kern_proc.c revision 1.142.2.1 1 /* $NetBSD: kern_proc.c,v 1.142.2.1 2008/06/27 15:11:39 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.142.2.1 2008/06/27 15:11:39 simonb Exp $");
66
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/malloc.h>
82 #include <sys/pool.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/tty.h>
86 #include <sys/signalvar.h>
87 #include <sys/ras.h>
88 #include <sys/filedesc.h>
89 #include "sys/syscall_stats.h"
90 #include <sys/kauth.h>
91 #include <sys/sleepq.h>
92 #include <sys/atomic.h>
93 #include <sys/kmem.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_extern.h>
97
98 /*
99 * Other process lists
100 */
101
102 struct proclist allproc;
103 struct proclist zombproc; /* resources have been freed */
104
105 kmutex_t *proc_lock;
106
107 /*
108 * pid to proc lookup is done by indexing the pid_table array.
109 * Since pid numbers are only allocated when an empty slot
110 * has been found, there is no need to search any lists ever.
111 * (an orphaned pgrp will lock the slot, a session will lock
112 * the pgrp with the same number.)
113 * If the table is too small it is reallocated with twice the
114 * previous size and the entries 'unzipped' into the two halves.
115 * A linked list of free entries is passed through the pt_proc
116 * field of 'free' items - set odd to be an invalid ptr.
117 */
118
119 struct pid_table {
120 struct proc *pt_proc;
121 struct pgrp *pt_pgrp;
122 };
123 #if 1 /* strongly typed cast - should be a noop */
124 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
125 #else
126 #define p2u(p) ((uint)p)
127 #endif
128 #define P_VALID(p) (!(p2u(p) & 1))
129 #define P_NEXT(p) (p2u(p) >> 1)
130 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
131
132 #define INITIAL_PID_TABLE_SIZE (1 << 5)
133 static struct pid_table *pid_table;
134 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
135 static uint pid_alloc_lim; /* max we allocate before growing table */
136 static uint pid_alloc_cnt; /* number of allocated pids */
137
138 /* links through free slots - never empty! */
139 static uint next_free_pt, last_free_pt;
140 static pid_t pid_max = PID_MAX; /* largest value we allocate */
141
142 /* Components of the first process -- never freed. */
143
144 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
145
146 struct session session0 = {
147 .s_count = 1,
148 .s_sid = 0,
149 };
150 struct pgrp pgrp0 = {
151 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
152 .pg_session = &session0,
153 };
154 filedesc_t filedesc0;
155 struct cwdinfo cwdi0 = {
156 .cwdi_cmask = CMASK, /* see cmask below */
157 .cwdi_refcnt = 1,
158 };
159 struct plimit limit0;
160 struct pstats pstat0;
161 struct vmspace vmspace0;
162 struct sigacts sigacts0;
163 struct turnstile turnstile0;
164 struct proc proc0 = {
165 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
166 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
167 .p_nlwps = 1,
168 .p_nrlwps = 1,
169 .p_nlwpid = 1, /* must match lwp0.l_lid */
170 .p_pgrp = &pgrp0,
171 .p_comm = "system",
172 /*
173 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
174 * when they exit. init(8) can easily wait them out for us.
175 */
176 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
177 .p_stat = SACTIVE,
178 .p_nice = NZERO,
179 .p_emul = &emul_netbsd,
180 .p_cwdi = &cwdi0,
181 .p_limit = &limit0,
182 .p_fd = &filedesc0,
183 .p_vmspace = &vmspace0,
184 .p_stats = &pstat0,
185 .p_sigacts = &sigacts0,
186 };
187 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
188 #ifdef LWP0_CPU_INFO
189 .l_cpu = LWP0_CPU_INFO,
190 #endif
191 .l_proc = &proc0,
192 .l_lid = 1,
193 .l_flag = LW_INMEM | LW_SYSTEM,
194 .l_stat = LSONPROC,
195 .l_ts = &turnstile0,
196 .l_syncobj = &sched_syncobj,
197 .l_refcnt = 1,
198 .l_priority = PRI_USER + NPRI_USER - 1,
199 .l_inheritedprio = -1,
200 .l_class = SCHED_OTHER,
201 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
202 .l_name = __UNCONST("swapper"),
203 };
204 kauth_cred_t cred0;
205
206 extern struct user *proc0paddr;
207
208 int nofile = NOFILE;
209 int maxuprc = MAXUPRC;
210 int cmask = CMASK;
211
212 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
213 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
214 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
215
216 /*
217 * The process list descriptors, used during pid allocation and
218 * by sysctl. No locking on this data structure is needed since
219 * it is completely static.
