Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.137
      1 /*	$NetBSD: kern_proc.c,v 1.137 2008/04/24 18:39:24 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.137 2008/04/24 18:39:24 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include "sys/syscall_stats.h"
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 
    104 #include <uvm/uvm.h>
    105 #include <uvm/uvm_extern.h>
    106 
    107 /*
    108  * Other process lists
    109  */
    110 
    111 struct proclist allproc;
    112 struct proclist zombproc;	/* resources have been freed */
    113 
    114 kmutex_t	*proc_lock;
    115 
    116 /*
    117  * pid to proc lookup is done by indexing the pid_table array.
    118  * Since pid numbers are only allocated when an empty slot
    119  * has been found, there is no need to search any lists ever.
    120  * (an orphaned pgrp will lock the slot, a session will lock
    121  * the pgrp with the same number.)
    122  * If the table is too small it is reallocated with twice the
    123  * previous size and the entries 'unzipped' into the two halves.
    124  * A linked list of free entries is passed through the pt_proc
    125  * field of 'free' items - set odd to be an invalid ptr.
    126  */
    127 
    128 struct pid_table {
    129 	struct proc	*pt_proc;
    130 	struct pgrp	*pt_pgrp;
    131 };
    132 #if 1	/* strongly typed cast - should be a noop */
    133 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    134 #else
    135 #define p2u(p) ((uint)p)
    136 #endif
    137 #define P_VALID(p) (!(p2u(p) & 1))
    138 #define P_NEXT(p) (p2u(p) >> 1)
    139 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    140 
    141 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    142 static struct pid_table *pid_table;
    143 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    144 static uint pid_alloc_lim;	/* max we allocate before growing table */
    145 static uint pid_alloc_cnt;	/* number of allocated pids */
    146 
    147 /* links through free slots - never empty! */
    148 static uint next_free_pt, last_free_pt;
    149 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    150 
    151 /* Components of the first process -- never freed. */
    152 
    153 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    154 
    155 struct session session0 = {
    156 	.s_count = 1,
    157 	.s_sid = 0,
    158 };
    159 struct pgrp pgrp0 = {
    160 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    161 	.pg_session = &session0,
    162 };
    163 filedesc_t filedesc0;
    164 struct cwdinfo cwdi0 = {
    165 	.cwdi_cmask = CMASK,		/* see cmask below */
    166 	.cwdi_refcnt = 1,
    167 };
    168 struct plimit limit0 = {
    169 	.pl_corename = defcorename,
    170 	.pl_refcnt = 1,
    171 	.pl_rlimit = {
    172 		[0 ... __arraycount(limit0.pl_rlimit) - 1] = {
    173 			.rlim_cur = RLIM_INFINITY,
    174 			.rlim_max = RLIM_INFINITY,
    175 		},
    176 	},
    177 };
    178 struct pstats pstat0;
    179 struct vmspace vmspace0;
    180 struct sigacts sigacts0;
    181 struct turnstile turnstile0;
    182 struct proc proc0 = {
    183 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    184 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    185 	.p_nlwps = 1,
    186 	.p_nrlwps = 1,
    187 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    188 	.p_pgrp = &pgrp0,
    189 	.p_comm = "system",
    190 	/*
    191 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    192 	 * when they exit.  init(8) can easily wait them out for us.
    193 	 */
    194 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    195 	.p_stat = SACTIVE,
    196 	.p_nice = NZERO,
    197 	.p_emul = &emul_netbsd,
    198 	.p_cwdi = &cwdi0,
    199 	.p_limit = &limit0,
    200 	.p_fd = &filedesc0,
    201 	.p_vmspace = &vmspace0,
    202 	.p_stats = &pstat0,
    203 	.p_sigacts = &sigacts0,
    204 };
    205 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    206 #ifdef LWP0_CPU_INFO
    207 	.l_cpu = LWP0_CPU_INFO,
    208 #endif
    209 	.l_proc = &proc0,
    210 	.l_lid = 1,
    211 	.l_flag = LW_INMEM | LW_SYSTEM,
    212 	.l_stat = LSONPROC,
    213 	.l_ts = &turnstile0,
    214 	.l_syncobj = &sched_syncobj,
    215 	.l_refcnt = 1,
    216 	.l_priority = PRI_USER + NPRI_USER - 1,
    217 	.l_inheritedprio = -1,
    218 	.l_class = SCHED_OTHER,
    219 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    220 	.l_name = __UNCONST("swapper"),
    221 };
    222 kauth_cred_t cred0;
    223 
    224 extern struct user *proc0paddr;
    225 
    226 int nofile = NOFILE;
    227 int maxuprc = MAXUPRC;
    228 int cmask = CMASK;
    229 
    230 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    231 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    232 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    233 
    234 /*
    235  * The process list descriptors, used during pid allocation and
    236  * by sysctl.  No locking on this data structure is needed since
    237  * it is completely static.
    238  */
    239 const struct proclist_desc proclists[] = {
    240 	{ &allproc	},
    241 	{ &zombproc	},
    242 	{ NULL		},
    243 };
    244 
    245 static void orphanpg(struct pgrp *);
    246 static void pg_delete(pid_t);
    247 
    248 static specificdata_domain_t proc_specificdata_domain;
    249 
    250 static pool_cache_t proc_cache;
    251 
    252 /*
    253  * Initialize global process hashing structures.
