Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.141
      1 /*	$NetBSD: kern_proc.c,v 1.141 2008/05/03 05:36:02 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.141 2008/05/03 05:36:02 yamt Exp $");
     66 
     67 #include "opt_kstack.h"
     68 #include "opt_maxuprc.h"
     69 #include "opt_multiprocessor.h"
     70 #include "opt_lockdebug.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/kernel.h>
     75 #include <sys/proc.h>
     76 #include <sys/resourcevar.h>
     77 #include <sys/buf.h>
     78 #include <sys/acct.h>
     79 #include <sys/wait.h>
     80 #include <sys/file.h>
     81 #include <ufs/ufs/quota.h>
     82 #include <sys/uio.h>
     83 #include <sys/malloc.h>
     84 #include <sys/pool.h>
     85 #include <sys/mbuf.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/tty.h>
     88 #include <sys/signalvar.h>
     89 #include <sys/ras.h>
     90 #include <sys/filedesc.h>
     91 #include "sys/syscall_stats.h"
     92 #include <sys/kauth.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/atomic.h>
     95 #include <sys/kmem.h>
     96 
     97 #include <uvm/uvm.h>
     98 #include <uvm/uvm_extern.h>
     99 
    100 /*
    101  * Other process lists
    102  */
    103 
    104 struct proclist allproc;
    105 struct proclist zombproc;	/* resources have been freed */
    106 
    107 kmutex_t	*proc_lock;
    108 
    109 /*
    110  * pid to proc lookup is done by indexing the pid_table array.
    111  * Since pid numbers are only allocated when an empty slot
    112  * has been found, there is no need to search any lists ever.
    113  * (an orphaned pgrp will lock the slot, a session will lock
    114  * the pgrp with the same number.)
    115  * If the table is too small it is reallocated with twice the
    116  * previous size and the entries 'unzipped' into the two halves.
    117  * A linked list of free entries is passed through the pt_proc
    118  * field of 'free' items - set odd to be an invalid ptr.
    119  */
    120 
    121 struct pid_table {
    122 	struct proc	*pt_proc;
    123 	struct pgrp	*pt_pgrp;
    124 };
    125 #if 1	/* strongly typed cast - should be a noop */
    126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    127 #else
    128 #define p2u(p) ((uint)p)
    129 #endif
    130 #define P_VALID(p) (!(p2u(p) & 1))
    131 #define P_NEXT(p) (p2u(p) >> 1)
    132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    133 
    134 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    135 static struct pid_table *pid_table;
    136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    137 static uint pid_alloc_lim;	/* max we allocate before growing table */
    138 static uint pid_alloc_cnt;	/* number of allocated pids */
    139 
    140 /* links through free slots - never empty! */
    141 static uint next_free_pt, last_free_pt;
    142 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    143 
    144 /* Components of the first process -- never freed. */
    145 
    146 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    147 
    148 struct session session0 = {
    149 	.s_count = 1,
    150 	.s_sid = 0,
    151 };
    152 struct pgrp pgrp0 = {
    153 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    154 	.pg_session = &session0,
    155 };
    156 filedesc_t filedesc0;
    157 struct cwdinfo cwdi0 = {
    158 	.cwdi_cmask = CMASK,		/* see cmask below */
    159 	.cwdi_refcnt = 1,
    160 };
    161 struct plimit limit0 = {
    162 	.pl_corename = defcorename,
    163 	.pl_refcnt = 1,
    164 	.pl_rlimit = {
    165 		[0 ... __arraycount(limit0.pl_rlimit) - 1] = {
    166 			.rlim_cur = RLIM_INFINITY,
    167 			.rlim_max = RLIM_INFINITY,
    168 		},
    169 	},
    170 };
    171 struct pstats pstat0;
    172 struct vmspace vmspace0;
    173 struct sigacts sigacts0;
    174 struct turnstile turnstile0;
    175 struct proc proc0 = {
    176 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    177 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    178 	.p_nlwps = 1,
    179 	.p_nrlwps = 1,
    180 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    181 	.p_pgrp = &pgrp0,
    182 	.p_comm = "system",
    183 	/*
    184 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    185 	 * when they exit.  init(8) can easily wait them out for us.
    186 	 */
    187 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    188 	.p_stat = SACTIVE,
    189 	.p_nice = NZERO,
    190 	.p_emul = &emul_netbsd,
    191 	.p_cwdi = &cwdi0,
    192 	.p_limit = &limit0,
    193 	.p_fd = &filedesc0,
    194 	.p_vmspace = &vmspace0,
    195 	.p_stats = &pstat0,
    196 	.p_sigacts = &sigacts0,
    197 };
    198 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    199 #ifdef LWP0_CPU_INFO
    200 	.l_cpu = LWP0_CPU_INFO,
    201 #endif
    202 	.l_proc = &proc0,
    203 	.l_lid = 1,
    204 	.l_flag = LW_INMEM | LW_SYSTEM,
    205 	.l_stat = LSONPROC,
    206 	.l_ts = &turnstile0,
    207 	.l_syncobj = &sched_syncobj,
    208 	.l_refcnt = 1,
    209 	.l_priority = PRI_USER + NPRI_USER - 1,
    210 	.l_inheritedprio = -1,
    211 	.l_class = SCHED_OTHER,
    212 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    213 	.l_name = __UNCONST("swapper"),
    214 };
    215 kauth_cred_t cred0;
    216 
    217 extern struct user *proc0paddr;
    218 
    219 int nofile = NOFILE;
    220 int maxuprc = MAXUPRC;
    221 int cmask = CMASK;
    222 
    223 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    224 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    225 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    226 
    227 /*
    228  * The process list descriptors, used during pid allocation and
    229  * by sysctl.  No locking on this data structure is needed since
    230  * it is completely static.