220 */
221 const struct proclist_desc proclists[] = {
222 { &allproc },
223 { &zombproc },
224 { NULL },
225 };
226
227 static void orphanpg(struct pgrp *);
228 static void pg_delete(pid_t);
229
230 static specificdata_domain_t proc_specificdata_domain;
231
232 static pool_cache_t proc_cache;
233
234 /*
235 * Initialize global process hashing structures.
236 */
237 void
238 procinit(void)
239 {
240 const struct proclist_desc *pd;
241 int i;
242 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
243
244 for (pd = proclists; pd->pd_list != NULL; pd++)
245 LIST_INIT(pd->pd_list);
246
247 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
248
249 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
250 M_PROC, M_WAITOK);
251 /* Set free list running through table...
252 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
253 for (i = 0; i <= pid_tbl_mask; i++) {
254 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
255 pid_table[i].pt_pgrp = 0;
256 }
257 /* slot 0 is just grabbed */
258 next_free_pt = 1;
259 /* Need to fix last entry. */
260 last_free_pt = pid_tbl_mask;
261 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
262 /* point at which we grow table - to avoid reusing pids too often */
263 pid_alloc_lim = pid_tbl_mask - 1;
264 #undef LINK_EMPTY
265
266 proc_specificdata_domain = specificdata_domain_create();
267 KASSERT(proc_specificdata_domain != NULL);
268
269 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
270 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
271 }
272
273 /*
274 * Initialize process 0.
275 */
276 void
277 proc0_init(void)
278 {
279 struct proc *p;
280 struct pgrp *pg;
281 struct session *sess;
282 struct lwp *l;
283 rlim_t lim;
284 int i;
285
286 p = &proc0;
287 pg = &pgrp0;
288 sess = &session0;
289 l = &lwp0;
290
291 KASSERT(l->l_lid == p->p_nlwpid);
292
293 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
294 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
295 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
296 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
297
298 rw_init(&p->p_reflock);
299 cv_init(&p->p_waitcv, "wait");
300 cv_init(&p->p_lwpcv, "lwpwait");
301
302 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
303
304 pid_table[0].pt_proc = p;
305 LIST_INSERT_HEAD(&allproc, p, p_list);
306 LIST_INSERT_HEAD(&alllwp, l, l_list);
307
308 pid_table[0].pt_pgrp = pg;
309 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
310
311 #ifdef __HAVE_SYSCALL_INTERN
312 (*p->p_emul->e_syscall_intern)(p);
313 #endif
314
315 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
316 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
317 cv_init(&l->l_sigcv, "sigwait");
318
319 /* Create credentials. */
320 cred0 = kauth_cred_alloc();
321 p->p_cred = cred0;
322 kauth_cred_hold(cred0);
323 l->l_cred = cred0;
324
325 /* Create the CWD info. */
326 rw_init(&cwdi0.cwdi_lock);
327
328 /* Create the limits structures. */
329 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
330 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
331 limit0.pl_rlimit[i].rlim_cur =
332 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
333
334 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
335 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
336 maxfiles < nofile ? maxfiles : nofile;
337
338 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
339 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
340 maxproc < maxuprc ? maxproc : maxuprc;
341
342 lim = ptoa(uvmexp.free);
343 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
344 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
345 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
346 limit0.pl_corename = defcorename;
347 limit0.pl_refcnt = 1;
348 limit0.pl_sv_limit = NULL;
349
350 /* Configure virtual memory system, set vm rlimits. */
351 uvm_init_limits(p);
352
353 /* Initialize file descriptor table for proc0. */
354 fd_init(&filedesc0);
355
356 /*
357 * Initialize proc0's vmspace, which uses the kernel pmap.
358 * All kernel processes (which never have user space mappings)
359 * share proc0's vmspace, and thus, the kernel pmap.
360 */
361 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
362 trunc_page(VM_MAX_ADDRESS));
363
364 l->l_addr = proc0paddr; /* XXX */
365
366 /* Initialize signal state for proc0. XXX IPL_SCHED */
367 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
368 siginit(p);
369
370 proc_initspecific(p);
371 lwp_initspecific(l);
372
373 SYSCALL_TIME_LWP_INIT(l);
374 }
375
376 /*
377 * Check that the specified process group is in the session of the
378 * specified process.
379 * Treats -ve ids as process ids.
380 * Used to validate TIOCSPGRP requests.
381 */
382 int
383 pgid_in_session(struct proc *p, pid_t pg_id)
384 {
385 struct pgrp *pgrp;
386 struct session *session;
387 int error;
388
389 mutex_enter(proc_lock);
390 if (pg_id < 0) {
391 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
392 if (p1 == NULL)
393 return EINVAL;
394 pgrp = p1->p_pgrp;
395 } else {
396 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
397 if (pgrp == NULL)
398 return EINVAL;
399 }
400 session = pgrp->pg_session;
401 if (session != p->p_pgrp->pg_session)
402 error = EPERM;
403 else
404 error = 0;
405 mutex_exit(proc_lock);
406
407 return error;
408 }
409
410 /*
411 * Is p an inferior of q?