    254  */
    255 void
    256 procinit(void)
    257 {
    258 	const struct proclist_desc *pd;
    259 	int i;
    260 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    261 
    262 	for (pd = proclists; pd->pd_list != NULL; pd++)
    263 		LIST_INIT(pd->pd_list);
    264 
    265 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    266 
    267 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    268 			    M_PROC, M_WAITOK);
    269 	/* Set free list running through table...
    270 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    271 	for (i = 0; i <= pid_tbl_mask; i++) {
    272 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    273 		pid_table[i].pt_pgrp = 0;
    274 	}
    275 	/* slot 0 is just grabbed */
    276 	next_free_pt = 1;
    277 	/* Need to fix last entry. */
    278 	last_free_pt = pid_tbl_mask;
    279 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    280 	/* point at which we grow table - to avoid reusing pids too often */
    281 	pid_alloc_lim = pid_tbl_mask - 1;
    282 #undef LINK_EMPTY
    283 
    284 	proc_specificdata_domain = specificdata_domain_create();
    285 	KASSERT(proc_specificdata_domain != NULL);
    286 
    287 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    288 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    289 }
    290 
    291 /*
    292  * Initialize process 0.
    293  */
    294 void
    295 proc0_init(void)
    296 {
    297 	struct proc *p;
    298 	struct pgrp *pg;
    299 	struct session *sess;
    300 	struct lwp *l;
    301 	rlim_t lim;
    302 
    303 	p = &proc0;
    304 	pg = &pgrp0;
    305 	sess = &session0;
    306 	l = &lwp0;
    307 
    308 	KASSERT(l->l_lid == p->p_nlwpid);
    309 
    310 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    311 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    312 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    313 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    314 
    315 	rw_init(&p->p_reflock);
    316 	cv_init(&p->p_waitcv, "wait");
    317 	cv_init(&p->p_lwpcv, "lwpwait");
    318 
    319 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    320 
    321 	pid_table[0].pt_proc = p;
    322 	LIST_INSERT_HEAD(&allproc, p, p_list);
    323 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    324 
    325 	pid_table[0].pt_pgrp = pg;
    326 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    327 
    328 #ifdef __HAVE_SYSCALL_INTERN
    329 	(*p->p_emul->e_syscall_intern)(p);
    330 #endif
    331 
    332 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    333 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    334 	cv_init(&l->l_sigcv, "sigwait");
    335 
    336 	/* Create credentials. */
    337 	cred0 = kauth_cred_alloc();
    338 	p->p_cred = cred0;
    339 	kauth_cred_hold(cred0);
    340 	l->l_cred = cred0;
    341 
    342 	/* Create the CWD info. */
    343 	rw_init(&cwdi0.cwdi_lock);
    344 
    345 	/* Create the limits structures. */
    346 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    347 
    348 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    349 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    350 	    maxfiles < nofile ? maxfiles : nofile;
    351 
    352 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    353 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    354 	    maxproc < maxuprc ? maxproc : maxuprc;
    355 
    356 	lim = ptoa(uvmexp.free);
    357 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    358 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    359 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    360 
    361 	/* Configure virtual memory system, set vm rlimits. */
    362 	uvm_init_limits(p);
    363 
    364 	/* Initialize file descriptor table for proc0. */
    365 	fd_init(&filedesc0);
    366 
    367 	/*
    368 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    369 	 * All kernel processes (which never have user space mappings)
    370 	 * share proc0's vmspace, and thus, the kernel pmap.
    371 	 */
    372 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    373 	    trunc_page(VM_MAX_ADDRESS));
    374 
    375 	l->l_addr = proc0paddr;				/* XXX */
    376 
    377 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    378 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    379 	siginit(p);
    380 
    381 	proc_initspecific(p);
    382 	lwp_initspecific(l);
    383 
    384 	SYSCALL_TIME_LWP_INIT(l);
    385 }
    386 
    387 /*
    388  * Check that the specified process group is in the session of the
    389  * specified process.
    390  * Treats -ve ids as process ids.
    391  * Used to validate TIOCSPGRP requests.
    392  */
    393 int
    394 pgid_in_session(struct proc *p, pid_t pg_id)
    395 {
    396 	struct pgrp *pgrp;
    397 	struct session *session;
    398 	int error;
    399 
    400 	mutex_enter(proc_lock);
    401 	if (pg_id < 0) {
    402 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    403 		if (p1 == NULL)
    404 			return EINVAL;
    405 		pgrp = p1->p_pgrp;
    406 	} else {
    407 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    408 		if (pgrp == NULL)
    409 			return EINVAL;
    410 	}
    411 	session = pgrp->pg_session;
    412 	if (session != p->p_pgrp->pg_session)
    413 		error = EPERM;
    414 	else
    415 		error = 0;
    416 	mutex_exit(proc_lock);
    417 
    418 	return error;
    419 }
    420 
    421 /*
    422  * Is p an inferior of q?
    423  *
    424  * Call with the proc_lock held.