    231  */
    232 const struct proclist_desc proclists[] = {
    233 	{ &allproc	},
    234 	{ &zombproc	},
    235 	{ NULL		},
    236 };
    237 
    238 static void orphanpg(struct pgrp *);
    239 static void pg_delete(pid_t);
    240 
    241 static specificdata_domain_t proc_specificdata_domain;
    242 
    243 static pool_cache_t proc_cache;
    244 
    245 /*
    246  * Initialize global process hashing structures.
    247  */
    248 void
    249 procinit(void)
    250 {
    251 	const struct proclist_desc *pd;
    252 	int i;
    253 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    254 
    255 	for (pd = proclists; pd->pd_list != NULL; pd++)
    256 		LIST_INIT(pd->pd_list);
    257 
    258 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    259 
    260 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    261 			    M_PROC, M_WAITOK);
    262 	/* Set free list running through table...
    263 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    264 	for (i = 0; i <= pid_tbl_mask; i++) {
    265 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    266 		pid_table[i].pt_pgrp = 0;
    267 	}
    268 	/* slot 0 is just grabbed */
    269 	next_free_pt = 1;
    270 	/* Need to fix last entry. */
    271 	last_free_pt = pid_tbl_mask;
    272 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    273 	/* point at which we grow table - to avoid reusing pids too often */
    274 	pid_alloc_lim = pid_tbl_mask - 1;
    275 #undef LINK_EMPTY
    276 
    277 	proc_specificdata_domain = specificdata_domain_create();
    278 	KASSERT(proc_specificdata_domain != NULL);
    279 
    280 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    281 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    282 }
    283 
    284 /*
    285  * Initialize process 0.
    286  */
    287 void
    288 proc0_init(void)
    289 {
    290 	struct proc *p;
    291 	struct pgrp *pg;
    292 	struct session *sess;
    293 	struct lwp *l;
    294 	rlim_t lim;
    295 
    296 	p = &proc0;
    297 	pg = &pgrp0;
    298 	sess = &session0;
    299 	l = &lwp0;
    300 
    301 	KASSERT(l->l_lid == p->p_nlwpid);
    302 
    303 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    304 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    305 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    306 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    307 
    308 	rw_init(&p->p_reflock);
    309 	cv_init(&p->p_waitcv, "wait");
    310 	cv_init(&p->p_lwpcv, "lwpwait");
    311 
    312 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    313 
    314 	pid_table[0].pt_proc = p;
    315 	LIST_INSERT_HEAD(&allproc, p, p_list);
    316 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    317 
    318 	pid_table[0].pt_pgrp = pg;
    319 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    320 
    321 #ifdef __HAVE_SYSCALL_INTERN
    322 	(*p->p_emul->e_syscall_intern)(p);
    323 #endif
    324 
    325 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    326 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    327 	cv_init(&l->l_sigcv, "sigwait");
    328 
    329 	/* Create credentials. */
    330 	cred0 = kauth_cred_alloc();
    331 	p->p_cred = cred0;
    332 	kauth_cred_hold(cred0);
    333 	l->l_cred = cred0;
    334 
    335 	/* Create the CWD info. */
    336 	rw_init(&cwdi0.cwdi_lock);
    337 
    338 	/* Create the limits structures. */
    339 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    340 
    341 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    342 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    343 	    maxfiles < nofile ? maxfiles : nofile;
    344 
    345 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    346 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    347 	    maxproc < maxuprc ? maxproc : maxuprc;
    348 
    349 	lim = ptoa(uvmexp.free);
    350 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    351 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    352 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    353 
    354 	/* Configure virtual memory system, set vm rlimits. */
    355 	uvm_init_limits(p);
    356 
    357 	/* Initialize file descriptor table for proc0. */
    358 	fd_init(&filedesc0);
    359 
    360 	/*
    361 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    362 	 * All kernel processes (which never have user space mappings)
    363 	 * share proc0's vmspace, and thus, the kernel pmap.
    364 	 */
    365 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    366 	    trunc_page(VM_MAX_ADDRESS));
    367 
    368 	l->l_addr = proc0paddr;				/* XXX */
    369 
    370 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    371 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    372 	siginit(p);
    373 
    374 	proc_initspecific(p);
    375 	lwp_initspecific(l);
    376 
    377 	SYSCALL_TIME_LWP_INIT(l);
    378 }
    379 
    380 /*
    381  * Check that the specified process group is in the session of the
    382  * specified process.
    383  * Treats -ve ids as process ids.
    384  * Used to validate TIOCSPGRP requests.
