kern_proc.c revision 1.122 1 /* $NetBSD: kern_proc.c,v 1.122 2007/11/07 00:23:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.122 2007/11/07 00:23:22 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112 /*
113 * There are two locks on global process state.
114 *
115 * 1. proclist_lock is an adaptive mutex and is used when modifying
116 * or examining process state from a process context. It protects
117 * the internal tables, all of the process lists, and a number of
118 * members of struct proc.
119 *
120 * 2. proclist_mutex is used when allproc must be traversed from an
121 * interrupt context, or when changing the state of processes. The
122 * proclist_lock should always be used in preference. In some cases,
123 * both locks need to be held.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is approximately as following:
141 *
142 * kernel_lock
143 * -> proclist_lock
144 * -> proc::p_mutex
145 * -> proclist_mutex
146 * -> proc::p_smutex
147 * -> proc::p_stmutex
148 *
149 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 * platform are made MP safe. Currently it blocks interrupts at
151 * IPL_SCHED and below.
152 *
153 * XXX The two process locks (p_smutex + p_mutex), and the two global
154 * state locks (proclist_lock + proclist_mutex) should be merged
155 * together. However, to do so requires interrupts that interrupts
156 * be run with LWP context.
157 */
158 kmutex_t proclist_lock;
159 kmutex_t proclist_mutex;
160
161 /*
162 * pid to proc lookup is done by indexing the pid_table array.
163 * Since pid numbers are only allocated when an empty slot
164 * has been found, there is no need to search any lists ever.
165 * (an orphaned pgrp will lock the slot, a session will lock
166 * the pgrp with the same number.)
167 * If the table is too small it is reallocated with twice the
168 * previous size and the entries 'unzipped' into the two halves.
169 * A linked list of free entries is passed through the pt_proc
170 * field of 'free' items - set odd to be an invalid ptr.
171 */
172
173 struct pid_table {
174 struct proc *pt_proc;
175 struct pgrp *pt_pgrp;
176 };
177 #if 1 /* strongly typed cast - should be a noop */
178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 #else
180 #define p2u(p) ((uint)p)
181 #endif
182 #define P_VALID(p) (!(p2u(p) & 1))
183 #define P_NEXT(p) (p2u(p) >> 1)
184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185
186 #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 static struct pid_table *pid_table;
188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 static uint pid_alloc_lim; /* max we allocate before growing table */
190 static uint pid_alloc_cnt; /* number of allocated pids */
191
192 /* links through free slots - never empty! */
193 static uint next_free_pt, last_free_pt;
194 static pid_t pid_max = PID_MAX; /* largest value we allocate */
195
196 /* Components of the first process -- never freed. */
197 struct session session0;
198 struct pgrp pgrp0;
199 struct proc proc0;
200 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
201 kauth_cred_t cred0;
202 struct filedesc0 filedesc0;
203 struct cwdinfo cwdi0;
204 struct plimit limit0;
205 struct pstats pstat0;
206 struct vmspace vmspace0;
207 struct sigacts sigacts0;
208 struct turnstile turnstile0;
209
210 extern struct user *proc0paddr;
211
212 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
213
214 int nofile = NOFILE;
215 int maxuprc = MAXUPRC;
216 int cmask = CMASK;
217
218 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
219 &pool_allocator_nointr, IPL_NONE);
220 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
221 &pool_allocator_nointr, IPL_NONE);
222 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
223 &pool_allocator_nointr, IPL_NONE);
224 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
225 &pool_allocator_nointr, IPL_NONE);
226 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
227 &pool_allocator_nointr, IPL_NONE);
228
229 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
230 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
231 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
232
233 /*
234 * The process list descriptors, used during pid allocation and
235 * by sysctl. No locking on this data structure is needed since
236 * it is completely static.
237 */
238 const struct proclist_desc proclists[] = {
239 { &allproc },
240 { &zombproc },
241 { NULL },
242 };
243
244 static void orphanpg(struct pgrp *);
245 static void pg_delete(pid_t);
246
247 static specificdata_domain_t proc_specificdata_domain;
248
249 /*
250 * Initialize global process hashing structures.
251 */
252 void
253 procinit(void)
254 {
255 const struct proclist_desc *pd;
256 int i;
257 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
258
259 for (pd = proclists; pd->pd_list != NULL; pd++)
260 LIST_INIT(pd->pd_list);
261
262 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
263 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
264
265 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
266 M_PROC, M_WAITOK);
267 /* Set free list running through table...
268 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
269 for (i = 0; i <= pid_tbl_mask; i++) {
270 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
271 pid_table[i].pt_pgrp = 0;
272 }
273 /* slot 0 is just grabbed */
274 next_free_pt = 1;
275 /* Need to fix last entry. */
276 last_free_pt = pid_tbl_mask;
277 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
278 /* point at which we grow table - to avoid reusing pids too often */
279 pid_alloc_lim = pid_tbl_mask - 1;
280 #undef LINK_EMPTY
281
282 LIST_INIT(&alllwp);
283
284 uihashtbl =
285 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
286
287 proc_specificdata_domain = specificdata_domain_create();
288 KASSERT(proc_specificdata_domain != NULL);
289 }
290
291 /*
292 * Initialize process 0.
