kern_proc.c revision 1.139.2.2 1 /* $NetBSD: kern_proc.c,v 1.139.2.2 2009/05/04 08:13:47 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.139.2.2 2009/05/04 08:13:47 yamt Exp $");
66
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/pool.h>
82 #include <sys/pset.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/tty.h>
86 #include <sys/signalvar.h>
87 #include <sys/ras.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/filedesc.h>
91 #include "sys/syscall_stats.h"
92 #include <sys/kauth.h>
93 #include <sys/sleepq.h>
94 #include <sys/atomic.h>
95 #include <sys/kmem.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_extern.h>
99
100 /*
101 * Other process lists
102 */
103
104 struct proclist allproc;
105 struct proclist zombproc; /* resources have been freed */
106
107 kmutex_t *proc_lock;
108
109 /*
110 * pid to proc lookup is done by indexing the pid_table array.
111 * Since pid numbers are only allocated when an empty slot
112 * has been found, there is no need to search any lists ever.
113 * (an orphaned pgrp will lock the slot, a session will lock
114 * the pgrp with the same number.)
115 * If the table is too small it is reallocated with twice the
116 * previous size and the entries 'unzipped' into the two halves.
117 * A linked list of free entries is passed through the pt_proc
118 * field of 'free' items - set odd to be an invalid ptr.
119 */
120
121 struct pid_table {
122 struct proc *pt_proc;
123 struct pgrp *pt_pgrp;
124 };
125 #if 1 /* strongly typed cast - should be a noop */
126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
127 #else
128 #define p2u(p) ((uint)p)
129 #endif
130 #define P_VALID(p) (!(p2u(p) & 1))
131 #define P_NEXT(p) (p2u(p) >> 1)
132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
133
134 #define INITIAL_PID_TABLE_SIZE (1 << 5)
135 static struct pid_table *pid_table;
136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
137 static uint pid_alloc_lim; /* max we allocate before growing table */
138 static uint pid_alloc_cnt; /* number of allocated pids */
139
140 /* links through free slots - never empty! */
141 static uint next_free_pt, last_free_pt;
142 static pid_t pid_max = PID_MAX; /* largest value we allocate */
143
144 /* Components of the first process -- never freed. */
145
146 extern struct emul emul_netbsd; /* defined in kern_exec.c */
147
148 struct session session0 = {
149 .s_count = 1,
150 .s_sid = 0,
151 };
152 struct pgrp pgrp0 = {
153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
154 .pg_session = &session0,
155 };
156 filedesc_t filedesc0;
157 struct cwdinfo cwdi0 = {
158 .cwdi_cmask = CMASK, /* see cmask below */
159 .cwdi_refcnt = 1,
160 };
161 struct plimit limit0;
162 struct pstats pstat0;
163 struct vmspace vmspace0;
164 struct sigacts sigacts0;
165 struct turnstile turnstile0;
166 struct proc proc0 = {
167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
169 .p_nlwps = 1,
170 .p_nrlwps = 1,
171 .p_nlwpid = 1, /* must match lwp0.l_lid */
172 .p_pgrp = &pgrp0,
173 .p_comm = "system",
174 /*
175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
176 * when they exit. init(8) can easily wait them out for us.
177 */
178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
179 .p_stat = SACTIVE,
180 .p_nice = NZERO,
181 .p_emul = &emul_netbsd,
182 .p_cwdi = &cwdi0,
183 .p_limit = &limit0,
184 .p_fd = &filedesc0,
185 .p_vmspace = &vmspace0,
186 .p_stats = &pstat0,
187 .p_sigacts = &sigacts0,
188 };
189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
190 #ifdef LWP0_CPU_INFO
191 .l_cpu = LWP0_CPU_INFO,
192 #endif
193 .l_proc = &proc0,
194 .l_lid = 1,
195 .l_flag = LW_INMEM | LW_SYSTEM,
196 .l_stat = LSONPROC,
197 .l_ts = &turnstile0,
198 .l_syncobj = &sched_syncobj,
199 .l_refcnt = 1,
200 .l_priority = PRI_USER + NPRI_USER - 1,
201 .l_inheritedprio = -1,
202 .l_class = SCHED_OTHER,
203 .l_psid = PS_NONE,
204 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
205 .l_name = __UNCONST("swapper"),
206 };
207 kauth_cred_t cred0;
208
209 extern struct user *proc0paddr;
210
211 int nofile = NOFILE;
212 int maxuprc = MAXUPRC;
213 int cmask = CMASK;
214
215 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
216 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
217
218 /*
219 * The process list descriptors, used during pid allocation and
220 * by sysctl. No locking on this data structure is needed since
221 * it is completely static.
