Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.120.2.3
      1 /*	$NetBSD: kern_proc.c,v 1.120.2.3 2008/02/18 21:06:46 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.120.2.3 2008/02/18 21:06:46 mjf Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include "sys/syscall_stats.h"
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 
    103 #include <uvm/uvm.h>
    104 #include <uvm/uvm_extern.h>
    105 
    106 /*
    107  * Other process lists
    108  */
    109 
    110 struct proclist allproc;
    111 struct proclist zombproc;	/* resources have been freed */
    112 
    113 /*
    114  * There are two locks on global process state.
    115  *
    116  * 1. proclist_lock is an adaptive mutex and is used when modifying
    117  * or examining process state from a process context.  It protects
    118  * the internal tables, all of the process lists, and a number of
    119  * members of struct proc.
    120  *
    121  * 2. proclist_mutex is used when allproc must be traversed from an
    122  * interrupt context, or when changing the state of processes.  The
    123  * proclist_lock should always be used in preference.  In some cases,
    124  * both locks need to be held.
    125  *
    126  *	proclist_lock	proclist_mutex	structure
    127  *	--------------- --------------- -----------------
    128  *	x				zombproc
    129  *	x		x		pid_table
    130  *	x				proc::p_pptr
    131  *	x				proc::p_sibling
    132  *	x				proc::p_children
    133  *	x				alllwp
    134  *	x		x		allproc
    135  *	x		x		proc::p_pgrp
    136  *	x		x		proc::p_pglist
    137  *	x		x		proc::p_session
    138  *	x		x		proc::p_list
    139  *			x		lwp::l_list
    140  *
    141  * The lock order for processes and LWPs is approximately as following:
    142  *
    143  * kernel_lock
    144  * -> proclist_lock
    145  *   -> proc::p_mutex
    146  *      -> proclist_mutex
    147  *         -> proc::p_smutex
    148  *           -> proc::p_stmutex
    149  *
    150  * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
    151  * platform are made MP safe.  Currently it blocks interrupts at
    152  * IPL_SCHED and below.
    153  *
    154  * XXX The two process locks (p_smutex + p_mutex), and the two global
    155  * state locks (proclist_lock + proclist_mutex) should be merged
    156  * together.  However, to do so requires interrupts that interrupts
    157  * be run with LWP context.
    158  */
    159 kmutex_t	proclist_lock;
    160 kmutex_t	proclist_mutex;
    161 
    162 /*
    163  * pid to proc lookup is done by indexing the pid_table array.
    164  * Since pid numbers are only allocated when an empty slot
    165  * has been found, there is no need to search any lists ever.
    166  * (an orphaned pgrp will lock the slot, a session will lock
    167  * the pgrp with the same number.)
    168  * If the table is too small it is reallocated with twice the
    169  * previous size and the entries 'unzipped' into the two halves.
    170  * A linked list of free entries is passed through the pt_proc
    171  * field of 'free' items - set odd to be an invalid ptr.
    172  */
    173 
    174 struct pid_table {
    175 	struct proc	*pt_proc;
    176 	struct pgrp	*pt_pgrp;
    177 };
    178 #if 1	/* strongly typed cast - should be a noop */
    179 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    180 #else
    181 #define p2u(p) ((uint)p)
    182 #endif
    183 #define P_VALID(p) (!(p2u(p) & 1))
    184 #define P_NEXT(p) (p2u(p) >> 1)
    185 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    186 
    187 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    188 static struct pid_table *pid_table;
    189 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    190 static uint pid_alloc_lim;	/* max we allocate before growing table */
    191 static uint pid_alloc_cnt;	/* number of allocated pids */
    192 
    193 /* links through free slots - never empty! */
    194 static uint next_free_pt, last_free_pt;
    195 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    196 
    197 /* Components of the first process -- never freed. */
    198 
    199 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    200 
    201 struct session session0 = {
    202 	.s_count = 1,
    203 	.s_sid = 0,
    204 };
    205 struct pgrp pgrp0 = {
    206 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    207 	.pg_session = &session0,
    208 };
    209 struct filedesc0 filedesc0;
    210 struct cwdinfo cwdi0 = {
    211 	.cwdi_cmask = CMASK,		/* see cmask below */
    212 	.cwdi_refcnt = 1,
    213 };
    214 struct plimit limit0 = {
    215 	.pl_corename = defcorename,
    216 	.pl_refcnt = 1,
    217 	.pl_rlimit = {
    218 		[0 ... __arraycount(limit0.pl_rlimit) - 1] = {
    219 			.rlim_cur = RLIM_INFINITY,
    220 			.rlim_max = RLIM_INFINITY,
    221 		},
    222 	},
    223 };
    224 struct pstats pstat0;
    225 struct vmspace vmspace0;
    226 struct sigacts sigacts0;
    227 struct turnstile turnstile0;
    228 struct proc proc0 = {
    229 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    230 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    231 	.p_nlwps = 1,
    232 	.p_nrlwps = 1,
    233 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    234 	.p_pgrp = &pgrp0,
    235 	.p_comm = "system",
    236 	/*
    237 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    238 	 * when they exit.  init(8) can easily wait them out for us.