    385  */
    386 int
    387 pgid_in_session(struct proc *p, pid_t pg_id)
    388 {
    389 	struct pgrp *pgrp;
    390 	struct session *session;
    391 	int error;
    392 
    393 	mutex_enter(proc_lock);
    394 	if (pg_id < 0) {
    395 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    396 		if (p1 == NULL)
    397 			return EINVAL;
    398 		pgrp = p1->p_pgrp;
    399 	} else {
    400 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    401 		if (pgrp == NULL)
    402 			return EINVAL;
    403 	}
    404 	session = pgrp->pg_session;
    405 	if (session != p->p_pgrp->pg_session)
    406 		error = EPERM;
    407 	else
    408 		error = 0;
    409 	mutex_exit(proc_lock);
    410 
    411 	return error;
    412 }
    413 
    414 /*
    415  * Is p an inferior of q?
    416  *
    417  * Call with the proc_lock held.
    418  */
    419 int
    420 inferior(struct proc *p, struct proc *q)
    421 {
    422 
    423 	for (; p != q; p = p->p_pptr)
    424 		if (p->p_pid == 0)
    425 			return 0;
    426 	return 1;
    427 }
    428 
    429 /*
    430  * Locate a process by number
    431  */
    432 struct proc *
    433 p_find(pid_t pid, uint flags)
    434 {
    435 	struct proc *p;
    436 	char stat;
    437 
    438 	if (!(flags & PFIND_LOCKED))
    439 		mutex_enter(proc_lock);
    440 
    441 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    442 
    443 	/* Only allow live processes to be found by pid. */
    444 	/* XXXSMP p_stat */
    445 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    446 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    447 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    448 		if (flags & PFIND_UNLOCK_OK)
    449 			 mutex_exit(proc_lock);
    450 		return p;
    451 	}
    452 	if (flags & PFIND_UNLOCK_FAIL)
    453 		mutex_exit(proc_lock);
    454 	return NULL;
    455 }
    456 
    457 
    458 /*
    459  * Locate a process group by number
    460  */
    461 struct pgrp *
    462 pg_find(pid_t pgid, uint flags)
    463 {
    464 	struct pgrp *pg;
    465 
    466 	if (!(flags & PFIND_LOCKED))
    467 		mutex_enter(proc_lock);
    468 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    469 	/*
    470 	 * Can't look up a pgrp that only exists because the session
    471 	 * hasn't died yet (traditional)
    472 	 */
    473 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    474 		if (flags & PFIND_UNLOCK_FAIL)
    475 			 mutex_exit(proc_lock);
    476 		return NULL;
    477 	}
    478 
    479 	if (flags & PFIND_UNLOCK_OK)
    480 		mutex_exit(proc_lock);
    481 	return pg;
    482 }
    483 
    484 static void
    485 expand_pid_table(void)
    486 {
    487 	uint pt_size = pid_tbl_mask + 1;
    488 	struct pid_table *n_pt, *new_pt;
    489 	struct proc *proc;
    490 	struct pgrp *pgrp;
    491 	int i;
    492 	pid_t pid;
    493 
    494 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    495 
    496 	mutex_enter(proc_lock);
    497 	if (pt_size != pid_tbl_mask + 1) {
    498 		/* Another process beat us to it... */
    499 		mutex_exit(proc_lock);
    500 		FREE(new_pt, M_PROC);
    501 		return;
    502 	}
    503 
    504 	/*
    505 	 * Copy entries from old table into new one.
    506 	 * If 'pid' is 'odd' we need to place in the upper half,
    507 	 * even pid's to the lower half.
    508 	 * Free items stay in the low half so we don't have to
    509 	 * fixup the reference to them.
    510 	 * We stuff free items on the front of the freelist
    511 	 * because we can't write to unmodified entries.
    512 	 * Processing the table backwards maintains a semblance
    513 	 * of issueing pid numbers that increase with time.
    514 	 */
    515 	i = pt_size - 1;
    516 	n_pt = new_pt + i;
    517 	for (; ; i--, n_pt--) {
    518 		proc = pid_table[i].pt_proc;
    519 		pgrp = pid_table[i].pt_pgrp;
    520 		if (!P_VALID(proc)) {
    521 			/* Up 'use count' so that link is valid */
    522 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    523 			proc = P_FREE(pid);
    524 			if (pgrp)
    525 				pid = pgrp->pg_id;
    526 		} else
    527 			pid = proc->p_pid;
    528 
    529 		/* Save entry in appropriate half of table */
    530 		n_pt[pid & pt_size].pt_proc = proc;
    531 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    532 
    533 		/* Put other piece on start of free list */
    534 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    535 		n_pt[pid & pt_size].pt_proc =
    536 				    P_FREE((pid & ~pt_size) | next_free_pt);
    537 		n_pt[pid & pt_size].pt_pgrp = 0;
    538 		next_free_pt = i | (pid & pt_size);
    539 		if (i == 0)
    540 			break;
    541 	}
    542 
    543 	/* Switch tables */
    544 	n_pt = pid_table;
    545 	pid_table = new_pt;
    546 	pid_tbl_mask = pt_size * 2 - 1;
    547 
    548 	/*
    549 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    550 	 * allocated pids we need it to be larger!