412 *
413 * Call with the proc_lock held.
414 */
415 int
416 inferior(struct proc *p, struct proc *q)
417 {
418
419 for (; p != q; p = p->p_pptr)
420 if (p->p_pid == 0)
421 return 0;
422 return 1;
423 }
424
425 /*
426 * Locate a process by number
427 */
428 struct proc *
429 p_find(pid_t pid, uint flags)
430 {
431 struct proc *p;
432 char stat;
433
434 if (!(flags & PFIND_LOCKED))
435 mutex_enter(proc_lock);
436
437 p = pid_table[pid & pid_tbl_mask].pt_proc;
438
439 /* Only allow live processes to be found by pid. */
440 /* XXXSMP p_stat */
441 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
442 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
443 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
444 if (flags & PFIND_UNLOCK_OK)
445 mutex_exit(proc_lock);
446 return p;
447 }
448 if (flags & PFIND_UNLOCK_FAIL)
449 mutex_exit(proc_lock);
450 return NULL;
451 }
452
453
454 /*
455 * Locate a process group by number
456 */
457 struct pgrp *
458 pg_find(pid_t pgid, uint flags)
459 {
460 struct pgrp *pg;
461
462 if (!(flags & PFIND_LOCKED))
463 mutex_enter(proc_lock);
464 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
465 /*
466 * Can't look up a pgrp that only exists because the session
467 * hasn't died yet (traditional)
468 */
469 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
470 if (flags & PFIND_UNLOCK_FAIL)
471 mutex_exit(proc_lock);
472 return NULL;
473 }
474
475 if (flags & PFIND_UNLOCK_OK)
476 mutex_exit(proc_lock);
477 return pg;
478 }
479
480 static void
481 expand_pid_table(void)
482 {
483 uint pt_size = pid_tbl_mask + 1;
484 struct pid_table *n_pt, *new_pt;
485 struct proc *proc;
486 struct pgrp *pgrp;
487 int i;
488 pid_t pid;
489
490 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
491
492 mutex_enter(proc_lock);
493 if (pt_size != pid_tbl_mask + 1) {
494 /* Another process beat us to it... */
495 mutex_exit(proc_lock);
496 FREE(new_pt, M_PROC);
497 return;
498 }
499
500 /*
501 * Copy entries from old table into new one.
502 * If 'pid' is 'odd' we need to place in the upper half,
503 * even pid's to the lower half.
504 * Free items stay in the low half so we don't have to
505 * fixup the reference to them.
506 * We stuff free items on the front of the freelist
507 * because we can't write to unmodified entries.
508 * Processing the table backwards maintains a semblance
509 * of issueing pid numbers that increase with time.
510 */
511 i = pt_size - 1;
512 n_pt = new_pt + i;
513 for (; ; i--, n_pt--) {
514 proc = pid_table[i].pt_proc;
515 pgrp = pid_table[i].pt_pgrp;
516 if (!P_VALID(proc)) {
517 /* Up 'use count' so that link is valid */
518 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
519 proc = P_FREE(pid);
520 if (pgrp)
521 pid = pgrp->pg_id;
522 } else
523 pid = proc->p_pid;
524
525 /* Save entry in appropriate half of table */
526 n_pt[pid & pt_size].pt_proc = proc;
527 n_pt[pid & pt_size].pt_pgrp = pgrp;
528
529 /* Put other piece on start of free list */
530 pid = (pid ^ pt_size) & ~pid_tbl_mask;
531 n_pt[pid & pt_size].pt_proc =
532 P_FREE((pid & ~pt_size) | next_free_pt);
533 n_pt[pid & pt_size].pt_pgrp = 0;
534 next_free_pt = i | (pid & pt_size);
535 if (i == 0)
536 break;
537 }
538
539 /* Switch tables */
540 n_pt = pid_table;
541 pid_table = new_pt;
542 pid_tbl_mask = pt_size * 2 - 1;
543
544 /*
545 * pid_max starts as PID_MAX (= 30000), once we have 16384
546 * allocated pids we need it to be larger!
