kern_proc.c revision 1.147.2.2 1 /* $NetBSD: kern_proc.c,v 1.147.2.2 2009/07/23 23:32:34 jym Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.147.2.2 2009/07/23 23:32:34 jym Exp $");
66
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/pool.h>
82 #include <sys/pset.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/tty.h>
86 #include <sys/signalvar.h>
87 #include <sys/ras.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/filedesc.h>
91 #include "sys/syscall_stats.h"
92 #include <sys/kauth.h>
93 #include <sys/sleepq.h>
94 #include <sys/atomic.h>
95 #include <sys/kmem.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_extern.h>
99
100 /*
101 * Other process lists
102 */
103
104 struct proclist allproc;
105 struct proclist zombproc; /* resources have been freed */
106
107 kmutex_t *proc_lock;
108
109 /*
110 * pid to proc lookup is done by indexing the pid_table array.
111 * Since pid numbers are only allocated when an empty slot
112 * has been found, there is no need to search any lists ever.
113 * (an orphaned pgrp will lock the slot, a session will lock
114 * the pgrp with the same number.)
115 * If the table is too small it is reallocated with twice the
116 * previous size and the entries 'unzipped' into the two halves.
117 * A linked list of free entries is passed through the pt_proc
118 * field of 'free' items - set odd to be an invalid ptr.
119 */
120
121 struct pid_table {
122 struct proc *pt_proc;
123 struct pgrp *pt_pgrp;
124 };
125 #if 1 /* strongly typed cast - should be a noop */
126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
127 #else
128 #define p2u(p) ((uint)p)
129 #endif
130 #define P_VALID(p) (!(p2u(p) & 1))
131 #define P_NEXT(p) (p2u(p) >> 1)
132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
133
134 #define INITIAL_PID_TABLE_SIZE (1 << 5)
135 static struct pid_table *pid_table;
136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
137 static uint pid_alloc_lim; /* max we allocate before growing table */
138 static uint pid_alloc_cnt; /* number of allocated pids */
139
140 /* links through free slots - never empty! */
141 static uint next_free_pt, last_free_pt;
142 static pid_t pid_max = PID_MAX; /* largest value we allocate */
143
144 /* Components of the first process -- never freed. */
145
146 extern struct emul emul_netbsd; /* defined in kern_exec.c */
147
148 struct session session0 = {
149 .s_count = 1,
150 .s_sid = 0,
151 };
152 struct pgrp pgrp0 = {
153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
154 .pg_session = &session0,
155 };
156 filedesc_t filedesc0;
157 struct cwdinfo cwdi0 = {
158 .cwdi_cmask = CMASK, /* see cmask below */
159 .cwdi_refcnt = 1,
160 };
161 struct plimit limit0;
162 struct pstats pstat0;
163 struct vmspace vmspace0;
164 struct sigacts sigacts0;
165 struct turnstile turnstile0;
166 struct proc proc0 = {
167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
169 .p_nlwps = 1,
170 .p_nrlwps = 1,
171 .p_nlwpid = 1, /* must match lwp0.l_lid */
172 .p_pgrp = &pgrp0,
173 .p_comm = "system",
174 /*
175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
176 * when they exit. init(8) can easily wait them out for us.
177 */
178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
179 .p_stat = SACTIVE,
180 .p_nice = NZERO,
181 .p_emul = &emul_netbsd,
182 .p_cwdi = &cwdi0,
183 .p_limit = &limit0,
184 .p_fd = &filedesc0,
185 .p_vmspace = &vmspace0,
186 .p_stats = &pstat0,
187 .p_sigacts = &sigacts0,
188 };
189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
190 #ifdef LWP0_CPU_INFO
191 .l_cpu = LWP0_CPU_INFO,
192 #endif
193 .l_proc = &proc0,
194 .l_lid = 1,
195 .l_flag = LW_INMEM | LW_SYSTEM,
196 .l_stat = LSONPROC,
197 .l_ts = &turnstile0,
198 .l_syncobj = &sched_syncobj,
199 .l_refcnt = 1,
200 .l_priority = PRI_USER + NPRI_USER - 1,
201 .l_inheritedprio = -1,
202 .l_class = SCHED_OTHER,
203 .l_psid = PS_NONE,
204 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
205 .l_name = __UNCONST("swapper"),
206 .l_fd = &filedesc0,
207 };
208 kauth_cred_t cred0;
209
210 extern struct user *proc0paddr;
211
212 int nofile = NOFILE;
213 int maxuprc = MAXUPRC;
214 int cmask = CMASK;
215
216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
218
219 /*
220 * The process list descriptors, used during pid allocation and
221 * by sysctl. No locking on this data structure is needed since
222 * it is completely static.