    425  */
    426 int
    427 inferior(struct proc *p, struct proc *q)
    428 {
    429 
    430 	for (; p != q; p = p->p_pptr)
    431 		if (p->p_pid == 0)
    432 			return 0;
    433 	return 1;
    434 }
    435 
    436 /*
    437  * Locate a process by number
    438  */
    439 struct proc *
    440 p_find(pid_t pid, uint flags)
    441 {
    442 	struct proc *p;
    443 	char stat;
    444 
    445 	if (!(flags & PFIND_LOCKED))
    446 		mutex_enter(proc_lock);
    447 
    448 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    449 
    450 	/* Only allow live processes to be found by pid. */
    451 	/* XXXSMP p_stat */
    452 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    453 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    454 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    455 		if (flags & PFIND_UNLOCK_OK)
    456 			 mutex_exit(proc_lock);
    457 		return p;
    458 	}
    459 	if (flags & PFIND_UNLOCK_FAIL)
    460 		mutex_exit(proc_lock);
    461 	return NULL;
    462 }
    463 
    464 
    465 /*
    466  * Locate a process group by number
    467  */
    468 struct pgrp *
    469 pg_find(pid_t pgid, uint flags)
    470 {
    471 	struct pgrp *pg;
    472 
    473 	if (!(flags & PFIND_LOCKED))
    474 		mutex_enter(proc_lock);
    475 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    476 	/*
    477 	 * Can't look up a pgrp that only exists because the session
    478 	 * hasn't died yet (traditional)
    479 	 */
    480 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    481 		if (flags & PFIND_UNLOCK_FAIL)
    482 			 mutex_exit(proc_lock);
    483 		return NULL;
    484 	}
    485 
    486 	if (flags & PFIND_UNLOCK_OK)
    487 		mutex_exit(proc_lock);
    488 	return pg;
    489 }
    490 
    491 static void
    492 expand_pid_table(void)
    493 {
    494 	uint pt_size = pid_tbl_mask + 1;
    495 	struct pid_table *n_pt, *new_pt;
    496 	struct proc *proc;
    497 	struct pgrp *pgrp;
    498 	int i;
    499 	pid_t pid;
    500 
    501 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    502 
    503 	mutex_enter(proc_lock);
    504 	if (pt_size != pid_tbl_mask + 1) {
    505 		/* Another process beat us to it... */
    506 		mutex_exit(proc_lock);
    507 		FREE(new_pt, M_PROC);
    508 		return;
    509 	}
    510 
    511 	/*
    512 	 * Copy entries from old table into new one.
    513 	 * If 'pid' is 'odd' we need to place in the upper half,
    514 	 * even pid's to the lower half.
    515 	 * Free items stay in the low half so we don't have to
    516 	 * fixup the reference to them.
    517 	 * We stuff free items on the front of the freelist
    518 	 * because we can't write to unmodified entries.
    519 	 * Processing the table backwards maintains a semblance
    520 	 * of issueing pid numbers that increase with time.
    521 	 */
    522 	i = pt_size - 1;
    523 	n_pt = new_pt + i;
    524 	for (; ; i--, n_pt--) {
    525 		proc = pid_table[i].pt_proc;
    526 		pgrp = pid_table[i].pt_pgrp;
    527 		if (!P_VALID(proc)) {
    528 			/* Up 'use count' so that link is valid */
    529 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    530 			proc = P_FREE(pid);
    531 			if (pgrp)
    532 				pid = pgrp->pg_id;
    533 		} else
    534 			pid = proc->p_pid;
    535 
    536 		/* Save entry in appropriate half of table */
    537 		n_pt[pid & pt_size].pt_proc = proc;
    538 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    539 
    540 		/* Put other piece on start of free list */
    541 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    542 		n_pt[pid & pt_size].pt_proc =
    543 				    P_FREE((pid & ~pt_size) | next_free_pt);
    544 		n_pt[pid & pt_size].pt_pgrp = 0;
    545 		next_free_pt = i | (pid & pt_size);
    546 		if (i == 0)
    547 			break;
    548 	}
    549 
    550 	/* Switch tables */
    551 	n_pt = pid_table;
    552 	pid_table = new_pt;
    553 	pid_tbl_mask = pt_size * 2 - 1;
    554 
    555 	/*
    556 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    557 	 * allocated pids we need it to be larger!