222 */
223 const struct proclist_desc proclists[] = {
224 { &allproc },
225 { &zombproc },
226 { NULL },
227 };
228
229 static struct pgrp * pg_remove(pid_t);
230 static void pg_delete(pid_t);
231 static void orphanpg(struct pgrp *);
232
233 static specificdata_domain_t proc_specificdata_domain;
234
235 static pool_cache_t proc_cache;
236
237 /*
238 * Initialize global process hashing structures.
239 */
240 void
241 procinit(void)
242 {
243 const struct proclist_desc *pd;
244 u_int i;
245 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
246
247 for (pd = proclists; pd->pd_list != NULL; pd++)
248 LIST_INIT(pd->pd_list);
249
250 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
251 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
252 * sizeof(struct pid_table), KM_SLEEP);
253
254 /* Set free list running through table...
255 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
256 for (i = 0; i <= pid_tbl_mask; i++) {
257 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
258 pid_table[i].pt_pgrp = 0;
259 }
260 /* slot 0 is just grabbed */
261 next_free_pt = 1;
262 /* Need to fix last entry. */
263 last_free_pt = pid_tbl_mask;
264 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
265 /* point at which we grow table - to avoid reusing pids too often */
266 pid_alloc_lim = pid_tbl_mask - 1;
267 #undef LINK_EMPTY
268
269 proc_specificdata_domain = specificdata_domain_create();
270 KASSERT(proc_specificdata_domain != NULL);
271
272 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
273 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
274 }
275
276 /*
277 * Initialize process 0.
278 */
279 void
280 proc0_init(void)
281 {
282 struct proc *p;
283 struct pgrp *pg;
284 struct session *sess;
285 struct lwp *l;
286 rlim_t lim;
287 int i;
288
289 p = &proc0;
290 pg = &pgrp0;
291 sess = &session0;
292 l = &lwp0;
293
294 KASSERT(l->l_lid == p->p_nlwpid);
295
296 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
297 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
298 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
299 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
300
301 rw_init(&p->p_reflock);
302 cv_init(&p->p_waitcv, "wait");
303 cv_init(&p->p_lwpcv, "lwpwait");
304
305 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
306
307 pid_table[0].pt_proc = p;
308 LIST_INSERT_HEAD(&allproc, p, p_list);
309 LIST_INSERT_HEAD(&alllwp, l, l_list);
310
311 pid_table[0].pt_pgrp = pg;
312 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
313
314 #ifdef __HAVE_SYSCALL_INTERN
315 (*p->p_emul->e_syscall_intern)(p);
316 #endif
317
318 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
319 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
320 cv_init(&l->l_sigcv, "sigwait");
321
322 /* Create credentials. */
323 cred0 = kauth_cred_alloc();
324 p->p_cred = cred0;
325 kauth_cred_hold(cred0);
326 l->l_cred = cred0;
327
328 /* Create the CWD info. */
329 rw_init(&cwdi0.cwdi_lock);
330
331 /* Create the limits structures. */
332 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
333 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
334 limit0.pl_rlimit[i].rlim_cur =
335 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
336
337 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
338 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
339 maxfiles < nofile ? maxfiles : nofile;
340
341 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
342 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
343 maxproc < maxuprc ? maxproc : maxuprc;
344
345 lim = ptoa(uvmexp.free);
346 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
347 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
348 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
349 limit0.pl_corename = defcorename;
350 limit0.pl_refcnt = 1;
351 limit0.pl_sv_limit = NULL;
352
353 /* Configure virtual memory system, set vm rlimits. */
354 uvm_init_limits(p);
355
356 /* Initialize file descriptor table for proc0. */
357 fd_init(&filedesc0);
358
359 /*
360 * Initialize proc0's vmspace, which uses the kernel pmap.
361 * All kernel processes (which never have user space mappings)
362 * share proc0's vmspace, and thus, the kernel pmap.
363 */
364 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
365 trunc_page(VM_MAX_ADDRESS));
366
367 l->l_addr = proc0paddr; /* XXX */
368
369 /* Initialize signal state for proc0. XXX IPL_SCHED */
370 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
371 siginit(p);
372
373 proc_initspecific(p);
374 lwp_initspecific(l);
375
376 SYSCALL_TIME_LWP_INIT(l);
377 }
378
379 /*
380 * Session reference counting.
381 */
382
383 void
384 proc_sesshold(struct session *ss)
385 {
386
387 KASSERT(mutex_owned(proc_lock));
388 ss->s_count++;
389 }
390
391 void
392 proc_sessrele(struct session *ss)
393 {
394
395 KASSERT(mutex_owned(proc_lock));
396 /*
397 * We keep the pgrp with the same id as the session in order to
398 * stop a process being given the same pid. Since the pgrp holds
399 * a reference to the session, it must be a 'zombie' pgrp by now.