293 */
294 void
295 proc0_init(void)
296 {
297 struct proc *p;
298 struct pgrp *pg;
299 struct session *sess;
300 struct lwp *l;
301 u_int i;
302 rlim_t lim;
303
304 p = &proc0;
305 pg = &pgrp0;
306 sess = &session0;
307 l = &lwp0;
308
309 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
310 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
311 mutex_init(&p->p_raslock, MUTEX_DEFAULT, IPL_NONE);
312 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
313 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
314
315 rw_init(&p->p_reflock);
316 cv_init(&p->p_waitcv, "wait");
317 cv_init(&p->p_lwpcv, "lwpwait");
318
319 LIST_INIT(&p->p_lwps);
320 LIST_INIT(&p->p_sigwaiters);
321 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
322
323 p->p_nlwps = 1;
324 p->p_nrlwps = 1;
325 p->p_nlwpid = l->l_lid;
326
327 pid_table[0].pt_proc = p;
328 LIST_INSERT_HEAD(&allproc, p, p_list);
329 LIST_INSERT_HEAD(&alllwp, l, l_list);
330
331 p->p_pgrp = pg;
332 pid_table[0].pt_pgrp = pg;
333 LIST_INIT(&pg->pg_members);
334 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
335
336 pg->pg_session = sess;
337 sess->s_count = 1;
338 sess->s_sid = 0;
339 sess->s_leader = p;
340
341 /*
342 * Set P_NOCLDWAIT so that kernel threads are reparented to
343 * init(8) when they exit. init(8) can easily wait them out
344 * for us.
345 */
346 p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
347 p->p_stat = SACTIVE;
348 p->p_nice = NZERO;
349 p->p_emul = &emul_netbsd;
350 #ifdef __HAVE_SYSCALL_INTERN
351 (*p->p_emul->e_syscall_intern)(p);
352 #endif
353 strlcpy(p->p_comm, "system", sizeof(p->p_comm));
354
355 l->l_flag = LW_INMEM | LW_SYSTEM;
356 l->l_stat = LSONPROC;
357 l->l_ts = &turnstile0;
358 l->l_syncobj = &sched_syncobj;
359 l->l_refcnt = 1;
360 l->l_cpu = curcpu();
361 l->l_priority = PRI_USER + NPRI_USER - 1;
362 l->l_inheritedprio = -1;
363 l->l_class = SCHED_OTHER;
364 SLIST_INIT(&l->l_pi_lenders);
365 l->l_name = __UNCONST("swapper");
366
367 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
368 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
369 cv_init(&l->l_sigcv, "sigwait");
370
371 /* Create credentials. */
372 cred0 = kauth_cred_alloc();
373 p->p_cred = cred0;
374 kauth_cred_hold(cred0);
375 l->l_cred = cred0;
376
377 /* Create the CWD info. */
378 p->p_cwdi = &cwdi0;
379 cwdi0.cwdi_cmask = cmask;
380 cwdi0.cwdi_refcnt = 1;
381 rw_init(&cwdi0.cwdi_lock);
382
383 /* Create the limits structures. */
384 p->p_limit = &limit0;
385 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
386 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
387 limit0.pl_rlimit[i].rlim_cur =
388 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
389
390 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
391 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
392 maxfiles < nofile ? maxfiles : nofile;
393
394 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
395 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
396 maxproc < maxuprc ? maxproc : maxuprc;
397
398 lim = ptoa(uvmexp.free);
399 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
400 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
401 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
402 limit0.pl_corename = defcorename;
403 limit0.pl_refcnt = 1;
404 limit0.pl_sv_limit = NULL;
405
406 /* Configure virtual memory system, set vm rlimits. */
407 uvm_init_limits(p);
408
409 /* Initialize file descriptor table for proc0. */
410 p->p_fd = &filedesc0.fd_fd;
411 fdinit1(&filedesc0);
412
413 /*
414 * Initialize proc0's vmspace, which uses the kernel pmap.
415 * All kernel processes (which never have user space mappings)
416 * share proc0's vmspace, and thus, the kernel pmap.
417 */
418 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
419 trunc_page(VM_MAX_ADDRESS));
420 p->p_vmspace = &vmspace0;
421
422 l->l_addr = proc0paddr; /* XXX */
423
424 p->p_stats = &pstat0;
425
426 /* Initialize signal state for proc0. */
427 p->p_sigacts = &sigacts0;
428 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
429 siginit(p);
430
431 proc_initspecific(p);
432 lwp_initspecific(l);
433
434 SYSCALL_TIME_LWP_INIT(l);
435 }
436
437 /*
438 * Check that the specified process group is in the session of the
439 * specified process.
440 * Treats -ve ids as process ids.
441 * Used to validate TIOCSPGRP requests.
