(p) && !pt->pt_pgrp)
1148 continue;
1149 db_printf(" id %x: ", id);
1150 if (P_VALID(p))
1151 db_printf("proc %p id %d (0x%x) %s\n",
1152 p, p->p_pid, p->p_pid, p->p_comm);
1153 else
1154 db_printf("next %x use %x\n",
1155 P_NEXT(p) & pid_tbl_mask,
1156 P_NEXT(p) & ~pid_tbl_mask);
1157 if ((pgrp = pt->pt_pgrp)) {
1158 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1159 pgrp->pg_session, pgrp->pg_session->s_sid,
1160 pgrp->pg_session->s_count,
1161 pgrp->pg_session->s_login);
1162 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1163 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1164 pgrp->pg_members.lh_first);
1165 for (p = pgrp->pg_members.lh_first; p != 0;
1166 p = p->p_pglist.le_next) {
1167 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1168 p->p_pid, p, p->p_pgrp, p->p_comm);
1169 }
1170 }
1171 }
1172 }
1173 #endif /* DDB */
1174
1175 #ifdef KSTACK_CHECK_MAGIC
1176 #include <sys/user.h>
1177
1178 #define KSTACK_MAGIC 0xdeadbeaf
1179
1180 /* XXX should be per process basis? */
1181 int kstackleftmin = KSTACK_SIZE;
1182 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1183 less than this */
1184
1185 void
1186 kstack_setup_magic(const struct lwp *l)
1187 {
1188 uint32_t *ip;
1189 uint32_t const *end;
1190
1191 KASSERT(l != NULL);
1192 KASSERT(l != &lwp0);
1193
1194 /*
1195 * fill all the stack with magic number
1196 * so that later modification on it can be detected.
1197 */
1198 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1199 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1200 for (; ip < end; ip++) {
1201 *ip = KSTACK_MAGIC;
1202 }
1203 }
1204
1205 void
1206 kstack_check_magic(const struct lwp *l)
1207 {
1208 uint32_t const *ip, *end;
1209 int stackleft;
1210
1211 KASSERT(l != NULL);
1212
1213 /* don't check proc0 */ /*XXX*/
1214 if (l == &lwp0)
1215 return;
1216
1217 #ifdef __MACHINE_STACK_GROWS_UP
1218 /* stack grows upwards (eg. hppa) */
1219 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1220 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1221 for (ip--; ip >= end; ip--)
1222 if (*ip != KSTACK_MAGIC)
1223 break;
1224
1225 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1226 #else /* __MACHINE_STACK_GROWS_UP */
1227 /* stack grows downwards (eg. i386) */
1228 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1229 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1230 for (; ip < end; ip++)
1231 if (*ip != KSTACK_MAGIC)
1232 break;
1233
1234 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1235 #endif /* __MACHINE_STACK_GROWS_UP */
1236
1237 if (kstackleftmin > stackleft) {
1238 kstackleftmin = stackleft;
1239 if (stackleft < kstackleftthres)
1240 printf("warning: kernel stack left %d bytes"
1241 "(pid %u:lid %u)\n", stackleft,
1242 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1243 }
1244
1245 if (stackleft <= 0) {
1246 panic("magic on the top of kernel stack changed for "
1247 "pid %u, lid %u: maybe kernel stack overflow",
1248 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1249 }
1250 }
1251 #endif /* KSTACK_CHECK_MAGIC */
1252
1253 /*
1254 * XXXSMP this is bust, it grabs a read lock and then messes about
1255 * with allproc.
1256 */
1257 int
1258 proclist_foreach_call(struct proclist *list,
1259 int (*callback)(struct proc *, void *arg), void *arg)
1260 {
1261 struct proc marker;
1262 struct proc *p;
1263 struct lwp * const l = curlwp;
1264 int ret = 0;
1265
1266 marker.p_flag = PK_MARKER;
1267 uvm_lwp_hold(l);
1268 mutex_enter(&proclist_lock);
1269 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1270 if (p->p_flag & PK_MARKER) {
1271 p = LIST_NEXT(p, p_list);
1272 continue;
1273 }
1274 LIST_INSERT_AFTER(p, &marker, p_list);
1275 ret = (*callback)(p, arg);
1276 KASSERT(mutex_owned(&proclist_lock));
1277 p = LIST_NEXT(&marker, p_list);
1278 LIST_REMOVE(&marker, p_list);
1279 }
1280 mutex_exit(&proclist_lock);
1281 uvm_lwp_rele(l);
1282
1283 return ret;
1284 }
1285
1286 int
1287 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1288 {
1289
1290 /* XXXCDC: how should locking work here? */
1291
1292 /* curproc exception is for coredump. */
1293
1294 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1295 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1296 return EFAULT;
1297 }
1298
1299 uvmspace_addref(p->p_vmspace);
1300 *vm = p->p_vmspace;
1301
1302 return 0;
1303 }
1304
1305 /*
1306 * Acquire a write lock on the process credential.
