Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.142.2.1
      1 /*	$NetBSD: kern_proc.c,v 1.142.2.1 2008/06/27 15:11:39 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.142.2.1 2008/06/27 15:11:39 simonb Exp $");
     66 
     67 #include "opt_kstack.h"
     68 #include "opt_maxuprc.h"
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/kernel.h>
     73 #include <sys/proc.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/buf.h>
     76 #include <sys/acct.h>
     77 #include <sys/wait.h>
     78 #include <sys/file.h>
     79 #include <ufs/ufs/quota.h>
     80 #include <sys/uio.h>
     81 #include <sys/malloc.h>
     82 #include <sys/pool.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/tty.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/ras.h>
     88 #include <sys/filedesc.h>
     89 #include "sys/syscall_stats.h"
     90 #include <sys/kauth.h>
     91 #include <sys/sleepq.h>
     92 #include <sys/atomic.h>
     93 #include <sys/kmem.h>
     94 
     95 #include <uvm/uvm.h>
     96 #include <uvm/uvm_extern.h>
     97 
     98 /*
     99  * Other process lists
    100  */
    101 
    102 struct proclist allproc;
    103 struct proclist zombproc;	/* resources have been freed */
    104 
    105 kmutex_t	*proc_lock;
    106 
    107 /*
    108  * pid to proc lookup is done by indexing the pid_table array.
    109  * Since pid numbers are only allocated when an empty slot
    110  * has been found, there is no need to search any lists ever.
    111  * (an orphaned pgrp will lock the slot, a session will lock
    112  * the pgrp with the same number.)
    113  * If the table is too small it is reallocated with twice the
    114  * previous size and the entries 'unzipped' into the two halves.
    115  * A linked list of free entries is passed through the pt_proc
    116  * field of 'free' items - set odd to be an invalid ptr.
    117  */
    118 
    119 struct pid_table {
    120 	struct proc	*pt_proc;
    121 	struct pgrp	*pt_pgrp;
    122 };
    123 #if 1	/* strongly typed cast - should be a noop */
    124 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    125 #else
    126 #define p2u(p) ((uint)p)
    127 #endif
    128 #define P_VALID(p) (!(p2u(p) & 1))
    129 #define P_NEXT(p) (p2u(p) >> 1)
    130 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    131 
    132 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    133 static struct pid_table *pid_table;
    134 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    135 static uint pid_alloc_lim;	/* max we allocate before growing table */
    136 static uint pid_alloc_cnt;	/* number of allocated pids */
    137 
    138 /* links through free slots - never empty! */
    139 static uint next_free_pt, last_free_pt;
    140 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    141 
    142 /* Components of the first process -- never freed. */
    143 
    144 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    145 
    146 struct session session0 = {
    147 	.s_count = 1,
    148 	.s_sid = 0,
    149 };
    150 struct pgrp pgrp0 = {
    151 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    152 	.pg_session = &session0,
    153 };
    154 filedesc_t filedesc0;
    155 struct cwdinfo cwdi0 = {
    156 	.cwdi_cmask = CMASK,		/* see cmask below */
    157 	.cwdi_refcnt = 1,
    158 };
    159 struct plimit limit0;
    160 struct pstats pstat0;
    161 struct vmspace vmspace0;
    162 struct sigacts sigacts0;
    163 struct turnstile turnstile0;
    164 struct proc proc0 = {
    165 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    166 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    167 	.p_nlwps = 1,
    168 	.p_nrlwps = 1,
    169 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    170 	.p_pgrp = &pgrp0,
    171 	.p_comm = "system",
    172 	/*
    173 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    174 	 * when they exit.  init(8) can easily wait them out for us.
    175 	 */
    176 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    177 	.p_stat = SACTIVE,
    178 	.p_nice = NZERO,
    179 	.p_emul = &emul_netbsd,
    180 	.p_cwdi = &cwdi0,
    181 	.p_limit = &limit0,
    182 	.p_fd = &filedesc0,
    183 	.p_vmspace = &vmspace0,
    184 	.p_stats = &pstat0,
    185 	.p_sigacts = &sigacts0,
    186 };
    187 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    188 #ifdef LWP0_CPU_INFO
    189 	.l_cpu = LWP0_CPU_INFO,
    190 #endif
    191 	.l_proc = &proc0,
    192 	.l_lid = 1,
    193 	.l_flag = LW_INMEM | LW_SYSTEM,
    194 	.l_stat = LSONPROC,
    195 	.l_ts = &turnstile0,
    196 	.l_syncobj = &sched_syncobj,
    197 	.l_refcnt = 1,
    198 	.l_priority = PRI_USER + NPRI_USER - 1,
    199 	.l_inheritedprio = -1,
    200 	.l_class = SCHED_OTHER,
    201 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    202 	.l_name = __UNCONST("swapper"),
    203 };
    204 kauth_cred_t cred0;
    205 
    206 extern struct user *proc0paddr;
    207 
    208 int nofile = NOFILE;
    209 int maxuprc = MAXUPRC;
    210 int cmask = CMASK;
    211 
    212 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    213 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    214 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    215 
    216 /*
    217  * The process list descriptors, used during pid allocation and
    218  * by sysctl.  No locking on this data structure is needed since
    219  * it is completely static.