    558 	 */
    559 	if (pid_tbl_mask > PID_MAX) {
    560 		pid_max = pid_tbl_mask * 2 + 1;
    561 		pid_alloc_lim |= pid_alloc_lim << 1;
    562 	} else
    563 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    564 
    565 	mutex_exit(proc_lock);
    566 	FREE(n_pt, M_PROC);
    567 }
    568 
    569 struct proc *
    570 proc_alloc(void)
    571 {
    572 	struct proc *p;
    573 	int nxt;
    574 	pid_t pid;
    575 	struct pid_table *pt;
    576 
    577 	p = pool_cache_get(proc_cache, PR_WAITOK);
    578 	p->p_stat = SIDL;			/* protect against others */
    579 
    580 	proc_initspecific(p);
    581 	/* allocate next free pid */
    582 
    583 	for (;;expand_pid_table()) {
    584 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    585 			/* ensure pids cycle through 2000+ values */
    586 			continue;
    587 		mutex_enter(proc_lock);
    588 		pt = &pid_table[next_free_pt];
    589 #ifdef DIAGNOSTIC
    590 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    591 			panic("proc_alloc: slot busy");
    592 #endif
    593 		nxt = P_NEXT(pt->pt_proc);
    594 		if (nxt & pid_tbl_mask)
    595 			break;
    596 		/* Table full - expand (NB last entry not used....) */
    597 		mutex_exit(proc_lock);
    598 	}
    599 
    600 	/* pid is 'saved use count' + 'size' + entry */
    601 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    602 	if ((uint)pid > (uint)pid_max)
    603 		pid &= pid_tbl_mask;
    604 	p->p_pid = pid;
    605 	next_free_pt = nxt & pid_tbl_mask;
    606 
    607 	/* Grab table slot */
    608 	pt->pt_proc = p;
    609 	pid_alloc_cnt++;
    610 
    611 	mutex_exit(proc_lock);
    612 
    613 	return p;
    614 }
    615 
    616 /*
    617  * Free a process id - called from proc_free (in kern_exit.c)
    618  *
    619  * Called with the proc_lock held.
    620  */
    621 void
    622 proc_free_pid(struct proc *p)
    623 {
    624 	pid_t pid = p->p_pid;
    625 	struct pid_table *pt;
    626 
    627 	KASSERT(mutex_owned(proc_lock));
    628 
    629 	pt = &pid_table[pid & pid_tbl_mask];
    630 #ifdef DIAGNOSTIC
    631 	if (__predict_false(pt->pt_proc != p))
    632 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    633 			pid, p);
    634 #endif
    635 	/* save pid use count in slot */
    636 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    637 
    638 	if (pt->pt_pgrp == NULL) {
    639 		/* link last freed entry onto ours */
    640 		pid &= pid_tbl_mask;
    641 		pt = &pid_table[last_free_pt];
    642 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    643 		last_free_pt = pid;
    644 		pid_alloc_cnt--;
    645 	}
    646 
    647 	atomic_dec_uint(&nprocs);
    648 }
    649 
    650 void
    651 proc_free_mem(struct proc *p)
    652 {
    653 
    654 	pool_cache_put(proc_cache, p);
    655 }
    656 
    657 /*
    658  * Move p to a new or existing process group (and session)
    659  *
    660  * If we are creating a new pgrp, the pgid should equal
    661  * the calling process' pid.
    662  * If is only valid to enter a process group that is in the session
    663  * of the process.
    664  * Also mksess should only be set if we are creating a process group
    665  *
    666  * Only called from sys_setsid and sys_setpgid.
    667  */
    668 int
    669 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    670 {
    671 	struct pgrp *new_pgrp, *pgrp;
    672 	struct session *sess;
    673 	struct proc *p;
    674 	int rval;
    675 	pid_t pg_id = NO_PGID;
    676 
    677 	if (mksess)
    678 		sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
    679 	else
    680 		sess = NULL;
    681 
    682 	/* Allocate data areas we might need before doing any validity checks */
    683 	mutex_enter(proc_lock);		/* Because pid_table might change */
    684 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    685 		mutex_exit(proc_lock);
    686 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    687 		mutex_enter(proc_lock);
    688 	} else
    689 		new_pgrp = NULL;
    690 	rval = EPERM;	/* most common error (to save typing) */
    691 
    692 	/* Check pgrp exists or can be created */
    693 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    694 	if (pgrp != NULL && pgrp->pg_id != pgid)
    695 		goto done;
    696 
    697 	/* Can only set another process under restricted circumstances. */
    698 	if (pid != curp->p_pid) {
    699 		/* must exist and be one of our children... */
    700 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    701 		    !inferior(p, curp)) {
    702 			rval = ESRCH;
    703 			goto done;
    704 		}
    705 		/* ... in the same session... */
    706 		if (sess != NULL || p->p_session != curp->p_session)
    707 			goto done;
    708 		/* ... existing pgid must be in same session ... */
    709 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    710 			goto done;
    711 		/* ... and not done an exec. */
    712 		if (p->p_flag & PK_EXEC) {
    713 			rval = EACCES;
    714 			goto done;
    715 		}
    716 	} else {
    717 		/* ... setsid() cannot re-enter a pgrp */
    718 		if (mksess && (curp->p_pgid == curp->p_pid ||
    719 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    720 			goto done;