    239 	 */
    240 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    241 	.p_stat = SACTIVE,
    242 	.p_nice = NZERO,
    243 	.p_emul = &emul_netbsd,
    244 	.p_cwdi = &cwdi0,
    245 	.p_limit = &limit0,
    246 	.p_fd = &filedesc0.fd_fd,
    247 	.p_vmspace = &vmspace0,
    248 	.p_stats = &pstat0,
    249 	.p_sigacts = &sigacts0,
    250 };
    251 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    252 #ifdef LWP0_CPU_INFO
    253 	.l_cpu = LWP0_CPU_INFO,
    254 #endif
    255 	.l_proc = &proc0,
    256 	.l_lid = 1,
    257 	.l_flag = LW_INMEM | LW_SYSTEM,
    258 	.l_stat = LSONPROC,
    259 	.l_ts = &turnstile0,
    260 	.l_syncobj = &sched_syncobj,
    261 	.l_refcnt = 1,
    262 	.l_priority = PRI_USER + NPRI_USER - 1,
    263 	.l_inheritedprio = -1,
    264 	.l_class = SCHED_OTHER,
    265 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    266 	.l_name = __UNCONST("swapper"),
    267 };
    268 kauth_cred_t cred0;
    269 
    270 extern struct user *proc0paddr;
    271 
    272 int nofile = NOFILE;
    273 int maxuprc = MAXUPRC;
    274 int cmask = CMASK;
    275 
    276 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    277 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    278 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    279 
    280 /*
    281  * The process list descriptors, used during pid allocation and
    282  * by sysctl.  No locking on this data structure is needed since
    283  * it is completely static.
    284  */
    285 const struct proclist_desc proclists[] = {
    286 	{ &allproc	},
    287 	{ &zombproc	},
    288 	{ NULL		},
    289 };
    290 
    291 static void orphanpg(struct pgrp *);
    292 static void pg_delete(pid_t);
    293 
    294 static specificdata_domain_t proc_specificdata_domain;
    295 
    296 static pool_cache_t proc_cache;
    297 static pool_cache_t pgrp_cache;
    298 static pool_cache_t session_cache;
    299 
    300 /*
    301  * Initialize global process hashing structures.
    302  */
    303 void
    304 procinit(void)
    305 {
    306 	const struct proclist_desc *pd;
    307 	int i;
    308 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    309 
    310 	for (pd = proclists; pd->pd_list != NULL; pd++)
    311 		LIST_INIT(pd->pd_list);
    312 
    313 	mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
    314 	mutex_init(&proclist_mutex, MUTEX_DEFAULT, IPL_SCHED);
    315 
    316 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    317 			    M_PROC, M_WAITOK);
    318 	/* Set free list running through table...
    319 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    320 	for (i = 0; i <= pid_tbl_mask; i++) {
    321 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    322 		pid_table[i].pt_pgrp = 0;
    323 	}
    324 	/* slot 0 is just grabbed */
    325 	next_free_pt = 1;
    326 	/* Need to fix last entry. */
    327 	last_free_pt = pid_tbl_mask;
    328 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    329 	/* point at which we grow table - to avoid reusing pids too often */
    330 	pid_alloc_lim = pid_tbl_mask - 1;
    331 #undef LINK_EMPTY
    332 
    333 	uihashtbl =
    334 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    335 
    336 	proc_specificdata_domain = specificdata_domain_create();
    337 	KASSERT(proc_specificdata_domain != NULL);
    338 
    339 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    340 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    341 	pgrp_cache = pool_cache_init(sizeof(struct pgrp), 0, 0, 0,
    342 	    "pgrppl", NULL, IPL_NONE, NULL, NULL, NULL);
    343         session_cache = pool_cache_init(sizeof(struct session), 0, 0, 0,
    344             "sessionpl", NULL, IPL_NONE, NULL, NULL, NULL);
    345 }
    346 
    347 /*
    348  * Initialize process 0.
    349  */
    350 void
    351 proc0_init(void)
    352 {
    353 	struct proc *p;
    354 	struct pgrp *pg;
    355 	struct session *sess;
    356 	struct lwp *l;
    357 	rlim_t lim;
    358 
    359 	p = &proc0;
    360 	pg = &pgrp0;
    361 	sess = &session0;
    362 	l = &lwp0;
    363 
    364 	KASSERT(l->l_lid == p->p_nlwpid);
    365 
    366 	mutex_init(&p->p_smutex, MUTEX_DEFAULT, IPL_SCHED);
    367 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    368 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    369 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    370 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    371 
    372 	rw_init(&p->p_reflock);
    373 	cv_init(&p->p_waitcv, "wait");
    374 	cv_init(&p->p_lwpcv, "lwpwait");
    375 
    376 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    377 
    378 	pid_table[0].pt_proc = p;
    379 	LIST_INSERT_HEAD(&allproc, p, p_list);
    380 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    381 
    382 	pid_table[0].pt_pgrp = pg;
    383 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    384 
    385 #ifdef __HAVE_SYSCALL_INTERN
    386 	(*p->p_emul->e_syscall_intern)(p);
    387 #endif
    388 
    389 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    390 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    391 	cv_init(&l->l_sigcv, "sigwait");
    392 
    393 	/* Create credentials. */
    394 	cred0 = kauth_cred_alloc();
    395 	p->p_cred = cred0;
    396 	kauth_cred_hold(cred0);
    397 	l->l_cred = cred0;
    398 
    399 	/* Create the CWD info. */
    400 	rw_init(&cwdi0.cwdi_lock);
    401 
    402 	/* Create the limits structures. */
    403 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    404 
    405 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    406 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    407 	    maxfiles < nofile ? maxfiles : nofile;
    408 
    409 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    410 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    411 	    maxproc < maxuprc ? maxproc : maxuprc;
    412 
    413 	lim = ptoa(uvmexp.free);
    414 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    415 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    416 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    417 
    418 	/* Configure virtual memory system, set vm rlimits. */
    419 	uvm_init_limits(p);
    420 
    421 	/* Initialize file descriptor table for proc0. */
    422 	fdinit1(&filedesc0);
    423 
    424 	/*
    425 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    426 	 * All kernel processes (which never have user space mappings)
    427 	 * share proc0's vmspace, and thus, the kernel pmap.
