kern_proc.c revision 1.124 1 /* $NetBSD: kern_proc.c,v 1.124 2007/11/11 23:22:24 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.124 2007/11/11 23:22:24 matt Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include "sys/syscall_stats.h"
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112 /*
113 * There are two locks on global process state.
114 *
115 * 1. proclist_lock is an adaptive mutex and is used when modifying
116 * or examining process state from a process context. It protects
117 * the internal tables, all of the process lists, and a number of
118 * members of struct proc.
119 *
120 * 2. proclist_mutex is used when allproc must be traversed from an
121 * interrupt context, or when changing the state of processes. The
122 * proclist_lock should always be used in preference. In some cases,
123 * both locks need to be held.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is approximately as following:
141 *
142 * kernel_lock
143 * -> proclist_lock
144 * -> proc::p_mutex
145 * -> proclist_mutex
146 * -> proc::p_smutex
147 * -> proc::p_stmutex
148 *
149 * XXX p_smutex can be run at IPL_VM once audio drivers on the x86
150 * platform are made MP safe. Currently it blocks interrupts at
151 * IPL_SCHED and below.
152 *
153 * XXX The two process locks (p_smutex + p_mutex), and the two global
154 * state locks (proclist_lock + proclist_mutex) should be merged
155 * together. However, to do so requires interrupts that interrupts
156 * be run with LWP context.
157 */
158 kmutex_t proclist_lock;
159 kmutex_t proclist_mutex;
160
161 /*
162 * pid to proc lookup is done by indexing the pid_table array.
163 * Since pid numbers are only allocated when an empty slot
164 * has been found, there is no need to search any lists ever.
165 * (an orphaned pgrp will lock the slot, a session will lock
166 * the pgrp with the same number.)
167 * If the table is too small it is reallocated with twice the
168 * previous size and the entries 'unzipped' into the two halves.
169 * A linked list of free entries is passed through the pt_proc
170 * field of 'free' items - set odd to be an invalid ptr.
171 */
172
173 struct pid_table {
174 struct proc *pt_proc;
175 struct pgrp *pt_pgrp;
176 };
177 #if 1 /* strongly typed cast - should be a noop */
178 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
179 #else
180 #define p2u(p) ((uint)p)
181 #endif
182 #define P_VALID(p) (!(p2u(p) & 1))
183 #define P_NEXT(p) (p2u(p) >> 1)
184 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
185
186 #define INITIAL_PID_TABLE_SIZE (1 << 5)
187 static struct pid_table *pid_table;
188 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
189 static uint pid_alloc_lim; /* max we allocate before growing table */
190 static uint pid_alloc_cnt; /* number of allocated pids */
191
192 /* links through free slots - never empty! */
193 static uint next_free_pt, last_free_pt;
194 static pid_t pid_max = PID_MAX; /* largest value we allocate */
195
196 /* Components of the first process -- never freed. */
197
198 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
199
200 struct session session0 = {
201 .s_count = 1,
202 .s_sid = 0,
203 };
204 struct pgrp pgrp0 = {
205 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
206 .pg_session = &session0,
207 };
208 struct filedesc0 filedesc0;
209 struct cwdinfo cwdi0 = {
210 .cwdi_cmask = CMASK, /* see cmask below */
211 .cwdi_refcnt = 1,
212 };
213 struct plimit limit0 = {
214 .pl_corename = defcorename,
215 .pl_refcnt = 1,
216 .pl_rlimit = {
217 [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
218 .rlim_cur = RLIM_INFINITY,
219 .rlim_max = RLIM_INFINITY,
220 },
221 },
222 };
223 struct pstats pstat0;
224 struct vmspace vmspace0;
225 struct sigacts sigacts0;
226 struct turnstile turnstile0;
227 struct proc proc0 = {
228 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
229 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
230 .p_nlwps = 1,
231 .p_nrlwps = 1,
232 .p_nlwpid = 1, /* must match lwp0.l_lid */
233 .p_pgrp = &pgrp0,
234 .p_comm = "system",
235 /*
236 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
237 * when they exit. init(8) can easily wait them out for us.
238 */
239 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
240 .p_stat = SACTIVE,
241 .p_nice = NZERO,
242 .p_emul = &emul_netbsd,
243 .p_cwdi = &cwdi0,
244 .p_limit = &limit0,
245 .p_fd = &filedesc0.fd_fd,
246 .p_vmspace = &vmspace0,
247 .p_stats = &pstat0,
248 .p_sigacts = &sigacts0,
249 };
250 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
251 #ifdef LWP0_CPU_INFO
252 .l_cpu = LWP0_CPU_INFO,
253 #endif
254 .l_proc = &proc0,
255 .l_lid = 1,
256 .l_flag = LW_INMEM | LW_SYSTEM,
257 .l_stat = LSONPROC,
258 .l_ts = &turnstile0,
259 .l_syncobj = &sched_syncobj,
260 .l_refcnt = 1,
261 .l_priority = PRI_USER + NPRI_USER - 1,
262 .l_inheritedprio = -1,
263 .l_class = SCHED_OTHER,
264 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
265 .l_name = __UNCONST("swapper"),
266 };
267 kauth_cred_t cred0;
268
269 extern struct user *proc0paddr;
270
271 int nofile = NOFILE;
272 int maxuprc = MAXUPRC;
273 int cmask = CMASK;
274
275 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
276 &pool_allocator_nointr, IPL_NONE);
277 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
278 &pool_allocator_nointr, IPL_NONE);
279 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
280 &pool_allocator_nointr, IPL_NONE);
281 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
282 &pool_allocator_nointr, IPL_NONE);
283 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
284 &pool_allocator_nointr, IPL_NONE);
285
286 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
287 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
288 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
289
290 /*
291 * The process list descriptors, used during pid allocation and
292 * by sysctl. No locking on this data structure is needed since
293 * it is completely static.
