kern_proc.c revision 1.141.2.1 1 /* $NetBSD: kern_proc.c,v 1.141.2.1 2008/05/10 23:49:04 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.141.2.1 2008/05/10 23:49:04 wrstuden Exp $");
66
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_lockdebug.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/resourcevar.h>
77 #include <sys/buf.h>
78 #include <sys/acct.h>
79 #include <sys/wait.h>
80 #include <sys/file.h>
81 #include <ufs/ufs/quota.h>
82 #include <sys/uio.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <sys/signalvar.h>
89 #include <sys/ras.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/filedesc.h>
93 #include "sys/syscall_stats.h"
94 #include <sys/kauth.h>
95 #include <sys/sleepq.h>
96 #include <sys/atomic.h>
97 #include <sys/kmem.h>
98
99 #include <uvm/uvm.h>
100 #include <uvm/uvm_extern.h>
101
102 /*
103 * Other process lists
104 */
105
106 struct proclist allproc;
107 struct proclist zombproc; /* resources have been freed */
108
109 kmutex_t *proc_lock;
110
111 /*
112 * pid to proc lookup is done by indexing the pid_table array.
113 * Since pid numbers are only allocated when an empty slot
114 * has been found, there is no need to search any lists ever.
115 * (an orphaned pgrp will lock the slot, a session will lock
116 * the pgrp with the same number.)
117 * If the table is too small it is reallocated with twice the
118 * previous size and the entries 'unzipped' into the two halves.
119 * A linked list of free entries is passed through the pt_proc
120 * field of 'free' items - set odd to be an invalid ptr.
121 */
122
123 struct pid_table {
124 struct proc *pt_proc;
125 struct pgrp *pt_pgrp;
126 };
127 #if 1 /* strongly typed cast - should be a noop */
128 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
129 #else
130 #define p2u(p) ((uint)p)
131 #endif
132 #define P_VALID(p) (!(p2u(p) & 1))
133 #define P_NEXT(p) (p2u(p) >> 1)
134 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
135
136 #define INITIAL_PID_TABLE_SIZE (1 << 5)
137 static struct pid_table *pid_table;
138 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
139 static uint pid_alloc_lim; /* max we allocate before growing table */
140 static uint pid_alloc_cnt; /* number of allocated pids */
141
142 /* links through free slots - never empty! */
143 static uint next_free_pt, last_free_pt;
144 static pid_t pid_max = PID_MAX; /* largest value we allocate */
145
146 /* Components of the first process -- never freed. */
147
148 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
149
150 struct session session0 = {
151 .s_count = 1,
152 .s_sid = 0,
153 };
154 struct pgrp pgrp0 = {
155 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
156 .pg_session = &session0,
157 };
158 filedesc_t filedesc0;
159 struct cwdinfo cwdi0 = {
160 .cwdi_cmask = CMASK, /* see cmask below */
161 .cwdi_refcnt = 1,
162 };
163 struct plimit limit0 = {
164 .pl_corename = defcorename,
165 .pl_refcnt = 1,
166 .pl_rlimit = {
167 [0 ... __arraycount(limit0.pl_rlimit) - 1] = {
168 .rlim_cur = RLIM_INFINITY,
169 .rlim_max = RLIM_INFINITY,
170 },
171 },
172 };
173 struct pstats pstat0;
174 struct vmspace vmspace0;
175 struct sigacts sigacts0;
176 struct turnstile turnstile0;
177 struct proc proc0 = {
178 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
179 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
180 .p_nlwps = 1,
181 .p_nrlwps = 1,
182 .p_nlwpid = 1, /* must match lwp0.l_lid */
183 .p_pgrp = &pgrp0,
184 .p_comm = "system",
185 /*
186 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
187 * when they exit. init(8) can easily wait them out for us.
188 */
189 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
190 .p_stat = SACTIVE,
191 .p_nice = NZERO,
192 .p_emul = &emul_netbsd,
193 .p_cwdi = &cwdi0,
194 .p_limit = &limit0,
195 .p_fd = &filedesc0,
196 .p_vmspace = &vmspace0,
197 .p_stats = &pstat0,
198 .p_sigacts = &sigacts0,
199 };
200 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
201 #ifdef LWP0_CPU_INFO
202 .l_cpu = LWP0_CPU_INFO,
203 #endif
204 .l_proc = &proc0,
205 .l_lid = 1,
206 .l_flag = LW_INMEM | LW_SYSTEM,
207 .l_stat = LSONPROC,
208 .l_ts = &turnstile0,
209 .l_syncobj = &sched_syncobj,
210 .l_refcnt = 1,
211 .l_priority = PRI_USER + NPRI_USER - 1,
212 .l_inheritedprio = -1,
213 .l_class = SCHED_OTHER,
214 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
215 .l_name = __UNCONST("swapper"),
216 };
217 kauth_cred_t cred0;
218
219 extern struct user *proc0paddr;
220
221 int nofile = NOFILE;
222 int maxuprc = MAXUPRC;
223 int cmask = CMASK;
224
225 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
226 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
227 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
228
229 /*
230 * The process list descriptors, used during pid allocation and
231 * by sysctl. No locking on this data structure is needed since
232 * it is completely static.