    428 	 */
    429 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    430 	    trunc_page(VM_MAX_ADDRESS));
    431 
    432 	l->l_addr = proc0paddr;				/* XXX */
    433 
    434 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    435 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    436 	siginit(p);
    437 
    438 	proc_initspecific(p);
    439 	lwp_initspecific(l);
    440 
    441 	SYSCALL_TIME_LWP_INIT(l);
    442 }
    443 
    444 /*
    445  * Check that the specified process group is in the session of the
    446  * specified process.
    447  * Treats -ve ids as process ids.
    448  * Used to validate TIOCSPGRP requests.
    449  */
    450 int
    451 pgid_in_session(struct proc *p, pid_t pg_id)
    452 {
    453 	struct pgrp *pgrp;
    454 	struct session *session;
    455 	int error;
    456 
    457 	mutex_enter(&proclist_lock);
    458 	if (pg_id < 0) {
    459 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    460 		if (p1 == NULL)
    461 			return EINVAL;
    462 		pgrp = p1->p_pgrp;
    463 	} else {
    464 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    465 		if (pgrp == NULL)
    466 			return EINVAL;
    467 	}
    468 	session = pgrp->pg_session;
    469 	if (session != p->p_pgrp->pg_session)
    470 		error = EPERM;
    471 	else
    472 		error = 0;
    473 	mutex_exit(&proclist_lock);
    474 
    475 	return error;
    476 }
    477 
    478 /*
    479  * Is p an inferior of q?
    480  *
    481  * Call with the proclist_lock held.
    482  */
    483 int
    484 inferior(struct proc *p, struct proc *q)
    485 {
    486 
    487 	for (; p != q; p = p->p_pptr)
    488 		if (p->p_pid == 0)
    489 			return 0;
    490 	return 1;
    491 }
    492 
    493 /*
    494  * Locate a process by number
    495  */
    496 struct proc *
    497 p_find(pid_t pid, uint flags)
    498 {
    499 	struct proc *p;
    500 	char stat;
    501 
    502 	if (!(flags & PFIND_LOCKED))
    503 		mutex_enter(&proclist_lock);
    504 
    505 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    506 
    507 	/* Only allow live processes to be found by pid. */
    508 	/* XXXSMP p_stat */
    509 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    510 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    511 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    512 		if (flags & PFIND_UNLOCK_OK)
    513 			 mutex_exit(&proclist_lock);
    514 		return p;
    515 	}
    516 	if (flags & PFIND_UNLOCK_FAIL)
    517 		mutex_exit(&proclist_lock);
    518 	return NULL;
    519 }
    520 
    521 
    522 /*
    523  * Locate a process group by number
    524  */
    525 struct pgrp *
    526 pg_find(pid_t pgid, uint flags)
    527 {
    528 	struct pgrp *pg;
    529 
    530 	if (!(flags & PFIND_LOCKED))
    531 		mutex_enter(&proclist_lock);
    532 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    533 	/*
    534 	 * Can't look up a pgrp that only exists because the session
    535 	 * hasn't died yet (traditional)
    536 	 */
    537 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    538 		if (flags & PFIND_UNLOCK_FAIL)
    539 			 mutex_exit(&proclist_lock);
    540 		return NULL;
    541 	}
    542 
    543 	if (flags & PFIND_UNLOCK_OK)
    544 		mutex_exit(&proclist_lock);
    545 	return pg;
    546 }
    547 
    548 static void
    549 expand_pid_table(void)
    550 {
    551 	uint pt_size = pid_tbl_mask + 1;
    552 	struct pid_table *n_pt, *new_pt;
    553 	struct proc *proc;
    554 	struct pgrp *pgrp;
    555 	int i;
    556 	pid_t pid;
    557 
    558 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    559 
    560 	mutex_enter(&proclist_lock);
    561 	if (pt_size != pid_tbl_mask + 1) {
    562 		/* Another process beat us to it... */
    563 		mutex_exit(&proclist_lock);
    564 		FREE(new_pt, M_PROC);
    565 		return;
    566 	}
    567 
    568 	/*
    569 	 * Copy entries from old table into new one.
    570 	 * If 'pid' is 'odd' we need to place in the upper half,
    571 	 * even pid's to the lower half.
    572 	 * Free items stay in the low half so we don't have to
    573 	 * fixup the reference to them.
    574 	 * We stuff free items on the front of the freelist
    575 	 * because we can't write to unmodified entries.
    576 	 * Processing the table backwards maintains a semblance
    577 	 * of issueing pid numbers that increase with time.
    578 	 */
    579 	i = pt_size - 1;
    580 	n_pt = new_pt + i;
    581 	for (; ; i--, n_pt--) {
    582 		proc = pid_table[i].pt_proc;
    583 		pgrp = pid_table[i].pt_pgrp;
    584 		if (!P_VALID(proc)) {
    585 			/* Up 'use count' so that link is valid */
    586 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    587 			proc = P_FREE(pid);
    588 			if (pgrp)
    589 				pid = pgrp->pg_id;
    590 		} else
    591 			pid = proc->p_pid;
    592 
    593 		/* Save entry in appropriate half of table */
    594 		n_pt[pid & pt_size].pt_proc = proc;
    595 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    596 
    597 		/* Put other piece on start of free list */
    598 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    599 		n_pt[pid & pt_size].pt_proc =
    600 				    P_FREE((pid & ~pt_size) | next_free_pt);
    601 		n_pt[pid & pt_size].pt_pgrp = 0;
    602 		next_free_pt = i | (pid & pt_size);
    603 		if (i == 0)
    604 			break;
    605 	}
    606 
    607 	/* Switch tables */
    608 	mutex_enter(&proclist_mutex);
    609 	n_pt = pid_table;
    610 	pid_table = new_pt;
    611 	mutex_exit(&proclist_mutex);
    612 	pid_tbl_mask = pt_size * 2 - 1;
    613 
    614 	/*
    615 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    616 	 * allocated pids we need it to be larger!