223 */
224 const struct proclist_desc proclists[] = {
225 { &allproc },
226 { &zombproc },
227 { NULL },
228 };
229
230 static struct pgrp * pg_remove(pid_t);
231 static void pg_delete(pid_t);
232 static void orphanpg(struct pgrp *);
233
234 static specificdata_domain_t proc_specificdata_domain;
235
236 static pool_cache_t proc_cache;
237
238 /*
239 * Initialize global process hashing structures.
240 */
241 void
242 procinit(void)
243 {
244 const struct proclist_desc *pd;
245 u_int i;
246 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
247
248 for (pd = proclists; pd->pd_list != NULL; pd++)
249 LIST_INIT(pd->pd_list);
250
251 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
252 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
253 * sizeof(struct pid_table), KM_SLEEP);
254
255 /* Set free list running through table...
256 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
257 for (i = 0; i <= pid_tbl_mask; i++) {
258 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
259 pid_table[i].pt_pgrp = 0;
260 }
261 /* slot 0 is just grabbed */
262 next_free_pt = 1;
263 /* Need to fix last entry. */
264 last_free_pt = pid_tbl_mask;
265 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
266 /* point at which we grow table - to avoid reusing pids too often */
267 pid_alloc_lim = pid_tbl_mask - 1;
268 #undef LINK_EMPTY
269
270 proc_specificdata_domain = specificdata_domain_create();
271 KASSERT(proc_specificdata_domain != NULL);
272
273 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
274 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
275 }
276
277 /*
278 * Initialize process 0.
279 */
280 void
281 proc0_init(void)
282 {
283 struct proc *p;
284 struct pgrp *pg;
285 struct session *sess;
286 struct lwp *l;
287 rlim_t lim;
288 int i;
289
290 p = &proc0;
291 pg = &pgrp0;
292 sess = &session0;
293 l = &lwp0;
294
295 KASSERT(l->l_lid == p->p_nlwpid);
296
297 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
298 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
299 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
300 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
301
302 rw_init(&p->p_reflock);
303 cv_init(&p->p_waitcv, "wait");
304 cv_init(&p->p_lwpcv, "lwpwait");
305
306 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
307
308 pid_table[0].pt_proc = p;
309 LIST_INSERT_HEAD(&allproc, p, p_list);
310 LIST_INSERT_HEAD(&alllwp, l, l_list);
311
312 pid_table[0].pt_pgrp = pg;
313 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
314
315 #ifdef __HAVE_SYSCALL_INTERN
316 (*p->p_emul->e_syscall_intern)(p);
317 #endif
318
319 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
320 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
321 cv_init(&l->l_sigcv, "sigwait");
322
323 /* Create credentials. */
324 cred0 = kauth_cred_alloc();
325 p->p_cred = cred0;
326 kauth_cred_hold(cred0);
327 l->l_cred = cred0;
328
329 /* Create the CWD info. */
330 rw_init(&cwdi0.cwdi_lock);
331
332 /* Create the limits structures. */
333 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
334 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
335 limit0.pl_rlimit[i].rlim_cur =
336 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
337
338 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
339 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
340 maxfiles < nofile ? maxfiles : nofile;
341
342 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
343 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
344 maxproc < maxuprc ? maxproc : maxuprc;
345
346 lim = ptoa(uvmexp.free);
347 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
348 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
349 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
350 limit0.pl_corename = defcorename;
351 limit0.pl_refcnt = 1;
352 limit0.pl_sv_limit = NULL;
353
354 /* Configure virtual memory system, set vm rlimits. */
355 uvm_init_limits(p);
356
357 /* Initialize file descriptor table for proc0. */
358 fd_init(&filedesc0);
359
360 /*
361 * Initialize proc0's vmspace, which uses the kernel pmap.