233 */
234 const struct proclist_desc proclists[] = {
235 { &allproc },
236 { &zombproc },
237 { NULL },
238 };
239
240 static void orphanpg(struct pgrp *);
241 static void pg_delete(pid_t);
242
243 static specificdata_domain_t proc_specificdata_domain;
244
245 static pool_cache_t proc_cache;
246
247 /*
248 * Initialize global process hashing structures.
249 */
250 void
251 procinit(void)
252 {
253 const struct proclist_desc *pd;
254 int i;
255 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
256
257 for (pd = proclists; pd->pd_list != NULL; pd++)
258 LIST_INIT(pd->pd_list);
259
260 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
261
262 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
263 M_PROC, M_WAITOK);
264 /* Set free list running through table...
265 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
266 for (i = 0; i <= pid_tbl_mask; i++) {
267 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
268 pid_table[i].pt_pgrp = 0;
269 }
270 /* slot 0 is just grabbed */
271 next_free_pt = 1;
272 /* Need to fix last entry. */
273 last_free_pt = pid_tbl_mask;
274 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
275 /* point at which we grow table - to avoid reusing pids too often */
276 pid_alloc_lim = pid_tbl_mask - 1;
277 #undef LINK_EMPTY
278
279 proc_specificdata_domain = specificdata_domain_create();
280 KASSERT(proc_specificdata_domain != NULL);
281
282 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
283 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
284 }
285
286 /*
287 * Initialize process 0.
288 */
289 void
290 proc0_init(void)
291 {
292 struct proc *p;
293 struct pgrp *pg;
294 struct session *sess;
295 struct lwp *l;
296 rlim_t lim;
297
298 p = &proc0;
299 pg = &pgrp0;
300 sess = &session0;
301 l = &lwp0;
302
303 KASSERT(l->l_lid == p->p_nlwpid);
304
305 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
306 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
307 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
308 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
309
310 rw_init(&p->p_reflock);
311 cv_init(&p->p_waitcv, "wait");
312 cv_init(&p->p_lwpcv, "lwpwait");
313
314 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
315
316 pid_table[0].pt_proc = p;
317 LIST_INSERT_HEAD(&allproc, p, p_list);
318 LIST_INSERT_HEAD(&alllwp, l, l_list);
319
320 pid_table[0].pt_pgrp = pg;
321 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
322
323 #ifdef __HAVE_SYSCALL_INTERN
324 (*p->p_emul->e_syscall_intern)(p);
325 #endif
326
327 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
328 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
329 cv_init(&l->l_sigcv, "sigwait");
330
331 /* Create credentials. */
332 cred0 = kauth_cred_alloc();
333 p->p_cred = cred0;
334 kauth_cred_hold(cred0);
335 l->l_cred = cred0;
336
337 /* Create the CWD info. */
338 rw_init(&cwdi0.cwdi_lock);
339
340 /* Create the limits structures. */
341 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
342
343 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
344 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
345 maxfiles < nofile ? maxfiles : nofile;
346
347 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
348 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
349 maxproc < maxuprc ? maxproc : maxuprc;
350
351 lim = ptoa(uvmexp.free);
352 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
353 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
354 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
355
356 /* Configure virtual memory system, set vm rlimits. */
357 uvm_init_limits(p);
358
359 /* Initialize file descriptor table for proc0. */
360 fd_init(&filedesc0);
361
362 /*
363 * Initialize proc0's vmspace, which uses the kernel pmap.
364 * All kernel processes (which never have user space mappings)
365 * share proc0's vmspace, and thus, the kernel pmap.
366 */
367 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
368 trunc_page(VM_MAX_ADDRESS));
369
370 l->l_addr = proc0paddr; /* XXX */
371
372 /* Initialize signal state for proc0. XXX IPL_SCHED */
373 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
374 siginit(p);
375
376 proc_initspecific(p);
377 lwp_initspecific(l);
378
379 SYSCALL_TIME_LWP_INIT(l);
380 }
381
382 /*
383 * Check that the specified process group is in the session of the
384 * specified process.
385 * Treats -ve ids as process ids.
386 * Used to validate TIOCSPGRP requests.