442 */
443 int
444 pgid_in_session(struct proc *p, pid_t pg_id)
445 {
446 struct pgrp *pgrp;
447 struct session *session;
448 int error;
449
450 mutex_enter(&proclist_lock);
451 if (pg_id < 0) {
452 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
453 if (p1 == NULL)
454 return EINVAL;
455 pgrp = p1->p_pgrp;
456 } else {
457 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
458 if (pgrp == NULL)
459 return EINVAL;
460 }
461 session = pgrp->pg_session;
462 if (session != p->p_pgrp->pg_session)
463 error = EPERM;
464 else
465 error = 0;
466 mutex_exit(&proclist_lock);
467
468 return error;
469 }
470
471 /*
472 * Is p an inferior of q?
473 *
474 * Call with the proclist_lock held.
475 */
476 int
477 inferior(struct proc *p, struct proc *q)
478 {
479
480 for (; p != q; p = p->p_pptr)
481 if (p->p_pid == 0)
482 return 0;
483 return 1;
484 }
485
486 /*
487 * Locate a process by number
488 */
489 struct proc *
490 p_find(pid_t pid, uint flags)
491 {
492 struct proc *p;
493 char stat;
494
495 if (!(flags & PFIND_LOCKED))
496 mutex_enter(&proclist_lock);
497
498 p = pid_table[pid & pid_tbl_mask].pt_proc;
499
500 /* Only allow live processes to be found by pid. */
501 /* XXXSMP p_stat */
502 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
503 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
504 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
505 if (flags & PFIND_UNLOCK_OK)
506 mutex_exit(&proclist_lock);
507 return p;
508 }
509 if (flags & PFIND_UNLOCK_FAIL)
510 mutex_exit(&proclist_lock);
511 return NULL;
512 }
513
514
515 /*
516 * Locate a process group by number
517 */
518 struct pgrp *
519 pg_find(pid_t pgid, uint flags)
520 {
521 struct pgrp *pg;
522
523 if (!(flags & PFIND_LOCKED))
524 mutex_enter(&proclist_lock);
525 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
526 /*
527 * Can't look up a pgrp that only exists because the session
528 * hasn't died yet (traditional)
529 */
530 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
531 if (flags & PFIND_UNLOCK_FAIL)
532 mutex_exit(&proclist_lock);
533 return NULL;
534 }
535
536 if (flags & PFIND_UNLOCK_OK)
537 mutex_exit(&proclist_lock);
538 return pg;
539 }
540
541 static void
542 expand_pid_table(void)
543 {
544 uint pt_size = pid_tbl_mask + 1;
545 struct pid_table *n_pt, *new_pt;
546 struct proc *proc;
547 struct pgrp *pgrp;
548 int i;
549 pid_t pid;
550
551 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
552
553 mutex_enter(&proclist_lock);
554 if (pt_size != pid_tbl_mask + 1) {
555 /* Another process beat us to it... */
556 mutex_exit(&proclist_lock);
557 FREE(new_pt, M_PROC);
558 return;
559 }
560
561 /*
562 * Copy entries from old table into new one.
563 * If 'pid' is 'odd' we need to place in the upper half,
564 * even pid's to the lower half.
565 * Free items stay in the low half so we don't have to
566 * fixup the reference to them.
567 * We stuff free items on the front of the freelist
568 * because we can't write to unmodified entries.
569 * Processing the table backwards maintains a semblance
570 * of issueing pid numbers that increase with time.
571 */
572 i = pt_size - 1;
573 n_pt = new_pt + i;
574 for (; ; i--, n_pt--) {
575 proc = pid_table[i].pt_proc;
576 pgrp = pid_table[i].pt_pgrp;
577 if (!P_VALID(proc)) {
578 /* Up 'use count' so that link is valid */
579 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
580 proc = P_FREE(pid);
581 if (pgrp)
582 pid = pgrp->pg_id;
583 } else
584 pid = proc->p_pid;
585
586 /* Save entry in appropriate half of table */
587 n_pt[pid & pt_size].pt_proc = proc;
588 n_pt[pid & pt_size].pt_pgrp = pgrp;
589
590 /* Put other piece on start of free list */
591 pid = (pid ^ pt_size) & ~pid_tbl_mask;
592 n_pt[pid & pt_size].pt_proc =
593 P_FREE((pid & ~pt_size) | next_free_pt);
594 n_pt[pid & pt_size].pt_pgrp = 0;
595 next_free_pt = i | (pid & pt_size);
596 if (i == 0)
597 break;
598 }
599
600 /* Switch tables */
601 mutex_enter(&proclist_mutex);
602 n_pt = pid_table;
603 pid_table = new_pt;
604 mutex_exit(&proclist_mutex);
605 pid_tbl_mask = pt_size * 2 - 1;
606
607 /*
608 * pid_max starts as PID_MAX (= 30000), once we have 16384
609 * allocated pids we need it to be larger!