    721 		p = curp;
    722 	}
    723 
    724 	/* Changing the process group/session of a session
    725 	   leader is definitely off limits. */
    726 	if (SESS_LEADER(p)) {
    727 		if (sess == NULL && p->p_pgrp == pgrp)
    728 			/* unless it's a definite noop */
    729 			rval = 0;
    730 		goto done;
    731 	}
    732 
    733 	/* Can only create a process group with id of process */
    734 	if (pgrp == NULL && pgid != pid)
    735 		goto done;
    736 
    737 	/* Can only create a session if creating pgrp */
    738 	if (sess != NULL && pgrp != NULL)
    739 		goto done;
    740 
    741 	/* Check we allocated memory for a pgrp... */
    742 	if (pgrp == NULL && new_pgrp == NULL)
    743 		goto done;
    744 
    745 	/* Don't attach to 'zombie' pgrp */
    746 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    747 		goto done;
    748 
    749 	/* Expect to succeed now */
    750 	rval = 0;
    751 
    752 	if (pgrp == p->p_pgrp)
    753 		/* nothing to do */
    754 		goto done;
    755 
    756 	/* Ok all setup, link up required structures */
    757 
    758 	if (pgrp == NULL) {
    759 		pgrp = new_pgrp;
    760 		new_pgrp = 0;
    761 		if (sess != NULL) {
    762 			sess->s_sid = p->p_pid;
    763 			sess->s_leader = p;
    764 			sess->s_count = 1;
    765 			sess->s_ttyvp = NULL;
    766 			sess->s_ttyp = NULL;
    767 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    768 			memcpy(sess->s_login, p->p_session->s_login,
    769 			    sizeof(sess->s_login));
    770 			p->p_lflag &= ~PL_CONTROLT;
    771 		} else {
    772 			sess = p->p_pgrp->pg_session;
    773 			SESSHOLD(sess);
    774 		}
    775 		pgrp->pg_session = sess;
    776 		sess = 0;
    777 
    778 		pgrp->pg_id = pgid;
    779 		LIST_INIT(&pgrp->pg_members);
    780 #ifdef DIAGNOSTIC
    781 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    782 			panic("enterpgrp: pgrp table slot in use");
    783 		if (__predict_false(mksess && p != curp))
    784 			panic("enterpgrp: mksession and p != curproc");
    785 #endif
    786 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    787 		pgrp->pg_jobc = 0;
    788 	}
    789 
    790 	/*
    791 	 * Adjust eligibility of affected pgrps to participate in job control.
    792 	 * Increment eligibility counts before decrementing, otherwise we
    793 	 * could reach 0 spuriously during the first call.
    794 	 */
    795 	fixjobc(p, pgrp, 1);
    796 	fixjobc(p, p->p_pgrp, 0);
    797 
    798 	/* Interlock with ttread(). */
    799 	mutex_spin_enter(&tty_lock);
    800 
    801 	/* Move process to requested group. */
    802 	LIST_REMOVE(p, p_pglist);
    803 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    804 		/* defer delete until we've dumped the lock */
    805 		pg_id = p->p_pgrp->pg_id;
    806 	p->p_pgrp = pgrp;
    807 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    808 
    809 	/* Done with the swap; we can release the tty mutex. */
    810 	mutex_spin_exit(&tty_lock);
    811 
    812     done:
    813 	if (pg_id != NO_PGID)
    814 		pg_delete(pg_id);
    815 	mutex_exit(proc_lock);
    816 	if (sess != NULL)
    817 		kmem_free(sess, sizeof(*sess));
    818 	if (new_pgrp != NULL)
    819 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    820 #ifdef DEBUG_PGRP
    821 	if (__predict_false(rval))
    822 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    823 			pid, pgid, mksess, curp->p_pid, rval);
    824 #endif
    825 	return rval;
    826 }
    827 
    828 /*
    829  * Remove a process from its process group.  Must be called with the
    830  * proc_lock held.
    831  */
    832 void
    833 leavepgrp(struct proc *p)
    834 {
    835 	struct pgrp *pgrp;
    836 
    837 	KASSERT(mutex_owned(proc_lock));
    838 
    839 	mutex_spin_enter(&tty_lock);
    840 	pgrp = p->p_pgrp;
    841 	LIST_REMOVE(p, p_pglist);
    842 	p->p_pgrp = NULL;
    843 	mutex_spin_exit(&tty_lock);
    844 
    845 	if (LIST_EMPTY(&pgrp->pg_members))
    846 		pg_delete(pgrp->pg_id);
    847 }
    848 
    849 /*
    850  * Free a process group.  Must be called with the proc_lock held.
    851  */
    852 static void
    853 pg_free(pid_t pg_id)
    854 {
    855 	struct pgrp *pgrp;
    856 	struct pid_table *pt;
    857 
    858 	KASSERT(mutex_owned(proc_lock));
    859 
    860 	pt = &pid_table[pg_id & pid_tbl_mask];
    861 	pgrp = pt->pt_pgrp;
    862 #ifdef DIAGNOSTIC
    863 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    864 	    || !LIST_EMPTY(&pgrp->pg_members)))
    865 		panic("pg_free: process group absent or has members");
    866 #endif
    867 	pt->pt_pgrp = 0;
    868 
    869 	if (!P_VALID(pt->pt_proc)) {
    870 		/* orphaned pgrp, put slot onto free list */
    871 #ifdef DIAGNOSTIC
    872 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    873 			panic("pg_free: process slot on free list");
    874 #endif
    875 		pg_id &= pid_tbl_mask;
    876 		pt = &pid_table[last_free_pt];
    877 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    878 		last_free_pt = pg_id;
    879 		pid_alloc_cnt--;
    880 	}
    881 	kmem_free(pgrp, sizeof(*pgrp));
    882 }
    883 
    884 /*
    885  * Delete a process group.  Must be called with the proc_lock held.