362 * All kernel processes (which never have user space mappings)
363 * share proc0's vmspace, and thus, the kernel pmap.
364 */
365 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
366 trunc_page(VM_MAX_ADDRESS));
367
368 l->l_addr = proc0paddr; /* XXX */
369
370 /* Initialize signal state for proc0. XXX IPL_SCHED */
371 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
372 siginit(p);
373
374 proc_initspecific(p);
375 lwp_initspecific(l);
376
377 SYSCALL_TIME_LWP_INIT(l);
378 }
379
380 /*
381 * Session reference counting.
382 */
383
384 void
385 proc_sesshold(struct session *ss)
386 {
387
388 KASSERT(mutex_owned(proc_lock));
389 ss->s_count++;
390 }
391
392 void
393 proc_sessrele(struct session *ss)
394 {
395
396 KASSERT(mutex_owned(proc_lock));
397 /*
398 * We keep the pgrp with the same id as the session in order to
399 * stop a process being given the same pid. Since the pgrp holds
400 * a reference to the session, it must be a 'zombie' pgrp by now.
401 */
402 if (--ss->s_count == 0) {
403 struct pgrp *pg;
404
405 pg = pg_remove(ss->s_sid);
406 mutex_exit(proc_lock);
407
408 kmem_free(pg, sizeof(struct pgrp));
409 kmem_free(ss, sizeof(struct session));
410 } else {
411 mutex_exit(proc_lock);
412 }
413 }
414
415 /*
416 * Check that the specified process group is in the session of the
417 * specified process.
418 * Treats -ve ids as process ids.
419 * Used to validate TIOCSPGRP requests.
420 */
421 int
422 pgid_in_session(struct proc *p, pid_t pg_id)
423 {
424 struct pgrp *pgrp;
425 struct session *session;
426 int error;
427
428 mutex_enter(proc_lock);
429 if (pg_id < 0) {
430 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
431 if (p1 == NULL)
432 return EINVAL;
433 pgrp = p1->p_pgrp;
434 } else {
435 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
436 if (pgrp == NULL)
437 return EINVAL;
438 }
439 session = pgrp->pg_session;
440 if (session != p->p_pgrp->pg_session)
441 error = EPERM;
442 else
443 error = 0;
444 mutex_exit(proc_lock);
445
446 return error;
447 }
448
449 /*
450 * p_inferior: is p an inferior of q?