    220  */
    221 const struct proclist_desc proclists[] = {
    222 	{ &allproc	},
    223 	{ &zombproc	},
    224 	{ NULL		},
    225 };
    226 
    227 static void orphanpg(struct pgrp *);
    228 static void pg_delete(pid_t);
    229 
    230 static specificdata_domain_t proc_specificdata_domain;
    231 
    232 static pool_cache_t proc_cache;
    233 
    234 /*
    235  * Initialize global process hashing structures.
    236  */
    237 void
    238 procinit(void)
    239 {
    240 	const struct proclist_desc *pd;
    241 	int i;
    242 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    243 
    244 	for (pd = proclists; pd->pd_list != NULL; pd++)
    245 		LIST_INIT(pd->pd_list);
    246 
    247 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    248 
    249 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    250 			    M_PROC, M_WAITOK);
    251 	/* Set free list running through table...
    252 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    253 	for (i = 0; i <= pid_tbl_mask; i++) {
    254 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    255 		pid_table[i].pt_pgrp = 0;
    256 	}
    257 	/* slot 0 is just grabbed */
    258 	next_free_pt = 1;
    259 	/* Need to fix last entry. */
    260 	last_free_pt = pid_tbl_mask;
    261 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    262 	/* point at which we grow table - to avoid reusing pids too often */
    263 	pid_alloc_lim = pid_tbl_mask - 1;
    264 #undef LINK_EMPTY
    265 
    266 	proc_specificdata_domain = specificdata_domain_create();
    267 	KASSERT(proc_specificdata_domain != NULL);
    268 
    269 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    270 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    271 }
    272 
    273 /*
    274  * Initialize process 0.
    275  */
    276 void
    277 proc0_init(void)
    278 {
    279 	struct proc *p;
    280 	struct pgrp *pg;
    281 	struct session *sess;
    282 	struct lwp *l;
    283 	rlim_t lim;
    284 	int i;
    285 
    286 	p = &proc0;
    287 	pg = &pgrp0;
    288 	sess = &session0;
    289 	l = &lwp0;
    290 
    291 	KASSERT(l->l_lid == p->p_nlwpid);
    292 
    293 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    294 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    295 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    296 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    297 
    298 	rw_init(&p->p_reflock);
    299 	cv_init(&p->p_waitcv, "wait");
    300 	cv_init(&p->p_lwpcv, "lwpwait");
    301 
    302 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    303 
    304 	pid_table[0].pt_proc = p;
    305 	LIST_INSERT_HEAD(&allproc, p, p_list);
    306 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    307 
    308 	pid_table[0].pt_pgrp = pg;
    309 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    310 
    311 #ifdef __HAVE_SYSCALL_INTERN
    312 	(*p->p_emul->e_syscall_intern)(p);
    313 #endif
    314 
    315 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    316 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    317 	cv_init(&l->l_sigcv, "sigwait");
    318 
    319 	/* Create credentials. */
    320 	cred0 = kauth_cred_alloc();
    321 	p->p_cred = cred0;
    322 	kauth_cred_hold(cred0);
    323 	l->l_cred = cred0;
    324 
    325 	/* Create the CWD info. */
    326 	rw_init(&cwdi0.cwdi_lock);
    327 
    328 	/* Create the limits structures. */
    329 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    330 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    331 		limit0.pl_rlimit[i].rlim_cur =
    332 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    333 
    334 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    335 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    336 	    maxfiles < nofile ? maxfiles : nofile;
    337 
    338 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    339 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    340 	    maxproc < maxuprc ? maxproc : maxuprc;
    341 
    342 	lim = ptoa(uvmexp.free);
    343 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    344 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    345 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    346 	limit0.pl_corename = defcorename;
    347 	limit0.pl_refcnt = 1;
    348 	limit0.pl_sv_limit = NULL;
    349 
    350 	/* Configure virtual memory system, set vm rlimits. */
    351 	uvm_init_limits(p);
    352 
    353 	/* Initialize file descriptor table for proc0. */
    354 	fd_init(&filedesc0);
    355 
    356 	/*
    357 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    358 	 * All kernel processes (which never have user space mappings)
    359 	 * share proc0's vmspace, and thus, the kernel pmap.
    360 	 */
    361 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    362 	    trunc_page(VM_MAX_ADDRESS));
    363 
    364 	l->l_addr = proc0paddr;				/* XXX */
    365 
    366 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    367 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    368 	siginit(p);
    369 
    370 	proc_initspecific(p);
    371 	lwp_initspecific(l);
    372 
    373 	SYSCALL_TIME_LWP_INIT(l);
    374 }
    375 
    376 /*
    377  * Check that the specified process group is in the session of the
    378  * specified process.
    379  * Treats -ve ids as process ids.
    380  * Used to validate TIOCSPGRP requests.
    381  */
    382 int
    383 pgid_in_session(struct proc *p, pid_t pg_id)
    384 {
    385 	struct pgrp *pgrp;
    386 	struct session *session;
    387 	int error;
    388 
    389 	mutex_enter(proc_lock);
    390 	if (pg_id < 0) {
    391 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    392 		if (p1 == NULL)
    393 			return EINVAL;
    394 		pgrp = p1->p_pgrp;
    395 	} else {
    396 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    397 		if (pgrp == NULL)
    398 			return EINVAL;
    399 	}
    400 	session = pgrp->pg_session;
    401 	if (session != p->p_pgrp->pg_session)
    402 		error = EPERM;
    403 	else
    404 		error = 0;
    405 	mutex_exit(proc_lock);
    406 
    407 	return error;
    408 }
    409 
    410 /*
    411  * Is p an inferior of q?