387 */
388 int
389 pgid_in_session(struct proc *p, pid_t pg_id)
390 {
391 struct pgrp *pgrp;
392 struct session *session;
393 int error;
394
395 mutex_enter(proc_lock);
396 if (pg_id < 0) {
397 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
398 if (p1 == NULL)
399 return EINVAL;
400 pgrp = p1->p_pgrp;
401 } else {
402 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
403 if (pgrp == NULL)
404 return EINVAL;
405 }
406 session = pgrp->pg_session;
407 if (session != p->p_pgrp->pg_session)
408 error = EPERM;
409 else
410 error = 0;
411 mutex_exit(proc_lock);
412
413 return error;
414 }
415
416 /*
417 * Is p an inferior of q?
418 *
419 * Call with the proc_lock held.
420 */
421 int
422 inferior(struct proc *p, struct proc *q)
423 {
424
425 for (; p != q; p = p->p_pptr)
426 if (p->p_pid == 0)
427 return 0;
428 return 1;
429 }
430
431 /*
432 * Locate a process by number
433 */
434 struct proc *
435 p_find(pid_t pid, uint flags)
436 {
437 struct proc *p;
438 char stat;
439
440 if (!(flags & PFIND_LOCKED))
441 mutex_enter(proc_lock);
442
443 p = pid_table[pid & pid_tbl_mask].pt_proc;
444
445 /* Only allow live processes to be found by pid. */
446 /* XXXSMP p_stat */
447 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
448 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
449 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
450 if (flags & PFIND_UNLOCK_OK)
451 mutex_exit(proc_lock);
452 return p;
453 }
454 if (flags & PFIND_UNLOCK_FAIL)
455 mutex_exit(proc_lock);
456 return NULL;
457 }
458
459
460 /*
461 * Locate a process group by number
462 */
463 struct pgrp *
464 pg_find(pid_t pgid, uint flags)
465 {
466 struct pgrp *pg;
467
468 if (!(flags & PFIND_LOCKED))
469 mutex_enter(proc_lock);
470 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
471 /*
472 * Can't look up a pgrp that only exists because the session
473 * hasn't died yet (traditional)
474 */
475 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
476 if (flags & PFIND_UNLOCK_FAIL)
477 mutex_exit(proc_lock);
478 return NULL;
479 }
480
481 if (flags & PFIND_UNLOCK_OK)
482 mutex_exit(proc_lock);
483 return pg;
484 }
485
486 static void
487 expand_pid_table(void)
488 {
489 uint pt_size = pid_tbl_mask + 1;
490 struct pid_table *n_pt, *new_pt;
491 struct proc *proc;
492 struct pgrp *pgrp;
493 int i;
494 pid_t pid;
495
496 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
497
498 mutex_enter(proc_lock);
499 if (pt_size != pid_tbl_mask + 1) {
500 /* Another process beat us to it... */
501 mutex_exit(proc_lock);
502 FREE(new_pt, M_PROC);
503 return;
504 }
505
506 /*
507 * Copy entries from old table into new one.
508 * If 'pid' is 'odd' we need to place in the upper half,
509 * even pid's to the lower half.
510 * Free items stay in the low half so we don't have to
511 * fixup the reference to them.
512 * We stuff free items on the front of the freelist
513 * because we can't write to unmodified entries.
514 * Processing the table backwards maintains a semblance
515 * of issueing pid numbers that increase with time.
516 */
517 i = pt_size - 1;
518 n_pt = new_pt + i;
519 for (; ; i--, n_pt--) {
520 proc = pid_table[i].pt_proc;
521 pgrp = pid_table[i].pt_pgrp;
522 if (!P_VALID(proc)) {
523 /* Up 'use count' so that link is valid */
524 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
525 proc = P_FREE(pid);
526 if (pgrp)
527 pid = pgrp->pg_id;
528 } else
529 pid = proc->p_pid;
530
531 /* Save entry in appropriate half of table */
532 n_pt[pid & pt_size].pt_proc = proc;
533 n_pt[pid & pt_size].pt_pgrp = pgrp;
534
535 /* Put other piece on start of free list */
536 pid = (pid ^ pt_size) & ~pid_tbl_mask;
537 n_pt[pid & pt_size].pt_proc =
538 P_FREE((pid & ~pt_size) | next_free_pt);
539 n_pt[pid & pt_size].pt_pgrp = 0;
540 next_free_pt = i | (pid & pt_size);
541 if (i == 0)
542 break;
543 }
544
545 /* Switch tables */
546 n_pt = pid_table;
547 pid_table = new_pt;
548 pid_tbl_mask = pt_size * 2 - 1;
549
550 /*
551 * pid_max starts as PID_MAX (= 30000), once we have 16384
552 * allocated pids we need it to be larger!