    617 	 */
    618 	if (pid_tbl_mask > PID_MAX) {
    619 		pid_max = pid_tbl_mask * 2 + 1;
    620 		pid_alloc_lim |= pid_alloc_lim << 1;
    621 	} else
    622 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    623 
    624 	mutex_exit(&proclist_lock);
    625 	FREE(n_pt, M_PROC);
    626 }
    627 
    628 struct proc *
    629 proc_alloc(void)
    630 {
    631 	struct proc *p;
    632 	int nxt;
    633 	pid_t pid;
    634 	struct pid_table *pt;
    635 
    636 	p = pool_cache_get(proc_cache, PR_WAITOK);
    637 	p->p_stat = SIDL;			/* protect against others */
    638 
    639 	proc_initspecific(p);
    640 	/* allocate next free pid */
    641 
    642 	for (;;expand_pid_table()) {
    643 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    644 			/* ensure pids cycle through 2000+ values */
    645 			continue;
    646 		mutex_enter(&proclist_lock);
    647 		pt = &pid_table[next_free_pt];
    648 #ifdef DIAGNOSTIC
    649 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    650 			panic("proc_alloc: slot busy");
    651 #endif
    652 		nxt = P_NEXT(pt->pt_proc);
    653 		if (nxt & pid_tbl_mask)
    654 			break;
    655 		/* Table full - expand (NB last entry not used....) */
    656 		mutex_exit(&proclist_lock);
    657 	}
    658 
    659 	/* pid is 'saved use count' + 'size' + entry */
    660 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    661 	if ((uint)pid > (uint)pid_max)
    662 		pid &= pid_tbl_mask;
    663 	p->p_pid = pid;
    664 	next_free_pt = nxt & pid_tbl_mask;
    665 
    666 	/* Grab table slot */
    667 	mutex_enter(&proclist_mutex);
    668 	pt->pt_proc = p;
    669 	mutex_exit(&proclist_mutex);
    670 	pid_alloc_cnt++;
    671 
    672 	mutex_exit(&proclist_lock);
    673 
    674 	return p;
    675 }
    676 
    677 /*
    678  * Free a process id - called from proc_free (in kern_exit.c)
    679  *
    680  * Called with the proclist_lock held.
    681  */
    682 void
    683 proc_free_pid(struct proc *p)
    684 {
    685 	pid_t pid = p->p_pid;
    686 	struct pid_table *pt;
    687 
    688 	KASSERT(mutex_owned(&proclist_lock));
    689 
    690 	pt = &pid_table[pid & pid_tbl_mask];
    691 #ifdef DIAGNOSTIC
    692 	if (__predict_false(pt->pt_proc != p))
    693 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    694 			pid, p);
    695 #endif
    696 	mutex_enter(&proclist_mutex);
    697 	/* save pid use count in slot */
    698 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    699 
    700 	if (pt->pt_pgrp == NULL) {
    701 		/* link last freed entry onto ours */
    702 		pid &= pid_tbl_mask;
    703 		pt = &pid_table[last_free_pt];
    704 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    705 		last_free_pt = pid;
    706 		pid_alloc_cnt--;
    707 	}
    708 	mutex_exit(&proclist_mutex);
    709 
    710 	atomic_dec_uint(&nprocs);
    711 }
    712 
    713 void
    714 proc_free_mem(struct proc *p)
    715 {
    716 
    717 	pool_cache_put(proc_cache, p);
    718 }
    719 
    720 /*
    721  * Move p to a new or existing process group (and session)
    722  *
    723  * If we are creating a new pgrp, the pgid should equal
    724  * the calling process' pid.
    725  * If is only valid to enter a process group that is in the session
    726  * of the process.
    727  * Also mksess should only be set if we are creating a process group
    728  *
    729  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    730  * SYSV setpgrp support for hpux.