    886  */
    887 static void
    888 pg_delete(pid_t pg_id)
    889 {
    890 	struct pgrp *pgrp;
    891 	struct tty *ttyp;
    892 	struct session *ss;
    893 	int is_pgrp_leader;
    894 
    895 	KASSERT(mutex_owned(proc_lock));
    896 
    897 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    898 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    899 	    !LIST_EMPTY(&pgrp->pg_members))
    900 		return;
    901 
    902 	ss = pgrp->pg_session;
    903 
    904 	/* Remove reference (if any) from tty to this process group */
    905 	mutex_spin_enter(&tty_lock);
    906 	ttyp = ss->s_ttyp;
    907 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    908 		ttyp->t_pgrp = NULL;
    909 #ifdef DIAGNOSTIC
    910 		if (ttyp->t_session != ss)
    911 			panic("pg_delete: wrong session on terminal");
    912 #endif
    913 	}
    914 	mutex_spin_exit(&tty_lock);
    915 
    916 	/*
    917 	 * The leading process group in a session is freed
    918 	 * by sessdelete() if last reference.
    919 	 */
    920 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    921 	SESSRELE(ss);
    922 
    923 	if (is_pgrp_leader)
    924 		return;
    925 
    926 	pg_free(pg_id);
    927 }
    928 
    929 /*
    930  * Delete session - called from SESSRELE when s_count becomes zero.
    931  * Must be called with the proc_lock held.
    932  */
    933 void
    934 sessdelete(struct session *ss)
    935 {
    936 
    937 	KASSERT(mutex_owned(proc_lock));
    938 
    939 	/*
    940 	 * We keep the pgrp with the same id as the session in
    941 	 * order to stop a process being given the same pid.
    942 	 * Since the pgrp holds a reference to the session, it
    943 	 * must be a 'zombie' pgrp by now.
    944 	 */
    945 	pg_free(ss->s_sid);
    946 	kmem_free(ss, sizeof(*ss));
    947 }
    948 
    949 /*
    950  * Adjust pgrp jobc counters when specified process changes process group.
    951  * We count the number of processes in each process group that "qualify"
    952  * the group for terminal job control (those with a parent in a different
    953  * process group of the same session).  If that count reaches zero, the
    954  * process group becomes orphaned.  Check both the specified process'
    955  * process group and that of its children.
    956  * entering == 0 => p is leaving specified group.
    957  * entering == 1 => p is entering specified group.
    958  *
    959  * Call with proc_lock held.
    960  */
    961 void
    962 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    963 {
    964 	struct pgrp *hispgrp;
    965 	struct session *mysession = pgrp->pg_session;
    966 	struct proc *child;
    967 
    968 	KASSERT(mutex_owned(proc_lock));
    969 
    970 	/*
    971 	 * Check p's parent to see whether p qualifies its own process
    972 	 * group; if so, adjust count for p's process group.
    973 	 */
    974 	hispgrp = p->p_pptr->p_pgrp;
    975 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
    976 		if (entering) {
    977 			pgrp->pg_jobc++;
    978 			p->p_lflag &= ~PL_ORPHANPG;
    979 		} else if (--pgrp->pg_jobc == 0)
    980 			orphanpg(pgrp);
    981 	}
    982 
    983 	/*
    984 	 * Check this process' children to see whether they qualify
    985 	 * their process groups; if so, adjust counts for children's
    986 	 * process groups.
    987 	 */
    988 	LIST_FOREACH(child, &p->p_children, p_sibling) {
    989 		hispgrp = child->p_pgrp;
    990 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
    991 		    !P_ZOMBIE(child)) {
    992 			if (entering) {
    993 				child->p_lflag &= ~PL_ORPHANPG;
    994 				hispgrp->pg_jobc++;
    995 			} else if (--hispgrp->pg_jobc == 0)
    996 				orphanpg(hispgrp);
    997 		}
    998 	}
    999 }
   1000 
   1001 /*
   1002  * A process group has become orphaned;
   1003  * if there are any stopped processes in the group,
   1004  * hang-up all process in that group.
   1005  *
   1006  * Call with proc_lock held.