294 */
295 const struct proclist_desc proclists[] = {
296 { &allproc },
297 { &zombproc },
298 { NULL },
299 };
300
301 static void orphanpg(struct pgrp *);
302 static void pg_delete(pid_t);
303
304 static specificdata_domain_t proc_specificdata_domain;
305
306 /*
307 * Initialize global process hashing structures.
308 */
309 void
310 procinit(void)
311 {
312 const struct proclist_desc *pd;
313 int i;
314 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
315
316 for (pd = proclists; pd->pd_list != NULL; pd++)
317 LIST_INIT(pd->pd_list);
318
319 mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
320 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
321
322 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
323 M_PROC, M_WAITOK);
324 /* Set free list running through table...
325 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
326 for (i = 0; i <= pid_tbl_mask; i++) {
327 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
328 pid_table[i].pt_pgrp = 0;
329 }
330 /* slot 0 is just grabbed */
331 next_free_pt = 1;
332 /* Need to fix last entry. */
333 last_free_pt = pid_tbl_mask;
334 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
335 /* point at which we grow table - to avoid reusing pids too often */
336 pid_alloc_lim = pid_tbl_mask - 1;
337 #undef LINK_EMPTY
338
339 uihashtbl =
340 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
341
342 proc_specificdata_domain = specificdata_domain_create();
343 KASSERT(proc_specificdata_domain != NULL);
344 }
345
346 /*
347 * Initialize process 0.
348 */
349 void
350 proc0_init(void)
351 {
352 struct proc *p;
353 struct pgrp *pg;
354 struct session *sess;
355 struct lwp *l;
356 rlim_t lim;
357
358 p = &proc0;
359 pg = &pgrp0;
360 sess = &session0;
361 l = &lwp0;
362
363 KASSERT(l->l_lid == p->p_nlwpid);
364
365 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
366 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
367 mutex_init(&p->p_raslock, MUTEX_DEFAULT, IPL_NONE);
368 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
369 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
370
371 rw_init(&p->p_reflock);
372 cv_init(&p->p_waitcv, "wait");
373 cv_init(&p->p_lwpcv, "lwpwait");
374
375 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
376
377 pid_table[0].pt_proc = p;
378 LIST_INSERT_HEAD(&allproc, p, p_list);
379 LIST_INSERT_HEAD(&alllwp, l, l_list);
380
381 pid_table[0].pt_pgrp = pg;
382 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
383
384 #ifdef __HAVE_SYSCALL_INTERN
385 (*p->p_emul->e_syscall_intern)(p);
386 #endif
387
388 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
389 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
390 cv_init(&l->l_sigcv, "sigwait");
391
392 /* Create credentials. */
393 cred0 = kauth_cred_alloc();
394 p->p_cred = cred0;
395 kauth_cred_hold(cred0);
396 l->l_cred = cred0;
397
398 /* Create the CWD info. */
399 rw_init(&cwdi0.cwdi_lock);
400
401 /* Create the limits structures. */
402 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
403
404 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
405 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
406 maxfiles < nofile ? maxfiles : nofile;
407
408 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
409 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
410 maxproc < maxuprc ? maxproc : maxuprc;
411
412 lim = ptoa(uvmexp.free);
413 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
414 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
415 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
416
417 /* Configure virtual memory system, set vm rlimits. */
418 uvm_init_limits(p);
419
420 /* Initialize file descriptor table for proc0. */
421 fdinit1(&filedesc0);
422
423 /*
424 * Initialize proc0's vmspace, which uses the kernel pmap.
425 * All kernel processes (which never have user space mappings)
426 * share proc0's vmspace, and thus, the kernel pmap.
427 */
428 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
429 trunc_page(VM_MAX_ADDRESS));
430
431 l->l_addr = proc0paddr; /* XXX */
432
433 /* Initialize signal state for proc0. */
434 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
435 siginit(p);
436
437 proc_initspecific(p);
438 lwp_initspecific(l);
439
440 SYSCALL_TIME_LWP_INIT(l);
441 }
442
443 /*
444 * Check that the specified process group is in the session of the
445 * specified process.
446 * Treats -ve ids as process ids.
447 * Used to validate TIOCSPGRP requests.