547 */
548 if (pid_tbl_mask > PID_MAX) {
549 pid_max = pid_tbl_mask * 2 + 1;
550 pid_alloc_lim |= pid_alloc_lim << 1;
551 } else
552 pid_alloc_lim <<= 1; /* doubles number of free slots... */
553
554 mutex_exit(proc_lock);
555 FREE(n_pt, M_PROC);
556 }
557
558 struct proc *
559 proc_alloc(void)
560 {
561 struct proc *p;
562 int nxt;
563 pid_t pid;
564 struct pid_table *pt;
565
566 p = pool_cache_get(proc_cache, PR_WAITOK);
567 p->p_stat = SIDL; /* protect against others */
568
569 proc_initspecific(p);
570 /* allocate next free pid */
571
572 for (;;expand_pid_table()) {
573 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
574 /* ensure pids cycle through 2000+ values */
575 continue;
576 mutex_enter(proc_lock);
577 pt = &pid_table[next_free_pt];
578 #ifdef DIAGNOSTIC
579 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
580 panic("proc_alloc: slot busy");
581 #endif
582 nxt = P_NEXT(pt->pt_proc);
583 if (nxt & pid_tbl_mask)
584 break;
585 /* Table full - expand (NB last entry not used....) */
586 mutex_exit(proc_lock);
587 }
588
589 /* pid is 'saved use count' + 'size' + entry */
590 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
591 if ((uint)pid > (uint)pid_max)
592 pid &= pid_tbl_mask;
593 p->p_pid = pid;
594 next_free_pt = nxt & pid_tbl_mask;
595
596 /* Grab table slot */
597 pt->pt_proc = p;
598 pid_alloc_cnt++;
599
600 mutex_exit(proc_lock);
601
602 return p;
603 }
604
605 /*
606 * Free a process id - called from proc_free (in kern_exit.c)
607 *
608 * Called with the proc_lock held.
609 */
610 void
611 proc_free_pid(struct proc *p)
612 {
613 pid_t pid = p->p_pid;
614 struct pid_table *pt;
615
616 KASSERT(mutex_owned(proc_lock));
617
618 pt = &pid_table[pid & pid_tbl_mask];
619 #ifdef DIAGNOSTIC
620 if (__predict_false(pt->pt_proc != p))
621 panic("proc_free: pid_table mismatch, pid %x, proc %p",
622 pid, p);
623 #endif
624 /* save pid use count in slot */
625 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
626
627 if (pt->pt_pgrp == NULL) {
628 /* link last freed entry onto ours */
629 pid &= pid_tbl_mask;
630 pt = &pid_table[last_free_pt];
631 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
632 last_free_pt = pid;
633 pid_alloc_cnt--;
634 }
635
636 atomic_dec_uint(&nprocs);
637 }
638
639 void
640 proc_free_mem(struct proc *p)
641 {
642
643 pool_cache_put(proc_cache, p);
644 }
645
646 /*
647 * Move p to a new or existing process group (and session)
648 *
649 * If we are creating a new pgrp, the pgid should equal
650 * the calling process' pid.
651 * If is only valid to enter a process group that is in the session
652 * of the process.
653 * Also mksess should only be set if we are creating a process group
654 *
655 * Only called from sys_setsid and sys_setpgid.
656 */
657 int
658 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
659 {
660 struct pgrp *new_pgrp, *pgrp;
661 struct session *sess;
662 struct proc *p;
663 int rval;
664 pid_t pg_id = NO_PGID;
665
666 if (mksess)
667 sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
668 else
669 sess = NULL;
670
671 /* Allocate data areas we might need before doing any validity checks */
672 mutex_enter(proc_lock); /* Because pid_table might change */
673 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
674 mutex_exit(proc_lock);
675 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
676 mutex_enter(proc_lock);
677 } else
678 new_pgrp = NULL;
679 rval = EPERM; /* most common error (to save typing) */
680
681 /* Check pgrp exists or can be created */
682 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
683 if (pgrp != NULL && pgrp->pg_id != pgid)
684 goto done;
685
686 /* Can only set another process under restricted circumstances. */
687 if (pid != curp->p_pid) {
688 /* must exist and be one of our children... */
689 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
690 !inferior(p, curp)) {
691 rval = ESRCH;
692 goto done;
693 }
694 /* ... in the same session... */
695 if (sess != NULL || p->p_session != curp->p_session)
696 goto done;
697 /* ... existing pgid must be in same session ... */
698 if (pgrp != NULL && pgrp->pg_session != p->p_session)
699 goto done;
700 /* ... and not done an exec. */
701 if (p->p_flag & PK_EXEC) {
702 rval = EACCES;
703 goto done;
704 }
705 } else {
706 /* ... setsid() cannot re-enter a pgrp */
707 if (mksess && (curp->p_pgid == curp->p_pid ||
708 pg_find(curp->p_pid, PFIND_LOCKED)))
709 goto done;