553 */
554 if (pid_tbl_mask > PID_MAX) {
555 pid_max = pid_tbl_mask * 2 + 1;
556 pid_alloc_lim |= pid_alloc_lim << 1;
557 } else
558 pid_alloc_lim <<= 1; /* doubles number of free slots... */
559
560 mutex_exit(proc_lock);
561 FREE(n_pt, M_PROC);
562 }
563
564 struct proc *
565 proc_alloc(void)
566 {
567 struct proc *p;
568 int nxt;
569 pid_t pid;
570 struct pid_table *pt;
571
572 p = pool_cache_get(proc_cache, PR_WAITOK);
573 p->p_stat = SIDL; /* protect against others */
574
575 proc_initspecific(p);
576 /* allocate next free pid */
577
578 for (;;expand_pid_table()) {
579 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
580 /* ensure pids cycle through 2000+ values */
581 continue;
582 mutex_enter(proc_lock);
583 pt = &pid_table[next_free_pt];
584 #ifdef DIAGNOSTIC
585 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
586 panic("proc_alloc: slot busy");
587 #endif
588 nxt = P_NEXT(pt->pt_proc);
589 if (nxt & pid_tbl_mask)
590 break;
591 /* Table full - expand (NB last entry not used....) */
592 mutex_exit(proc_lock);
593 }
594
595 /* pid is 'saved use count' + 'size' + entry */
596 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
597 if ((uint)pid > (uint)pid_max)
598 pid &= pid_tbl_mask;
599 p->p_pid = pid;
600 next_free_pt = nxt & pid_tbl_mask;
601
602 /* Grab table slot */
603 pt->pt_proc = p;
604 pid_alloc_cnt++;
605
606 mutex_exit(proc_lock);
607
608 return p;
609 }
610
611 /*
612 * Free a process id - called from proc_free (in kern_exit.c)
613 *
614 * Called with the proc_lock held.
615 */
616 void
617 proc_free_pid(struct proc *p)
618 {
619 pid_t pid = p->p_pid;
620 struct pid_table *pt;
621
622 KASSERT(mutex_owned(proc_lock));
623
624 pt = &pid_table[pid & pid_tbl_mask];
625 #ifdef DIAGNOSTIC
626 if (__predict_false(pt->pt_proc != p))
627 panic("proc_free: pid_table mismatch, pid %x, proc %p",
628 pid, p);
629 #endif
630 /* save pid use count in slot */
631 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
632
633 if (pt->pt_pgrp == NULL) {
634 /* link last freed entry onto ours */
635 pid &= pid_tbl_mask;
636 pt = &pid_table[last_free_pt];
637 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
638 last_free_pt = pid;
639 pid_alloc_cnt--;
640 }
641
642 atomic_dec_uint(&nprocs);
643 }
644
645 void
646 proc_free_mem(struct proc *p)
647 {
648
649 pool_cache_put(proc_cache, p);
650 }
651
652 /*
653 * Move p to a new or existing process group (and session)
654 *
655 * If we are creating a new pgrp, the pgid should equal
656 * the calling process' pid.
657 * If is only valid to enter a process group that is in the session
658 * of the process.
659 * Also mksess should only be set if we are creating a process group
660 *
661 * Only called from sys_setsid and sys_setpgid.
662 */
663 int
664 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
665 {
666 struct pgrp *new_pgrp, *pgrp;
667 struct session *sess;
668 struct proc *p;
669 int rval;
670 pid_t pg_id = NO_PGID;
671
672 if (mksess)
673 sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
674 else
675 sess = NULL;
676
677 /* Allocate data areas we might need before doing any validity checks */
678 mutex_enter(proc_lock); /* Because pid_table might change */
679 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
680 mutex_exit(proc_lock);
681 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
682 mutex_enter(proc_lock);
683 } else
684 new_pgrp = NULL;
685 rval = EPERM; /* most common error (to save typing) */
686
687 /* Check pgrp exists or can be created */
688 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
689 if (pgrp != NULL && pgrp->pg_id != pgid)
690 goto done;
691
692 /* Can only set another process under restricted circumstances. */
693 if (pid != curp->p_pid) {
694 /* must exist and be one of our children... */
695 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
696 !inferior(p, curp)) {
697 rval = ESRCH;
698 goto done;
699 }
700 /* ... in the same session... */