610 */
611 if (pid_tbl_mask > PID_MAX) {
612 pid_max = pid_tbl_mask * 2 + 1;
613 pid_alloc_lim |= pid_alloc_lim << 1;
614 } else
615 pid_alloc_lim <<= 1; /* doubles number of free slots... */
616
617 mutex_exit(&proclist_lock);
618 FREE(n_pt, M_PROC);
619 }
620
621 struct proc *
622 proc_alloc(void)
623 {
624 struct proc *p;
625 int nxt;
626 pid_t pid;
627 struct pid_table *pt;
628
629 p = pool_get(&proc_pool, PR_WAITOK);
630 p->p_stat = SIDL; /* protect against others */
631
632 proc_initspecific(p);
633 /* allocate next free pid */
634
635 for (;;expand_pid_table()) {
636 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
637 /* ensure pids cycle through 2000+ values */
638 continue;
639 mutex_enter(&proclist_lock);
640 pt = &pid_table[next_free_pt];
641 #ifdef DIAGNOSTIC
642 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
643 panic("proc_alloc: slot busy");
644 #endif
645 nxt = P_NEXT(pt->pt_proc);
646 if (nxt & pid_tbl_mask)
647 break;
648 /* Table full - expand (NB last entry not used....) */
649 mutex_exit(&proclist_lock);
650 }
651
652 /* pid is 'saved use count' + 'size' + entry */
653 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
654 if ((uint)pid > (uint)pid_max)
655 pid &= pid_tbl_mask;
656 p->p_pid = pid;
657 next_free_pt = nxt & pid_tbl_mask;
658
659 /* Grab table slot */
660 mutex_enter(&proclist_mutex);
661 pt->pt_proc = p;
662 mutex_exit(&proclist_mutex);
663 pid_alloc_cnt++;
664
665 mutex_exit(&proclist_lock);
666
667 return p;
668 }
669
670 /*
671 * Free a process id - called from proc_free (in kern_exit.c)
672 *
673 * Called with the proclist_lock held.
674 */
675 void
676 proc_free_pid(struct proc *p)
677 {
678 pid_t pid = p->p_pid;
679 struct pid_table *pt;
680
681 KASSERT(mutex_owned(&proclist_lock));
682
683 pt = &pid_table[pid & pid_tbl_mask];
684 #ifdef DIAGNOSTIC
685 if (__predict_false(pt->pt_proc != p))
686 panic("proc_free: pid_table mismatch, pid %x, proc %p",
687 pid, p);
688 #endif
689 mutex_enter(&proclist_mutex);
690 /* save pid use count in slot */
691 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
692
693 if (pt->pt_pgrp == NULL) {
694 /* link last freed entry onto ours */
695 pid &= pid_tbl_mask;
696 pt = &pid_table[last_free_pt];
697 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
698 last_free_pt = pid;
699 pid_alloc_cnt--;
700 }
701 mutex_exit(&proclist_mutex);
702
703 nprocs--;
704 }
705
706 /*
707 * Move p to a new or existing process group (and session)
708 *
709 * If we are creating a new pgrp, the pgid should equal
710 * the calling process' pid.
711 * If is only valid to enter a process group that is in the session
712 * of the process.
713 * Also mksess should only be set if we are creating a process group
714 *
715 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
716 * SYSV setpgrp support for hpux.
717 */
718 int
719 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
720 {
721 struct pgrp *new_pgrp, *pgrp;
722 struct session *sess;
723 struct proc *p;
724 int rval;
725 pid_t pg_id = NO_PGID;
726
727 if (mksess)
728 sess = pool_get(&session_pool, PR_WAITOK);
729 else
730 sess = NULL;
731
732 /* Allocate data areas we might need before doing any validity checks */
733 mutex_enter(&proclist_lock); /* Because pid_table might change */
734 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
735 mutex_exit(&proclist_lock);
736 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
737 mutex_enter(&proclist_lock);
738 } else
739 new_pgrp = NULL;
740 rval = EPERM; /* most common error (to save typing) */
741
742 /* Check pgrp exists or can be created */
743 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
744 if (pgrp != NULL && pgrp->pg_id != pgid)
745 goto done;
746
747 /* Can only set another process under restricted circumstances. */
748 if (pid != curp->p_pid) {
749 /* must exist and be one of our children... */
750 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
751 !inferior(p, curp)) {
752 rval = ESRCH;
753 goto done;
754 }
755 /* ... in the same session... */
756 if (sess != NULL || p->p_session != curp->p_session)
757 goto done;
758 /* ... existing pgid must be in same session ... */
759 if (pgrp != NULL && pgrp->pg_session != p->p_session)
760 goto done;
761 /* ... and not done an exec. */
762 if (p->p_flag & PK_EXEC) {
763 rval = EACCES;
764 goto done;
765 }