448 */
449 int
450 pgid_in_session(struct proc *p, pid_t pg_id)
451 {
452 struct pgrp *pgrp;
453 struct session *session;
454 int error;
455
456 mutex_enter(&proclist_lock);
457 if (pg_id < 0) {
458 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
459 if (p1 == NULL)
460 return EINVAL;
461 pgrp = p1->p_pgrp;
462 } else {
463 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
464 if (pgrp == NULL)
465 return EINVAL;
466 }
467 session = pgrp->pg_session;
468 if (session != p->p_pgrp->pg_session)
469 error = EPERM;
470 else
471 error = 0;
472 mutex_exit(&proclist_lock);
473
474 return error;
475 }
476
477 /*
478 * Is p an inferior of q?
479 *
480 * Call with the proclist_lock held.
481 */
482 int
483 inferior(struct proc *p, struct proc *q)
484 {
485
486 for (; p != q; p = p->p_pptr)
487 if (p->p_pid == 0)
488 return 0;
489 return 1;
490 }
491
492 /*
493 * Locate a process by number
494 */
495 struct proc *
496 p_find(pid_t pid, uint flags)
497 {
498 struct proc *p;
499 char stat;
500
501 if (!(flags & PFIND_LOCKED))
502 mutex_enter(&proclist_lock);
503
504 p = pid_table[pid & pid_tbl_mask].pt_proc;
505
506 /* Only allow live processes to be found by pid. */
507 /* XXXSMP p_stat */
508 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
509 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
510 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
511 if (flags & PFIND_UNLOCK_OK)
512 mutex_exit(&proclist_lock);
513 return p;
514 }
515 if (flags & PFIND_UNLOCK_FAIL)
516 mutex_exit(&proclist_lock);
517 return NULL;
518 }
519
520
521 /*
522 * Locate a process group by number
523 */
524 struct pgrp *
525 pg_find(pid_t pgid, uint flags)
526 {
527 struct pgrp *pg;
528
529 if (!(flags & PFIND_LOCKED))
530 mutex_enter(&proclist_lock);
531 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
532 /*
533 * Can't look up a pgrp that only exists because the session
534 * hasn't died yet (traditional)
535 */
536 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
537 if (flags & PFIND_UNLOCK_FAIL)
538 mutex_exit(&proclist_lock);
539 return NULL;
540 }
541
542 if (flags & PFIND_UNLOCK_OK)
543 mutex_exit(&proclist_lock);
544 return pg;
545 }
546
547 static void
548 expand_pid_table(void)
549 {
550 uint pt_size = pid_tbl_mask + 1;
551 struct pid_table *n_pt, *new_pt;
552 struct proc *proc;
553 struct pgrp *pgrp;
554 int i;
555 pid_t pid;
556
557 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
558
559 mutex_enter(&proclist_lock);
560 if (pt_size != pid_tbl_mask + 1) {
561 /* Another process beat us to it... */
562 mutex_exit(&proclist_lock);
563 FREE(new_pt, M_PROC);
564 return;
565 }
566
567 /*
568 * Copy entries from old table into new one.
569 * If 'pid' is 'odd' we need to place in the upper half,
570 * even pid's to the lower half.
571 * Free items stay in the low half so we don't have to
572 * fixup the reference to them.
573 * We stuff free items on the front of the freelist
574 * because we can't write to unmodified entries.
575 * Processing the table backwards maintains a semblance
576 * of issueing pid numbers that increase with time.
577 */
578 i = pt_size - 1;
579 n_pt = new_pt + i;
580 for (; ; i--, n_pt--) {
581 proc = pid_table[i].pt_proc;
582 pgrp = pid_table[i].pt_pgrp;
583 if (!P_VALID(proc)) {
584 /* Up 'use count' so that link is valid */
585 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
586 proc = P_FREE(pid);
587 if (pgrp)
588 pid = pgrp->pg_id;
589 } else
590 pid = proc->p_pid;
591
592 /* Save entry in appropriate half of table */
593 n_pt[pid & pt_size].pt_proc = proc;
594 n_pt[pid & pt_size].pt_pgrp = pgrp;
595
596 /* Put other piece on start of free list */
597 pid = (pid ^ pt_size) & ~pid_tbl_mask;
598 n_pt[pid & pt_size].pt_proc =
599 P_FREE((pid & ~pt_size) | next_free_pt);
600 n_pt[pid & pt_size].pt_pgrp = 0;
601 next_free_pt = i | (pid & pt_size);
602 if (i == 0)
603 break;
604 }
605
606 /* Switch tables */
607 mutex_enter(&proclist_mutex);
608 n_pt = pid_table;
609 pid_table = new_pt;
610 mutex_exit(&proclist_mutex);
611 pid_tbl_mask = pt_size * 2 - 1;
612
613 /*
614 * pid_max starts as PID_MAX (= 30000), once we have 16384
615 * allocated pids we need it to be larger!