   1007  */
   1008 static void
   1009 orphanpg(struct pgrp *pg)
   1010 {
   1011 	struct proc *p;
   1012 	int doit;
   1013 
   1014 	KASSERT(mutex_owned(proc_lock));
   1015 
   1016 	doit = 0;
   1017 
   1018 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1019 		if (p->p_stat == SSTOP) {
   1020 			p->p_lflag |= PL_ORPHANPG;
   1021 			mutex_spin_exit(&tty_lock);
   1022 			psignal(p, SIGHUP);
   1023 			psignal(p, SIGCONT);
   1024 			mutex_spin_enter(&tty_lock);
   1025 		}
   1026 	}
   1027 }
   1028 
   1029 #ifdef DDB
   1030 #include <ddb/db_output.h>
   1031 void pidtbl_dump(void);
   1032 void
   1033 pidtbl_dump(void)
   1034 {
   1035 	struct pid_table *pt;
   1036 	struct proc *p;
   1037 	struct pgrp *pgrp;
   1038 	int id;
   1039 
   1040 	db_printf("pid table %p size %x, next %x, last %x\n",
   1041 		pid_table, pid_tbl_mask+1,
   1042 		next_free_pt, last_free_pt);
   1043 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1044 		p = pt->pt_proc;
   1045 		if (!P_VALID(p) && !pt->pt_pgrp)
   1046 			continue;
   1047 		db_printf("  id %x: ", id);
   1048 		if (P_VALID(p))
   1049 			db_printf("proc %p id %d (0x%x) %s\n",
   1050 				p, p->p_pid, p->p_pid, p->p_comm);
   1051 		else
   1052 			db_printf("next %x use %x\n",
   1053 				P_NEXT(p) & pid_tbl_mask,
   1054 				P_NEXT(p) & ~pid_tbl_mask);
   1055 		if ((pgrp = pt->pt_pgrp)) {
   1056 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1057 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1058 			    pgrp->pg_session->s_count,
   1059 			    pgrp->pg_session->s_login);
   1060 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1061 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1062 			    LIST_FIRST(&pgrp->pg_members));
   1063 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1064 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1065 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1066 			}
   1067 		}
   1068 	}
   1069 }
   1070 #endif /* DDB */
   1071 
   1072 #ifdef KSTACK_CHECK_MAGIC
   1073 #include <sys/user.h>
   1074 
   1075 #define	KSTACK_MAGIC	0xdeadbeaf
   1076 
   1077 /* XXX should be per process basis? */
   1078 int kstackleftmin = KSTACK_SIZE;
   1079 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1080 					  less than this */
   1081 
   1082 void
   1083 kstack_setup_magic(const struct lwp *l)
   1084 {
   1085 	uint32_t *ip;
   1086 	uint32_t const *end;
   1087 
   1088 	KASSERT(l != NULL);
   1089 	KASSERT(l != &lwp0);
   1090 
   1091 	/*
   1092 	 * fill all the stack with magic number
   1093 	 * so that later modification on it can be detected.
   1094 	 */
   1095 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1096 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1097 	for (; ip < end; ip++) {
   1098 		*ip = KSTACK_MAGIC;
   1099 	}
   1100 }
   1101 
   1102 void
   1103 kstack_check_magic(const struct lwp *l)
   1104 {
   1105 	uint32_t const *ip, *end;
   1106 	int stackleft;
   1107 
   1108 	KASSERT(l != NULL);
   1109 
   1110 	/* don't check proc0 */ /*XXX*/
   1111 	if (l == &lwp0)
   1112 		return;
   1113 
   1114 #ifdef __MACHINE_STACK_GROWS_UP
   1115 	/* stack grows upwards (eg. hppa) */
   1116 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1117 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1118 	for (ip--; ip >= end; ip--)
   1119 		if (*ip != KSTACK_MAGIC)
   1120 			break;
   1121 
   1122 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1123 #else /* __MACHINE_STACK_GROWS_UP */
   1124 	/* stack grows downwards (eg. i386) */
   1125 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1126 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1127 	for (; ip < end; ip++)
   1128 		if (*ip != KSTACK_MAGIC)
   1129 			break;
   1130 
   1131 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1132 #endif /* __MACHINE_STACK_GROWS_UP */
   1133 
   1134 	if (kstackleftmin > stackleft) {
   1135 		kstackleftmin = stackleft;
   1136 		if (stackleft < kstackleftthres)
   1137 			printf("warning: kernel stack left %d bytes"
   1138 			    "(pid %u:lid %u)\n", stackleft,
   1139 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1140 	}
   1141 
   1142 	if (stackleft <= 0) {
   1143 		panic("magic on the top of kernel stack changed for "
   1144 		    "pid %u, lid %u: maybe kernel stack overflow",
   1145 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1146 	}
   1147 }
   1148 #endif /* KSTACK_CHECK_MAGIC */
   1149 
   1150 int
   1151 proclist_foreach_call(struct proclist *list,
   1152     int (*callback)(struct proc *, void *arg), void *arg)
   1153 {
   1154 	struct proc marker;
   1155 	struct proc *p;
   1156 	struct lwp * const l = curlwp;
   1157 	int ret = 0;
   1158 
   1159 	marker.p_flag = PK_MARKER;
   1160 	uvm_lwp_hold(l);
   1161 	mutex_enter(proc_lock);
   1162 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1163 		if (p->p_flag & PK_MARKER) {
   1164 			p = LIST_NEXT(p, p_list);
   1165 			continue;
   1166 		}
   1167 		LIST_INSERT_AFTER(p, &marker, p_list);
   1168 		ret = (*callback)(p, arg);
   1169 		KASSERT(mutex_owned(proc_lock));
   1170 		p = LIST_NEXT(&marker, p_list);
   1171 		LIST_REMOVE(&marker, p_list);
   1172 	}
   1173 	mutex_exit(proc_lock);
   1174 	uvm_lwp_rele(l);
   1175 
   1176 	return ret;
   1177 }
   1178 
   1179 int
   1180 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1181 {
   1182 
   1183 	/* XXXCDC: how should locking work here? */
   1184 
   1185 	/* curproc exception is for coredump. */
   1186 
   1187 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1188 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1189 		return EFAULT;
   1190 	}
   1191 
   1192 	uvmspace_addref(p->p_vmspace);
   1193 	*vm = p->p_vmspace;
   1194 
   1195 	return 0;
   1196 }
   1197 
   1198 /*
   1199  * Acquire a write lock on the process credential.