766 } else {
767 /* ... setsid() cannot re-enter a pgrp */
768 if (mksess && (curp->p_pgid == curp->p_pid ||
769 pg_find(curp->p_pid, PFIND_LOCKED)))
770 goto done;
771 p = curp;
772 }
773
774 /* Changing the process group/session of a session
775 leader is definitely off limits. */
776 if (SESS_LEADER(p)) {
777 if (sess == NULL && p->p_pgrp == pgrp)
778 /* unless it's a definite noop */
779 rval = 0;
780 goto done;
781 }
782
783 /* Can only create a process group with id of process */
784 if (pgrp == NULL && pgid != pid)
785 goto done;
786
787 /* Can only create a session if creating pgrp */
788 if (sess != NULL && pgrp != NULL)
789 goto done;
790
791 /* Check we allocated memory for a pgrp... */
792 if (pgrp == NULL && new_pgrp == NULL)
793 goto done;
794
795 /* Don't attach to 'zombie' pgrp */
796 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
797 goto done;
798
799 /* Expect to succeed now */
800 rval = 0;
801
802 if (pgrp == p->p_pgrp)
803 /* nothing to do */
804 goto done;
805
806 /* Ok all setup, link up required structures */
807
808 if (pgrp == NULL) {
809 pgrp = new_pgrp;
810 new_pgrp = 0;
811 if (sess != NULL) {
812 sess->s_sid = p->p_pid;
813 sess->s_leader = p;
814 sess->s_count = 1;
815 sess->s_ttyvp = NULL;
816 sess->s_ttyp = NULL;
817 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
818 memcpy(sess->s_login, p->p_session->s_login,
819 sizeof(sess->s_login));
820 p->p_lflag &= ~PL_CONTROLT;
821 } else {
822 sess = p->p_pgrp->pg_session;
823 SESSHOLD(sess);
824 }
825 pgrp->pg_session = sess;
826 sess = 0;
827
828 pgrp->pg_id = pgid;
829 LIST_INIT(&pgrp->pg_members);
830 #ifdef DIAGNOSTIC
831 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
832 panic("enterpgrp: pgrp table slot in use");
833 if (__predict_false(mksess && p != curp))
834 panic("enterpgrp: mksession and p != curproc");
835 #endif
836 mutex_enter(&proclist_mutex);
837 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
838 pgrp->pg_jobc = 0;
839 } else
840 mutex_enter(&proclist_mutex);
841
842 #ifdef notyet
843 /*
844 * If there's a controlling terminal for the current session, we
845 * have to interlock with it. See ttread().
846 */
847 if (p->p_session->s_ttyvp != NULL) {
848 tp = p->p_session->s_ttyp;
849 mutex_enter(&tp->t_mutex);
850 } else
851 tp = NULL;
852 #endif
853
854 /*
855 * Adjust eligibility of affected pgrps to participate in job control.
856 * Increment eligibility counts before decrementing, otherwise we
857 * could reach 0 spuriously during the first call.
858 */
859 fixjobc(p, pgrp, 1);
860 fixjobc(p, p->p_pgrp, 0);
861
862 /* Move process to requested group. */
863 LIST_REMOVE(p, p_pglist);
864 if (LIST_EMPTY(&p->p_pgrp->pg_members))
865 /* defer delete until we've dumped the lock */
866 pg_id = p->p_pgrp->pg_id;
867 p->p_pgrp = pgrp;
868 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
869 mutex_exit(&proclist_mutex);
870
871 #ifdef notyet
872 /* Done with the swap; we can release the tty mutex. */
873 if (tp != NULL)
874 mutex_exit(&tp->t_mutex);
875 #endif
876
877 done:
878 if (pg_id != NO_PGID)
879 pg_delete(pg_id);
880 mutex_exit(&proclist_lock);
881 if (sess != NULL)
882 pool_put(&session_pool, sess);
883 if (new_pgrp != NULL)
884 pool_put(&pgrp_pool, new_pgrp);
885 #ifdef DEBUG_PGRP
886 if (__predict_false(rval))
887 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
888 pid, pgid, mksess, curp->p_pid, rval);
889 #endif
890 return rval;
891 }
892
893 /*
894 * Remove a process from its process group. Must be called with the
895 * proclist_lock held.
896 */
897 void
898 leavepgrp(struct proc *p)
899 {
900 struct pgrp *pgrp;
901
902 KASSERT(mutex_owned(&proclist_lock));
903
904 /*
905 * If there's a controlling terminal for the session, we have to
906 * interlock with it. See ttread().
907 */
908 mutex_enter(&proclist_mutex);
909 #ifdef notyet
910 if (p_>p_session->s_ttyvp != NULL) {
911 tp = p->p_session->s_ttyp;
912 mutex_enter(&tp->t_mutex);
913 } else
914 tp = NULL;
915 #endif
916
917 pgrp = p->p_pgrp;
918 LIST_REMOVE(p, p_pglist);
919 p->p_pgrp = NULL;
920
921 #ifdef notyet
922 if (tp != NULL)
923 mutex_exit(&tp->t_mutex);
924 #endif
925 mutex_exit(&proclist_mutex);
926
927 if (LIST_EMPTY(&pgrp->pg_members))
928 pg_delete(pgrp->pg_id);
929 }
930
931 /*
932 * Free a process group. Must be called with the proclist_lock held.