616 */
617 if (pid_tbl_mask > PID_MAX) {
618 pid_max = pid_tbl_mask * 2 + 1;
619 pid_alloc_lim |= pid_alloc_lim << 1;
620 } else
621 pid_alloc_lim <<= 1; /* doubles number of free slots... */
622
623 mutex_exit(&proclist_lock);
624 FREE(n_pt, M_PROC);
625 }
626
627 struct proc *
628 proc_alloc(void)
629 {
630 struct proc *p;
631 int nxt;
632 pid_t pid;
633 struct pid_table *pt;
634
635 p = pool_get(&proc_pool, PR_WAITOK);
636 p->p_stat = SIDL; /* protect against others */
637
638 proc_initspecific(p);
639 /* allocate next free pid */
640
641 for (;;expand_pid_table()) {
642 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
643 /* ensure pids cycle through 2000+ values */
644 continue;
645 mutex_enter(&proclist_lock);
646 pt = &pid_table[next_free_pt];
647 #ifdef DIAGNOSTIC
648 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
649 panic("proc_alloc: slot busy");
650 #endif
651 nxt = P_NEXT(pt->pt_proc);
652 if (nxt & pid_tbl_mask)
653 break;
654 /* Table full - expand (NB last entry not used....) */
655 mutex_exit(&proclist_lock);
656 }
657
658 /* pid is 'saved use count' + 'size' + entry */
659 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
660 if ((uint)pid > (uint)pid_max)
661 pid &= pid_tbl_mask;
662 p->p_pid = pid;
663 next_free_pt = nxt & pid_tbl_mask;
664
665 /* Grab table slot */
666 mutex_enter(&proclist_mutex);
667 pt->pt_proc = p;
668 mutex_exit(&proclist_mutex);
669 pid_alloc_cnt++;
670
671 mutex_exit(&proclist_lock);
672
673 return p;
674 }
675
676 /*
677 * Free a process id - called from proc_free (in kern_exit.c)
678 *
679 * Called with the proclist_lock held.
680 */
681 void
682 proc_free_pid(struct proc *p)
683 {
684 pid_t pid = p->p_pid;
685 struct pid_table *pt;
686
687 KASSERT(mutex_owned(&proclist_lock));
688
689 pt = &pid_table[pid & pid_tbl_mask];
690 #ifdef DIAGNOSTIC
691 if (__predict_false(pt->pt_proc != p))
692 panic("proc_free: pid_table mismatch, pid %x, proc %p",
693 pid, p);
694 #endif
695 mutex_enter(&proclist_mutex);
696 /* save pid use count in slot */
697 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
698
699 if (pt->pt_pgrp == NULL) {
700 /* link last freed entry onto ours */
701 pid &= pid_tbl_mask;
702 pt = &pid_table[last_free_pt];
703 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
704 last_free_pt = pid;
705 pid_alloc_cnt--;
706 }
707 mutex_exit(&proclist_mutex);
708
709 nprocs--;
710 }
711
712 /*
713 * Move p to a new or existing process group (and session)
714 *
715 * If we are creating a new pgrp, the pgid should equal
716 * the calling process' pid.
717 * If is only valid to enter a process group that is in the session
718 * of the process.
719 * Also mksess should only be set if we are creating a process group
720 *
721 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
722 * SYSV setpgrp support for hpux.
723 */
724 int
725 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
726 {
727 struct pgrp *new_pgrp, *pgrp;
728 struct session *sess;
729 struct proc *p;
730 int rval;
731 pid_t pg_id = NO_PGID;
732
733 if (mksess)
734 sess = pool_get(&session_pool, PR_WAITOK);
735 else
736 sess = NULL;
737
738 /* Allocate data areas we might need before doing any validity checks */
739 mutex_enter(&proclist_lock); /* Because pid_table might change */
740 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
741 mutex_exit(&proclist_lock);
742 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
743 mutex_enter(&proclist_lock);
744 } else
745 new_pgrp = NULL;
746 rval = EPERM; /* most common error (to save typing) */
747
748 /* Check pgrp exists or can be created */
749 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
750 if (pgrp != NULL && pgrp->pg_id != pgid)
751 goto done;
752
753 /* Can only set another process under restricted circumstances. */
754 if (pid != curp->p_pid) {
755 /* must exist and be one of our children... */
756 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
757 !inferior(p, curp)) {
758 rval = ESRCH;
759 goto done;
760 }
761 /* ... in the same session... */
762 if (sess != NULL || p->p_session != curp->p_session)
763 goto done;
764 /* ... existing pgid must be in same session ... */
765 if (pgrp != NULL && pgrp->pg_session != p->p_session)
766 goto done;
767 /* ... and not done an exec. */
768 if (p->p_flag & PK_EXEC) {
769 rval = EACCES;
770 goto done;
771 }