701 if (sess != NULL || p->p_session != curp->p_session)
702 goto done;
703 /* ... existing pgid must be in same session ... */
704 if (pgrp != NULL && pgrp->pg_session != p->p_session)
705 goto done;
706 /* ... and not done an exec. */
707 if (p->p_flag & PK_EXEC) {
708 rval = EACCES;
709 goto done;
710 }
711 } else {
712 /* ... setsid() cannot re-enter a pgrp */
713 if (mksess && (curp->p_pgid == curp->p_pid ||
714 pg_find(curp->p_pid, PFIND_LOCKED)))
715 goto done;
716 p = curp;
717 }
718
719 /* Changing the process group/session of a session
720 leader is definitely off limits. */
721 if (SESS_LEADER(p)) {
722 if (sess == NULL && p->p_pgrp == pgrp)
723 /* unless it's a definite noop */
724 rval = 0;
725 goto done;
726 }
727
728 /* Can only create a process group with id of process */
729 if (pgrp == NULL && pgid != pid)
730 goto done;
731
732 /* Can only create a session if creating pgrp */
733 if (sess != NULL && pgrp != NULL)
734 goto done;
735
736 /* Check we allocated memory for a pgrp... */
737 if (pgrp == NULL && new_pgrp == NULL)
738 goto done;
739
740 /* Don't attach to 'zombie' pgrp */
741 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
742 goto done;
743
744 /* Expect to succeed now */
745 rval = 0;
746
747 if (pgrp == p->p_pgrp)
748 /* nothing to do */
749 goto done;
750
751 /* Ok all setup, link up required structures */
752
753 if (pgrp == NULL) {
754 pgrp = new_pgrp;
755 new_pgrp = NULL;
756 if (sess != NULL) {
757 sess->s_sid = p->p_pid;
758 sess->s_leader = p;
759 sess->s_count = 1;
760 sess->s_ttyvp = NULL;
761 sess->s_ttyp = NULL;
762 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
763 memcpy(sess->s_login, p->p_session->s_login,
764 sizeof(sess->s_login));
765 p->p_lflag &= ~PL_CONTROLT;
766 } else {
767 sess = p->p_pgrp->pg_session;
768 SESSHOLD(sess);
769 }
770 pgrp->pg_session = sess;
771 sess = NULL;
772
773 pgrp->pg_id = pgid;
774 LIST_INIT(&pgrp->pg_members);
775 #ifdef DIAGNOSTIC
776 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
777 panic("enterpgrp: pgrp table slot in use");
778 if (__predict_false(mksess && p != curp))
779 panic("enterpgrp: mksession and p != curproc");
780 #endif
781 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
782 pgrp->pg_jobc = 0;
783 }
784
785 /*
786 * Adjust eligibility of affected pgrps to participate in job control.
787 * Increment eligibility counts before decrementing, otherwise we
788 * could reach 0 spuriously during the first call.
789 */
790 fixjobc(p, pgrp, 1);
791 fixjobc(p, p->p_pgrp, 0);
792
793 /* Interlock with ttread(). */
794 mutex_spin_enter(&tty_lock);
795
796 /* Move process to requested group. */
797 LIST_REMOVE(p, p_pglist);
798 if (LIST_EMPTY(&p->p_pgrp->pg_members))
799 /* defer delete until we've dumped the lock */
800 pg_id = p->p_pgrp->pg_id;
801 p->p_pgrp = pgrp;
802 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
803
804 /* Done with the swap; we can release the tty mutex. */
805 mutex_spin_exit(&tty_lock);
806
807 done:
808 if (pg_id != NO_PGID)
809 pg_delete(pg_id);
810 mutex_exit(proc_lock);
811 if (sess != NULL)
812 kmem_free(sess, sizeof(*sess));
813 if (new_pgrp != NULL)
814 kmem_free(new_pgrp, sizeof(*new_pgrp));
815 #ifdef DEBUG_PGRP
816 if (__predict_false(rval))
817 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
818 pid, pgid, mksess, curp->p_pid, rval);
819 #endif
820 return rval;
821 }
822
823 /*
824 * Remove a process from its process group. Must be called with the
825 * proc_lock held.
826 */
827 void
828 leavepgrp(struct proc *p)
829 {
830 struct pgrp *pgrp;
831
832 KASSERT(mutex_owned(proc_lock));
833
834 /* Interlock with ttread() */
835 mutex_spin_enter(&tty_lock);
836 pgrp = p->p_pgrp;
837 LIST_REMOVE(p, p_pglist);
838 p->p_pgrp = NULL;
839 mutex_spin_exit(&tty_lock);
840
841 if (LIST_EMPTY(&pgrp->pg_members))
842 pg_delete(pgrp->pg_id);
843 }
844
845 /*
846 * Free a process group. Must be called with the proc_lock held.