    731  */
    732 int
    733 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    734 {
    735 	struct pgrp *new_pgrp, *pgrp;
    736 	struct session *sess;
    737 	struct proc *p;
    738 	int rval;
    739 	pid_t pg_id = NO_PGID;
    740 
    741 	if (mksess)
    742 		sess = pool_cache_get(session_cache, PR_WAITOK);
    743 	else
    744 		sess = NULL;
    745 
    746 	/* Allocate data areas we might need before doing any validity checks */
    747 	mutex_enter(&proclist_lock);		/* Because pid_table might change */
    748 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    749 		mutex_exit(&proclist_lock);
    750 		new_pgrp = pool_cache_get(pgrp_cache, PR_WAITOK);
    751 		mutex_enter(&proclist_lock);
    752 	} else
    753 		new_pgrp = NULL;
    754 	rval = EPERM;	/* most common error (to save typing) */
    755 
    756 	/* Check pgrp exists or can be created */
    757 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    758 	if (pgrp != NULL && pgrp->pg_id != pgid)
    759 		goto done;
    760 
    761 	/* Can only set another process under restricted circumstances. */
    762 	if (pid != curp->p_pid) {
    763 		/* must exist and be one of our children... */
    764 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    765 		    !inferior(p, curp)) {
    766 			rval = ESRCH;
    767 			goto done;
    768 		}
    769 		/* ... in the same session... */
    770 		if (sess != NULL || p->p_session != curp->p_session)
    771 			goto done;
    772 		/* ... existing pgid must be in same session ... */
    773 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    774 			goto done;
    775 		/* ... and not done an exec. */
    776 		if (p->p_flag & PK_EXEC) {
    777 			rval = EACCES;
    778 			goto done;
    779 		}
    780 	} else {
    781 		/* ... setsid() cannot re-enter a pgrp */
    782 		if (mksess && (curp->p_pgid == curp->p_pid ||
    783 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    784 			goto done;
    785 		p = curp;
    786 	}
    787 
    788 	/* Changing the process group/session of a session
    789 	   leader is definitely off limits. */
    790 	if (SESS_LEADER(p)) {
    791 		if (sess == NULL && p->p_pgrp == pgrp)
    792 			/* unless it's a definite noop */
    793 			rval = 0;
    794 		goto done;
    795 	}
    796 
    797 	/* Can only create a process group with id of process */
    798 	if (pgrp == NULL && pgid != pid)
    799 		goto done;
    800 
    801 	/* Can only create a session if creating pgrp */
    802 	if (sess != NULL && pgrp != NULL)
    803 		goto done;
    804 
    805 	/* Check we allocated memory for a pgrp... */
    806 	if (pgrp == NULL && new_pgrp == NULL)
    807 		goto done;
    808 
    809 	/* Don't attach to 'zombie' pgrp */
    810 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    811 		goto done;
    812 
    813 	/* Expect to succeed now */
    814 	rval = 0;
    815 
    816 	if (pgrp == p->p_pgrp)
    817 		/* nothing to do */
    818 		goto done;
    819 
    820 	/* Ok all setup, link up required structures */
    821 
    822 	if (pgrp == NULL) {
    823 		pgrp = new_pgrp;
    824 		new_pgrp = 0;
    825 		if (sess != NULL) {
    826 			sess->s_sid = p->p_pid;
    827 			sess->s_leader = p;
    828 			sess->s_count = 1;
    829 			sess->s_ttyvp = NULL;
    830 			sess->s_ttyp = NULL;
    831 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    832 			memcpy(sess->s_login, p->p_session->s_login,
    833 			    sizeof(sess->s_login));
    834 			p->p_lflag &= ~PL_CONTROLT;
    835 		} else {
    836 			sess = p->p_pgrp->pg_session;
    837 			SESSHOLD(sess);
    838 		}
    839 		pgrp->pg_session = sess;
    840 		sess = 0;
    841 
    842 		pgrp->pg_id = pgid;
    843 		LIST_INIT(&pgrp->pg_members);
    844 #ifdef DIAGNOSTIC
    845 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    846 			panic("enterpgrp: pgrp table slot in use");
    847 		if (__predict_false(mksess && p != curp))
    848 			panic("enterpgrp: mksession and p != curproc");
    849 #endif
    850 		mutex_enter(&proclist_mutex);
    851 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    852 		pgrp->pg_jobc = 0;
    853 	} else
    854 		mutex_enter(&proclist_mutex);
    855 
    856 	/* Interlock with tty subsystem. */
    857 	mutex_spin_enter(&tty_lock);
    858 
    859 	/*
    860 	 * Adjust eligibility of affected pgrps to participate in job control.
    861 	 * Increment eligibility counts before decrementing, otherwise we
    862 	 * could reach 0 spuriously during the first call.
    863 	 */
    864 	fixjobc(p, pgrp, 1);
    865 	fixjobc(p, p->p_pgrp, 0);
    866 
    867 	/* Move process to requested group. */
    868 	LIST_REMOVE(p, p_pglist);
    869 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    870 		/* defer delete until we've dumped the lock */
    871 		pg_id = p->p_pgrp->pg_id;
    872 	p->p_pgrp = pgrp;
    873 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    874 
    875 	/* Done with the swap; we can release the tty mutex. */
    876 	mutex_spin_exit(&tty_lock);
    877 
    878 	mutex_exit(&proclist_mutex);
    879 
    880     done:
    881 	if (pg_id != NO_PGID)
    882 		pg_delete(pg_id);
    883 	mutex_exit(&proclist_lock);
    884 	if (sess != NULL)
    885 		pool_cache_put(session_cache, sess);
    886 	if (new_pgrp != NULL)
    887 		pool_cache_put(pgrp_cache, new_pgrp);
    888 #ifdef DEBUG_PGRP
    889 	if (__predict_false(rval))
    890 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    891 			pid, pgid, mksess, curp->p_pid, rval);
    892 #endif
    893 	return rval;
    894 }
    895 
    896 /*
    897  * Remove a process from its process group.  Must be called with the
    898  * proclist_lock held.
    899  */
    900 void
    901 leavepgrp(struct proc *p)
    902 {
    903 	struct pgrp *pgrp;
    904 
    905 	KASSERT(mutex_owned(&proclist_lock));
    906 
    907 	mutex_enter(&proclist_mutex);
    908 	mutex_spin_enter(&tty_lock);
    909 	pgrp = p->p_pgrp;
    910 	LIST_REMOVE(p, p_pglist);
    911 	p->p_pgrp = NULL;
    912 	mutex_spin_exit(&tty_lock);
    913 	mutex_exit(&proclist_mutex);
    914 
    915 	if (LIST_EMPTY(&pgrp->pg_members))
    916 		pg_delete(pgrp->pg_id);
    917 }
    918 
    919 /*
    920  * Free a process group.  Must be called with the proclist_lock held.