    412  *
    413  * Call with the proc_lock held.
    414  */
    415 int
    416 inferior(struct proc *p, struct proc *q)
    417 {
    418 
    419 	for (; p != q; p = p->p_pptr)
    420 		if (p->p_pid == 0)
    421 			return 0;
    422 	return 1;
    423 }
    424 
    425 /*
    426  * Locate a process by number
    427  */
    428 struct proc *
    429 p_find(pid_t pid, uint flags)
    430 {
    431 	struct proc *p;
    432 	char stat;
    433 
    434 	if (!(flags & PFIND_LOCKED))
    435 		mutex_enter(proc_lock);
    436 
    437 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    438 
    439 	/* Only allow live processes to be found by pid. */
    440 	/* XXXSMP p_stat */
    441 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    442 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    443 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    444 		if (flags & PFIND_UNLOCK_OK)
    445 			 mutex_exit(proc_lock);
    446 		return p;
    447 	}
    448 	if (flags & PFIND_UNLOCK_FAIL)
    449 		mutex_exit(proc_lock);
    450 	return NULL;
    451 }
    452 
    453 
    454 /*
    455  * Locate a process group by number
    456  */
    457 struct pgrp *
    458 pg_find(pid_t pgid, uint flags)
    459 {
    460 	struct pgrp *pg;
    461 
    462 	if (!(flags & PFIND_LOCKED))
    463 		mutex_enter(proc_lock);
    464 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    465 	/*
    466 	 * Can't look up a pgrp that only exists because the session
    467 	 * hasn't died yet (traditional)
    468 	 */
    469 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    470 		if (flags & PFIND_UNLOCK_FAIL)
    471 			 mutex_exit(proc_lock);
    472 		return NULL;
    473 	}
    474 
    475 	if (flags & PFIND_UNLOCK_OK)
    476 		mutex_exit(proc_lock);
    477 	return pg;
    478 }
    479 
    480 static void
    481 expand_pid_table(void)
    482 {
    483 	uint pt_size = pid_tbl_mask + 1;
    484 	struct pid_table *n_pt, *new_pt;
    485 	struct proc *proc;
    486 	struct pgrp *pgrp;
    487 	int i;
    488 	pid_t pid;
    489 
    490 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    491 
    492 	mutex_enter(proc_lock);
    493 	if (pt_size != pid_tbl_mask + 1) {
    494 		/* Another process beat us to it... */
    495 		mutex_exit(proc_lock);
    496 		FREE(new_pt, M_PROC);
    497 		return;
    498 	}
    499 
    500 	/*
    501 	 * Copy entries from old table into new one.
    502 	 * If 'pid' is 'odd' we need to place in the upper half,
    503 	 * even pid's to the lower half.
    504 	 * Free items stay in the low half so we don't have to
    505 	 * fixup the reference to them.
    506 	 * We stuff free items on the front of the freelist
    507 	 * because we can't write to unmodified entries.
    508 	 * Processing the table backwards maintains a semblance
    509 	 * of issueing pid numbers that increase with time.
    510 	 */
    511 	i = pt_size - 1;
    512 	n_pt = new_pt + i;
    513 	for (; ; i--, n_pt--) {
    514 		proc = pid_table[i].pt_proc;
    515 		pgrp = pid_table[i].pt_pgrp;
    516 		if (!P_VALID(proc)) {
    517 			/* Up 'use count' so that link is valid */
    518 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    519 			proc = P_FREE(pid);
    520 			if (pgrp)
    521 				pid = pgrp->pg_id;
    522 		} else
    523 			pid = proc->p_pid;
    524 
    525 		/* Save entry in appropriate half of table */
    526 		n_pt[pid & pt_size].pt_proc = proc;
    527 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    528 
    529 		/* Put other piece on start of free list */
    530 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    531 		n_pt[pid & pt_size].pt_proc =
    532 				    P_FREE((pid & ~pt_size) | next_free_pt);
    533 		n_pt[pid & pt_size].pt_pgrp = 0;
    534 		next_free_pt = i | (pid & pt_size);
    535 		if (i == 0)
    536 			break;
    537 	}
    538 
    539 	/* Switch tables */
    540 	n_pt = pid_table;
    541 	pid_table = new_pt;
    542 	pid_tbl_mask = pt_size * 2 - 1;
    543 
    544 	/*
    545 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    546 	 * allocated pids we need it to be larger!