847 */
848 static void
849 pg_free(pid_t pg_id)
850 {
851 struct pgrp *pgrp;
852 struct pid_table *pt;
853
854 KASSERT(mutex_owned(proc_lock));
855
856 pt = &pid_table[pg_id & pid_tbl_mask];
857 pgrp = pt->pt_pgrp;
858 #ifdef DIAGNOSTIC
859 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
860 || !LIST_EMPTY(&pgrp->pg_members)))
861 panic("pg_free: process group absent or has members");
862 #endif
863 pt->pt_pgrp = 0;
864
865 if (!P_VALID(pt->pt_proc)) {
866 /* orphaned pgrp, put slot onto free list */
867 #ifdef DIAGNOSTIC
868 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
869 panic("pg_free: process slot on free list");
870 #endif
871 pg_id &= pid_tbl_mask;
872 pt = &pid_table[last_free_pt];
873 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
874 last_free_pt = pg_id;
875 pid_alloc_cnt--;
876 }
877 kmem_free(pgrp, sizeof(*pgrp));
878 }
879
880 /*
881 * Delete a process group. Must be called with the proc_lock held.
882 */
883 static void
884 pg_delete(pid_t pg_id)
885 {
886 struct pgrp *pgrp;
887 struct tty *ttyp;
888 struct session *ss;
889 int is_pgrp_leader;
890
891 KASSERT(mutex_owned(proc_lock));
892
893 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
894 if (pgrp == NULL || pgrp->pg_id != pg_id ||
895 !LIST_EMPTY(&pgrp->pg_members))
896 return;
897
898 ss = pgrp->pg_session;
899
900 /* Remove reference (if any) from tty to this process group */
901 mutex_spin_enter(&tty_lock);
902 ttyp = ss->s_ttyp;
903 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
904 ttyp->t_pgrp = NULL;
905 #ifdef DIAGNOSTIC
906 if (ttyp->t_session != ss)
907 panic("pg_delete: wrong session on terminal");
908 #endif
909 }
910 mutex_spin_exit(&tty_lock);
911
912 /*
913 * The leading process group in a session is freed
914 * by sessdelete() if last reference.
915 */
916 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
917 SESSRELE(ss);
918
919 if (is_pgrp_leader)
920 return;
921
922 pg_free(pg_id);
923 }
924
925 /*
926 * Delete session - called from SESSRELE when s_count becomes zero.
927 * Must be called with the proc_lock held.
928 */
929 void
930 sessdelete(struct session *ss)
931 {
932
933 KASSERT(mutex_owned(proc_lock));
934
935 /*
936 * We keep the pgrp with the same id as the session in
937 * order to stop a process being given the same pid.
938 * Since the pgrp holds a reference to the session, it
939 * must be a 'zombie' pgrp by now.
940 */
941 pg_free(ss->s_sid);
942 kmem_free(ss, sizeof(*ss));
943 }
944
945 /*
946 * Adjust pgrp jobc counters when specified process changes process group.
947 * We count the number of processes in each process group that "qualify"
948 * the group for terminal job control (those with a parent in a different
949 * process group of the same session). If that count reaches zero, the
950 * process group becomes orphaned. Check both the specified process'
951 * process group and that of its children.
952 * entering == 0 => p is leaving specified group.
953 * entering == 1 => p is entering specified group.
954 *
955 * Call with proc_lock held.
956 */
957 void
958 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
959 {
960 struct pgrp *hispgrp;
961 struct session *mysession = pgrp->pg_session;
962 struct proc *child;
963
964 KASSERT(mutex_owned(proc_lock));
965
966 /*
967 * Check p's parent to see whether p qualifies its own process
968 * group; if so, adjust count for p's process group.
969 */
970 hispgrp = p->p_pptr->p_pgrp;
971 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
972 if (entering) {
973 pgrp->pg_jobc++;
974 p->p_lflag &= ~PL_ORPHANPG;
975 } else if (--pgrp->pg_jobc == 0)
976 orphanpg(pgrp);
977 }
978
979 /*
980 * Check this process' children to see whether they qualify
981 * their process groups; if so, adjust counts for children's
982 * process groups.
983 */
984 LIST_FOREACH(child, &p->p_children, p_sibling) {
985 hispgrp = child->p_pgrp;
986 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
987 !P_ZOMBIE(child)) {
988 if (entering) {
989 child->p_lflag &= ~PL_ORPHANPG;
990 hispgrp->pg_jobc++;
991 } else if (--hispgrp->pg_jobc == 0)
992 orphanpg(hispgrp);
993 }
994 }
995 }
996
997 /*
998 * A process group has become orphaned;
999 * if there are any stopped processes in the group,
1000 * hang-up all process in that group.
1001 *
1002 * Call with proc_lock held.