    551 	 */
    552 	if (pid_tbl_mask > PID_MAX) {
    553 		pid_max = pid_tbl_mask * 2 + 1;
    554 		pid_alloc_lim |= pid_alloc_lim << 1;
    555 	} else
    556 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    557 
    558 	mutex_exit(proc_lock);
    559 	FREE(n_pt, M_PROC);
    560 }
    561 
    562 struct proc *
    563 proc_alloc(void)
    564 {
    565 	struct proc *p;
    566 	int nxt;
    567 	pid_t pid;
    568 	struct pid_table *pt;
    569 
    570 	p = pool_cache_get(proc_cache, PR_WAITOK);
    571 	p->p_stat = SIDL;			/* protect against others */
    572 
    573 	proc_initspecific(p);
    574 	/* allocate next free pid */
    575 
    576 	for (;;expand_pid_table()) {
    577 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    578 			/* ensure pids cycle through 2000+ values */
    579 			continue;
    580 		mutex_enter(proc_lock);
    581 		pt = &pid_table[next_free_pt];
    582 #ifdef DIAGNOSTIC
    583 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    584 			panic("proc_alloc: slot busy");
    585 #endif
    586 		nxt = P_NEXT(pt->pt_proc);
    587 		if (nxt & pid_tbl_mask)
    588 			break;
    589 		/* Table full - expand (NB last entry not used....) */
    590 		mutex_exit(proc_lock);
    591 	}
    592 
    593 	/* pid is 'saved use count' + 'size' + entry */
    594 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    595 	if ((uint)pid > (uint)pid_max)
    596 		pid &= pid_tbl_mask;
    597 	p->p_pid = pid;
    598 	next_free_pt = nxt & pid_tbl_mask;
    599 
    600 	/* Grab table slot */
    601 	pt->pt_proc = p;
    602 	pid_alloc_cnt++;
    603 
    604 	mutex_exit(proc_lock);
    605 
    606 	return p;
    607 }
    608 
    609 /*
    610  * Free a process id - called from proc_free (in kern_exit.c)
    611  *
    612  * Called with the proc_lock held.
    613  */
    614 void
    615 proc_free_pid(struct proc *p)
    616 {
    617 	pid_t pid = p->p_pid;
    618 	struct pid_table *pt;
    619 
    620 	KASSERT(mutex_owned(proc_lock));
    621 
    622 	pt = &pid_table[pid & pid_tbl_mask];
    623 #ifdef DIAGNOSTIC
    624 	if (__predict_false(pt->pt_proc != p))
    625 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    626 			pid, p);
    627 #endif
    628 	/* save pid use count in slot */
    629 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    630 
    631 	if (pt->pt_pgrp == NULL) {
    632 		/* link last freed entry onto ours */
    633 		pid &= pid_tbl_mask;
    634 		pt = &pid_table[last_free_pt];
    635 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    636 		last_free_pt = pid;
    637 		pid_alloc_cnt--;
    638 	}
    639 
    640 	atomic_dec_uint(&nprocs);
    641 }
    642 
    643 void
    644 proc_free_mem(struct proc *p)
    645 {
    646 
    647 	pool_cache_put(proc_cache, p);
    648 }
    649 
    650 /*
    651  * Move p to a new or existing process group (and session)
    652  *
    653  * If we are creating a new pgrp, the pgid should equal
    654  * the calling process' pid.
    655  * If is only valid to enter a process group that is in the session
    656  * of the process.
    657  * Also mksess should only be set if we are creating a process group
    658  *
    659  * Only called from sys_setsid and sys_setpgid.
    660  */
    661 int
    662 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    663 {
    664 	struct pgrp *new_pgrp, *pgrp;
    665 	struct session *sess;
    666 	struct proc *p;
    667 	int rval;
    668 	pid_t pg_id = NO_PGID;
    669 
    670 	if (mksess)
    671 		sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
    672 	else
    673 		sess = NULL;
    674 
    675 	/* Allocate data areas we might need before doing any validity checks */
    676 	mutex_enter(proc_lock);		/* Because pid_table might change */
    677 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    678 		mutex_exit(proc_lock);
    679 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    680 		mutex_enter(proc_lock);
    681 	} else
    682 		new_pgrp = NULL;
    683 	rval = EPERM;	/* most common error (to save typing) */
    684 
    685 	/* Check pgrp exists or can be created */
    686 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    687 	if (pgrp != NULL && pgrp->pg_id != pgid)
    688 		goto done;
    689 
    690 	/* Can only set another process under restricted circumstances. */
    691 	if (pid != curp->p_pid) {
    692 		/* must exist and be one of our children... */
    693 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    694 		    !inferior(p, curp)) {
    695 			rval = ESRCH;
    696 			goto done;
    697 		}
    698 		/* ... in the same session... */
    699 		if (sess != NULL || p->p_session != curp->p_session)
    700 			goto done;
    701 		/* ... existing pgid must be in same session ... */
    702 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    703 			goto done;
    704 		/* ... and not done an exec. */
    705 		if (p->p_flag & PK_EXEC) {
    706 			rval = EACCES;
    707 			goto done;
    708 		}
    709 	} else {
    710 		/* ... setsid() cannot re-enter a pgrp */
    711 		if (mksess && (curp->p_pgid == curp->p_pid ||
    712 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    713 			goto done;
    714 		p = curp;
    715 	}