451 */
452 static inline bool
453 p_inferior(struct proc *p, struct proc *q)
454 {
455
456 KASSERT(mutex_owned(proc_lock));
457
458 for (; p != q; p = p->p_pptr)
459 if (p->p_pid == 0)
460 return false;
461 return true;
462 }
463
464 /*
465 * Locate a process by number
466 */
467 struct proc *
468 p_find(pid_t pid, uint flags)
469 {
470 struct proc *p;
471 char stat;
472
473 if (!(flags & PFIND_LOCKED))
474 mutex_enter(proc_lock);
475
476 p = pid_table[pid & pid_tbl_mask].pt_proc;
477
478 /* Only allow live processes to be found by pid. */
479 /* XXXSMP p_stat */
480 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
481 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
482 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
483 if (flags & PFIND_UNLOCK_OK)
484 mutex_exit(proc_lock);
485 return p;
486 }
487 if (flags & PFIND_UNLOCK_FAIL)
488 mutex_exit(proc_lock);
489 return NULL;
490 }
491
492
493 /*
494 * Locate a process group by number
495 */
496 struct pgrp *
497 pg_find(pid_t pgid, uint flags)
498 {
499 struct pgrp *pg;
500
501 if (!(flags & PFIND_LOCKED))
502 mutex_enter(proc_lock);
503 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
504 /*
505 * Can't look up a pgrp that only exists because the session
506 * hasn't died yet (traditional)
507 */
508 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
509 if (flags & PFIND_UNLOCK_FAIL)
510 mutex_exit(proc_lock);
511 return NULL;
512 }
513
514 if (flags & PFIND_UNLOCK_OK)
515 mutex_exit(proc_lock);
516 return pg;
517 }
518
519 static void
520 expand_pid_table(void)
521 {
522 size_t pt_size, tsz;
523 struct pid_table *n_pt, *new_pt;
524 struct proc *proc;
525 struct pgrp *pgrp;
526 pid_t pid;
527 u_int i;
528
529 pt_size = pid_tbl_mask + 1;
530 tsz = pt_size * 2 * sizeof(struct pid_table);
531 new_pt = kmem_alloc(tsz, KM_SLEEP);
532
533 mutex_enter(proc_lock);
534 if (pt_size != pid_tbl_mask + 1) {
535 /* Another process beat us to it... */
536 mutex_exit(proc_lock);
537 kmem_free(new_pt, tsz);
538 return;
539 }
540
541 /*
542 * Copy entries from old table into new one.
543 * If 'pid' is 'odd' we need to place in the upper half,
544 * even pid's to the lower half.
545 * Free items stay in the low half so we don't have to
546 * fixup the reference to them.
547 * We stuff free items on the front of the freelist
548 * because we can't write to unmodified entries.
549 * Processing the table backwards maintains a semblance
550 * of issueing pid numbers that increase with time.
551 */
552 i = pt_size - 1;
553 n_pt = new_pt + i;
554 for (; ; i--, n_pt--) {
555 proc = pid_table[i].pt_proc;
556 pgrp = pid_table[i].pt_pgrp;
557 if (!P_VALID(proc)) {
558 /* Up 'use count' so that link is valid */
559 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
560 proc = P_FREE(pid);
561 if (pgrp)
562 pid = pgrp->pg_id;
563 } else
564 pid = proc->p_pid;
565
566 /* Save entry in appropriate half of table */
567 n_pt[pid & pt_size].pt_proc = proc;
568 n_pt[pid & pt_size].pt_pgrp = pgrp;
569
570 /* Put other piece on start of free list */
571 pid = (pid ^ pt_size) & ~pid_tbl_mask;
572 n_pt[pid & pt_size].pt_proc =
573 P_FREE((pid & ~pt_size) | next_free_pt);
574 n_pt[pid & pt_size].pt_pgrp = 0;
575 next_free_pt = i | (pid & pt_size);
576 if (i == 0)
577 break;
578 }
579
580 /* Save old table size and switch tables */
581 tsz = pt_size * sizeof(struct pid_table);
582 n_pt = pid_table;
583 pid_table = new_pt;
584 pid_tbl_mask = pt_size * 2 - 1;
585
586 /*
587 * pid_max starts as PID_MAX (= 30000), once we have 16384
588 * allocated pids we need it to be larger!