400 */
401 if (--ss->s_count == 0) {
402 struct pgrp *pg;
403
404 pg = pg_remove(ss->s_sid);
405 mutex_exit(proc_lock);
406
407 kmem_free(pg, sizeof(struct pgrp));
408 kmem_free(ss, sizeof(struct session));
409 } else {
410 mutex_exit(proc_lock);
411 }
412 }
413
414 /*
415 * Check that the specified process group is in the session of the
416 * specified process.
417 * Treats -ve ids as process ids.
418 * Used to validate TIOCSPGRP requests.
419 */
420 int
421 pgid_in_session(struct proc *p, pid_t pg_id)
422 {
423 struct pgrp *pgrp;
424 struct session *session;
425 int error;
426
427 mutex_enter(proc_lock);
428 if (pg_id < 0) {
429 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
430 if (p1 == NULL)
431 return EINVAL;
432 pgrp = p1->p_pgrp;
433 } else {
434 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
435 if (pgrp == NULL)
436 return EINVAL;
437 }
438 session = pgrp->pg_session;
439 if (session != p->p_pgrp->pg_session)
440 error = EPERM;
441 else
442 error = 0;
443 mutex_exit(proc_lock);
444
445 return error;
446 }
447
448 /*
449 * p_inferior: is p an inferior of q?
450 */
451 static inline bool
452 p_inferior(struct proc *p, struct proc *q)
453 {
454
455 KASSERT(mutex_owned(proc_lock));
456
457 for (; p != q; p = p->p_pptr)
458 if (p->p_pid == 0)
459 return false;
460 return true;
461 }
462
463 /*
464 * Locate a process by number
465 */
466 struct proc *
467 p_find(pid_t pid, uint flags)
468 {
469 struct proc *p;
470 char stat;
471
472 if (!(flags & PFIND_LOCKED))
473 mutex_enter(proc_lock);
474
475 p = pid_table[pid & pid_tbl_mask].pt_proc;
476
477 /* Only allow live processes to be found by pid. */
478 /* XXXSMP p_stat */
479 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
480 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
481 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
482 if (flags & PFIND_UNLOCK_OK)
483 mutex_exit(proc_lock);
484 return p;
485 }
486 if (flags & PFIND_UNLOCK_FAIL)
487 mutex_exit(proc_lock);
488 return NULL;
489 }
490
491
492 /*
493 * Locate a process group by number
494 */
495 struct pgrp *
496 pg_find(pid_t pgid, uint flags)
497 {
498 struct pgrp *pg;
499
500 if (!(flags & PFIND_LOCKED))
501 mutex_enter(proc_lock);
502 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
503 /*
504 * Can't look up a pgrp that only exists because the session
505 * hasn't died yet (traditional)
506 */
507 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
508 if (flags & PFIND_UNLOCK_FAIL)
509 mutex_exit(proc_lock);
510 return NULL;
511 }
512
513 if (flags & PFIND_UNLOCK_OK)
514 mutex_exit(proc_lock);
515 return pg;
516 }
517
518 static void
519 expand_pid_table(void)
520 {
521 size_t pt_size, tsz;
522 struct pid_table *n_pt, *new_pt;
523 struct proc *proc;
524 struct pgrp *pgrp;
525 pid_t pid;
526 u_int i;
527
528 pt_size = pid_tbl_mask + 1;
529 tsz = pt_size * 2 * sizeof(struct pid_table);
530 new_pt = kmem_alloc(tsz, KM_SLEEP);
531
532 mutex_enter(proc_lock);
533 if (pt_size != pid_tbl_mask + 1) {
534 /* Another process beat us to it... */
535 mutex_exit(proc_lock);
536 kmem_free(new_pt, tsz);
537 return;
538 }
539
540 /*
541 * Copy entries from old table into new one.
542 * If 'pid' is 'odd' we need to place in the upper half,
543 * even pid's to the lower half.
544 * Free items stay in the low half so we don't have to
545 * fixup the reference to them.
546 * We stuff free items on the front of the freelist
547 * because we can't write to unmodified entries.
548 * Processing the table backwards maintains a semblance
549 * of issueing pid numbers that increase with time.
550 */
551 i = pt_size - 1;
552 n_pt = new_pt + i;
553 for (; ; i--, n_pt--) {
554 proc = pid_table[i].pt_proc;
555 pgrp = pid_table[i].pt_pgrp;
556 if (!P_VALID(proc)) {
557 /* Up 'use count' so that link is valid */
558 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
559 proc = P_FREE(pid);
560 if (pgrp)
561 pid = pgrp->pg_id;
562 } else
563 pid = proc->p_pid;
564
565 /* Save entry in appropriate half of table */
566 n_pt[pid & pt_size].pt_proc = proc;
567 n_pt[pid & pt_size].pt_pgrp = pgrp;
568
569 /* Put other piece on start of free list */
570 pid = (pid ^ pt_size) & ~pid_tbl_mask;
571 n_pt[pid & pt_size].pt_proc =
572 P_FREE((pid & ~pt_size) | next_free_pt);
573 n_pt[pid & pt_size].pt_pgrp = 0;
574 next_free_pt = i | (pid & pt_size);
575 if (i == 0)
576 break;
577 }
578
579 /* Save old table size and switch tables */
580 tsz = pt_size * sizeof(struct pid_table);
581 n_pt = pid_table;
582 pid_table = new_pt;
583 pid_tbl_mask = pt_size * 2 - 1;
584
585 /*
586 * pid_max starts as PID_MAX (= 30000), once we have 16384
587 * allocated pids we need it to be larger!