    716 
    717 	/* Changing the process group/session of a session
    718 	   leader is definitely off limits. */
    719 	if (SESS_LEADER(p)) {
    720 		if (sess == NULL && p->p_pgrp == pgrp)
    721 			/* unless it's a definite noop */
    722 			rval = 0;
    723 		goto done;
    724 	}
    725 
    726 	/* Can only create a process group with id of process */
    727 	if (pgrp == NULL && pgid != pid)
    728 		goto done;
    729 
    730 	/* Can only create a session if creating pgrp */
    731 	if (sess != NULL && pgrp != NULL)
    732 		goto done;
    733 
    734 	/* Check we allocated memory for a pgrp... */
    735 	if (pgrp == NULL && new_pgrp == NULL)
    736 		goto done;
    737 
    738 	/* Don't attach to 'zombie' pgrp */
    739 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    740 		goto done;
    741 
    742 	/* Expect to succeed now */
    743 	rval = 0;
    744 
    745 	if (pgrp == p->p_pgrp)
    746 		/* nothing to do */
    747 		goto done;
    748 
    749 	/* Ok all setup, link up required structures */
    750 
    751 	if (pgrp == NULL) {
    752 		pgrp = new_pgrp;
    753 		new_pgrp = NULL;
    754 		if (sess != NULL) {
    755 			sess->s_sid = p->p_pid;
    756 			sess->s_leader = p;
    757 			sess->s_count = 1;
    758 			sess->s_ttyvp = NULL;
    759 			sess->s_ttyp = NULL;
    760 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    761 			memcpy(sess->s_login, p->p_session->s_login,
    762 			    sizeof(sess->s_login));
    763 			p->p_lflag &= ~PL_CONTROLT;
    764 		} else {
    765 			sess = p->p_pgrp->pg_session;
    766 			SESSHOLD(sess);
    767 		}
    768 		pgrp->pg_session = sess;
    769 		sess = NULL;
    770 
    771 		pgrp->pg_id = pgid;
    772 		LIST_INIT(&pgrp->pg_members);
    773 #ifdef DIAGNOSTIC
    774 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    775 			panic("enterpgrp: pgrp table slot in use");
    776 		if (__predict_false(mksess && p != curp))
    777 			panic("enterpgrp: mksession and p != curproc");
    778 #endif
    779 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    780 		pgrp->pg_jobc = 0;
    781 	}
    782 
    783 	/*
    784 	 * Adjust eligibility of affected pgrps to participate in job control.
    785 	 * Increment eligibility counts before decrementing, otherwise we
    786 	 * could reach 0 spuriously during the first call.
    787 	 */
    788 	fixjobc(p, pgrp, 1);
    789 	fixjobc(p, p->p_pgrp, 0);
    790 
    791 	/* Interlock with ttread(). */
    792 	mutex_spin_enter(&tty_lock);
    793 
    794 	/* Move process to requested group. */
    795 	LIST_REMOVE(p, p_pglist);
    796 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    797 		/* defer delete until we've dumped the lock */
    798 		pg_id = p->p_pgrp->pg_id;
    799 	p->p_pgrp = pgrp;
    800 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    801 
    802 	/* Done with the swap; we can release the tty mutex. */
    803 	mutex_spin_exit(&tty_lock);
    804 
    805     done:
    806 	if (pg_id != NO_PGID)
    807 		pg_delete(pg_id);
    808 	mutex_exit(proc_lock);
    809 	if (sess != NULL)
    810 		kmem_free(sess, sizeof(*sess));
    811 	if (new_pgrp != NULL)
    812 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    813 #ifdef DEBUG_PGRP
    814 	if (__predict_false(rval))
    815 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    816 			pid, pgid, mksess, curp->p_pid, rval);
    817 #endif
    818 	return rval;
    819 }
    820 
    821 /*
    822  * Remove a process from its process group.  Must be called with the
    823  * proc_lock held.
    824  */
    825 void
    826 leavepgrp(struct proc *p)
    827 {
    828 	struct pgrp *pgrp;
    829 
    830 	KASSERT(mutex_owned(proc_lock));
    831 
    832 	/* Interlock with ttread() */
    833 	mutex_spin_enter(&tty_lock);
    834 	pgrp = p->p_pgrp;
    835 	LIST_REMOVE(p, p_pglist);
    836 	p->p_pgrp = NULL;
    837 	mutex_spin_exit(&tty_lock);
    838 
    839 	if (LIST_EMPTY(&pgrp->pg_members))
    840 		pg_delete(pgrp->pg_id);
    841 }
    842 
    843 /*
    844  * Free a process group.  Must be called with the proc_lock held.
    845  */
    846 static void
    847 pg_free(pid_t pg_id)
    848 {
    849 	struct pgrp *pgrp;
    850 	struct pid_table *pt;
    851 
    852 	KASSERT(mutex_owned(proc_lock));
    853 
    854 	pt = &pid_table[pg_id & pid_tbl_mask];
    855 	pgrp = pt->pt_pgrp;
    856 #ifdef DIAGNOSTIC
    857 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    858 	    || !LIST_EMPTY(&pgrp->pg_members)))
    859 		panic("pg_free: process group absent or has members");
    860 #endif
    861 	pt->pt_pgrp = 0;
    862 
    863 	if (!P_VALID(pt->pt_proc)) {
    864 		/* orphaned pgrp, put slot onto free list */
    865 #ifdef DIAGNOSTIC
    866 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    867 			panic("pg_free: process slot on free list");
    868 #endif
    869 		pg_id &= pid_tbl_mask;
    870 		pt = &pid_table[last_free_pt];
    871 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    872 		last_free_pt = pg_id;
    873 		pid_alloc_cnt--;
    874 	}
    875 	kmem_free(pgrp, sizeof(*pgrp));
    876 }
    877 
    878 /*
    879  * Delete a process group.  Must be called with the proc_lock held.