    547 	 */
    548 	if (pid_tbl_mask > PID_MAX) {
    549 		pid_max = pid_tbl_mask * 2 + 1;
    550 		pid_alloc_lim |= pid_alloc_lim << 1;
    551 	} else
    552 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    553 
    554 	mutex_exit(proc_lock);
    555 	FREE(n_pt, M_PROC);
    556 }
    557 
    558 struct proc *
    559 proc_alloc(void)
    560 {
    561 	struct proc *p;
    562 	int nxt;
    563 	pid_t pid;
    564 	struct pid_table *pt;
    565 
    566 	p = pool_cache_get(proc_cache, PR_WAITOK);
    567 	p->p_stat = SIDL;			/* protect against others */
    568 
    569 	proc_initspecific(p);
    570 	/* allocate next free pid */
    571 
    572 	for (;;expand_pid_table()) {
    573 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    574 			/* ensure pids cycle through 2000+ values */
    575 			continue;
    576 		mutex_enter(proc_lock);
    577 		pt = &pid_table[next_free_pt];
    578 #ifdef DIAGNOSTIC
    579 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    580 			panic("proc_alloc: slot busy");
    581 #endif
    582 		nxt = P_NEXT(pt->pt_proc);
    583 		if (nxt & pid_tbl_mask)
    584 			break;
    585 		/* Table full - expand (NB last entry not used....) */
    586 		mutex_exit(proc_lock);
    587 	}
    588 
    589 	/* pid is 'saved use count' + 'size' + entry */
    590 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    591 	if ((uint)pid > (uint)pid_max)
    592 		pid &= pid_tbl_mask;
    593 	p->p_pid = pid;
    594 	next_free_pt = nxt & pid_tbl_mask;
    595 
    596 	/* Grab table slot */
    597 	pt->pt_proc = p;
    598 	pid_alloc_cnt++;
    599 
    600 	mutex_exit(proc_lock);
    601 
    602 	return p;
    603 }
    604 
    605 /*
    606  * Free a process id - called from proc_free (in kern_exit.c)
    607  *
    608  * Called with the proc_lock held.
    609  */
    610 void
    611 proc_free_pid(struct proc *p)
    612 {
    613 	pid_t pid = p->p_pid;
    614 	struct pid_table *pt;
    615 
    616 	KASSERT(mutex_owned(proc_lock));
    617 
    618 	pt = &pid_table[pid & pid_tbl_mask];
    619 #ifdef DIAGNOSTIC
    620 	if (__predict_false(pt->pt_proc != p))
    621 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    622 			pid, p);
    623 #endif
    624 	/* save pid use count in slot */
    625 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    626 
    627 	if (pt->pt_pgrp == NULL) {
    628 		/* link last freed entry onto ours */
    629 		pid &= pid_tbl_mask;
    630 		pt = &pid_table[last_free_pt];
    631 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    632 		last_free_pt = pid;
    633 		pid_alloc_cnt--;
    634 	}
    635 
    636 	atomic_dec_uint(&nprocs);
    637 }
    638 
    639 void
    640 proc_free_mem(struct proc *p)
    641 {
    642 
    643 	pool_cache_put(proc_cache, p);
    644 }
    645 
    646 /*
    647  * Move p to a new or existing process group (and session)
    648  *
    649  * If we are creating a new pgrp, the pgid should equal
    650  * the calling process' pid.
    651  * If is only valid to enter a process group that is in the session
    652  * of the process.
    653  * Also mksess should only be set if we are creating a process group
    654  *
    655  * Only called from sys_setsid and sys_setpgid.
    656  */
    657 int
    658 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    659 {
    660 	struct pgrp *new_pgrp, *pgrp;
    661 	struct session *sess;
    662 	struct proc *p;
    663 	int rval;
    664 	pid_t pg_id = NO_PGID;
    665 
    666 	if (mksess)
    667 		sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
    668 	else
    669 		sess = NULL;
    670 
    671 	/* Allocate data areas we might need before doing any validity checks */
    672 	mutex_enter(proc_lock);		/* Because pid_table might change */
    673 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    674 		mutex_exit(proc_lock);
    675 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    676 		mutex_enter(proc_lock);
    677 	} else
    678 		new_pgrp = NULL;
    679 	rval = EPERM;	/* most common error (to save typing) */
    680 
    681 	/* Check pgrp exists or can be created */
    682 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    683 	if (pgrp != NULL && pgrp->pg_id != pgid)
    684 		goto done;
    685 
    686 	/* Can only set another process under restricted circumstances. */
    687 	if (pid != curp->p_pid) {
    688 		/* must exist and be one of our children... */
    689 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    690 		    !inferior(p, curp)) {
    691 			rval = ESRCH;
    692 			goto done;
    693 		}
    694 		/* ... in the same session... */
    695 		if (sess != NULL || p->p_session != curp->p_session)
    696 			goto done;
    697 		/* ... existing pgid must be in same session ... */
    698 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    699 			goto done;
    700 		/* ... and not done an exec. */
    701 		if (p->p_flag & PK_EXEC) {
    702 			rval = EACCES;
    703 			goto done;
    704 		}
    705 	} else {
    706 		/* ... setsid() cannot re-enter a pgrp */
    707 		if (mksess && (curp->p_pgid == curp->p_pid ||
    708 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    709 			goto done;
    710 		p = curp;
    711 	}