588 */
589 if (pid_tbl_mask > PID_MAX) {
590 pid_max = pid_tbl_mask * 2 + 1;
591 pid_alloc_lim |= pid_alloc_lim << 1;
592 } else
593 pid_alloc_lim <<= 1; /* doubles number of free slots... */
594
595 mutex_exit(proc_lock);
596 kmem_free(n_pt, tsz);
597 }
598
599 struct proc *
600 proc_alloc(void)
601 {
602 struct proc *p;
603 int nxt;
604 pid_t pid;
605 struct pid_table *pt;
606
607 p = pool_cache_get(proc_cache, PR_WAITOK);
608 p->p_stat = SIDL; /* protect against others */
609
610 proc_initspecific(p);
611 /* allocate next free pid */
612
613 for (;;expand_pid_table()) {
614 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
615 /* ensure pids cycle through 2000+ values */
616 continue;
617 mutex_enter(proc_lock);
618 pt = &pid_table[next_free_pt];
619 #ifdef DIAGNOSTIC
620 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
621 panic("proc_alloc: slot busy");
622 #endif
623 nxt = P_NEXT(pt->pt_proc);
624 if (nxt & pid_tbl_mask)
625 break;
626 /* Table full - expand (NB last entry not used....) */
627 mutex_exit(proc_lock);
628 }
629
630 /* pid is 'saved use count' + 'size' + entry */
631 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
632 if ((uint)pid > (uint)pid_max)
633 pid &= pid_tbl_mask;
634 p->p_pid = pid;
635 next_free_pt = nxt & pid_tbl_mask;
636
637 /* Grab table slot */
638 pt->pt_proc = p;
639 pid_alloc_cnt++;
640
641 mutex_exit(proc_lock);
642
643 return p;
644 }
645
646 /*
647 * Free a process id - called from proc_free (in kern_exit.c)
648 *
649 * Called with the proc_lock held.
650 */
651 void
652 proc_free_pid(struct proc *p)
653 {
654 pid_t pid = p->p_pid;
655 struct pid_table *pt;
656
657 KASSERT(mutex_owned(proc_lock));
658
659 pt = &pid_table[pid & pid_tbl_mask];
660 #ifdef DIAGNOSTIC
661 if (__predict_false(pt->pt_proc != p))
662 panic("proc_free: pid_table mismatch, pid %x, proc %p",
663 pid, p);
664 #endif
665 /* save pid use count in slot */
666 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
667
668 if (pt->pt_pgrp == NULL) {
669 /* link last freed entry onto ours */
670 pid &= pid_tbl_mask;
671 pt = &pid_table[last_free_pt];
672 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
673 last_free_pt = pid;
674 pid_alloc_cnt--;
675 }
676
677 atomic_dec_uint(&nprocs);
678 }
679
680 void
681 proc_free_mem(struct proc *p)
682 {
683
684 pool_cache_put(proc_cache, p);
685 }
686
687 /*
688 * proc_enterpgrp: move p to a new or existing process group (and session).
689 *
690 * If we are creating a new pgrp, the pgid should equal
691 * the calling process' pid.
692 * If is only valid to enter a process group that is in the session
693 * of the process.
694 * Also mksess should only be set if we are creating a process group
695 *
696 * Only called from sys_setsid and sys_setpgid.