    880  */
    881 static void
    882 pg_delete(pid_t pg_id)
    883 {
    884 	struct pgrp *pgrp;
    885 	struct tty *ttyp;
    886 	struct session *ss;
    887 	int is_pgrp_leader;
    888 
    889 	KASSERT(mutex_owned(proc_lock));
    890 
    891 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    892 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    893 	    !LIST_EMPTY(&pgrp->pg_members))
    894 		return;
    895 
    896 	ss = pgrp->pg_session;
    897 
    898 	/* Remove reference (if any) from tty to this process group */
    899 	mutex_spin_enter(&tty_lock);
    900 	ttyp = ss->s_ttyp;
    901 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    902 		ttyp->t_pgrp = NULL;
    903 #ifdef DIAGNOSTIC
    904 		if (ttyp->t_session != ss)
    905 			panic("pg_delete: wrong session on terminal");
    906 #endif
    907 	}
    908 	mutex_spin_exit(&tty_lock);
    909 
    910 	/*
    911 	 * The leading process group in a session is freed
    912 	 * by sessdelete() if last reference.
    913 	 */
    914 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    915 	SESSRELE(ss);
    916 
    917 	if (is_pgrp_leader)
    918 		return;
    919 
    920 	pg_free(pg_id);
    921 }
    922 
    923 /*
    924  * Delete session - called from SESSRELE when s_count becomes zero.
    925  * Must be called with the proc_lock held.
    926  */
    927 void
    928 sessdelete(struct session *ss)
    929 {
    930 
    931 	KASSERT(mutex_owned(proc_lock));
    932 
    933 	/*
    934 	 * We keep the pgrp with the same id as the session in
    935 	 * order to stop a process being given the same pid.
    936 	 * Since the pgrp holds a reference to the session, it
    937 	 * must be a 'zombie' pgrp by now.
    938 	 */
    939 	pg_free(ss->s_sid);
    940 	kmem_free(ss, sizeof(*ss));
    941 }
    942 
    943 /*
    944  * Adjust pgrp jobc counters when specified process changes process group.
    945  * We count the number of processes in each process group that "qualify"
    946  * the group for terminal job control (those with a parent in a different
    947  * process group of the same session).  If that count reaches zero, the
    948  * process group becomes orphaned.  Check both the specified process'
    949  * process group and that of its children.
    950  * entering == 0 => p is leaving specified group.
    951  * entering == 1 => p is entering specified group.
    952  *
    953  * Call with proc_lock held.
    954  */
    955 void
    956 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    957 {
    958 	struct pgrp *hispgrp;
    959 	struct session *mysession = pgrp->pg_session;
    960 	struct proc *child;
    961 
    962 	KASSERT(mutex_owned(proc_lock));
    963 
    964 	/*
    965 	 * Check p's parent to see whether p qualifies its own process
    966 	 * group; if so, adjust count for p's process group.
    967 	 */
    968 	hispgrp = p->p_pptr->p_pgrp;
    969 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
    970 		if (entering) {
    971 			pgrp->pg_jobc++;
    972 			p->p_lflag &= ~PL_ORPHANPG;
    973 		} else if (--pgrp->pg_jobc == 0)
    974 			orphanpg(pgrp);
    975 	}
    976 
    977 	/*
    978 	 * Check this process' children to see whether they qualify
    979 	 * their process groups; if so, adjust counts for children's
    980 	 * process groups.
    981 	 */
    982 	LIST_FOREACH(child, &p->p_children, p_sibling) {
    983 		hispgrp = child->p_pgrp;
    984 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
    985 		    !P_ZOMBIE(child)) {
    986 			if (entering) {
    987 				child->p_lflag &= ~PL_ORPHANPG;
    988 				hispgrp->pg_jobc++;
    989 			} else if (--hispgrp->pg_jobc == 0)
    990 				orphanpg(hispgrp);
    991 		}
    992 	}
    993 }
    994 
    995 /*
    996  * A process group has become orphaned;
    997  * if there are any stopped processes in the group,
    998  * hang-up all process in that group.
    999  *
   1000  * Call with proc_lock held.