710 p = curp;
711 }
712
713 /* Changing the process group/session of a session
714 leader is definitely off limits. */
715 if (SESS_LEADER(p)) {
716 if (sess == NULL && p->p_pgrp == pgrp)
717 /* unless it's a definite noop */
718 rval = 0;
719 goto done;
720 }
721
722 /* Can only create a process group with id of process */
723 if (pgrp == NULL && pgid != pid)
724 goto done;
725
726 /* Can only create a session if creating pgrp */
727 if (sess != NULL && pgrp != NULL)
728 goto done;
729
730 /* Check we allocated memory for a pgrp... */
731 if (pgrp == NULL && new_pgrp == NULL)
732 goto done;
733
734 /* Don't attach to 'zombie' pgrp */
735 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
736 goto done;
737
738 /* Expect to succeed now */
739 rval = 0;
740
741 if (pgrp == p->p_pgrp)
742 /* nothing to do */
743 goto done;
744
745 /* Ok all setup, link up required structures */
746
747 if (pgrp == NULL) {
748 pgrp = new_pgrp;
749 new_pgrp = NULL;
750 if (sess != NULL) {
751 sess->s_sid = p->p_pid;
752 sess->s_leader = p;
753 sess->s_count = 1;
754 sess->s_ttyvp = NULL;
755 sess->s_ttyp = NULL;
756 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
757 memcpy(sess->s_login, p->p_session->s_login,
758 sizeof(sess->s_login));
759 p->p_lflag &= ~PL_CONTROLT;
760 } else {
761 sess = p->p_pgrp->pg_session;
762 SESSHOLD(sess);
763 }
764 pgrp->pg_session = sess;
765 sess = NULL;
766
767 pgrp->pg_id = pgid;
768 LIST_INIT(&pgrp->pg_members);
769 #ifdef DIAGNOSTIC
770 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
771 panic("enterpgrp: pgrp table slot in use");
772 if (__predict_false(mksess && p != curp))
773 panic("enterpgrp: mksession and p != curproc");
774 #endif
775 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
776 pgrp->pg_jobc = 0;
777 }
778
779 /*
780 * Adjust eligibility of affected pgrps to participate in job control.
781 * Increment eligibility counts before decrementing, otherwise we
782 * could reach 0 spuriously during the first call.
783 */
784 fixjobc(p, pgrp, 1);
785 fixjobc(p, p->p_pgrp, 0);
786
787 /* Interlock with ttread(). */
788 mutex_spin_enter(&tty_lock);
789
790 /* Move process to requested group. */
791 LIST_REMOVE(p, p_pglist);
792 if (LIST_EMPTY(&p->p_pgrp->pg_members))
793 /* defer delete until we've dumped the lock */
794 pg_id = p->p_pgrp->pg_id;
795 p->p_pgrp = pgrp;
796 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
797
798 /* Done with the swap; we can release the tty mutex. */
799 mutex_spin_exit(&tty_lock);
800
801 done:
802 if (pg_id != NO_PGID)
803 pg_delete(pg_id);
804 mutex_exit(proc_lock);
805 if (sess != NULL)
806 kmem_free(sess, sizeof(*sess));
807 if (new_pgrp != NULL)
808 kmem_free(new_pgrp, sizeof(*new_pgrp));
809 #ifdef DEBUG_PGRP
810 if (__predict_false(rval))
811 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
812 pid, pgid, mksess, curp->p_pid, rval);
813 #endif
814 return rval;
815 }
816
817 /*
818 * Remove a process from its process group. Must be called with the
819 * proc_lock held.
820 */
821 void
822 leavepgrp(struct proc *p)
823 {
824 struct pgrp *pgrp;
825
826 KASSERT(mutex_owned(proc_lock));
827
828 /* Interlock with ttread() */
829 mutex_spin_enter(&tty_lock);
830 pgrp = p->p_pgrp;
831 LIST_REMOVE(p, p_pglist);
832 p->p_pgrp = NULL;
833 mutex_spin_exit(&tty_lock);
834
835 if (LIST_EMPTY(&pgrp->pg_members))
836 pg_delete(pgrp->pg_id);
837 }
838
839 /*
840 * Free a process group. Must be called with the proc_lock held.
841 */
842 static void
843 pg_free(pid_t pg_id)
844 {
845 struct pgrp *pgrp;
846 struct pid_table *pt;
847
848 KASSERT(mutex_owned(proc_lock));
849
850 pt = &pid_table[pg_id & pid_tbl_mask];
851 pgrp = pt->pt_pgrp;
852 #ifdef DIAGNOSTIC
853 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
854 || !LIST_EMPTY(&pgrp->pg_members)))
855 panic("pg_free: process group absent or has members");
856 #endif
857 pt->pt_pgrp = 0;
858
859 if (!P_VALID(pt->pt_proc)) {
860 /* orphaned pgrp, put slot onto free list */
861 #ifdef DIAGNOSTIC
862 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
863 panic("pg_free: process slot on free list");
864 #endif
865 pg_id &= pid_tbl_mask;
866 pt = &pid_table[last_free_pt];
867 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
868 last_free_pt = pg_id;
869 pid_alloc_cnt--;
870 }
871 kmem_free(pgrp, sizeof(*pgrp));
872 }
873
874 /*
875 * Delete a process group. Must be called with the proc_lock held.