697 */
698 int
699 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
700 {
701 struct pgrp *new_pgrp, *pgrp;
702 struct session *sess;
703 struct proc *p;
704 int rval;
705 pid_t pg_id = NO_PGID;
706
707 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
708
709 /* Allocate data areas we might need before doing any validity checks */
710 mutex_enter(proc_lock); /* Because pid_table might change */
711 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
712 mutex_exit(proc_lock);
713 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
714 mutex_enter(proc_lock);
715 } else
716 new_pgrp = NULL;
717 rval = EPERM; /* most common error (to save typing) */
718
719 /* Check pgrp exists or can be created */
720 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
721 if (pgrp != NULL && pgrp->pg_id != pgid)
722 goto done;
723
724 /* Can only set another process under restricted circumstances. */
725 if (pid != curp->p_pid) {
726 /* must exist and be one of our children... */
727 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
728 !p_inferior(p, curp)) {
729 rval = ESRCH;
730 goto done;
731 }
732 /* ... in the same session... */
733 if (sess != NULL || p->p_session != curp->p_session)
734 goto done;
735 /* ... existing pgid must be in same session ... */
736 if (pgrp != NULL && pgrp->pg_session != p->p_session)
737 goto done;
738 /* ... and not done an exec. */
739 if (p->p_flag & PK_EXEC) {
740 rval = EACCES;
741 goto done;
742 }
743 } else {
744 /* ... setsid() cannot re-enter a pgrp */
745 if (mksess && (curp->p_pgid == curp->p_pid ||
746 pg_find(curp->p_pid, PFIND_LOCKED)))
747 goto done;
748 p = curp;
749 }
750
751 /* Changing the process group/session of a session
752 leader is definitely off limits. */
753 if (SESS_LEADER(p)) {
754 if (sess == NULL && p->p_pgrp == pgrp)
755 /* unless it's a definite noop */
756 rval = 0;
757 goto done;
758 }
759
760 /* Can only create a process group with id of process */
761 if (pgrp == NULL && pgid != pid)
762 goto done;
763
764 /* Can only create a session if creating pgrp */
765 if (sess != NULL && pgrp != NULL)
766 goto done;
767
768 /* Check we allocated memory for a pgrp... */
769 if (pgrp == NULL && new_pgrp == NULL)
770 goto done;
771
772 /* Don't attach to 'zombie' pgrp */
773 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
774 goto done;
775
776 /* Expect to succeed now */
777 rval = 0;
778
779 if (pgrp == p->p_pgrp)
780 /* nothing to do */
781 goto done;
782
783 /* Ok all setup, link up required structures */
784
785 if (pgrp == NULL) {
786 pgrp = new_pgrp;
787 new_pgrp = NULL;
788 if (sess != NULL) {
789 sess->s_sid = p->p_pid;
790 sess->s_leader = p;
791 sess->s_count = 1;
792 sess->s_ttyvp = NULL;
793 sess->s_ttyp = NULL;
794 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
795 memcpy(sess->s_login, p->p_session->s_login,
796 sizeof(sess->s_login));
797 p->p_lflag &= ~PL_CONTROLT;
798 } else {
799 sess = p->p_pgrp->pg_session;
800 proc_sesshold(sess);
801 }
802 pgrp->pg_session = sess;
803 sess = NULL;
804
805 pgrp->pg_id = pgid;
806 LIST_INIT(&pgrp->pg_members);
807 #ifdef DIAGNOSTIC
808 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
809 panic("enterpgrp: pgrp table slot in use");
810 if (__predict_false(mksess && p != curp))
811 panic("enterpgrp: mksession and p != curproc");
812 #endif
813 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
814 pgrp->pg_jobc = 0;
815 }
816
817 /*
818 * Adjust eligibility of affected pgrps to participate in job control.
819 * Increment eligibility counts before decrementing, otherwise we
820 * could reach 0 spuriously during the first call.
821 */
822 fixjobc(p, pgrp, 1);
823 fixjobc(p, p->p_pgrp, 0);
824
825 /* Interlock with ttread(). */
826 mutex_spin_enter(&tty_lock);
827
828 /* Move process to requested group. */
829 LIST_REMOVE(p, p_pglist);
830 if (LIST_EMPTY(&p->p_pgrp->pg_members))
831 /* defer delete until we've dumped the lock */
832 pg_id = p->p_pgrp->pg_id;
833 p->p_pgrp = pgrp;
834 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
835
836 /* Done with the swap; we can release the tty mutex. */
837 mutex_spin_exit(&tty_lock);
838
839 done:
840 if (pg_id != NO_PGID) {
841 /* Releases proc_lock. */
842 pg_delete(pg_id);
843 } else {
844 mutex_exit(proc_lock);
845 }
846 if (sess != NULL)
847 kmem_free(sess, sizeof(*sess));
848 if (new_pgrp != NULL)
849 kmem_free(new_pgrp, sizeof(*new_pgrp));
850 #ifdef DEBUG_PGRP
851 if (__predict_false(rval))
852 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
853 pid, pgid, mksess, curp->p_pid, rval);
854 #endif
855 return rval;
856 }
857
858 /*
859 * proc_leavepgrp: remove a process from its process group.
860 * => must be called with the proc_lock held, which will be released;
861 */
862 void
863 proc_leavepgrp(struct proc *p)
864 {
865 struct pgrp *pgrp;
866
867 KASSERT(mutex_owned(proc_lock));
868
869 /* Interlock with ttread() */
870 mutex_spin_enter(&tty_lock);
871 pgrp = p->p_pgrp;
872 LIST_REMOVE(p, p_pglist);
873 p->p_pgrp = NULL;
874 mutex_spin_exit(&tty_lock);
875
876 if (LIST_EMPTY(&pgrp->pg_members)) {
877 /* Releases proc_lock. */
878 pg_delete(pgrp->pg_id);
879 } else {
880 mutex_exit(proc_lock);
881 }
882 }
883
884 /*
885 * pg_remove: remove a process group from the table.