589 */
590 if (pid_tbl_mask > PID_MAX) {
591 pid_max = pid_tbl_mask * 2 + 1;
592 pid_alloc_lim |= pid_alloc_lim << 1;
593 } else
594 pid_alloc_lim <<= 1; /* doubles number of free slots... */
595
596 mutex_exit(proc_lock);
597 kmem_free(n_pt, tsz);
598 }
599
600 struct proc *
601 proc_alloc(void)
602 {
603 struct proc *p;
604 int nxt;
605 pid_t pid;
606 struct pid_table *pt;
607
608 p = pool_cache_get(proc_cache, PR_WAITOK);
609 p->p_stat = SIDL; /* protect against others */
610
611 proc_initspecific(p);
612 /* allocate next free pid */
613
614 for (;;expand_pid_table()) {
615 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
616 /* ensure pids cycle through 2000+ values */
617 continue;
618 mutex_enter(proc_lock);
619 pt = &pid_table[next_free_pt];
620 #ifdef DIAGNOSTIC
621 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
622 panic("proc_alloc: slot busy");
623 #endif
624 nxt = P_NEXT(pt->pt_proc);
625 if (nxt & pid_tbl_mask)
626 break;
627 /* Table full - expand (NB last entry not used....) */
628 mutex_exit(proc_lock);
629 }
630
631 /* pid is 'saved use count' + 'size' + entry */
632 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
633 if ((uint)pid > (uint)pid_max)
634 pid &= pid_tbl_mask;
635 p->p_pid = pid;
636 next_free_pt = nxt & pid_tbl_mask;
637
638 /* Grab table slot */
639 pt->pt_proc = p;
640 pid_alloc_cnt++;
641
642 mutex_exit(proc_lock);
643
644 return p;
645 }
646
647 /*
648 * Free a process id - called from proc_free (in kern_exit.c)
649 *
650 * Called with the proc_lock held.
651 */
652 void
653 proc_free_pid(struct proc *p)
654 {
655 pid_t pid = p->p_pid;
656 struct pid_table *pt;
657
658 KASSERT(mutex_owned(proc_lock));
659
660 pt = &pid_table[pid & pid_tbl_mask];
661 #ifdef DIAGNOSTIC
662 if (__predict_false(pt->pt_proc != p))
663 panic("proc_free: pid_table mismatch, pid %x, proc %p",
664 pid, p);
665 #endif
666 /* save pid use count in slot */
667 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
668
669 if (pt->pt_pgrp == NULL) {
670 /* link last freed entry onto ours */
671 pid &= pid_tbl_mask;
672 pt = &pid_table[last_free_pt];
673 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
674 last_free_pt = pid;
675 pid_alloc_cnt--;
676 }
677
678 atomic_dec_uint(&nprocs);
679 }
680
681 void
682 proc_free_mem(struct proc *p)
683 {
684
685 pool_cache_put(proc_cache, p);
686 }
687
688 /*
689 * proc_enterpgrp: move p to a new or existing process group (and session).
690 *
691 * If we are creating a new pgrp, the pgid should equal
692 * the calling process' pid.
693 * If is only valid to enter a process group that is in the session
694 * of the process.
695 * Also mksess should only be set if we are creating a process group
696 *
697 * Only called from sys_setsid and sys_setpgid.
698 */
699 int
700 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
701 {
702 struct pgrp *new_pgrp, *pgrp;
703 struct session *sess;
704 struct proc *p;
705 int rval;
706 pid_t pg_id = NO_PGID;
707
708 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
709
710 /* Allocate data areas we might need before doing any validity checks */
711 mutex_enter(proc_lock); /* Because pid_table might change */
712 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
713 mutex_exit(proc_lock);
714 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
715 mutex_enter(proc_lock);
716 } else
717 new_pgrp = NULL;
718 rval = EPERM; /* most common error (to save typing) */
719
720 /* Check pgrp exists or can be created */
721 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
722 if (pgrp != NULL && pgrp->pg_id != pgid)
723 goto done;
724
725 /* Can only set another process under restricted circumstances. */
726 if (pid != curp->p_pid) {