1003 */
1004 static void
1005 orphanpg(struct pgrp *pg)
1006 {
1007 struct proc *p;
1008 int doit;
1009
1010 KASSERT(mutex_owned(proc_lock));
1011
1012 doit = 0;
1013
1014 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1015 if (p->p_stat == SSTOP) {
1016 p->p_lflag |= PL_ORPHANPG;
1017 psignal(p, SIGHUP);
1018 psignal(p, SIGCONT);
1019 }
1020 }
1021 }
1022
1023 #ifdef DDB
1024 #include <ddb/db_output.h>
1025 void pidtbl_dump(void);
1026 void
1027 pidtbl_dump(void)
1028 {
1029 struct pid_table *pt;
1030 struct proc *p;
1031 struct pgrp *pgrp;
1032 int id;
1033
1034 db_printf("pid table %p size %x, next %x, last %x\n",
1035 pid_table, pid_tbl_mask+1,
1036 next_free_pt, last_free_pt);
1037 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1038 p = pt->pt_proc;
1039 if (!P_VALID(p) && !pt->pt_pgrp)
1040 continue;
1041 db_printf(" id %x: ", id);
1042 if (P_VALID(p))
1043 db_printf("proc %p id %d (0x%x) %s\n",
1044 p, p->p_pid, p->p_pid, p->p_comm);
1045 else
1046 db_printf("next %x use %x\n",
1047 P_NEXT(p) & pid_tbl_mask,
1048 P_NEXT(p) & ~pid_tbl_mask);
1049 if ((pgrp = pt->pt_pgrp)) {
1050 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1051 pgrp->pg_session, pgrp->pg_session->s_sid,
1052 pgrp->pg_session->s_count,
1053 pgrp->pg_session->s_login);
1054 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1055 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1056 LIST_FIRST(&pgrp->pg_members));
1057 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1058 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1059 p->p_pid, p, p->p_pgrp, p->p_comm);
1060 }
1061 }
1062 }
1063 }
1064 #endif /* DDB */
1065
1066 #ifdef KSTACK_CHECK_MAGIC
1067 #include <sys/user.h>
1068
1069 #define KSTACK_MAGIC 0xdeadbeaf
1070
1071 /* XXX should be per process basis? */
1072 int kstackleftmin = KSTACK_SIZE;
1073 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1074 less than this */
1075
1076 void
1077 kstack_setup_magic(const struct lwp *l)
1078 {
1079 uint32_t *ip;
1080 uint32_t const *end;
1081
1082 KASSERT(l != NULL);
1083 KASSERT(l != &lwp0);
1084
1085 /*
1086 * fill all the stack with magic number
1087 * so that later modification on it can be detected.
1088 */
1089 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1090 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1091 for (; ip < end; ip++) {
1092 *ip = KSTACK_MAGIC;
1093 }
1094 }
1095
1096 void
1097 kstack_check_magic(const struct lwp *l)
1098 {
1099 uint32_t const *ip, *end;
1100 int stackleft;
1101
1102 KASSERT(l != NULL);
1103
1104 /* don't check proc0 */ /*XXX*/
1105 if (l == &lwp0)
1106 return;
1107
1108 #ifdef __MACHINE_STACK_GROWS_UP
1109 /* stack grows upwards (eg. hppa) */
1110 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1111 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1112 for (ip--; ip >= end; ip--)
1113 if (*ip != KSTACK_MAGIC)
1114 break;
1115
1116 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1117 #else /* __MACHINE_STACK_GROWS_UP */
1118 /* stack grows downwards (eg. i386) */
1119 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1120 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1121 for (; ip < end; ip++)
1122 if (*ip != KSTACK_MAGIC)
1123 break;
1124
1125 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1126 #endif /* __MACHINE_STACK_GROWS_UP */
1127
1128 if (kstackleftmin > stackleft) {
1129 kstackleftmin = stackleft;
1130 if (stackleft < kstackleftthres)
1131 printf("warning: kernel stack left %d bytes"
1132 "(pid %u:lid %u)\n", stackleft,
1133 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1134 }
1135
1136 if (stackleft <= 0) {
1137 panic("magic on the top of kernel stack changed for "
1138 "pid %u, lid %u: maybe kernel stack overflow",
1139 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1140 }
1141 }
1142 #endif /* KSTACK_CHECK_MAGIC */
1143
1144 int
1145 proclist_foreach_call(struct proclist *list,
1146 int (*callback)(struct proc *, void *arg), void *arg)
1147 {
1148 struct proc marker;
1149 struct proc *p;
1150 struct lwp * const l = curlwp;
1151 int ret = 0;
1152
1153 marker.p_flag = PK_MARKER;
1154 uvm_lwp_hold(l);
1155 mutex_enter(proc_lock);
1156 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1157 if (p->p_flag & PK_MARKER) {
1158 p = LIST_NEXT(p, p_list);
1159 continue;
1160 }
1161 LIST_INSERT_AFTER(p, &marker, p_list);
1162 ret = (*callback)(p, arg);
1163 KASSERT(mutex_owned(proc_lock));
1164 p = LIST_NEXT(&marker, p_list);
1165 LIST_REMOVE(&marker, p_list);
1166 }
1167 mutex_exit(proc_lock);
1168 uvm_lwp_rele(l);
1169
1170 return ret;
1171 }
1172
1173 int
1174 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1175 {
1176
1177 /* XXXCDC: how should locking work here? */
1178
1179 /* curproc exception is for coredump. */
1180
1181 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1182 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1183 return EFAULT;
1184 }
1185
1186 uvmspace_addref(p->p_vmspace);
1187 *vm = p->p_vmspace;
1188
1189 return 0;
1190 }
1191
1192 /*
1193 * Acquire a write lock on the process credential.