933 */
934 static void
935 pg_free(pid_t pg_id)
936 {
937 struct pgrp *pgrp;
938 struct pid_table *pt;
939
940 KASSERT(mutex_owned(&proclist_lock));
941
942 pt = &pid_table[pg_id & pid_tbl_mask];
943 pgrp = pt->pt_pgrp;
944 #ifdef DIAGNOSTIC
945 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
946 || !LIST_EMPTY(&pgrp->pg_members)))
947 panic("pg_free: process group absent or has members");
948 #endif
949 pt->pt_pgrp = 0;
950
951 if (!P_VALID(pt->pt_proc)) {
952 /* orphaned pgrp, put slot onto free list */
953 #ifdef DIAGNOSTIC
954 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
955 panic("pg_free: process slot on free list");
956 #endif
957 mutex_enter(&proclist_mutex);
958 pg_id &= pid_tbl_mask;
959 pt = &pid_table[last_free_pt];
960 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
961 mutex_exit(&proclist_mutex);
962 last_free_pt = pg_id;
963 pid_alloc_cnt--;
964 }
965 pool_put(&pgrp_pool, pgrp);
966 }
967
968 /*
969 * Delete a process group. Must be called with the proclist_lock held.
970 */
971 static void
972 pg_delete(pid_t pg_id)
973 {
974 struct pgrp *pgrp;
975 struct tty *ttyp;
976 struct session *ss;
977 int is_pgrp_leader;
978
979 KASSERT(mutex_owned(&proclist_lock));
980
981 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
982 if (pgrp == NULL || pgrp->pg_id != pg_id ||
983 !LIST_EMPTY(&pgrp->pg_members))
984 return;
985
986 ss = pgrp->pg_session;
987
988 /* Remove reference (if any) from tty to this process group */
989 ttyp = ss->s_ttyp;
990 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
991 ttyp->t_pgrp = NULL;
992 #ifdef DIAGNOSTIC
993 if (ttyp->t_session != ss)
994 panic("pg_delete: wrong session on terminal");
995 #endif
996 }
997
998 /*
999 * The leading process group in a session is freed
1000 * by sessdelete() if last reference.
1001 */
1002 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1003 SESSRELE(ss);
1004
1005 if (is_pgrp_leader)
1006 return;
1007
1008 pg_free(pg_id);
1009 }
1010
1011 /*
1012 * Delete session - called from SESSRELE when s_count becomes zero.
1013 * Must be called with the proclist_lock held.
1014 */
1015 void
1016 sessdelete(struct session *ss)
1017 {
1018
1019 KASSERT(mutex_owned(&proclist_lock));
1020
1021 /*
1022 * We keep the pgrp with the same id as the session in
1023 * order to stop a process being given the same pid.
1024 * Since the pgrp holds a reference to the session, it
1025 * must be a 'zombie' pgrp by now.
1026 */
1027 pg_free(ss->s_sid);
1028 pool_put(&session_pool, ss);
1029 }
1030
1031 /*
1032 * Adjust pgrp jobc counters when specified process changes process group.
1033 * We count the number of processes in each process group that "qualify"
1034 * the group for terminal job control (those with a parent in a different
1035 * process group of the same session). If that count reaches zero, the
1036 * process group becomes orphaned. Check both the specified process'
1037 * process group and that of its children.
1038 * entering == 0 => p is leaving specified group.
1039 * entering == 1 => p is entering specified group.
1040 *
1041 * Call with proclist_lock held.
1042 */
1043 void
1044 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1045 {
1046 struct pgrp *hispgrp;
1047 struct session *mysession = pgrp->pg_session;
1048 struct proc *child;
1049
1050 KASSERT(mutex_owned(&proclist_lock));
1051 KASSERT(mutex_owned(&proclist_mutex));
1052
1053 /*
1054 * Check p's parent to see whether p qualifies its own process
1055 * group; if so, adjust count for p's process group.
1056 */
1057 hispgrp = p->p_pptr->p_pgrp;
1058 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1059 if (entering) {
1060 mutex_enter(&p->p_smutex);
1061 p->p_sflag &= ~PS_ORPHANPG;
1062 mutex_exit(&p->p_smutex);
1063 pgrp->pg_jobc++;
1064 } else if (--pgrp->pg_jobc == 0)
1065 orphanpg(pgrp);
1066 }
1067
1068 /*
1069 * Check this process' children to see whether they qualify
1070 * their process groups; if so, adjust counts for children's
1071 * process groups.
1072 */
1073 LIST_FOREACH(child, &p->p_children, p_sibling) {
1074 hispgrp = child->p_pgrp;
1075 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1076 !P_ZOMBIE(child)) {
1077 if (entering) {
1078 mutex_enter(&child->p_smutex);
1079 child->p_sflag &= ~PS_ORPHANPG;
1080 mutex_exit(&child->p_smutex);
1081 hispgrp->pg_jobc++;
1082 } else if (--hispgrp->pg_jobc == 0)
1083 orphanpg(hispgrp);
1084 }
1085 }
1086 }
1087
1088 /*
1089 * A process group has become orphaned;
1090 * if there are any stopped processes in the group,
1091 * hang-up all process in that group.
1092 *
1093 * Call with proclist_lock held.