727 /* must exist and be one of our children... */
728 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
729 !p_inferior(p, curp)) {
730 rval = ESRCH;
731 goto done;
732 }
733 /* ... in the same session... */
734 if (sess != NULL || p->p_session != curp->p_session)
735 goto done;
736 /* ... existing pgid must be in same session ... */
737 if (pgrp != NULL && pgrp->pg_session != p->p_session)
738 goto done;
739 /* ... and not done an exec. */
740 if (p->p_flag & PK_EXEC) {
741 rval = EACCES;
742 goto done;
743 }
744 } else {
745 /* ... setsid() cannot re-enter a pgrp */
746 if (mksess && (curp->p_pgid == curp->p_pid ||
747 pg_find(curp->p_pid, PFIND_LOCKED)))
748 goto done;
749 p = curp;
750 }
751
752 /* Changing the process group/session of a session
753 leader is definitely off limits. */
754 if (SESS_LEADER(p)) {
755 if (sess == NULL && p->p_pgrp == pgrp)
756 /* unless it's a definite noop */
757 rval = 0;
758 goto done;
759 }
760
761 /* Can only create a process group with id of process */
762 if (pgrp == NULL && pgid != pid)
763 goto done;
764
765 /* Can only create a session if creating pgrp */
766 if (sess != NULL && pgrp != NULL)
767 goto done;
768
769 /* Check we allocated memory for a pgrp... */
770 if (pgrp == NULL && new_pgrp == NULL)
771 goto done;
772
773 /* Don't attach to 'zombie' pgrp */
774 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
775 goto done;
776
777 /* Expect to succeed now */
778 rval = 0;
779
780 if (pgrp == p->p_pgrp)
781 /* nothing to do */
782 goto done;
783
784 /* Ok all setup, link up required structures */
785
786 if (pgrp == NULL) {
787 pgrp = new_pgrp;
788 new_pgrp = NULL;
789 if (sess != NULL) {
790 sess->s_sid = p->p_pid;
791 sess->s_leader = p;
792 sess->s_count = 1;
793 sess->s_ttyvp = NULL;
794 sess->s_ttyp = NULL;
795 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
796 memcpy(sess->s_login, p->p_session->s_login,
797 sizeof(sess->s_login));
798 p->p_lflag &= ~PL_CONTROLT;
799 } else {
800 sess = p->p_pgrp->pg_session;
801 proc_sesshold(sess);
802 }
803 pgrp->pg_session = sess;
804 sess = NULL;
805
806 pgrp->pg_id = pgid;
807 LIST_INIT(&pgrp->pg_members);
808 #ifdef DIAGNOSTIC
809 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
810 panic("enterpgrp: pgrp table slot in use");
811 if (__predict_false(mksess && p != curp))
812 panic("enterpgrp: mksession and p != curproc");
813 #endif
814 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
815 pgrp->pg_jobc = 0;
816 }
817
818 /*
819 * Adjust eligibility of affected pgrps to participate in job control.
820 * Increment eligibility counts before decrementing, otherwise we
821 * could reach 0 spuriously during the first call.
822 */
823 fixjobc(p, pgrp, 1);
824 fixjobc(p, p->p_pgrp, 0);
825
826 /* Interlock with ttread(). */
827 mutex_spin_enter(&tty_lock);
828
829 /* Move process to requested group. */
830 LIST_REMOVE(p, p_pglist);
831 if (LIST_EMPTY(&p->p_pgrp->pg_members))
832 /* defer delete until we've dumped the lock */
833 pg_id = p->p_pgrp->pg_id;
834 p->p_pgrp = pgrp;
835 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
836
837 /* Done with the swap; we can release the tty mutex. */
838 mutex_spin_exit(&tty_lock);
839
840 done:
841 if (pg_id != NO_PGID) {
842 /* Releases proc_lock. */
843 pg_delete(pg_id);
844 } else {
845 mutex_exit(proc_lock);
846 }
847 if (sess != NULL)
848 kmem_free(sess, sizeof(*sess));
849 if (new_pgrp != NULL)
850 kmem_free(new_pgrp, sizeof(*new_pgrp));
851 #ifdef DEBUG_PGRP
852 if (__predict_false(rval))
853 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
854 pid, pgid, mksess, curp->p_pid, rval);
855 #endif
856 return rval;
857 }
858
859 /*
860 * proc_leavepgrp: remove a process from its process group.