    921  */
    922 static void
    923 pg_free(pid_t pg_id)
    924 {
    925 	struct pgrp *pgrp;
    926 	struct pid_table *pt;
    927 
    928 	KASSERT(mutex_owned(&proclist_lock));
    929 
    930 	pt = &pid_table[pg_id & pid_tbl_mask];
    931 	pgrp = pt->pt_pgrp;
    932 #ifdef DIAGNOSTIC
    933 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    934 	    || !LIST_EMPTY(&pgrp->pg_members)))
    935 		panic("pg_free: process group absent or has members");
    936 #endif
    937 	pt->pt_pgrp = 0;
    938 
    939 	if (!P_VALID(pt->pt_proc)) {
    940 		/* orphaned pgrp, put slot onto free list */
    941 #ifdef DIAGNOSTIC
    942 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    943 			panic("pg_free: process slot on free list");
    944 #endif
    945 		mutex_enter(&proclist_mutex);
    946 		pg_id &= pid_tbl_mask;
    947 		pt = &pid_table[last_free_pt];
    948 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    949 		mutex_exit(&proclist_mutex);
    950 		last_free_pt = pg_id;
    951 		pid_alloc_cnt--;
    952 	}
    953 	pool_cache_put(pgrp_cache, pgrp);
    954 }
    955 
    956 /*
    957  * Delete a process group.  Must be called with the proclist_lock held.
    958  */
    959 static void
    960 pg_delete(pid_t pg_id)
    961 {
    962 	struct pgrp *pgrp;
    963 	struct tty *ttyp;
    964 	struct session *ss;
    965 	int is_pgrp_leader;
    966 
    967 	KASSERT(mutex_owned(&proclist_lock));
    968 
    969 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    970 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    971 	    !LIST_EMPTY(&pgrp->pg_members))
    972 		return;
    973 
    974 	ss = pgrp->pg_session;
    975 
    976 	/* Remove reference (if any) from tty to this process group */
    977 	mutex_spin_enter(&tty_lock);
    978 	ttyp = ss->s_ttyp;
    979 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    980 		ttyp->t_pgrp = NULL;
    981 #ifdef DIAGNOSTIC
    982 		if (ttyp->t_session != ss)
    983 			panic("pg_delete: wrong session on terminal");
    984 #endif
    985 	}
    986 	mutex_spin_exit(&tty_lock);
    987 
    988 	/*
    989 	 * The leading process group in a session is freed
    990 	 * by sessdelete() if last reference.
    991 	 */
    992 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    993 	SESSRELE(ss);
    994 
    995 	if (is_pgrp_leader)
    996 		return;
    997 
    998 	pg_free(pg_id);
    999 }
   1000 
   1001 /*
   1002  * Delete session - called from SESSRELE when s_count becomes zero.
   1003  * Must be called with the proclist_lock held.
   1004  */
   1005 void
   1006 sessdelete(struct session *ss)
   1007 {
   1008 
   1009 	KASSERT(mutex_owned(&proclist_lock));
   1010 
   1011 	/*
   1012 	 * We keep the pgrp with the same id as the session in
   1013 	 * order to stop a process being given the same pid.
   1014 	 * Since the pgrp holds a reference to the session, it
   1015 	 * must be a 'zombie' pgrp by now.
   1016 	 */
   1017 	pg_free(ss->s_sid);
   1018 	pool_cache_put(session_cache, ss);
   1019 }
   1020 
   1021 /*
   1022  * Adjust pgrp jobc counters when specified process changes process group.
   1023  * We count the number of processes in each process group that "qualify"
   1024  * the group for terminal job control (those with a parent in a different
   1025  * process group of the same session).  If that count reaches zero, the
   1026  * process group becomes orphaned.  Check both the specified process'
   1027  * process group and that of its children.
   1028  * entering == 0 => p is leaving specified group.
   1029  * entering == 1 => p is entering specified group.
   1030  *
   1031  * Call with proclist_lock held.
   1032  */
   1033 void
   1034 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1035 {
   1036 	struct pgrp *hispgrp;
   1037 	struct session *mysession = pgrp->pg_session;
   1038 	struct proc *child;
   1039 
   1040 	KASSERT(mutex_owned(&proclist_lock));
   1041 	KASSERT(mutex_owned(&proclist_mutex));
   1042 
   1043 	/*
   1044 	 * Check p's parent to see whether p qualifies its own process
   1045 	 * group; if so, adjust count for p's process group.
   1046 	 */
   1047 	hispgrp = p->p_pptr->p_pgrp;
   1048 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1049 		if (entering) {
   1050 			mutex_enter(&p->p_smutex);
   1051 			p->p_sflag &= ~PS_ORPHANPG;
   1052 			mutex_exit(&p->p_smutex);
   1053 			pgrp->pg_jobc++;
   1054 		} else if (--pgrp->pg_jobc == 0)
   1055 			orphanpg(pgrp);
   1056 	}
   1057 
   1058 	/*
   1059 	 * Check this process' children to see whether they qualify
   1060 	 * their process groups; if so, adjust counts for children's
   1061 	 * process groups.
   1062 	 */
   1063 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1064 		hispgrp = child->p_pgrp;
   1065 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1066 		    !P_ZOMBIE(child)) {
   1067 			if (entering) {
   1068 				mutex_enter(&child->p_smutex);
   1069 				child->p_sflag &= ~PS_ORPHANPG;
   1070 				mutex_exit(&child->p_smutex);
   1071 				hispgrp->pg_jobc++;
   1072 			} else if (--hispgrp->pg_jobc == 0)
   1073 				orphanpg(hispgrp);
   1074 		}
   1075 	}
   1076 }
   1077 
   1078 /*
   1079  * A process group has become orphaned;
   1080  * if there are any stopped processes in the group,
   1081  * hang-up all process in that group.
   1082  *
   1083  * Call with proclist_lock held.