1307 */
1308 void
1309 proc_crmod_enter(void)
1310 {
1311 struct lwp *l = curlwp;
1312 struct proc *p = l->l_proc;
1313 struct plimit *lim;
1314 kauth_cred_t oc;
1315 char *cn;
1316
1317 mutex_enter(&p->p_mutex);
1318
1319 /* Ensure the LWP cached credentials are up to date. */
1320 if ((oc = l->l_cred) != p->p_cred) {
1321 kauth_cred_hold(p->p_cred);
1322 l->l_cred = p->p_cred;
1323 kauth_cred_free(oc);
1324 }
1325
1326 /* Reset what needs to be reset in plimit. */
1327 lim = p->p_limit;
1328 if (lim->pl_corename != defcorename) {
1329 if (lim->p_refcnt > 1 &&
1330 (lim->p_lflags & PL_SHAREMOD) == 0) {
1331 p->p_limit = limcopy(p);
1332 limfree(lim);
1333 lim = p->p_limit;
1334 }
1335 mutex_enter(&lim->p_lock);
1336 cn = lim->pl_corename;
1337 lim->pl_corename = defcorename;
1338 mutex_exit(&lim->p_lock);
1339 if (cn != defcorename)
1340 free(cn, M_TEMP);
1341 }
1342 }
1343
1344 /*
1345 * Set in a new process credential, and drop the write lock. The credential
1346 * must have a reference already. Optionally, free a no-longer required
1347 * credential. The scheduler also needs to inspect p_cred, so we also
1348 * briefly acquire the sched state mutex.
1349 */
1350 void
1351 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1352 {
1353 struct lwp *l = curlwp;
1354 struct proc *p = l->l_proc;
1355 kauth_cred_t oc;
1356
1357 /* Is there a new credential to set in? */
1358 if (scred != NULL) {
1359 mutex_enter(&p->p_smutex);
1360 p->p_cred = scred;
1361 mutex_exit(&p->p_smutex);
1362
1363 /* Ensure the LWP cached credentials are up to date. */
1364 if ((oc = l->l_cred) != scred) {
1365 kauth_cred_hold(scred);
1366 l->l_cred = scred;
1367 }
1368 } else
1369 oc = NULL; /* XXXgcc */
1370
1371 if (sugid) {
1372 /*
1373 * Mark process as having changed credentials, stops
1374 * tracing etc.
1375 */
1376 p->p_flag |= PK_SUGID;
1377 }
1378
1379 mutex_exit(&p->p_mutex);
1380
1381 /* If there is a credential to be released, free it now. */
1382 if (fcred != NULL) {
1383 KASSERT(scred != NULL);
1384 kauth_cred_free(fcred);
1385 if (oc != scred)
1386 kauth_cred_free(oc);
1387 }
1388 }
1389
1390 /*
1391 * Acquire a reference on a process, to prevent it from exiting or execing.
1392 */
1393 int
1394 proc_addref(struct proc *p)
1395 {
1396
1397 KASSERT(mutex_owned(&p->p_mutex));
1398
1399 if (p->p_refcnt <= 0)
1400 return EAGAIN;
1401 p->p_refcnt++;
1402
1403 return 0;
1404 }
1405
1406 /*
1407 * Release a reference on a process.
1408 */
1409 void
1410 proc_delref(struct proc *p)
1411 {
1412
1413 KASSERT(mutex_owned(&p->p_mutex));
1414
1415 if (p->p_refcnt < 0) {
1416 if (++p->p_refcnt == 0)
1417 cv_broadcast(&p->p_refcv);
1418 } else {
1419 p->p_refcnt--;
1420 KASSERT(p->p_refcnt != 0);
1421 }
1422 }
1423
1424 /*
1425 * Wait for all references on the process to drain, and prevent new
1426 * references from being acquired.
1427 */
1428 void
1429 proc_drainrefs(struct proc *p)
1430 {
1431
1432 KASSERT(mutex_owned(&p->p_mutex));
1433 KASSERT(p->p_refcnt >= 0);
1434
1435 /*
1436 * The process itself holds the last reference. Once it's released,
1437 * no new references will be granted. If we have already locked out
1438 * new references (refcnt <= 0), potentially due to a failed exec,
1439 * there is nothing more to do.
1440 */
1441 if (p->p_refcnt == 0)
1442 return;
1443 p->p_refcnt = 1 - p->p_refcnt;
1444 while (p->p_refcnt != 0)
1445 cv_wait(&p->p_refcv, &p->p_mutex);
1446 }
1447
1448 /*
1449 * proc_specific_key_create --
1450 * Create a key for subsystem proc-specific data.
1451 */
1452 int
1453 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1454 {
1455
1456 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1457 }
1458
1459 /*
1460 * proc_specific_key_delete --
1461 * Delete a key for subsystem proc-specific data.
1462 */
1463 void
1464 proc_specific_key_delete(specificdata_key_t key)
1465 {
1466
1467 specificdata_key_delete(proc_specificdata_domain, key);
1468 }
1469
1470 /*
1471 * proc_initspecific --
1472 * Initialize a proc's specificdata container.
1473 */
1474 void
1475 proc_initspecific(struct proc *p)
1476 {
1477 int error;
1478
1479 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1480 KASSERT(error == 0);
1481 }
1482
1483 /*
1484 * proc_finispecific --
1485 * Finalize a proc's specificdata container.
1486 */
1487 void
1488 proc_finispecific(struct proc *p)
1489 {
1490
1491 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1492 }
1493
1494 /*
1495 * proc_getspecific --
1496 * Return proc-specific data corresponding to the specified key.
1497 */
1498 void *
1499 proc_getspecific(struct proc *p, specificdata_key_t key)
1500 {
1501
1502 return (specificdata_getspecific(proc_specificdata_domain,
1503 &p->p_specdataref, key));
1504 }
1505
1506 /*
1507 * proc_setspecific --
1508 * Set proc-specific data corresponding to the specified key.
1509 */
1510 void
1511 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1512 {
1513
1514 specificdata_setspecific(proc_specificdata_domain,
1515 &p->p_specdataref, key, data);
1516 }
1517