861 * => must be called with the proc_lock held, which will be released;
862 */
863 void
864 proc_leavepgrp(struct proc *p)
865 {
866 struct pgrp *pgrp;
867
868 KASSERT(mutex_owned(proc_lock));
869
870 /* Interlock with ttread() */
871 mutex_spin_enter(&tty_lock);
872 pgrp = p->p_pgrp;
873 LIST_REMOVE(p, p_pglist);
874 p->p_pgrp = NULL;
875 mutex_spin_exit(&tty_lock);
876
877 if (LIST_EMPTY(&pgrp->pg_members)) {
878 /* Releases proc_lock. */
879 pg_delete(pgrp->pg_id);
880 } else {
881 mutex_exit(proc_lock);
882 }
883 }
884
885 /*
886 * pg_remove: remove a process group from the table.
887 * => must be called with the proc_lock held;
888 * => returns process group to free;
889 */
890 static struct pgrp *
891 pg_remove(pid_t pg_id)
892 {
893 struct pgrp *pgrp;
894 struct pid_table *pt;
895
896 KASSERT(mutex_owned(proc_lock));
897
898 pt = &pid_table[pg_id & pid_tbl_mask];
899 pgrp = pt->pt_pgrp;
900
901 KASSERT(pgrp != NULL);
902 KASSERT(pgrp->pg_id == pg_id);
903 KASSERT(LIST_EMPTY(&pgrp->pg_members));
904
905 pt->pt_pgrp = NULL;
906
907 if (!P_VALID(pt->pt_proc)) {
908 /* Orphaned pgrp, put slot onto free list. */
909 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
910 pg_id &= pid_tbl_mask;
911 pt = &pid_table[last_free_pt];
912 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
913 last_free_pt = pg_id;
914 pid_alloc_cnt--;
915 }
916 return pgrp;
917 }
918
919 /*
920 * pg_delete: delete and free a process group.
921 * => must be called with the proc_lock held, which will be released.
922 */
923 static void
924 pg_delete(pid_t pg_id)
925 {
926 struct pgrp *pg;
927 struct tty *ttyp;
928 struct session *ss;
929
930 KASSERT(mutex_owned(proc_lock));
931
932 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
933 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
934 mutex_exit(proc_lock);
935 return;
936 }
937
938 ss = pg->pg_session;
939
940 /* Remove reference (if any) from tty to this process group */
941 mutex_spin_enter(&tty_lock);
942 ttyp = ss->s_ttyp;
943 if (ttyp != NULL && ttyp->t_pgrp == pg) {
944 ttyp->t_pgrp = NULL;
945 KASSERT(ttyp->t_session == ss);
946 }
947 mutex_spin_exit(&tty_lock);
948
949 /*
950 * The leading process group in a session is freed by proc_sessrele(),
951 * if last reference. Note: proc_sessrele() releases proc_lock.
952 */
953 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
954 proc_sessrele(ss);
955
956 if (pg != NULL) {
957 /* Free it, if was not done by proc_sessrele(). */
958 kmem_free(pg, sizeof(struct pgrp));
959 }
960 }
961
962 /*
963 * Adjust pgrp jobc counters when specified process changes process group.
964 * We count the number of processes in each process group that "qualify"
965 * the group for terminal job control (those with a parent in a different
966 * process group of the same session). If that count reaches zero, the
967 * process group becomes orphaned. Check both the specified process'
968 * process group and that of its children.
969 * entering == 0 => p is leaving specified group.
970 * entering == 1 => p is entering specified group.
971 *
972 * Call with proc_lock held.
973 */
974 void
975 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
976 {
977 struct pgrp *hispgrp;
978 struct session *mysession = pgrp->pg_session;
979 struct proc *child;
980
981 KASSERT(mutex_owned(proc_lock));
982
983 /*
984 * Check p's parent to see whether p qualifies its own process
985 * group; if so, adjust count for p's process group.
986 */
987 hispgrp = p->p_pptr->p_pgrp;
988 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
989 if (entering) {
990 pgrp->pg_jobc++;
991 p->p_lflag &= ~PL_ORPHANPG;
992 } else if (--pgrp->pg_jobc == 0)
993 orphanpg(pgrp);
994 }
995
996 /*
997 * Check this process' children to see whether they qualify
998 * their process groups; if so, adjust counts for children's
999 * process groups.