    712 
    713 	/* Changing the process group/session of a session
    714 	   leader is definitely off limits. */
    715 	if (SESS_LEADER(p)) {
    716 		if (sess == NULL && p->p_pgrp == pgrp)
    717 			/* unless it's a definite noop */
    718 			rval = 0;
    719 		goto done;
    720 	}
    721 
    722 	/* Can only create a process group with id of process */
    723 	if (pgrp == NULL && pgid != pid)
    724 		goto done;
    725 
    726 	/* Can only create a session if creating pgrp */
    727 	if (sess != NULL && pgrp != NULL)
    728 		goto done;
    729 
    730 	/* Check we allocated memory for a pgrp... */
    731 	if (pgrp == NULL && new_pgrp == NULL)
    732 		goto done;
    733 
    734 	/* Don't attach to 'zombie' pgrp */
    735 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    736 		goto done;
    737 
    738 	/* Expect to succeed now */
    739 	rval = 0;
    740 
    741 	if (pgrp == p->p_pgrp)
    742 		/* nothing to do */
    743 		goto done;
    744 
    745 	/* Ok all setup, link up required structures */
    746 
    747 	if (pgrp == NULL) {
    748 		pgrp = new_pgrp;
    749 		new_pgrp = NULL;
    750 		if (sess != NULL) {
    751 			sess->s_sid = p->p_pid;
    752 			sess->s_leader = p;
    753 			sess->s_count = 1;
    754 			sess->s_ttyvp = NULL;
    755 			sess->s_ttyp = NULL;
    756 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    757 			memcpy(sess->s_login, p->p_session->s_login,
    758 			    sizeof(sess->s_login));
    759 			p->p_lflag &= ~PL_CONTROLT;
    760 		} else {
    761 			sess = p->p_pgrp->pg_session;
    762 			SESSHOLD(sess);
    763 		}
    764 		pgrp->pg_session = sess;
    765 		sess = NULL;
    766 
    767 		pgrp->pg_id = pgid;
    768 		LIST_INIT(&pgrp->pg_members);
    769 #ifdef DIAGNOSTIC
    770 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    771 			panic("enterpgrp: pgrp table slot in use");
    772 		if (__predict_false(mksess && p != curp))
    773 			panic("enterpgrp: mksession and p != curproc");
    774 #endif
    775 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    776 		pgrp->pg_jobc = 0;
    777 	}
    778 
    779 	/*
    780 	 * Adjust eligibility of affected pgrps to participate in job control.
    781 	 * Increment eligibility counts before decrementing, otherwise we
    782 	 * could reach 0 spuriously during the first call.
    783 	 */
    784 	fixjobc(p, pgrp, 1);
    785 	fixjobc(p, p->p_pgrp, 0);
    786 
    787 	/* Interlock with ttread(). */
    788 	mutex_spin_enter(&tty_lock);
    789 
    790 	/* Move process to requested group. */
    791 	LIST_REMOVE(p, p_pglist);
    792 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    793 		/* defer delete until we've dumped the lock */
    794 		pg_id = p->p_pgrp->pg_id;
    795 	p->p_pgrp = pgrp;
    796 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    797 
    798 	/* Done with the swap; we can release the tty mutex. */
    799 	mutex_spin_exit(&tty_lock);
    800 
    801     done:
    802 	if (pg_id != NO_PGID)
    803 		pg_delete(pg_id);
    804 	mutex_exit(proc_lock);
    805 	if (sess != NULL)
    806 		kmem_free(sess, sizeof(*sess));
    807 	if (new_pgrp != NULL)
    808 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    809 #ifdef DEBUG_PGRP
    810 	if (__predict_false(rval))
    811 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    812 			pid, pgid, mksess, curp->p_pid, rval);
    813 #endif
    814 	return rval;
    815 }
    816 
    817 /*
    818  * Remove a process from its process group.  Must be called with the
    819  * proc_lock held.
    820  */
    821 void
    822 leavepgrp(struct proc *p)
    823 {
    824 	struct pgrp *pgrp;
    825 
    826 	KASSERT(mutex_owned(proc_lock));
    827 
    828 	/* Interlock with ttread() */
    829 	mutex_spin_enter(&tty_lock);
    830 	pgrp = p->p_pgrp;
    831 	LIST_REMOVE(p, p_pglist);
    832 	p->p_pgrp = NULL;
    833 	mutex_spin_exit(&tty_lock);
    834 
    835 	if (LIST_EMPTY(&pgrp->pg_members))
    836 		pg_delete(pgrp->pg_id);
    837 }
    838 
    839 /*
    840  * Free a process group.  Must be called with the proc_lock held.
    841  */
    842 static void
    843 pg_free(pid_t pg_id)
    844 {
    845 	struct pgrp *pgrp;
    846 	struct pid_table *pt;
    847 
    848 	KASSERT(mutex_owned(proc_lock));
    849 
    850 	pt = &pid_table[pg_id & pid_tbl_mask];
    851 	pgrp = pt->pt_pgrp;
    852 #ifdef DIAGNOSTIC
    853 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    854 	    || !LIST_EMPTY(&pgrp->pg_members)))
    855 		panic("pg_free: process group absent or has members");
    856 #endif
    857 	pt->pt_pgrp = 0;
    858 
    859 	if (!P_VALID(pt->pt_proc)) {
    860 		/* orphaned pgrp, put slot onto free list */
    861 #ifdef DIAGNOSTIC
    862 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    863 			panic("pg_free: process slot on free list");
    864 #endif
    865 		pg_id &= pid_tbl_mask;
    866 		pt = &pid_table[last_free_pt];
    867 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    868 		last_free_pt = pg_id;
    869 		pid_alloc_cnt--;
    870 	}
    871 	kmem_free(pgrp, sizeof(*pgrp));
    872 }
    873 
    874 /*
    875  * Delete a process group.  Must be called with the proc_lock held.