   1001  */
   1002 static void
   1003 orphanpg(struct pgrp *pg)
   1004 {
   1005 	struct proc *p;
   1006 	int doit;
   1007 
   1008 	KASSERT(mutex_owned(proc_lock));
   1009 
   1010 	doit = 0;
   1011 
   1012 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1013 		if (p->p_stat == SSTOP) {
   1014 			p->p_lflag |= PL_ORPHANPG;
   1015 			psignal(p, SIGHUP);
   1016 			psignal(p, SIGCONT);
   1017 		}
   1018 	}
   1019 }
   1020 
   1021 #ifdef DDB
   1022 #include <ddb/db_output.h>
   1023 void pidtbl_dump(void);
   1024 void
   1025 pidtbl_dump(void)
   1026 {
   1027 	struct pid_table *pt;
   1028 	struct proc *p;
   1029 	struct pgrp *pgrp;
   1030 	int id;
   1031 
   1032 	db_printf("pid table %p size %x, next %x, last %x\n",
   1033 		pid_table, pid_tbl_mask+1,
   1034 		next_free_pt, last_free_pt);
   1035 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1036 		p = pt->pt_proc;
   1037 		if (!P_VALID(p) && !pt->pt_pgrp)
   1038 			continue;
   1039 		db_printf("  id %x: ", id);
   1040 		if (P_VALID(p))
   1041 			db_printf("proc %p id %d (0x%x) %s\n",
   1042 				p, p->p_pid, p->p_pid, p->p_comm);
   1043 		else
   1044 			db_printf("next %x use %x\n",
   1045 				P_NEXT(p) & pid_tbl_mask,
   1046 				P_NEXT(p) & ~pid_tbl_mask);
   1047 		if ((pgrp = pt->pt_pgrp)) {
   1048 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1049 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1050 			    pgrp->pg_session->s_count,
   1051 			    pgrp->pg_session->s_login);
   1052 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1053 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1054 			    LIST_FIRST(&pgrp->pg_members));
   1055 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1056 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1057 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1058 			}
   1059 		}
   1060 	}
   1061 }
   1062 #endif /* DDB */
   1063 
   1064 #ifdef KSTACK_CHECK_MAGIC
   1065 #include <sys/user.h>
   1066 
   1067 #define	KSTACK_MAGIC	0xdeadbeaf
   1068 
   1069 /* XXX should be per process basis? */
   1070 int kstackleftmin = KSTACK_SIZE;
   1071 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1072 					  less than this */
   1073 
   1074 void
   1075 kstack_setup_magic(const struct lwp *l)
   1076 {
   1077 	uint32_t *ip;
   1078 	uint32_t const *end;
   1079 
   1080 	KASSERT(l != NULL);
   1081 	KASSERT(l != &lwp0);
   1082 
   1083 	/*
   1084 	 * fill all the stack with magic number
   1085 	 * so that later modification on it can be detected.
   1086 	 */
   1087 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1088 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1089 	for (; ip < end; ip++) {
   1090 		*ip = KSTACK_MAGIC;
   1091 	}
   1092 }
   1093 
   1094 void
   1095 kstack_check_magic(const struct lwp *l)
   1096 {
   1097 	uint32_t const *ip, *end;
   1098 	int stackleft;
   1099 
   1100 	KASSERT(l != NULL);
   1101 
   1102 	/* don't check proc0 */ /*XXX*/
   1103 	if (l == &lwp0)
   1104 		return;
   1105 
   1106 #ifdef __MACHINE_STACK_GROWS_UP
   1107 	/* stack grows upwards (eg. hppa) */
   1108 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1109 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1110 	for (ip--; ip >= end; ip--)
   1111 		if (*ip != KSTACK_MAGIC)
   1112 			break;
   1113 
   1114 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1115 #else /* __MACHINE_STACK_GROWS_UP */
   1116 	/* stack grows downwards (eg. i386) */
   1117 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1118 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1119 	for (; ip < end; ip++)
   1120 		if (*ip != KSTACK_MAGIC)
   1121 			break;
   1122 
   1123 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1124 #endif /* __MACHINE_STACK_GROWS_UP */
   1125 
   1126 	if (kstackleftmin > stackleft) {
   1127 		kstackleftmin = stackleft;
   1128 		if (stackleft < kstackleftthres)
   1129 			printf("warning: kernel stack left %d bytes"
   1130 			    "(pid %u:lid %u)\n", stackleft,
   1131 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1132 	}
   1133 
   1134 	if (stackleft <= 0) {
   1135 		panic("magic on the top of kernel stack changed for "
   1136 		    "pid %u, lid %u: maybe kernel stack overflow",
   1137 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1138 	}
   1139 }
   1140 #endif /* KSTACK_CHECK_MAGIC */
   1141 
   1142 int
   1143 proclist_foreach_call(struct proclist *list,
   1144     int (*callback)(struct proc *, void *arg), void *arg)
   1145 {
   1146 	struct proc marker;
   1147 	struct proc *p;
   1148 	struct lwp * const l = curlwp;
   1149 	int ret = 0;
   1150 
   1151 	marker.p_flag = PK_MARKER;
   1152 	uvm_lwp_hold(l);
   1153 	mutex_enter(proc_lock);
   1154 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1155 		if (p->p_flag & PK_MARKER) {
   1156 			p = LIST_NEXT(p, p_list);
   1157 			continue;
   1158 		}
   1159 		LIST_INSERT_AFTER(p, &marker, p_list);
   1160 		ret = (*callback)(p, arg);
   1161 		KASSERT(mutex_owned(proc_lock));
   1162 		p = LIST_NEXT(&marker, p_list);
   1163 		LIST_REMOVE(&marker, p_list);
   1164 	}
   1165 	mutex_exit(proc_lock);
   1166 	uvm_lwp_rele(l);
   1167 
   1168 	return ret;
   1169 }
   1170 
   1171 int
   1172 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1173 {
   1174 
   1175 	/* XXXCDC: how should locking work here? */
   1176 
   1177 	/* curproc exception is for coredump. */
   1178 
   1179 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1180 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1181 		return EFAULT;
   1182 	}
   1183 
   1184 	uvmspace_addref(p->p_vmspace);
   1185 	*vm = p->p_vmspace;
   1186 
   1187 	return 0;
   1188 }
   1189 
   1190 /*
   1191  * Acquire a write lock on the process credential.