   1084  */
   1085 static void
   1086 orphanpg(struct pgrp *pg)
   1087 {
   1088 	struct proc *p;
   1089 	int doit;
   1090 
   1091 	KASSERT(mutex_owned(&proclist_lock));
   1092 	KASSERT(mutex_owned(&proclist_mutex));
   1093 
   1094 	doit = 0;
   1095 
   1096 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1097 		mutex_enter(&p->p_smutex);
   1098 		if (p->p_stat == SSTOP) {
   1099 			doit = 1;
   1100 			p->p_sflag |= PS_ORPHANPG;
   1101 		}
   1102 		mutex_exit(&p->p_smutex);
   1103 	}
   1104 
   1105 	if (doit) {
   1106 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1107 			psignal(p, SIGHUP);
   1108 			psignal(p, SIGCONT);
   1109 		}
   1110 	}
   1111 }
   1112 
   1113 #ifdef DDB
   1114 #include <ddb/db_output.h>
   1115 void pidtbl_dump(void);
   1116 void
   1117 pidtbl_dump(void)
   1118 {
   1119 	struct pid_table *pt;
   1120 	struct proc *p;
   1121 	struct pgrp *pgrp;
   1122 	int id;
   1123 
   1124 	db_printf("pid table %p size %x, next %x, last %x\n",
   1125 		pid_table, pid_tbl_mask+1,
   1126 		next_free_pt, last_free_pt);
   1127 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1128 		p = pt->pt_proc;
   1129 		if (!P_VALID(p) && !pt->pt_pgrp)
   1130 			continue;
   1131 		db_printf("  id %x: ", id);
   1132 		if (P_VALID(p))
   1133 			db_printf("proc %p id %d (0x%x) %s\n",
   1134 				p, p->p_pid, p->p_pid, p->p_comm);
   1135 		else
   1136 			db_printf("next %x use %x\n",
   1137 				P_NEXT(p) & pid_tbl_mask,
   1138 				P_NEXT(p) & ~pid_tbl_mask);
   1139 		if ((pgrp = pt->pt_pgrp)) {
   1140 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1141 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1142 			    pgrp->pg_session->s_count,
   1143 			    pgrp->pg_session->s_login);
   1144 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1145 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1146 			    pgrp->pg_members.lh_first);
   1147 			for (p = pgrp->pg_members.lh_first; p != 0;
   1148 			    p = p->p_pglist.le_next) {
   1149 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1150 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1151 			}
   1152 		}
   1153 	}
   1154 }
   1155 #endif /* DDB */
   1156 
   1157 #ifdef KSTACK_CHECK_MAGIC
   1158 #include <sys/user.h>
   1159 
   1160 #define	KSTACK_MAGIC	0xdeadbeaf
   1161 
   1162 /* XXX should be per process basis? */
   1163 int kstackleftmin = KSTACK_SIZE;
   1164 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1165 					  less than this */
   1166 
   1167 void
   1168 kstack_setup_magic(const struct lwp *l)
   1169 {
   1170 	uint32_t *ip;
   1171 	uint32_t const *end;
   1172 
   1173 	KASSERT(l != NULL);
   1174 	KASSERT(l != &lwp0);
   1175 
   1176 	/*
   1177 	 * fill all the stack with magic number
   1178 	 * so that later modification on it can be detected.
   1179 	 */
   1180 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1181 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1182 	for (; ip < end; ip++) {
   1183 		*ip = KSTACK_MAGIC;
   1184 	}
   1185 }
   1186 
   1187 void
   1188 kstack_check_magic(const struct lwp *l)
   1189 {
   1190 	uint32_t const *ip, *end;
   1191 	int stackleft;
   1192 
   1193 	KASSERT(l != NULL);
   1194 
   1195 	/* don't check proc0 */ /*XXX*/
   1196 	if (l == &lwp0)
   1197 		return;
   1198 
   1199 #ifdef __MACHINE_STACK_GROWS_UP
   1200 	/* stack grows upwards (eg. hppa) */
   1201 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1202 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1203 	for (ip--; ip >= end; ip--)
   1204 		if (*ip != KSTACK_MAGIC)
   1205 			break;
   1206 
   1207 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1208 #else /* __MACHINE_STACK_GROWS_UP */
   1209 	/* stack grows downwards (eg. i386) */
   1210 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1211 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1212 	for (; ip < end; ip++)
   1213 		if (*ip != KSTACK_MAGIC)
   1214 			break;
   1215 
   1216 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1217 #endif /* __MACHINE_STACK_GROWS_UP */
   1218 
   1219 	if (kstackleftmin > stackleft) {
   1220 		kstackleftmin = stackleft;
   1221 		if (stackleft < kstackleftthres)
   1222 			printf("warning: kernel stack left %d bytes"
   1223 			    "(pid %u:lid %u)\n", stackleft,
   1224 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1225 	}
   1226 
   1227 	if (stackleft <= 0) {
   1228 		panic("magic on the top of kernel stack changed for "
   1229 		    "pid %u, lid %u: maybe kernel stack overflow",
   1230 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1231 	}
   1232 }
   1233 #endif /* KSTACK_CHECK_MAGIC */
   1234 
   1235 /*
   1236  * XXXSMP this is bust, it grabs a read lock and then messes about
   1237  * with allproc.