    876  */
    877 static void
    878 pg_delete(pid_t pg_id)
    879 {
    880 	struct pgrp *pgrp;
    881 	struct tty *ttyp;
    882 	struct session *ss;
    883 	int is_pgrp_leader;
    884 
    885 	KASSERT(mutex_owned(proc_lock));
    886 
    887 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    888 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    889 	    !LIST_EMPTY(&pgrp->pg_members))
    890 		return;
    891 
    892 	ss = pgrp->pg_session;
    893 
    894 	/* Remove reference (if any) from tty to this process group */
    895 	mutex_spin_enter(&tty_lock);
    896 	ttyp = ss->s_ttyp;
    897 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    898 		ttyp->t_pgrp = NULL;
    899 #ifdef DIAGNOSTIC
    900 		if (ttyp->t_session != ss)
    901 			panic("pg_delete: wrong session on terminal");
    902 #endif
    903 	}
    904 	mutex_spin_exit(&tty_lock);
    905 
    906 	/*
    907 	 * The leading process group in a session is freed
    908 	 * by sessdelete() if last reference.
    909 	 */
    910 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    911 	SESSRELE(ss);
    912 
    913 	if (is_pgrp_leader)
    914 		return;
    915 
    916 	pg_free(pg_id);
    917 }
    918 
    919 /*
    920  * Delete session - called from SESSRELE when s_count becomes zero.
    921  * Must be called with the proc_lock held.
    922  */
    923 void
    924 sessdelete(struct session *ss)
    925 {
    926 
    927 	KASSERT(mutex_owned(proc_lock));
    928 
    929 	/*
    930 	 * We keep the pgrp with the same id as the session in
    931 	 * order to stop a process being given the same pid.
    932 	 * Since the pgrp holds a reference to the session, it
    933 	 * must be a 'zombie' pgrp by now.
    934 	 */
    935 	pg_free(ss->s_sid);
    936 	kmem_free(ss, sizeof(*ss));
    937 }
    938 
    939 /*
    940  * Adjust pgrp jobc counters when specified process changes process group.
    941  * We count the number of processes in each process group that "qualify"
    942  * the group for terminal job control (those with a parent in a different
    943  * process group of the same session).  If that count reaches zero, the
    944  * process group becomes orphaned.  Check both the specified process'
    945  * process group and that of its children.
    946  * entering == 0 => p is leaving specified group.
    947  * entering == 1 => p is entering specified group.
    948  *
    949  * Call with proc_lock held.
    950  */
    951 void
    952 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    953 {
    954 	struct pgrp *hispgrp;
    955 	struct session *mysession = pgrp->pg_session;
    956 	struct proc *child;
    957 
    958 	KASSERT(mutex_owned(proc_lock));
    959 
    960 	/*
    961 	 * Check p's parent to see whether p qualifies its own process
    962 	 * group; if so, adjust count for p's process group.
    963 	 */
    964 	hispgrp = p->p_pptr->p_pgrp;
    965 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
    966 		if (entering) {
    967 			pgrp->pg_jobc++;
    968 			p->p_lflag &= ~PL_ORPHANPG;
    969 		} else if (--pgrp->pg_jobc == 0)
    970 			orphanpg(pgrp);
    971 	}
    972 
    973 	/*
    974 	 * Check this process' children to see whether they qualify
    975 	 * their process groups; if so, adjust counts for children's
    976 	 * process groups.
    977 	 */
    978 	LIST_FOREACH(child, &p->p_children, p_sibling) {
    979 		hispgrp = child->p_pgrp;
    980 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
    981 		    !P_ZOMBIE(child)) {
    982 			if (entering) {
    983 				child->p_lflag &= ~PL_ORPHANPG;
    984 				hispgrp->pg_jobc++;
    985 			} else if (--hispgrp->pg_jobc == 0)
    986 				orphanpg(hispgrp);
    987 		}
    988 	}
    989 }
    990 
    991 /*
    992  * A process group has become orphaned;
    993  * if there are any stopped processes in the group,
    994  * hang-up all process in that group.
    995  *
    996  * Call with proc_lock held.