772 } else {
773 /* ... setsid() cannot re-enter a pgrp */
774 if (mksess && (curp->p_pgid == curp->p_pid ||
775 pg_find(curp->p_pid, PFIND_LOCKED)))
776 goto done;
777 p = curp;
778 }
779
780 /* Changing the process group/session of a session
781 leader is definitely off limits. */
782 if (SESS_LEADER(p)) {
783 if (sess == NULL && p->p_pgrp == pgrp)
784 /* unless it's a definite noop */
785 rval = 0;
786 goto done;
787 }
788
789 /* Can only create a process group with id of process */
790 if (pgrp == NULL && pgid != pid)
791 goto done;
792
793 /* Can only create a session if creating pgrp */
794 if (sess != NULL && pgrp != NULL)
795 goto done;
796
797 /* Check we allocated memory for a pgrp... */
798 if (pgrp == NULL && new_pgrp == NULL)
799 goto done;
800
801 /* Don't attach to 'zombie' pgrp */
802 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
803 goto done;
804
805 /* Expect to succeed now */
806 rval = 0;
807
808 if (pgrp == p->p_pgrp)
809 /* nothing to do */
810 goto done;
811
812 /* Ok all setup, link up required structures */
813
814 if (pgrp == NULL) {
815 pgrp = new_pgrp;
816 new_pgrp = 0;
817 if (sess != NULL) {
818 sess->s_sid = p->p_pid;
819 sess->s_leader = p;
820 sess->s_count = 1;
821 sess->s_ttyvp = NULL;
822 sess->s_ttyp = NULL;
823 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
824 memcpy(sess->s_login, p->p_session->s_login,
825 sizeof(sess->s_login));
826 p->p_lflag &= ~PL_CONTROLT;
827 } else {
828 sess = p->p_pgrp->pg_session;
829 SESSHOLD(sess);
830 }
831 pgrp->pg_session = sess;
832 sess = 0;
833
834 pgrp->pg_id = pgid;
835 LIST_INIT(&pgrp->pg_members);
836 #ifdef DIAGNOSTIC
837 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
838 panic("enterpgrp: pgrp table slot in use");
839 if (__predict_false(mksess && p != curp))
840 panic("enterpgrp: mksession and p != curproc");
841 #endif
842 mutex_enter(&proclist_mutex);
843 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
844 pgrp->pg_jobc = 0;
845 } else
846 mutex_enter(&proclist_mutex);
847
848 #ifdef notyet
849 /*
850 * If there's a controlling terminal for the current session, we
851 * have to interlock with it. See ttread().
852 */
853 if (p->p_session->s_ttyvp != NULL) {
854 tp = p->p_session->s_ttyp;
855 mutex_enter(&tp->t_mutex);
856 } else
857 tp = NULL;
858 #endif
859
860 /*
861 * Adjust eligibility of affected pgrps to participate in job control.
862 * Increment eligibility counts before decrementing, otherwise we
863 * could reach 0 spuriously during the first call.
864 */
865 fixjobc(p, pgrp, 1);
866 fixjobc(p, p->p_pgrp, 0);
867
868 /* Move process to requested group. */
869 LIST_REMOVE(p, p_pglist);
870 if (LIST_EMPTY(&p->p_pgrp->pg_members))
871 /* defer delete until we've dumped the lock */
872 pg_id = p->p_pgrp->pg_id;
873 p->p_pgrp = pgrp;
874 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
875 mutex_exit(&proclist_mutex);
876
877 #ifdef notyet
878 /* Done with the swap; we can release the tty mutex. */
879 if (tp != NULL)
880 mutex_exit(&tp->t_mutex);
881 #endif
882
883 done:
884 if (pg_id != NO_PGID)
885 pg_delete(pg_id);
886 mutex_exit(&proclist_lock);
887 if (sess != NULL)
888 pool_put(&session_pool, sess);
889 if (new_pgrp != NULL)
890 pool_put(&pgrp_pool, new_pgrp);
891 #ifdef DEBUG_PGRP
892 if (__predict_false(rval))
893 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
894 pid, pgid, mksess, curp->p_pid, rval);
895 #endif
896 return rval;
897 }
898
899 /*
900 * Remove a process from its process group. Must be called with the
901 * proclist_lock held.
902 */
903 void
904 leavepgrp(struct proc *p)
905 {
906 struct pgrp *pgrp;
907
908 KASSERT(mutex_owned(&proclist_lock));
909
910 /*
911 * If there's a controlling terminal for the session, we have to
912 * interlock with it. See ttread().
913 */
914 mutex_enter(&proclist_mutex);
915 #ifdef notyet
916 if (p_>p_session->s_ttyvp != NULL) {
917 tp = p->p_session->s_ttyp;
918 mutex_enter(&tp->t_mutex);
919 } else
920 tp = NULL;
921 #endif
922
923 pgrp = p->p_pgrp;
924 LIST_REMOVE(p, p_pglist);
925 p->p_pgrp = NULL;
926
927 #ifdef notyet
928 if (tp != NULL)
929 mutex_exit(&tp->t_mutex);
930 #endif
931 mutex_exit(&proclist_mutex);
932
933 if (LIST_EMPTY(&pgrp->pg_members))
934 pg_delete(pgrp->pg_id);
935 }
936
937 /*
938 * Free a process group. Must be called with the proclist_lock held.