876 */
877 static void
878 pg_delete(pid_t pg_id)
879 {
880 struct pgrp *pgrp;
881 struct tty *ttyp;
882 struct session *ss;
883 int is_pgrp_leader;
884
885 KASSERT(mutex_owned(proc_lock));
886
887 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
888 if (pgrp == NULL || pgrp->pg_id != pg_id ||
889 !LIST_EMPTY(&pgrp->pg_members))
890 return;
891
892 ss = pgrp->pg_session;
893
894 /* Remove reference (if any) from tty to this process group */
895 mutex_spin_enter(&tty_lock);
896 ttyp = ss->s_ttyp;
897 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
898 ttyp->t_pgrp = NULL;
899 #ifdef DIAGNOSTIC
900 if (ttyp->t_session != ss)
901 panic("pg_delete: wrong session on terminal");
902 #endif
903 }
904 mutex_spin_exit(&tty_lock);
905
906 /*
907 * The leading process group in a session is freed
908 * by sessdelete() if last reference.
909 */
910 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
911 SESSRELE(ss);
912
913 if (is_pgrp_leader)
914 return;
915
916 pg_free(pg_id);
917 }
918
919 /*
920 * Delete session - called from SESSRELE when s_count becomes zero.
921 * Must be called with the proc_lock held.
922 */
923 void
924 sessdelete(struct session *ss)
925 {
926
927 KASSERT(mutex_owned(proc_lock));
928
929 /*
930 * We keep the pgrp with the same id as the session in
931 * order to stop a process being given the same pid.
932 * Since the pgrp holds a reference to the session, it
933 * must be a 'zombie' pgrp by now.
934 */
935 pg_free(ss->s_sid);
936 kmem_free(ss, sizeof(*ss));
937 }
938
939 /*
940 * Adjust pgrp jobc counters when specified process changes process group.
941 * We count the number of processes in each process group that "qualify"
942 * the group for terminal job control (those with a parent in a different
943 * process group of the same session). If that count reaches zero, the
944 * process group becomes orphaned. Check both the specified process'
945 * process group and that of its children.
946 * entering == 0 => p is leaving specified group.
947 * entering == 1 => p is entering specified group.
948 *
949 * Call with proc_lock held.
950 */
951 void
952 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
953 {
954 struct pgrp *hispgrp;
955 struct session *mysession = pgrp->pg_session;
956 struct proc *child;
957
958 KASSERT(mutex_owned(proc_lock));
959
960 /*
961 * Check p's parent to see whether p qualifies its own process
962 * group; if so, adjust count for p's process group.
963 */
964 hispgrp = p->p_pptr->p_pgrp;
965 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
966 if (entering) {
967 pgrp->pg_jobc++;
968 p->p_lflag &= ~PL_ORPHANPG;
969 } else if (--pgrp->pg_jobc == 0)
970 orphanpg(pgrp);
971 }
972
973 /*
974 * Check this process' children to see whether they qualify
975 * their process groups; if so, adjust counts for children's
976 * process groups.
977 */
978 LIST_FOREACH(child, &p->p_children, p_sibling) {
979 hispgrp = child->p_pgrp;
980 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
981 !P_ZOMBIE(child)) {
982 if (entering) {
983 child->p_lflag &= ~PL_ORPHANPG;
984 hispgrp->pg_jobc++;
985 } else if (--hispgrp->pg_jobc == 0)
986 orphanpg(hispgrp);
987 }
988 }
989 }
990
991 /*
992 * A process group has become orphaned;
993 * if there are any stopped processes in the group,
994 * hang-up all process in that group.
995 *
996 * Call with proc_lock held.