   1192  */
   1193 void
   1194 proc_crmod_enter(void)
   1195 {
   1196 	struct lwp *l = curlwp;
   1197 	struct proc *p = l->l_proc;
   1198 	struct plimit *lim;
   1199 	kauth_cred_t oc;
   1200 	char *cn;
   1201 
   1202 	/* Reset what needs to be reset in plimit. */
   1203 	if (p->p_limit->pl_corename != defcorename) {
   1204 		lim_privatise(p, false);
   1205 		lim = p->p_limit;
   1206 		mutex_enter(&lim->pl_lock);
   1207 		cn = lim->pl_corename;
   1208 		lim->pl_corename = defcorename;
   1209 		mutex_exit(&lim->pl_lock);
   1210 		if (cn != defcorename)
   1211 			free(cn, M_TEMP);
   1212 	}
   1213 
   1214 	mutex_enter(p->p_lock);
   1215 
   1216 	/* Ensure the LWP cached credentials are up to date. */
   1217 	if ((oc = l->l_cred) != p->p_cred) {
   1218 		kauth_cred_hold(p->p_cred);
   1219 		l->l_cred = p->p_cred;
   1220 		kauth_cred_free(oc);
   1221 	}
   1222 
   1223 }
   1224 
   1225 /*
   1226  * Set in a new process credential, and drop the write lock.  The credential
   1227  * must have a reference already.  Optionally, free a no-longer required
   1228  * credential.  The scheduler also needs to inspect p_cred, so we also
   1229  * briefly acquire the sched state mutex.
   1230  */
   1231 void
   1232 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1233 {
   1234 	struct lwp *l = curlwp, *l2;
   1235 	struct proc *p = l->l_proc;
   1236 	kauth_cred_t oc;
   1237 
   1238 	KASSERT(mutex_owned(p->p_lock));
   1239 
   1240 	/* Is there a new credential to set in? */
   1241 	if (scred != NULL) {
   1242 		p->p_cred = scred;
   1243 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1244 			if (l2 != l)
   1245 				l2->l_prflag |= LPR_CRMOD;
   1246 		}
   1247 
   1248 		/* Ensure the LWP cached credentials are up to date. */
   1249 		if ((oc = l->l_cred) != scred) {
   1250 			kauth_cred_hold(scred);
   1251 			l->l_cred = scred;
   1252 		}
   1253 	} else
   1254 		oc = NULL;	/* XXXgcc */
   1255 
   1256 	if (sugid) {
   1257 		/*
   1258 		 * Mark process as having changed credentials, stops
   1259 		 * tracing etc.
   1260 		 */
   1261 		p->p_flag |= PK_SUGID;
   1262 	}
   1263 
   1264 	mutex_exit(p->p_lock);
   1265 
   1266 	/* If there is a credential to be released, free it now. */
   1267 	if (fcred != NULL) {
   1268 		KASSERT(scred != NULL);
   1269 		kauth_cred_free(fcred);
   1270 		if (oc != scred)
   1271 			kauth_cred_free(oc);
   1272 	}
   1273 }
   1274 
   1275 /*
   1276  * proc_specific_key_create --
   1277  *	Create a key for subsystem proc-specific data.
   1278  */
   1279 int
   1280 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1281 {
   1282 
   1283 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1284 }
   1285 
   1286 /*
   1287  * proc_specific_key_delete --
   1288  *	Delete a key for subsystem proc-specific data.
   1289  */
   1290 void
   1291 proc_specific_key_delete(specificdata_key_t key)
   1292 {
   1293 
   1294 	specificdata_key_delete(proc_specificdata_domain, key);
   1295 }
   1296 
   1297 /*
   1298  * proc_initspecific --
   1299  *	Initialize a proc's specificdata container.
   1300  */
   1301 void
   1302 proc_initspecific(struct proc *p)
   1303 {
   1304 	int error;
   1305 
   1306 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1307 	KASSERT(error == 0);
   1308 }
   1309 
   1310 /*
   1311  * proc_finispecific --
   1312  *	Finalize a proc's specificdata container.
   1313  */
   1314 void
   1315 proc_finispecific(struct proc *p)
   1316 {
   1317 
   1318 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1319 }
   1320 
   1321 /*
   1322  * proc_getspecific --
   1323  *	Return proc-specific data corresponding to the specified key.
   1324  */
   1325 void *
   1326 proc_getspecific(struct proc *p, specificdata_key_t key)
   1327 {
   1328 
   1329 	return (specificdata_getspecific(proc_specificdata_domain,
   1330 					 &p->p_specdataref, key));
   1331 }
   1332 
   1333 /*
   1334  * proc_setspecific --
   1335  *	Set proc-specific data corresponding to the specified key.
   1336  */
   1337 void
   1338 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1339 {
   1340 
   1341 	specificdata_setspecific(proc_specificdata_domain,
   1342 				 &p->p_specdataref, key, data);
   1343 }
   1344