939 */
940 static void
941 pg_free(pid_t pg_id)
942 {
943 struct pgrp *pgrp;
944 struct pid_table *pt;
945
946 KASSERT(mutex_owned(&proclist_lock));
947
948 pt = &pid_table[pg_id & pid_tbl_mask];
949 pgrp = pt->pt_pgrp;
950 #ifdef DIAGNOSTIC
951 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
952 || !LIST_EMPTY(&pgrp->pg_members)))
953 panic("pg_free: process group absent or has members");
954 #endif
955 pt->pt_pgrp = 0;
956
957 if (!P_VALID(pt->pt_proc)) {
958 /* orphaned pgrp, put slot onto free list */
959 #ifdef DIAGNOSTIC
960 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
961 panic("pg_free: process slot on free list");
962 #endif
963 mutex_enter(&proclist_mutex);
964 pg_id &= pid_tbl_mask;
965 pt = &pid_table[last_free_pt];
966 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
967 mutex_exit(&proclist_mutex);
968 last_free_pt = pg_id;
969 pid_alloc_cnt--;
970 }
971 pool_put(&pgrp_pool, pgrp);
972 }
973
974 /*
975 * Delete a process group. Must be called with the proclist_lock held.
976 */
977 static void
978 pg_delete(pid_t pg_id)
979 {
980 struct pgrp *pgrp;
981 struct tty *ttyp;
982 struct session *ss;
983 int is_pgrp_leader;
984
985 KASSERT(mutex_owned(&proclist_lock));
986
987 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
988 if (pgrp == NULL || pgrp->pg_id != pg_id ||
989 !LIST_EMPTY(&pgrp->pg_members))
990 return;
991
992 ss = pgrp->pg_session;
993
994 /* Remove reference (if any) from tty to this process group */
995 ttyp = ss->s_ttyp;
996 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
997 ttyp->t_pgrp = NULL;
998 #ifdef DIAGNOSTIC
999 if (ttyp->t_session != ss)
1000 panic("pg_delete: wrong session on terminal");
1001 #endif
1002 }
1003
1004 /*
1005 * The leading process group in a session is freed
1006 * by sessdelete() if last reference.
1007 */
1008 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
1009 SESSRELE(ss);
1010
1011 if (is_pgrp_leader)
1012 return;
1013
1014 pg_free(pg_id);
1015 }
1016
1017 /*
1018 * Delete session - called from SESSRELE when s_count becomes zero.
1019 * Must be called with the proclist_lock held.
1020 */
1021 void
1022 sessdelete(struct session *ss)
1023 {
1024
1025 KASSERT(mutex_owned(&proclist_lock));
1026
1027 /*
1028 * We keep the pgrp with the same id as the session in
1029 * order to stop a process being given the same pid.
1030 * Since the pgrp holds a reference to the session, it
1031 * must be a 'zombie' pgrp by now.
1032 */
1033 pg_free(ss->s_sid);
1034 pool_put(&session_pool, ss);
1035 }
1036
1037 /*
1038 * Adjust pgrp jobc counters when specified process changes process group.
1039 * We count the number of processes in each process group that "qualify"
1040 * the group for terminal job control (those with a parent in a different
1041 * process group of the same session). If that count reaches zero, the
1042 * process group becomes orphaned. Check both the specified process'
1043 * process group and that of its children.
1044 * entering == 0 => p is leaving specified group.
1045 * entering == 1 => p is entering specified group.
1046 *
1047 * Call with proclist_lock held.
1048 */
1049 void
1050 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1051 {
1052 struct pgrp *hispgrp;
1053 struct session *mysession = pgrp->pg_session;
1054 struct proc *child;
1055
1056 KASSERT(mutex_owned(&proclist_lock));
1057 KASSERT(mutex_owned(&proclist_mutex));
1058
1059 /*
1060 * Check p's parent to see whether p qualifies its own process
1061 * group; if so, adjust count for p's process group.
1062 */
1063 hispgrp = p->p_pptr->p_pgrp;
1064 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1065 if (entering) {
1066 mutex_enter(&p->p_smutex);
1067 p->p_sflag &= ~PS_ORPHANPG;
1068 mutex_exit(&p->p_smutex);
1069 pgrp->pg_jobc++;
1070 } else if (--pgrp->pg_jobc == 0)
1071 orphanpg(pgrp);
1072 }
1073
1074 /*
1075 * Check this process' children to see whether they qualify
1076 * their process groups; if so, adjust counts for children's
1077 * process groups.
1078 */
1079 LIST_FOREACH(child, &p->p_children, p_sibling) {
1080 hispgrp = child->p_pgrp;
1081 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1082 !P_ZOMBIE(child)) {
1083 if (entering) {
1084 mutex_enter(&child->p_smutex);
1085 child->p_sflag &= ~PS_ORPHANPG;
1086 mutex_exit(&child->p_smutex);
1087 hispgrp->pg_jobc++;
1088 } else if (--hispgrp->pg_jobc == 0)
1089 orphanpg(hispgrp);
1090 }
1091 }
1092 }
1093
1094 /*
1095 * A process group has become orphaned;
1096 * if there are any stopped processes in the group,
1097 * hang-up all process in that group.
1098 *
1099 * Call with proclist_lock held.