    997  */
    998 static void
    999 orphanpg(struct pgrp *pg)
   1000 {
   1001 	struct proc *p;
   1002 	int doit;
   1003 
   1004 	KASSERT(mutex_owned(proc_lock));
   1005 
   1006 	doit = 0;
   1007 
   1008 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1009 		if (p->p_stat == SSTOP) {
   1010 			p->p_lflag |= PL_ORPHANPG;
   1011 			psignal(p, SIGHUP);
   1012 			psignal(p, SIGCONT);
   1013 		}
   1014 	}
   1015 }
   1016 
   1017 #ifdef DDB
   1018 #include <ddb/db_output.h>
   1019 void pidtbl_dump(void);
   1020 void
   1021 pidtbl_dump(void)
   1022 {
   1023 	struct pid_table *pt;
   1024 	struct proc *p;
   1025 	struct pgrp *pgrp;
   1026 	int id;
   1027 
   1028 	db_printf("pid table %p size %x, next %x, last %x\n",
   1029 		pid_table, pid_tbl_mask+1,
   1030 		next_free_pt, last_free_pt);
   1031 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1032 		p = pt->pt_proc;
   1033 		if (!P_VALID(p) && !pt->pt_pgrp)
   1034 			continue;
   1035 		db_printf("  id %x: ", id);
   1036 		if (P_VALID(p))
   1037 			db_printf("proc %p id %d (0x%x) %s\n",
   1038 				p, p->p_pid, p->p_pid, p->p_comm);
   1039 		else
   1040 			db_printf("next %x use %x\n",
   1041 				P_NEXT(p) & pid_tbl_mask,
   1042 				P_NEXT(p) & ~pid_tbl_mask);
   1043 		if ((pgrp = pt->pt_pgrp)) {
   1044 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1045 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1046 			    pgrp->pg_session->s_count,
   1047 			    pgrp->pg_session->s_login);
   1048 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1049 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1050 			    LIST_FIRST(&pgrp->pg_members));
   1051 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1052 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1053 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1054 			}
   1055 		}
   1056 	}
   1057 }
   1058 #endif /* DDB */
   1059 
   1060 #ifdef KSTACK_CHECK_MAGIC
   1061 #include <sys/user.h>
   1062 
   1063 #define	KSTACK_MAGIC	0xdeadbeaf
   1064 
   1065 /* XXX should be per process basis? */
   1066 int kstackleftmin = KSTACK_SIZE;
   1067 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1068 					  less than this */
   1069 
   1070 void
   1071 kstack_setup_magic(const struct lwp *l)
   1072 {
   1073 	uint32_t *ip;
   1074 	uint32_t const *end;
   1075 
   1076 	KASSERT(l != NULL);
   1077 	KASSERT(l != &lwp0);
   1078 
   1079 	/*
   1080 	 * fill all the stack with magic number
   1081 	 * so that later modification on it can be detected.
   1082 	 */
   1083 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1084 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1085 	for (; ip < end; ip++) {
   1086 		*ip = KSTACK_MAGIC;
   1087 	}
   1088 }
   1089 
   1090 void
   1091 kstack_check_magic(const struct lwp *l)
   1092 {
   1093 	uint32_t const *ip, *end;
   1094 	int stackleft;
   1095 
   1096 	KASSERT(l != NULL);
   1097 
   1098 	/* don't check proc0 */ /*XXX*/
   1099 	if (l == &lwp0)
   1100 		return;
   1101 
   1102 #ifdef __MACHINE_STACK_GROWS_UP
   1103 	/* stack grows upwards (eg. hppa) */
   1104 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1105 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1106 	for (ip--; ip >= end; ip--)
   1107 		if (*ip != KSTACK_MAGIC)
   1108 			break;
   1109 
   1110 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1111 #else /* __MACHINE_STACK_GROWS_UP */
   1112 	/* stack grows downwards (eg. i386) */
   1113 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1114 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1115 	for (; ip < end; ip++)
   1116 		if (*ip != KSTACK_MAGIC)
   1117 			break;
   1118 
   1119 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1120 #endif /* __MACHINE_STACK_GROWS_UP */
   1121 
   1122 	if (kstackleftmin > stackleft) {
   1123 		kstackleftmin = stackleft;
   1124 		if (stackleft < kstackleftthres)
   1125 			printf("warning: kernel stack left %d bytes"
   1126 			    "(pid %u:lid %u)\n", stackleft,
   1127 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1128 	}
   1129 
   1130 	if (stackleft <= 0) {
   1131 		panic("magic on the top of kernel stack changed for "
   1132 		    "pid %u, lid %u: maybe kernel stack overflow",
   1133 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1134 	}
   1135 }
   1136 #endif /* KSTACK_CHECK_MAGIC */
   1137 
   1138 int
   1139 proclist_foreach_call(struct proclist *list,
   1140     int (*callback)(struct proc *, void *arg), void *arg)
   1141 {
   1142 	struct proc marker;
   1143 	struct proc *p;
   1144 	struct lwp * const l = curlwp;
   1145 	int ret = 0;
   1146 
   1147 	marker.p_flag = PK_MARKER;
   1148 	uvm_lwp_hold(l);
   1149 	mutex_enter(proc_lock);
   1150 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1151 		if (p->p_flag & PK_MARKER) {
   1152 			p = LIST_NEXT(p, p_list);
   1153 			continue;
   1154 		}
   1155 		LIST_INSERT_AFTER(p, &marker, p_list);
   1156 		ret = (*callback)(p, arg);
   1157 		KASSERT(mutex_owned(proc_lock));
   1158 		p = LIST_NEXT(&marker, p_list);
   1159 		LIST_REMOVE(&marker, p_list);
   1160 	}
   1161 	mutex_exit(proc_lock);
   1162 	uvm_lwp_rele(l);
   1163 
   1164 	return ret;
   1165 }
   1166 
   1167 int
   1168 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1169 {
   1170 
   1171 	/* XXXCDC: how should locking work here? */
   1172 
   1173 	/* curproc exception is for coredump. */
   1174 
   1175 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1176 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1177 		return EFAULT;
   1178 	}
   1179 
   1180 	uvmspace_addref(p->p_vmspace);
   1181 	*vm = p->p_vmspace;
   1182 
   1183 	return 0;
   1184 }
   1185 
   1186 /*
   1187  * Acquire a write lock on the process credential.