1094 */
1095 static void
1096 orphanpg(struct pgrp *pg)
1097 {
1098 struct proc *p;
1099 int doit;
1100
1101 KASSERT(mutex_owned(&proclist_lock));
1102 KASSERT(mutex_owned(&proclist_mutex));
1103
1104 doit = 0;
1105
1106 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1107 mutex_enter(&p->p_smutex);
1108 if (p->p_stat == SSTOP) {
1109 doit = 1;
1110 p->p_sflag |= PS_ORPHANPG;
1111 }
1112 mutex_exit(&p->p_smutex);
1113 }
1114
1115 if (doit) {
1116 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1117 psignal(p, SIGHUP);
1118 psignal(p, SIGCONT);
1119 }
1120 }
1121 }
1122
1123 #ifdef DDB
1124 #include <ddb/db_output.h>
1125 void pidtbl_dump(void);
1126 void
1127 pidtbl_dump(void)
1128 {
1129 struct pid_table *pt;
1130 struct proc *p;
1131 struct pgrp *pgrp;
1132 int id;
1133
1134 db_printf("pid table %p size %x, next %x, last %x\n",
1135 pid_table, pid_tbl_mask+1,
1136 next_free_pt, last_free_pt);
1137 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1138 p = pt->pt_proc;
1139 if (!P_VALID(p) && !pt->pt_pgrp)
1140 continue;
1141 db_printf(" id %x: ", id);
1142 if (P_VALID(p))
1143 db_printf("proc %p id %d (0x%x) %s\n",
1144 p, p->p_pid, p->p_pid, p->p_comm);
1145 else
1146 db_printf("next %x use %x\n",
1147 P_NEXT(p) & pid_tbl_mask,
1148 P_NEXT(p) & ~pid_tbl_mask);
1149 if ((pgrp = pt->pt_pgrp)) {
1150 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1151 pgrp->pg_session, pgrp->pg_session->s_sid,
1152 pgrp->pg_session->s_count,
1153 pgrp->pg_session->s_login);
1154 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1155 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1156 pgrp->pg_members.lh_first);
1157 for (p = pgrp->pg_members.lh_first; p != 0;
1158 p = p->p_pglist.le_next) {
1159 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1160 p->p_pid, p, p->p_pgrp, p->p_comm);
1161 }
1162 }
1163 }
1164 }
1165 #endif /* DDB */
1166
1167 #ifdef KSTACK_CHECK_MAGIC
1168 #include <sys/user.h>
1169
1170 #define KSTACK_MAGIC 0xdeadbeaf
1171
1172 /* XXX should be per process basis? */
1173 int kstackleftmin = KSTACK_SIZE;
1174 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1175 less than this */
1176
1177 void
1178 kstack_setup_magic(const struct lwp *l)
1179 {
1180 uint32_t *ip;
1181 uint32_t const *end;
1182
1183 KASSERT(l != NULL);
1184 KASSERT(l != &lwp0);
1185
1186 /*
1187 * fill all the stack with magic number
1188 * so that later modification on it can be detected.
1189 */
1190 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1191 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1192 for (; ip < end; ip++) {
1193 *ip = KSTACK_MAGIC;
1194 }
1195 }
1196
1197 void
1198 kstack_check_magic(const struct lwp *l)
1199 {
1200 uint32_t const *ip, *end;
1201 int stackleft;
1202
1203 KASSERT(l != NULL);
1204
1205 /* don't check proc0 */ /*XXX*/
1206 if (l == &lwp0)
1207 return;
1208
1209 #ifdef __MACHINE_STACK_GROWS_UP
1210 /* stack grows upwards (eg. hppa) */
1211 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1212 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1213 for (ip--; ip >= end; ip--)
1214 if (*ip != KSTACK_MAGIC)
1215 break;
1216
1217 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1218 #else /* __MACHINE_STACK_GROWS_UP */
1219 /* stack grows downwards (eg. i386) */
1220 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1221 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1222 for (; ip < end; ip++)
1223 if (*ip != KSTACK_MAGIC)
1224 break;
1225
1226 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1227 #endif /* __MACHINE_STACK_GROWS_UP */
1228
1229 if (kstackleftmin > stackleft) {
1230 kstackleftmin = stackleft;
1231 if (stackleft < kstackleftthres)
1232 printf("warning: kernel stack left %d bytes"
1233 "(pid %u:lid %u)\n", stackleft,
1234 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1235 }
1236
1237 if (stackleft <= 0) {
1238 panic("magic on the top of kernel stack changed for "
1239 "pid %u, lid %u: maybe kernel stack overflow",
1240 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1241 }
1242 }
1243 #endif /* KSTACK_CHECK_MAGIC */
1244
1245 /*
1246 * XXXSMP this is bust, it grabs a read lock and then messes about
1247 * with allproc.