997 */
998 static void
999 orphanpg(struct pgrp *pg)
1000 {
1001 struct proc *p;
1002 int doit;
1003
1004 KASSERT(mutex_owned(proc_lock));
1005
1006 doit = 0;
1007
1008 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1009 if (p->p_stat == SSTOP) {
1010 p->p_lflag |= PL_ORPHANPG;
1011 psignal(p, SIGHUP);
1012 psignal(p, SIGCONT);
1013 }
1014 }
1015 }
1016
1017 #ifdef DDB
1018 #include <ddb/db_output.h>
1019 void pidtbl_dump(void);
1020 void
1021 pidtbl_dump(void)
1022 {
1023 struct pid_table *pt;
1024 struct proc *p;
1025 struct pgrp *pgrp;
1026 int id;
1027
1028 db_printf("pid table %p size %x, next %x, last %x\n",
1029 pid_table, pid_tbl_mask+1,
1030 next_free_pt, last_free_pt);
1031 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1032 p = pt->pt_proc;
1033 if (!P_VALID(p) && !pt->pt_pgrp)
1034 continue;
1035 db_printf(" id %x: ", id);
1036 if (P_VALID(p))
1037 db_printf("proc %p id %d (0x%x) %s\n",
1038 p, p->p_pid, p->p_pid, p->p_comm);
1039 else
1040 db_printf("next %x use %x\n",
1041 P_NEXT(p) & pid_tbl_mask,
1042 P_NEXT(p) & ~pid_tbl_mask);
1043 if ((pgrp = pt->pt_pgrp)) {
1044 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1045 pgrp->pg_session, pgrp->pg_session->s_sid,
1046 pgrp->pg_session->s_count,
1047 pgrp->pg_session->s_login);
1048 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1049 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1050 LIST_FIRST(&pgrp->pg_members));
1051 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1052 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1053 p->p_pid, p, p->p_pgrp, p->p_comm);
1054 }
1055 }
1056 }
1057 }
1058 #endif /* DDB */
1059
1060 #ifdef KSTACK_CHECK_MAGIC
1061 #include <sys/user.h>
1062
1063 #define KSTACK_MAGIC 0xdeadbeaf
1064
1065 /* XXX should be per process basis? */
1066 int kstackleftmin = KSTACK_SIZE;
1067 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1068 less than this */
1069
1070 void
1071 kstack_setup_magic(const struct lwp *l)
1072 {
1073 uint32_t *ip;
1074 uint32_t const *end;
1075
1076 KASSERT(l != NULL);
1077 KASSERT(l != &lwp0);
1078
1079 /*
1080 * fill all the stack with magic number
1081 * so that later modification on it can be detected.
1082 */
1083 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1084 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1085 for (; ip < end; ip++) {
1086 *ip = KSTACK_MAGIC;
1087 }
1088 }
1089
1090 void
1091 kstack_check_magic(const struct lwp *l)
1092 {
1093 uint32_t const *ip, *end;
1094 int stackleft;
1095
1096 KASSERT(l != NULL);
1097
1098 /* don't check proc0 */ /*XXX*/
1099 if (l == &lwp0)
1100 return;
1101
1102 #ifdef __MACHINE_STACK_GROWS_UP
1103 /* stack grows upwards (eg. hppa) */
1104 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1105 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1106 for (ip--; ip >= end; ip--)
1107 if (*ip != KSTACK_MAGIC)
1108 break;
1109
1110 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1111 #else /* __MACHINE_STACK_GROWS_UP */
1112 /* stack grows downwards (eg. i386) */
1113 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1114 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1115 for (; ip < end; ip++)
1116 if (*ip != KSTACK_MAGIC)
1117 break;
1118
1119 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1120 #endif /* __MACHINE_STACK_GROWS_UP */
1121
1122 if (kstackleftmin > stackleft) {
1123 kstackleftmin = stackleft;
1124 if (stackleft < kstackleftthres)
1125 printf("warning: kernel stack left %d bytes"
1126 "(pid %u:lid %u)\n", stackleft,
1127 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1128 }
1129
1130 if (stackleft <= 0) {
1131 panic("magic on the top of kernel stack changed for "
1132 "pid %u, lid %u: maybe kernel stack overflow",
1133 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1134 }
1135 }
1136 #endif /* KSTACK_CHECK_MAGIC */
1137
1138 int
1139 proclist_foreach_call(struct proclist *list,
1140 int (*callback)(struct proc *, void *arg), void *arg)
1141 {
1142 struct proc marker;
1143 struct proc *p;
1144 struct lwp * const l = curlwp;
1145 int ret = 0;
1146
1147 marker.p_flag = PK_MARKER;
1148 uvm_lwp_hold(l);
1149 mutex_enter(proc_lock);
1150 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1151 if (p->p_flag & PK_MARKER) {
1152 p = LIST_NEXT(p, p_list);
1153 continue;
1154 }
1155 LIST_INSERT_AFTER(p, &marker, p_list);
1156 ret = (*callback)(p, arg);
1157 KASSERT(mutex_owned(proc_lock));
1158 p = LIST_NEXT(&marker, p_list);
1159 LIST_REMOVE(&marker, p_list);
1160 }
1161 mutex_exit(proc_lock);
1162 uvm_lwp_rele(l);
1163
1164 return ret;
1165 }
1166
1167 int
1168 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1169 {
1170
1171 /* XXXCDC: how should locking work here? */
1172
1173 /* curproc exception is for coredump. */
1174
1175 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1176 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1177 return EFAULT;
1178 }
1179
1180 uvmspace_addref(p->p_vmspace);
1181 *vm = p->p_vmspace;
1182
1183 return 0;
1184 }
1185
1186 /*
1187 * Acquire a write lock on the process credential.