1194 */
1195 void
1196 proc_crmod_enter(void)
1197 {
1198 struct lwp *l = curlwp;
1199 struct proc *p = l->l_proc;
1200 struct plimit *lim;
1201 kauth_cred_t oc;
1202 char *cn;
1203
1204 /* Reset what needs to be reset in plimit. */
1205 if (p->p_limit->pl_corename != defcorename) {
1206 lim_privatise(p, false);
1207 lim = p->p_limit;
1208 mutex_enter(&lim->pl_lock);
1209 cn = lim->pl_corename;
1210 lim->pl_corename = defcorename;
1211 mutex_exit(&lim->pl_lock);
1212 if (cn != defcorename)
1213 free(cn, M_TEMP);
1214 }
1215
1216 mutex_enter(p->p_lock);
1217
1218 /* Ensure the LWP cached credentials are up to date. */
1219 if ((oc = l->l_cred) != p->p_cred) {
1220 kauth_cred_hold(p->p_cred);
1221 l->l_cred = p->p_cred;
1222 kauth_cred_free(oc);
1223 }
1224
1225 }
1226
1227 /*
1228 * Set in a new process credential, and drop the write lock. The credential
1229 * must have a reference already. Optionally, free a no-longer required
1230 * credential. The scheduler also needs to inspect p_cred, so we also
1231 * briefly acquire the sched state mutex.
1232 */
1233 void
1234 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1235 {
1236 struct lwp *l = curlwp, *l2;
1237 struct proc *p = l->l_proc;
1238 kauth_cred_t oc;
1239
1240 KASSERT(mutex_owned(p->p_lock));
1241
1242 /* Is there a new credential to set in? */
1243 if (scred != NULL) {
1244 p->p_cred = scred;
1245 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1246 if (l2 != l)
1247 l2->l_prflag |= LPR_CRMOD;
1248 }
1249
1250 /* Ensure the LWP cached credentials are up to date. */
1251 if ((oc = l->l_cred) != scred) {
1252 kauth_cred_hold(scred);
1253 l->l_cred = scred;
1254 }
1255 } else
1256 oc = NULL; /* XXXgcc */
1257
1258 if (sugid) {
1259 /*
1260 * Mark process as having changed credentials, stops
1261 * tracing etc.
1262 */
1263 p->p_flag |= PK_SUGID;
1264 }
1265
1266 mutex_exit(p->p_lock);
1267
1268 /* If there is a credential to be released, free it now. */
1269 if (fcred != NULL) {
1270 KASSERT(scred != NULL);
1271 kauth_cred_free(fcred);
1272 if (oc != scred)
1273 kauth_cred_free(oc);
1274 }
1275 }
1276
1277 /*
1278 * proc_specific_key_create --
1279 * Create a key for subsystem proc-specific data.
1280 */
1281 int
1282 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1283 {
1284
1285 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1286 }
1287
1288 /*
1289 * proc_specific_key_delete --
1290 * Delete a key for subsystem proc-specific data.
1291 */
1292 void
1293 proc_specific_key_delete(specificdata_key_t key)
1294 {
1295
1296 specificdata_key_delete(proc_specificdata_domain, key);
1297 }
1298
1299 /*
1300 * proc_initspecific --
1301 * Initialize a proc's specificdata container.
1302 */
1303 void
1304 proc_initspecific(struct proc *p)
1305 {
1306 int error;
1307
1308 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1309 KASSERT(error == 0);
1310 }
1311
1312 /*
1313 * proc_finispecific --
1314 * Finalize a proc's specificdata container.
1315 */
1316 void
1317 proc_finispecific(struct proc *p)
1318 {
1319
1320 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1321 }
1322
1323 /*
1324 * proc_getspecific --
1325 * Return proc-specific data corresponding to the specified key.
1326 */
1327 void *
1328 proc_getspecific(struct proc *p, specificdata_key_t key)
1329 {
1330
1331 return (specificdata_getspecific(proc_specificdata_domain,
1332 &p->p_specdataref, key));
1333 }
1334
1335 /*
1336 * proc_setspecific --
1337 * Set proc-specific data corresponding to the specified key.
1338 */
1339 void
1340 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1341 {
1342
1343 specificdata_setspecific(proc_specificdata_domain,
1344 &p->p_specdataref, key, data);
1345 }
1346