   1238  */
   1239 int
   1240 proclist_foreach_call(struct proclist *list,
   1241     int (*callback)(struct proc *, void *arg), void *arg)
   1242 {
   1243 	struct proc marker;
   1244 	struct proc *p;
   1245 	struct lwp * const l = curlwp;
   1246 	int ret = 0;
   1247 
   1248 	marker.p_flag = PK_MARKER;
   1249 	uvm_lwp_hold(l);
   1250 	mutex_enter(&proclist_lock);
   1251 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1252 		if (p->p_flag & PK_MARKER) {
   1253 			p = LIST_NEXT(p, p_list);
   1254 			continue;
   1255 		}
   1256 		LIST_INSERT_AFTER(p, &marker, p_list);
   1257 		ret = (*callback)(p, arg);
   1258 		KASSERT(mutex_owned(&proclist_lock));
   1259 		p = LIST_NEXT(&marker, p_list);
   1260 		LIST_REMOVE(&marker, p_list);
   1261 	}
   1262 	mutex_exit(&proclist_lock);
   1263 	uvm_lwp_rele(l);
   1264 
   1265 	return ret;
   1266 }
   1267 
   1268 int
   1269 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1270 {
   1271 
   1272 	/* XXXCDC: how should locking work here? */
   1273 
   1274 	/* curproc exception is for coredump. */
   1275 
   1276 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1277 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1278 		return EFAULT;
   1279 	}
   1280 
   1281 	uvmspace_addref(p->p_vmspace);
   1282 	*vm = p->p_vmspace;
   1283 
   1284 	return 0;
   1285 }
   1286 
   1287 /*
   1288  * Acquire a write lock on the process credential.
   1289  */
   1290 void
   1291 proc_crmod_enter(void)
   1292 {
   1293 	struct lwp *l = curlwp;
   1294 	struct proc *p = l->l_proc;
   1295 	struct plimit *lim;
   1296 	kauth_cred_t oc;
   1297 	char *cn;
   1298 
   1299 	/* Reset what needs to be reset in plimit. */
   1300 	if (p->p_limit->pl_corename != defcorename) {
   1301 		lim_privatise(p, false);
   1302 		lim = p->p_limit;
   1303 		mutex_enter(&lim->pl_lock);
   1304 		cn = lim->pl_corename;
   1305 		lim->pl_corename = defcorename;
   1306 		mutex_exit(&lim->pl_lock);
   1307 		if (cn != defcorename)
   1308 			free(cn, M_TEMP);
   1309 	}
   1310 
   1311 	mutex_enter(&p->p_mutex);
   1312 
   1313 	/* Ensure the LWP cached credentials are up to date. */
   1314 	if ((oc = l->l_cred) != p->p_cred) {
   1315 		kauth_cred_hold(p->p_cred);
   1316 		l->l_cred = p->p_cred;
   1317 		kauth_cred_free(oc);
   1318 	}
   1319 
   1320 }
   1321 
   1322 /*
   1323  * Set in a new process credential, and drop the write lock.  The credential
   1324  * must have a reference already.  Optionally, free a no-longer required
   1325  * credential.  The scheduler also needs to inspect p_cred, so we also
   1326  * briefly acquire the sched state mutex.
   1327  */
   1328 void
   1329 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1330 {
   1331 	struct lwp *l = curlwp;
   1332 	struct proc *p = l->l_proc;
   1333 	kauth_cred_t oc;
   1334 
   1335 	/* Is there a new credential to set in? */
   1336 	if (scred != NULL) {
   1337 		mutex_enter(&p->p_smutex);
   1338 		p->p_cred = scred;
   1339 		mutex_exit(&p->p_smutex);
   1340 
   1341 		/* Ensure the LWP cached credentials are up to date. */
   1342 		if ((oc = l->l_cred) != scred) {
   1343 			kauth_cred_hold(scred);
   1344 			l->l_cred = scred;
   1345 		}
   1346 	} else
   1347 		oc = NULL;	/* XXXgcc */
   1348 
   1349 	if (sugid) {
   1350 		/*
   1351 		 * Mark process as having changed credentials, stops
   1352 		 * tracing etc.
   1353 		 */
   1354 		p->p_flag |= PK_SUGID;
   1355 	}
   1356 
   1357 	mutex_exit(&p->p_mutex);
   1358 
   1359 	/* If there is a credential to be released, free it now. */
   1360 	if (fcred != NULL) {
   1361 		KASSERT(scred != NULL);
   1362 		kauth_cred_free(fcred);
   1363 		if (oc != scred)
   1364 			kauth_cred_free(oc);
   1365 	}
   1366 }
   1367 
   1368 /*
   1369  * proc_specific_key_create --
   1370  *	Create a key for subsystem proc-specific data.
   1371  */
   1372 int
   1373 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1374 {
   1375 
   1376 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1377 }
   1378 
   1379 /*
   1380  * proc_specific_key_delete --
   1381  *	Delete a key for subsystem proc-specific data.
   1382  */
   1383 void
   1384 proc_specific_key_delete(specificdata_key_t key)
   1385 {
   1386 
   1387 	specificdata_key_delete(proc_specificdata_domain, key);
   1388 }
   1389 
   1390 /*
   1391  * proc_initspecific --
   1392  *	Initialize a proc's specificdata container.
   1393  */
   1394 void
   1395 proc_initspecific(struct proc *p)
   1396 {
   1397 	int error;
   1398 
   1399 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1400 	KASSERT(error == 0);
   1401 }
   1402 
   1403 /*
   1404  * proc_finispecific --
   1405  *	Finalize a proc's specificdata container.
   1406  */
   1407 void
   1408 proc_finispecific(struct proc *p)
   1409 {
   1410 
   1411 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1412 }
   1413 
   1414 /*
   1415  * proc_getspecific --
   1416  *	Return proc-specific data corresponding to the specified key.
   1417  */
   1418 void *
   1419 proc_getspecific(struct proc *p, specificdata_key_t key)
   1420 {
   1421 
   1422 	return (specificdata_getspecific(proc_specificdata_domain,
   1423 					 &p->p_specdataref, key));
   1424 }
   1425 
   1426 /*
   1427  * proc_setspecific --
   1428  *	Set proc-specific data corresponding to the specified key.
   1429  */
   1430 void
   1431 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1432 {
   1433 
   1434 	specificdata_setspecific(proc_specificdata_domain,
   1435 				 &p->p_specdataref, key, data);
   1436 }
   1437