   1188  */
   1189 void
   1190 proc_crmod_enter(void)
   1191 {
   1192 	struct lwp *l = curlwp;
   1193 	struct proc *p = l->l_proc;
   1194 	struct plimit *lim;
   1195 	kauth_cred_t oc;
   1196 	char *cn;
   1197 
   1198 	/* Reset what needs to be reset in plimit. */
   1199 	if (p->p_limit->pl_corename != defcorename) {
   1200 		lim_privatise(p, false);
   1201 		lim = p->p_limit;
   1202 		mutex_enter(&lim->pl_lock);
   1203 		cn = lim->pl_corename;
   1204 		lim->pl_corename = defcorename;
   1205 		mutex_exit(&lim->pl_lock);
   1206 		if (cn != defcorename)
   1207 			free(cn, M_TEMP);
   1208 	}
   1209 
   1210 	mutex_enter(p->p_lock);
   1211 
   1212 	/* Ensure the LWP cached credentials are up to date. */
   1213 	if ((oc = l->l_cred) != p->p_cred) {
   1214 		kauth_cred_hold(p->p_cred);
   1215 		l->l_cred = p->p_cred;
   1216 		kauth_cred_free(oc);
   1217 	}
   1218 
   1219 }
   1220 
   1221 /*
   1222  * Set in a new process credential, and drop the write lock.  The credential
   1223  * must have a reference already.  Optionally, free a no-longer required
   1224  * credential.  The scheduler also needs to inspect p_cred, so we also
   1225  * briefly acquire the sched state mutex.
   1226  */
   1227 void
   1228 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1229 {
   1230 	struct lwp *l = curlwp, *l2;
   1231 	struct proc *p = l->l_proc;
   1232 	kauth_cred_t oc;
   1233 
   1234 	KASSERT(mutex_owned(p->p_lock));
   1235 
   1236 	/* Is there a new credential to set in? */
   1237 	if (scred != NULL) {
   1238 		p->p_cred = scred;
   1239 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1240 			if (l2 != l)
   1241 				l2->l_prflag |= LPR_CRMOD;
   1242 		}
   1243 
   1244 		/* Ensure the LWP cached credentials are up to date. */
   1245 		if ((oc = l->l_cred) != scred) {
   1246 			kauth_cred_hold(scred);
   1247 			l->l_cred = scred;
   1248 		}
   1249 	} else
   1250 		oc = NULL;	/* XXXgcc */
   1251 
   1252 	if (sugid) {
   1253 		/*
   1254 		 * Mark process as having changed credentials, stops
   1255 		 * tracing etc.
   1256 		 */
   1257 		p->p_flag |= PK_SUGID;
   1258 	}
   1259 
   1260 	mutex_exit(p->p_lock);
   1261 
   1262 	/* If there is a credential to be released, free it now. */
   1263 	if (fcred != NULL) {
   1264 		KASSERT(scred != NULL);
   1265 		kauth_cred_free(fcred);
   1266 		if (oc != scred)
   1267 			kauth_cred_free(oc);
   1268 	}
   1269 }
   1270 
   1271 /*
   1272  * proc_specific_key_create --
   1273  *	Create a key for subsystem proc-specific data.
   1274  */
   1275 int
   1276 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1277 {
   1278 
   1279 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1280 }
   1281 
   1282 /*
   1283  * proc_specific_key_delete --
   1284  *	Delete a key for subsystem proc-specific data.
   1285  */
   1286 void
   1287 proc_specific_key_delete(specificdata_key_t key)
   1288 {
   1289 
   1290 	specificdata_key_delete(proc_specificdata_domain, key);
   1291 }
   1292 
   1293 /*
   1294  * proc_initspecific --
   1295  *	Initialize a proc's specificdata container.
   1296  */
   1297 void
   1298 proc_initspecific(struct proc *p)
   1299 {
   1300 	int error;
   1301 
   1302 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1303 	KASSERT(error == 0);
   1304 }
   1305 
   1306 /*
   1307  * proc_finispecific --
   1308  *	Finalize a proc's specificdata container.
   1309  */
   1310 void
   1311 proc_finispecific(struct proc *p)
   1312 {
   1313 
   1314 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1315 }
   1316 
   1317 /*
   1318  * proc_getspecific --
   1319  *	Return proc-specific data corresponding to the specified key.
   1320  */
   1321 void *
   1322 proc_getspecific(struct proc *p, specificdata_key_t key)
   1323 {
   1324 
   1325 	return (specificdata_getspecific(proc_specificdata_domain,
   1326 					 &p->p_specdataref, key));
   1327 }
   1328 
   1329 /*
   1330  * proc_setspecific --
   1331  *	Set proc-specific data corresponding to the specified key.
   1332  */
   1333 void
   1334 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1335 {
   1336 
   1337 	specificdata_setspecific(proc_specificdata_domain,
   1338 				 &p->p_specdataref, key, data);
   1339 }
   1340