   1200  */
   1201 void
   1202 proc_crmod_enter(void)
   1203 {
   1204 	struct lwp *l = curlwp;
   1205 	struct proc *p = l->l_proc;
   1206 	struct plimit *lim;
   1207 	kauth_cred_t oc;
   1208 	char *cn;
   1209 
   1210 	/* Reset what needs to be reset in plimit. */
   1211 	if (p->p_limit->pl_corename != defcorename) {
   1212 		lim_privatise(p, false);
   1213 		lim = p->p_limit;
   1214 		mutex_enter(&lim->pl_lock);
   1215 		cn = lim->pl_corename;
   1216 		lim->pl_corename = defcorename;
   1217 		mutex_exit(&lim->pl_lock);
   1218 		if (cn != defcorename)
   1219 			free(cn, M_TEMP);
   1220 	}
   1221 
   1222 	mutex_enter(p->p_lock);
   1223 
   1224 	/* Ensure the LWP cached credentials are up to date. */
   1225 	if ((oc = l->l_cred) != p->p_cred) {
   1226 		kauth_cred_hold(p->p_cred);
   1227 		l->l_cred = p->p_cred;
   1228 		kauth_cred_free(oc);
   1229 	}
   1230 
   1231 }
   1232 
   1233 /*
   1234  * Set in a new process credential, and drop the write lock.  The credential
   1235  * must have a reference already.  Optionally, free a no-longer required
   1236  * credential.  The scheduler also needs to inspect p_cred, so we also
   1237  * briefly acquire the sched state mutex.
   1238  */
   1239 void
   1240 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1241 {
   1242 	struct lwp *l = curlwp, *l2;
   1243 	struct proc *p = l->l_proc;
   1244 	kauth_cred_t oc;
   1245 
   1246 	KASSERT(mutex_owned(p->p_lock));
   1247 
   1248 	/* Is there a new credential to set in? */
   1249 	if (scred != NULL) {
   1250 		p->p_cred = scred;
   1251 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1252 			if (l2 != l)
   1253 				l2->l_prflag |= LPR_CRMOD;
   1254 		}
   1255 
   1256 		/* Ensure the LWP cached credentials are up to date. */
   1257 		if ((oc = l->l_cred) != scred) {
   1258 			kauth_cred_hold(scred);
   1259 			l->l_cred = scred;
   1260 		}
   1261 	} else
   1262 		oc = NULL;	/* XXXgcc */
   1263 
   1264 	if (sugid) {
   1265 		/*
   1266 		 * Mark process as having changed credentials, stops
   1267 		 * tracing etc.
   1268 		 */
   1269 		p->p_flag |= PK_SUGID;
   1270 	}
   1271 
   1272 	mutex_exit(p->p_lock);
   1273 
   1274 	/* If there is a credential to be released, free it now. */
   1275 	if (fcred != NULL) {
   1276 		KASSERT(scred != NULL);
   1277 		kauth_cred_free(fcred);
   1278 		if (oc != scred)
   1279 			kauth_cred_free(oc);
   1280 	}
   1281 }
   1282 
   1283 /*
   1284  * proc_specific_key_create --
   1285  *	Create a key for subsystem proc-specific data.
   1286  */
   1287 int
   1288 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1289 {
   1290 
   1291 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1292 }
   1293 
   1294 /*
   1295  * proc_specific_key_delete --
   1296  *	Delete a key for subsystem proc-specific data.
   1297  */
   1298 void
   1299 proc_specific_key_delete(specificdata_key_t key)
   1300 {
   1301 
   1302 	specificdata_key_delete(proc_specificdata_domain, key);
   1303 }
   1304 
   1305 /*
   1306  * proc_initspecific --
   1307  *	Initialize a proc's specificdata container.
   1308  */
   1309 void
   1310 proc_initspecific(struct proc *p)
   1311 {
   1312 	int error;
   1313 
   1314 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1315 	KASSERT(error == 0);
   1316 }
   1317 
   1318 /*
   1319  * proc_finispecific --
   1320  *	Finalize a proc's specificdata container.
   1321  */
   1322 void
   1323 proc_finispecific(struct proc *p)
   1324 {
   1325 
   1326 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1327 }
   1328 
   1329 /*
   1330  * proc_getspecific --
   1331  *	Return proc-specific data corresponding to the specified key.
   1332  */
   1333 void *
   1334 proc_getspecific(struct proc *p, specificdata_key_t key)
   1335 {
   1336 
   1337 	return (specificdata_getspecific(proc_specificdata_domain,
   1338 					 &p->p_specdataref, key));
   1339 }
   1340 
   1341 /*
   1342  * proc_setspecific --
   1343  *	Set proc-specific data corresponding to the specified key.
   1344  */
   1345 void
   1346 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1347 {
   1348 
   1349 	specificdata_setspecific(proc_specificdata_domain,
   1350 				 &p->p_specdataref, key, data);
   1351 }
   1352