886 * => must be called with the proc_lock held;
887 * => returns process group to free;
888 */
889 static struct pgrp *
890 pg_remove(pid_t pg_id)
891 {
892 struct pgrp *pgrp;
893 struct pid_table *pt;
894
895 KASSERT(mutex_owned(proc_lock));
896
897 pt = &pid_table[pg_id & pid_tbl_mask];
898 pgrp = pt->pt_pgrp;
899
900 KASSERT(pgrp != NULL);
901 KASSERT(pgrp->pg_id == pg_id);
902 KASSERT(LIST_EMPTY(&pgrp->pg_members));
903
904 pt->pt_pgrp = NULL;
905
906 if (!P_VALID(pt->pt_proc)) {
907 /* Orphaned pgrp, put slot onto free list. */
908 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
909 pg_id &= pid_tbl_mask;
910 pt = &pid_table[last_free_pt];
911 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
912 last_free_pt = pg_id;
913 pid_alloc_cnt--;
914 }
915 return pgrp;
916 }
917
918 /*
919 * pg_delete: delete and free a process group.
920 * => must be called with the proc_lock held, which will be released.
921 */
922 static void
923 pg_delete(pid_t pg_id)
924 {
925 struct pgrp *pg;
926 struct tty *ttyp;
927 struct session *ss;
928
929 KASSERT(mutex_owned(proc_lock));
930
931 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
932 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
933 mutex_exit(proc_lock);
934 return;
935 }
936
937 ss = pg->pg_session;
938
939 /* Remove reference (if any) from tty to this process group */
940 mutex_spin_enter(&tty_lock);
941 ttyp = ss->s_ttyp;
942 if (ttyp != NULL && ttyp->t_pgrp == pg) {
943 ttyp->t_pgrp = NULL;
944 KASSERT(ttyp->t_session == ss);
945 }
946 mutex_spin_exit(&tty_lock);
947
948 /*
949 * The leading process group in a session is freed by proc_sessrele(),
950 * if last reference. Note: proc_sessrele() releases proc_lock.
951 */
952 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
953 proc_sessrele(ss);
954
955 if (pg != NULL) {
956 /* Free it, if was not done by proc_sessrele(). */
957 kmem_free(pg, sizeof(struct pgrp));
958 }
959 }
960
961 /*
962 * Adjust pgrp jobc counters when specified process changes process group.
963 * We count the number of processes in each process group that "qualify"
964 * the group for terminal job control (those with a parent in a different
965 * process group of the same session). If that count reaches zero, the
966 * process group becomes orphaned. Check both the specified process'
967 * process group and that of its children.
968 * entering == 0 => p is leaving specified group.
969 * entering == 1 => p is entering specified group.
970 *
971 * Call with proc_lock held.
972 */
973 void
974 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
975 {
976 struct pgrp *hispgrp;
977 struct session *mysession = pgrp->pg_session;
978 struct proc *child;
979
980 KASSERT(mutex_owned(proc_lock));
981
982 /*
983 * Check p's parent to see whether p qualifies its own process
984 * group; if so, adjust count for p's process group.
985 */
986 hispgrp = p->p_pptr->p_pgrp;
987 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
988 if (entering) {
989 pgrp->pg_jobc++;
990 p->p_lflag &= ~PL_ORPHANPG;
991 } else if (--pgrp->pg_jobc == 0)
992 orphanpg(pgrp);
993 }
994
995 /*
996 * Check this process' children to see whether they qualify
997 * their process groups; if so, adjust counts for children's
998 * process groups.
999 */
1000 LIST_FOREACH(child, &p->p_children, p_sibling) {
1001 hispgrp = child->p_pgrp;
1002 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1003 !P_ZOMBIE(child)) {
1004 if (entering) {
1005 child->p_lflag &= ~PL_ORPHANPG;
1006 hispgrp->pg_jobc++;
1007 } else if (--hispgrp->pg_jobc == 0)
1008 orphanpg(hispgrp);
1009 }
1010 }
1011 }
1012
1013 /*
1014 * A process group has become orphaned;
1015 * if there are any stopped processes in the group,
1016 * hang-up all process in that group.
1017 *
1018 * Call with proc_lock held.