1188 */
1189 void
1190 proc_crmod_enter(void)
1191 {
1192 struct lwp *l = curlwp;
1193 struct proc *p = l->l_proc;
1194 struct plimit *lim;
1195 kauth_cred_t oc;
1196 char *cn;
1197
1198 /* Reset what needs to be reset in plimit. */
1199 if (p->p_limit->pl_corename != defcorename) {
1200 lim_privatise(p, false);
1201 lim = p->p_limit;
1202 mutex_enter(&lim->pl_lock);
1203 cn = lim->pl_corename;
1204 lim->pl_corename = defcorename;
1205 mutex_exit(&lim->pl_lock);
1206 if (cn != defcorename)
1207 free(cn, M_TEMP);
1208 }
1209
1210 mutex_enter(p->p_lock);
1211
1212 /* Ensure the LWP cached credentials are up to date. */
1213 if ((oc = l->l_cred) != p->p_cred) {
1214 kauth_cred_hold(p->p_cred);
1215 l->l_cred = p->p_cred;
1216 kauth_cred_free(oc);
1217 }
1218
1219 }
1220
1221 /*
1222 * Set in a new process credential, and drop the write lock. The credential
1223 * must have a reference already. Optionally, free a no-longer required
1224 * credential. The scheduler also needs to inspect p_cred, so we also
1225 * briefly acquire the sched state mutex.
1226 */
1227 void
1228 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1229 {
1230 struct lwp *l = curlwp, *l2;
1231 struct proc *p = l->l_proc;
1232 kauth_cred_t oc;
1233
1234 KASSERT(mutex_owned(p->p_lock));
1235
1236 /* Is there a new credential to set in? */
1237 if (scred != NULL) {
1238 p->p_cred = scred;
1239 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1240 if (l2 != l)
1241 l2->l_prflag |= LPR_CRMOD;
1242 }
1243
1244 /* Ensure the LWP cached credentials are up to date. */
1245 if ((oc = l->l_cred) != scred) {
1246 kauth_cred_hold(scred);
1247 l->l_cred = scred;
1248 }
1249 } else
1250 oc = NULL; /* XXXgcc */
1251
1252 if (sugid) {
1253 /*
1254 * Mark process as having changed credentials, stops
1255 * tracing etc.
1256 */
1257 p->p_flag |= PK_SUGID;
1258 }
1259
1260 mutex_exit(p->p_lock);
1261
1262 /* If there is a credential to be released, free it now. */
1263 if (fcred != NULL) {
1264 KASSERT(scred != NULL);
1265 kauth_cred_free(fcred);
1266 if (oc != scred)
1267 kauth_cred_free(oc);
1268 }
1269 }
1270
1271 /*
1272 * proc_specific_key_create --
1273 * Create a key for subsystem proc-specific data.
1274 */
1275 int
1276 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1277 {
1278
1279 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1280 }
1281
1282 /*
1283 * proc_specific_key_delete --
1284 * Delete a key for subsystem proc-specific data.
1285 */
1286 void
1287 proc_specific_key_delete(specificdata_key_t key)
1288 {
1289
1290 specificdata_key_delete(proc_specificdata_domain, key);
1291 }
1292
1293 /*
1294 * proc_initspecific --
1295 * Initialize a proc's specificdata container.
1296 */
1297 void
1298 proc_initspecific(struct proc *p)
1299 {
1300 int error;
1301
1302 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1303 KASSERT(error == 0);
1304 }
1305
1306 /*
1307 * proc_finispecific --
1308 * Finalize a proc's specificdata container.
1309 */
1310 void
1311 proc_finispecific(struct proc *p)
1312 {
1313
1314 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1315 }
1316
1317 /*
1318 * proc_getspecific --
1319 * Return proc-specific data corresponding to the specified key.
1320 */
1321 void *
1322 proc_getspecific(struct proc *p, specificdata_key_t key)
1323 {
1324
1325 return (specificdata_getspecific(proc_specificdata_domain,
1326 &p->p_specdataref, key));
1327 }
1328
1329 /*
1330 * proc_setspecific --
1331 * Set proc-specific data corresponding to the specified key.
1332 */
1333 void
1334 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1335 {
1336
1337 specificdata_setspecific(proc_specificdata_domain,
1338 &p->p_specdataref, key, data);
1339 }
1340