1100 */
1101 static void
1102 orphanpg(struct pgrp *pg)
1103 {
1104 struct proc *p;
1105 int doit;
1106
1107 KASSERT(mutex_owned(&proclist_lock));
1108 KASSERT(mutex_owned(&proclist_mutex));
1109
1110 doit = 0;
1111
1112 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1113 mutex_enter(&p->p_smutex);
1114 if (p->p_stat == SSTOP) {
1115 doit = 1;
1116 p->p_sflag |= PS_ORPHANPG;
1117 }
1118 mutex_exit(&p->p_smutex);
1119 }
1120
1121 if (doit) {
1122 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1123 psignal(p, SIGHUP);
1124 psignal(p, SIGCONT);
1125 }
1126 }
1127 }
1128
1129 #ifdef DDB
1130 #include <ddb/db_output.h>
1131 void pidtbl_dump(void);
1132 void
1133 pidtbl_dump(void)
1134 {
1135 struct pid_table *pt;
1136 struct proc *p;
1137 struct pgrp *pgrp;
1138 int id;
1139
1140 db_printf("pid table %p size %x, next %x, last %x\n",
1141 pid_table, pid_tbl_mask+1,
1142 next_free_pt, last_free_pt);
1143 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1144 p = pt->pt_proc;
1145 if (!P_VALID(p) && !pt->pt_pgrp)
1146 continue;
1147 db_printf(" id %x: ", id);
1148 if (P_VALID(p))
1149 db_printf("proc %p id %d (0x%x) %s\n",
1150 p, p->p_pid, p->p_pid, p->p_comm);
1151 else
1152 db_printf("next %x use %x\n",
1153 P_NEXT(p) & pid_tbl_mask,
1154 P_NEXT(p) & ~pid_tbl_mask);
1155 if ((pgrp = pt->pt_pgrp)) {
1156 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1157 pgrp->pg_session, pgrp->pg_session->s_sid,
1158 pgrp->pg_session->s_count,
1159 pgrp->pg_session->s_login);
1160 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1161 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1162 pgrp->pg_members.lh_first);
1163 for (p = pgrp->pg_members.lh_first; p != 0;
1164 p = p->p_pglist.le_next) {
1165 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1166 p->p_pid, p, p->p_pgrp, p->p_comm);
1167 }
1168 }
1169 }
1170 }
1171 #endif /* DDB */
1172
1173 #ifdef KSTACK_CHECK_MAGIC
1174 #include <sys/user.h>
1175
1176 #define KSTACK_MAGIC 0xdeadbeaf
1177
1178 /* XXX should be per process basis? */
1179 int kstackleftmin = KSTACK_SIZE;
1180 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1181 less than this */
1182
1183 void
1184 kstack_setup_magic(const struct lwp *l)
1185 {
1186 uint32_t *ip;
1187 uint32_t const *end;
1188
1189 KASSERT(l != NULL);
1190 KASSERT(l != &lwp0);
1191
1192 /*
1193 * fill all the stack with magic number
1194 * so that later modification on it can be detected.
1195 */
1196 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1197 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1198 for (; ip < end; ip++) {
1199 *ip = KSTACK_MAGIC;
1200 }
1201 }
1202
1203 void
1204 kstack_check_magic(const struct lwp *l)
1205 {
1206 uint32_t const *ip, *end;
1207 int stackleft;
1208
1209 KASSERT(l != NULL);
1210
1211 /* don't check proc0 */ /*XXX*/
1212 if (l == &lwp0)
1213 return;
1214
1215 #ifdef __MACHINE_STACK_GROWS_UP
1216 /* stack grows upwards (eg. hppa) */
1217 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1218 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1219 for (ip--; ip >= end; ip--)
1220 if (*ip != KSTACK_MAGIC)
1221 break;
1222
1223 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1224 #else /* __MACHINE_STACK_GROWS_UP */
1225 /* stack grows downwards (eg. i386) */
1226 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1227 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1228 for (; ip < end; ip++)
1229 if (*ip != KSTACK_MAGIC)
1230 break;
1231
1232 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1233 #endif /* __MACHINE_STACK_GROWS_UP */
1234
1235 if (kstackleftmin > stackleft) {
1236 kstackleftmin = stackleft;
1237 if (stackleft < kstackleftthres)
1238 printf("warning: kernel stack left %d bytes"
1239 "(pid %u:lid %u)\n", stackleft,
1240 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1241 }
1242
1243 if (stackleft <= 0) {
1244 panic("magic on the top of kernel stack changed for "
1245 "pid %u, lid %u: maybe kernel stack overflow",
1246 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1247 }
1248 }
1249 #endif /* KSTACK_CHECK_MAGIC */
1250
1251 /*
1252 * XXXSMP this is bust, it grabs a read lock and then messes about
1253 * with allproc.