1248 */
1249 int
1250 proclist_foreach_call(struct proclist *list,
1251 int (*callback)(struct proc *, void *arg), void *arg)
1252 {
1253 struct proc marker;
1254 struct proc *p;
1255 struct lwp * const l = curlwp;
1256 int ret = 0;
1257
1258 marker.p_flag = PK_MARKER;
1259 uvm_lwp_hold(l);
1260 mutex_enter(&proclist_lock);
1261 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1262 if (p->p_flag & PK_MARKER) {
1263 p = LIST_NEXT(p, p_list);
1264 continue;
1265 }
1266 LIST_INSERT_AFTER(p, &marker, p_list);
1267 ret = (*callback)(p, arg);
1268 KASSERT(mutex_owned(&proclist_lock));
1269 p = LIST_NEXT(&marker, p_list);
1270 LIST_REMOVE(&marker, p_list);
1271 }
1272 mutex_exit(&proclist_lock);
1273 uvm_lwp_rele(l);
1274
1275 return ret;
1276 }
1277
1278 int
1279 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1280 {
1281
1282 /* XXXCDC: how should locking work here? */
1283
1284 /* curproc exception is for coredump. */
1285
1286 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1287 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1288 return EFAULT;
1289 }
1290
1291 uvmspace_addref(p->p_vmspace);
1292 *vm = p->p_vmspace;
1293
1294 return 0;
1295 }
1296
1297 /*
1298 * Acquire a write lock on the process credential.
1299 */
1300 void
1301 proc_crmod_enter(void)
1302 {
1303 struct lwp *l = curlwp;
1304 struct proc *p = l->l_proc;
1305 struct plimit *lim;
1306 kauth_cred_t oc;
1307 char *cn;
1308
1309 /* Reset what needs to be reset in plimit. */
1310 if (p->p_limit->pl_corename != defcorename) {
1311 lim_privatise(p, false);
1312 lim = p->p_limit;
1313 mutex_enter(&lim->pl_lock);
1314 cn = lim->pl_corename;
1315 lim->pl_corename = defcorename;
1316 mutex_exit(&lim->pl_lock);
1317 if (cn != defcorename)
1318 free(cn, M_TEMP);
1319 }
1320
1321 mutex_enter(&p->p_mutex);
1322
1323 /* Ensure the LWP cached credentials are up to date. */
1324 if ((oc = l->l_cred) != p->p_cred) {
1325 kauth_cred_hold(p->p_cred);
1326 l->l_cred = p->p_cred;
1327 kauth_cred_free(oc);
1328 }
1329
1330 }
1331
1332 /*
1333 * Set in a new process credential, and drop the write lock. The credential
1334 * must have a reference already. Optionally, free a no-longer required
1335 * credential. The scheduler also needs to inspect p_cred, so we also
1336 * briefly acquire the sched state mutex.
1337 */
1338 void
1339 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1340 {
1341 struct lwp *l = curlwp;
1342 struct proc *p = l->l_proc;
1343 kauth_cred_t oc;
1344
1345 /* Is there a new credential to set in? */
1346 if (scred != NULL) {
1347 mutex_enter(&p->p_smutex);
1348 p->p_cred = scred;
1349 mutex_exit(&p->p_smutex);
1350
1351 /* Ensure the LWP cached credentials are up to date. */
1352 if ((oc = l->l_cred) != scred) {
1353 kauth_cred_hold(scred);
1354 l->l_cred = scred;
1355 }
1356 } else
1357 oc = NULL; /* XXXgcc */
1358
1359 if (sugid) {
1360 /*
1361 * Mark process as having changed credentials, stops
1362 * tracing etc.
1363 */
1364 p->p_flag |= PK_SUGID;
1365 }
1366
1367 mutex_exit(&p->p_mutex);
1368
1369 /* If there is a credential to be released, free it now. */
1370 if (fcred != NULL) {
1371 KASSERT(scred != NULL);
1372 kauth_cred_free(fcred);
1373 if (oc != scred)
1374 kauth_cred_free(oc);
1375 }
1376 }
1377
1378 /*
1379 * proc_specific_key_create --
1380 * Create a key for subsystem proc-specific data.
1381 */
1382 int
1383 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1384 {
1385
1386 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1387 }
1388
1389 /*
1390 * proc_specific_key_delete --
1391 * Delete a key for subsystem proc-specific data.
1392 */
1393 void
1394 proc_specific_key_delete(specificdata_key_t key)
1395 {
1396
1397 specificdata_key_delete(proc_specificdata_domain, key);
1398 }
1399
1400 /*
1401 * proc_initspecific --
1402 * Initialize a proc's specificdata container.
1403 */
1404 void
1405 proc_initspecific(struct proc *p)
1406 {
1407 int error;
1408
1409 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1410 KASSERT(error == 0);
1411 }
1412
1413 /*
1414 * proc_finispecific --
1415 * Finalize a proc's specificdata container.
1416 */
1417 void
1418 proc_finispecific(struct proc *p)
1419 {
1420
1421 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1422 }
1423
1424 /*
1425 * proc_getspecific --
1426 * Return proc-specific data corresponding to the specified key.
1427 */
1428 void *
1429 proc_getspecific(struct proc *p, specificdata_key_t key)
1430 {
1431
1432 return (specificdata_getspecific(proc_specificdata_domain,
1433 &p->p_specdataref, key));
1434 }
1435
1436 /*
1437 * proc_setspecific --
1438 * Set proc-specific data corresponding to the specified key.
1439 */
1440 void
1441 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1442 {
1443
1444 specificdata_setspecific(proc_specificdata_domain,
1445 &p->p_specdataref, key, data);
1446 }
1447