1019 */
1020 static void
1021 orphanpg(struct pgrp *pg)
1022 {
1023 struct proc *p;
1024 int doit;
1025
1026 KASSERT(mutex_owned(proc_lock));
1027
1028 doit = 0;
1029
1030 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1031 if (p->p_stat == SSTOP) {
1032 p->p_lflag |= PL_ORPHANPG;
1033 psignal(p, SIGHUP);
1034 psignal(p, SIGCONT);
1035 }
1036 }
1037 }
1038
1039 #ifdef DDB
1040 #include <ddb/db_output.h>
1041 void pidtbl_dump(void);
1042 void
1043 pidtbl_dump(void)
1044 {
1045 struct pid_table *pt;
1046 struct proc *p;
1047 struct pgrp *pgrp;
1048 int id;
1049
1050 db_printf("pid table %p size %x, next %x, last %x\n",
1051 pid_table, pid_tbl_mask+1,
1052 next_free_pt, last_free_pt);
1053 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1054 p = pt->pt_proc;
1055 if (!P_VALID(p) && !pt->pt_pgrp)
1056 continue;
1057 db_printf(" id %x: ", id);
1058 if (P_VALID(p))
1059 db_printf("proc %p id %d (0x%x) %s\n",
1060 p, p->p_pid, p->p_pid, p->p_comm);
1061 else
1062 db_printf("next %x use %x\n",
1063 P_NEXT(p) & pid_tbl_mask,
1064 P_NEXT(p) & ~pid_tbl_mask);
1065 if ((pgrp = pt->pt_pgrp)) {
1066 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1067 pgrp->pg_session, pgrp->pg_session->s_sid,
1068 pgrp->pg_session->s_count,
1069 pgrp->pg_session->s_login);
1070 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1071 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1072 LIST_FIRST(&pgrp->pg_members));
1073 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1074 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1075 p->p_pid, p, p->p_pgrp, p->p_comm);
1076 }
1077 }
1078 }
1079 }
1080 #endif /* DDB */
1081
1082 #ifdef KSTACK_CHECK_MAGIC
1083 #include <sys/user.h>
1084
1085 #define KSTACK_MAGIC 0xdeadbeaf
1086
1087 /* XXX should be per process basis? */
1088 static int kstackleftmin = KSTACK_SIZE;
1089 static int kstackleftthres = KSTACK_SIZE / 8;
1090
1091 void
1092 kstack_setup_magic(const struct lwp *l)
1093 {
1094 uint32_t *ip;
1095 uint32_t const *end;
1096
1097 KASSERT(l != NULL);
1098 KASSERT(l != &lwp0);
1099
1100 /*
1101 * fill all the stack with magic number
1102 * so that later modification on it can be detected.
1103 */
1104 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1105 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1106 for (; ip < end; ip++) {
1107 *ip = KSTACK_MAGIC;
1108 }
1109 }
1110
1111 void
1112 kstack_check_magic(const struct lwp *l)
1113 {
1114 uint32_t const *ip, *end;
1115 int stackleft;
1116
1117 KASSERT(l != NULL);
1118
1119 /* don't check proc0 */ /*XXX*/
1120 if (l == &lwp0)
1121 return;
1122
1123 #ifdef __MACHINE_STACK_GROWS_UP
1124 /* stack grows upwards (eg. hppa) */
1125 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1126 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1127 for (ip--; ip >= end; ip--)
1128 if (*ip != KSTACK_MAGIC)
1129 break;
1130
1131 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1132 #else /* __MACHINE_STACK_GROWS_UP */
1133 /* stack grows downwards (eg. i386) */
1134 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1135 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1136 for (; ip < end; ip++)
1137 if (*ip != KSTACK_MAGIC)
1138 break;
1139
1140 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1141 #endif /* __MACHINE_STACK_GROWS_UP */
1142
1143 if (kstackleftmin > stackleft) {
1144 kstackleftmin = stackleft;
1145 if (stackleft < kstackleftthres)
1146 printf("warning: kernel stack left %d bytes"
1147 "(pid %u:lid %u)\n", stackleft,
1148 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1149 }
1150
1151 if (stackleft <= 0) {
1152 panic("magic on the top of kernel stack changed for "
1153 "pid %u, lid %u: maybe kernel stack overflow",
1154 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1155 }
1156 }
1157 #endif /* KSTACK_CHECK_MAGIC */
1158
1159 int
1160 proclist_foreach_call(struct proclist *list,
1161 int (*callback)(struct proc *, void *arg), void *arg)
1162 {
1163 struct proc marker;
1164 struct proc *p;
1165 struct lwp * const l = curlwp;
1166 int ret = 0;
1167
1168 marker.p_flag = PK_MARKER;
1169 uvm_lwp_hold(l);
1170 mutex_enter(proc_lock);
1171 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1172 if (p->p_flag & PK_MARKER) {
1173 p = LIST_NEXT(p, p_list);
1174 continue;
1175 }
1176 LIST_INSERT_AFTER(p, &marker, p_list);
1177 ret = (*callback)(p, arg);
1178 KASSERT(mutex_owned(proc_lock));
1179 p = LIST_NEXT(&marker, p_list);
1180 LIST_REMOVE(&marker, p_list);
1181 }
1182 mutex_exit(proc_lock);
1183 uvm_lwp_rele(l);
1184
1185 return ret;
1186 }
1187
1188 int
1189 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1190 {
1191
1192 /* XXXCDC: how should locking work here? */
1193
1194 /* curproc exception is for coredump. */
1195
1196 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1197 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1198 return EFAULT;
1199 }
1200
1201 uvmspace_addref(p->p_vmspace);
1202 *vm = p->p_vmspace;
1203
1204 return 0;
1205 }
1206
1207 /*
1208 * Acquire a write lock on the process credential.