1254 */
1255 int
1256 proclist_foreach_call(struct proclist *list,
1257 int (*callback)(struct proc *, void *arg), void *arg)
1258 {
1259 struct proc marker;
1260 struct proc *p;
1261 struct lwp * const l = curlwp;
1262 int ret = 0;
1263
1264 marker.p_flag = PK_MARKER;
1265 uvm_lwp_hold(l);
1266 mutex_enter(&proclist_lock);
1267 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1268 if (p->p_flag & PK_MARKER) {
1269 p = LIST_NEXT(p, p_list);
1270 continue;
1271 }
1272 LIST_INSERT_AFTER(p, &marker, p_list);
1273 ret = (*callback)(p, arg);
1274 KASSERT(mutex_owned(&proclist_lock));
1275 p = LIST_NEXT(&marker, p_list);
1276 LIST_REMOVE(&marker, p_list);
1277 }
1278 mutex_exit(&proclist_lock);
1279 uvm_lwp_rele(l);
1280
1281 return ret;
1282 }
1283
1284 int
1285 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1286 {
1287
1288 /* XXXCDC: how should locking work here? */
1289
1290 /* curproc exception is for coredump. */
1291
1292 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1293 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1294 return EFAULT;
1295 }
1296
1297 uvmspace_addref(p->p_vmspace);
1298 *vm = p->p_vmspace;
1299
1300 return 0;
1301 }
1302
1303 /*
1304 * Acquire a write lock on the process credential.
1305 */
1306 void
1307 proc_crmod_enter(void)
1308 {
1309 struct lwp *l = curlwp;
1310 struct proc *p = l->l_proc;
1311 struct plimit *lim;
1312 kauth_cred_t oc;
1313 char *cn;
1314
1315 /* Reset what needs to be reset in plimit. */
1316 if (p->p_limit->pl_corename != defcorename) {
1317 lim_privatise(p, false);
1318 lim = p->p_limit;
1319 mutex_enter(&lim->pl_lock);
1320 cn = lim->pl_corename;
1321 lim->pl_corename = defcorename;
1322 mutex_exit(&lim->pl_lock);
1323 if (cn != defcorename)
1324 free(cn, M_TEMP);
1325 }
1326
1327 mutex_enter(&p->p_mutex);
1328
1329 /* Ensure the LWP cached credentials are up to date. */
1330 if ((oc = l->l_cred) != p->p_cred) {
1331 kauth_cred_hold(p->p_cred);
1332 l->l_cred = p->p_cred;
1333 kauth_cred_free(oc);
1334 }
1335
1336 }
1337
1338 /*
1339 * Set in a new process credential, and drop the write lock. The credential
1340 * must have a reference already. Optionally, free a no-longer required
1341 * credential. The scheduler also needs to inspect p_cred, so we also
1342 * briefly acquire the sched state mutex.
1343 */
1344 void
1345 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1346 {
1347 struct lwp *l = curlwp;
1348 struct proc *p = l->l_proc;
1349 kauth_cred_t oc;
1350
1351 /* Is there a new credential to set in? */
1352 if (scred != NULL) {
1353 mutex_enter(&p->p_smutex);
1354 p->p_cred = scred;
1355 mutex_exit(&p->p_smutex);
1356
1357 /* Ensure the LWP cached credentials are up to date. */
1358 if ((oc = l->l_cred) != scred) {
1359 kauth_cred_hold(scred);
1360 l->l_cred = scred;
1361 }
1362 } else
1363 oc = NULL; /* XXXgcc */
1364
1365 if (sugid) {
1366 /*
1367 * Mark process as having changed credentials, stops
1368 * tracing etc.
1369 */
1370 p->p_flag |= PK_SUGID;
1371 }
1372
1373 mutex_exit(&p->p_mutex);
1374
1375 /* If there is a credential to be released, free it now. */
1376 if (fcred != NULL) {
1377 KASSERT(scred != NULL);
1378 kauth_cred_free(fcred);
1379 if (oc != scred)
1380 kauth_cred_free(oc);
1381 }
1382 }
1383
1384 /*
1385 * proc_specific_key_create --
1386 * Create a key for subsystem proc-specific data.
1387 */
1388 int
1389 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1390 {
1391
1392 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1393 }
1394
1395 /*
1396 * proc_specific_key_delete --
1397 * Delete a key for subsystem proc-specific data.
1398 */
1399 void
1400 proc_specific_key_delete(specificdata_key_t key)
1401 {
1402
1403 specificdata_key_delete(proc_specificdata_domain, key);
1404 }
1405
1406 /*
1407 * proc_initspecific --
1408 * Initialize a proc's specificdata container.
1409 */
1410 void
1411 proc_initspecific(struct proc *p)
1412 {
1413 int error;
1414
1415 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1416 KASSERT(error == 0);
1417 }
1418
1419 /*
1420 * proc_finispecific --
1421 * Finalize a proc's specificdata container.
1422 */
1423 void
1424 proc_finispecific(struct proc *p)
1425 {
1426
1427 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1428 }
1429
1430 /*
1431 * proc_getspecific --
1432 * Return proc-specific data corresponding to the specified key.
1433 */
1434 void *
1435 proc_getspecific(struct proc *p, specificdata_key_t key)
1436 {
1437
1438 return (specificdata_getspecific(proc_specificdata_domain,
1439 &p->p_specdataref, key));
1440 }
1441
1442 /*
1443 * proc_setspecific --
1444 * Set proc-specific data corresponding to the specified key.
1445 */
1446 void
1447 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1448 {
1449
1450 specificdata_setspecific(proc_specificdata_domain,
1451 &p->p_specdataref, key, data);
1452 }
1453