1209 */
1210 void
1211 proc_crmod_enter(void)
1212 {
1213 struct lwp *l = curlwp;
1214 struct proc *p = l->l_proc;
1215 struct plimit *lim;
1216 kauth_cred_t oc;
1217 char *cn;
1218
1219 /* Reset what needs to be reset in plimit. */
1220 if (p->p_limit->pl_corename != defcorename) {
1221 lim_privatise(p, false);
1222 lim = p->p_limit;
1223 mutex_enter(&lim->pl_lock);
1224 cn = lim->pl_corename;
1225 lim->pl_corename = defcorename;
1226 mutex_exit(&lim->pl_lock);
1227 if (cn != defcorename)
1228 free(cn, M_TEMP);
1229 }
1230
1231 mutex_enter(p->p_lock);
1232
1233 /* Ensure the LWP cached credentials are up to date. */
1234 if ((oc = l->l_cred) != p->p_cred) {
1235 kauth_cred_hold(p->p_cred);
1236 l->l_cred = p->p_cred;
1237 kauth_cred_free(oc);
1238 }
1239
1240 }
1241
1242 /*
1243 * Set in a new process credential, and drop the write lock. The credential
1244 * must have a reference already. Optionally, free a no-longer required
1245 * credential. The scheduler also needs to inspect p_cred, so we also
1246 * briefly acquire the sched state mutex.
1247 */
1248 void
1249 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1250 {
1251 struct lwp *l = curlwp, *l2;
1252 struct proc *p = l->l_proc;
1253 kauth_cred_t oc;
1254
1255 KASSERT(mutex_owned(p->p_lock));
1256
1257 /* Is there a new credential to set in? */
1258 if (scred != NULL) {
1259 p->p_cred = scred;
1260 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1261 if (l2 != l)
1262 l2->l_prflag |= LPR_CRMOD;
1263 }
1264
1265 /* Ensure the LWP cached credentials are up to date. */
1266 if ((oc = l->l_cred) != scred) {
1267 kauth_cred_hold(scred);
1268 l->l_cred = scred;
1269 }
1270 } else
1271 oc = NULL; /* XXXgcc */
1272
1273 if (sugid) {
1274 /*
1275 * Mark process as having changed credentials, stops
1276 * tracing etc.
1277 */
1278 p->p_flag |= PK_SUGID;
1279 }
1280
1281 mutex_exit(p->p_lock);
1282
1283 /* If there is a credential to be released, free it now. */
1284 if (fcred != NULL) {
1285 KASSERT(scred != NULL);
1286 kauth_cred_free(fcred);
1287 if (oc != scred)
1288 kauth_cred_free(oc);
1289 }
1290 }
1291
1292 /*
1293 * proc_specific_key_create --
1294 * Create a key for subsystem proc-specific data.
1295 */
1296 int
1297 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1298 {
1299
1300 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1301 }
1302
1303 /*
1304 * proc_specific_key_delete --
1305 * Delete a key for subsystem proc-specific data.
1306 */
1307 void
1308 proc_specific_key_delete(specificdata_key_t key)
1309 {
1310
1311 specificdata_key_delete(proc_specificdata_domain, key);
1312 }
1313
1314 /*
1315 * proc_initspecific --
1316 * Initialize a proc's specificdata container.
1317 */
1318 void
1319 proc_initspecific(struct proc *p)
1320 {
1321 int error;
1322
1323 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1324 KASSERT(error == 0);
1325 }
1326
1327 /*
1328 * proc_finispecific --
1329 * Finalize a proc's specificdata container.
1330 */
1331 void
1332 proc_finispecific(struct proc *p)
1333 {
1334
1335 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1336 }
1337
1338 /*
1339 * proc_getspecific --
1340 * Return proc-specific data corresponding to the specified key.
1341 */
1342 void *
1343 proc_getspecific(struct proc *p, specificdata_key_t key)
1344 {
1345
1346 return (specificdata_getspecific(proc_specificdata_domain,
1347 &p->p_specdataref, key));
1348 }
1349
1350 /*
1351 * proc_setspecific --
1352 * Set proc-specific data corresponding to the specified key.
1353 */
1354 void
1355 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1356 {
1357
1358 specificdata_setspecific(proc_specificdata_domain,
1359 &p->p_specdataref, key, data);
1360 }
1361