1000 */
1001 LIST_FOREACH(child, &p->p_children, p_sibling) {
1002 hispgrp = child->p_pgrp;
1003 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1004 !P_ZOMBIE(child)) {
1005 if (entering) {
1006 child->p_lflag &= ~PL_ORPHANPG;
1007 hispgrp->pg_jobc++;
1008 } else if (--hispgrp->pg_jobc == 0)
1009 orphanpg(hispgrp);
1010 }
1011 }
1012 }
1013
1014 /*
1015 * A process group has become orphaned;
1016 * if there are any stopped processes in the group,
1017 * hang-up all process in that group.
1018 *
1019 * Call with proc_lock held.
1020 */
1021 static void
1022 orphanpg(struct pgrp *pg)
1023 {
1024 struct proc *p;
1025 int doit;
1026
1027 KASSERT(mutex_owned(proc_lock));
1028
1029 doit = 0;
1030
1031 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1032 if (p->p_stat == SSTOP) {
1033 p->p_lflag |= PL_ORPHANPG;
1034 psignal(p, SIGHUP);
1035 psignal(p, SIGCONT);
1036 }
1037 }
1038 }
1039
1040 #ifdef DDB
1041 #include <ddb/db_output.h>
1042 void pidtbl_dump(void);
1043 void
1044 pidtbl_dump(void)
1045 {
1046 struct pid_table *pt;
1047 struct proc *p;
1048 struct pgrp *pgrp;
1049 int id;
1050
1051 db_printf("pid table %p size %x, next %x, last %x\n",
1052 pid_table, pid_tbl_mask+1,
1053 next_free_pt, last_free_pt);
1054 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1055 p = pt->pt_proc;
1056 if (!P_VALID(p) && !pt->pt_pgrp)
1057 continue;
1058 db_printf(" id %x: ", id);
1059 if (P_VALID(p))
1060 db_printf("proc %p id %d (0x%x) %s\n",
1061 p, p->p_pid, p->p_pid, p->p_comm);
1062 else
1063 db_printf("next %x use %x\n",
1064 P_NEXT(p) & pid_tbl_mask,
1065 P_NEXT(p) & ~pid_tbl_mask);
1066 if ((pgrp = pt->pt_pgrp)) {
1067 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1068 pgrp->pg_session, pgrp->pg_session->s_sid,
1069 pgrp->pg_session->s_count,
1070 pgrp->pg_session->s_login);
1071 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1072 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1073 LIST_FIRST(&pgrp->pg_members));
1074 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1075 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1076 p->p_pid, p, p->p_pgrp, p->p_comm);
1077 }
1078 }
1079 }
1080 }
1081 #endif /* DDB */
1082
1083 #ifdef KSTACK_CHECK_MAGIC
1084 #include <sys/user.h>
1085
1086 #define KSTACK_MAGIC 0xdeadbeaf
1087
1088 /* XXX should be per process basis? */
1089 static int kstackleftmin = KSTACK_SIZE;
1090 static int kstackleftthres = KSTACK_SIZE / 8;
1091
1092 void
1093 kstack_setup_magic(const struct lwp *l)
1094 {
1095 uint32_t *ip;
1096 uint32_t const *end;
1097
1098 KASSERT(l != NULL);
1099 KASSERT(l != &lwp0);
1100
1101 /*
1102 * fill all the stack with magic number
1103 * so that later modification on it can be detected.
1104 */
1105 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1106 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1107 for (; ip < end; ip++) {
1108 *ip = KSTACK_MAGIC;
1109 }
1110 }
1111
1112 void
1113 kstack_check_magic(const struct lwp *l)
1114 {
1115 uint32_t const *ip, *end;
1116 int stackleft;
1117
1118 KASSERT(l != NULL);
1119
1120 /* don't check proc0 */ /*XXX*/
1121 if (l == &lwp0)
1122 return;
1123
1124 #ifdef __MACHINE_STACK_GROWS_UP
1125 /* stack grows upwards (eg. hppa) */
1126 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1127 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1128 for (ip--; ip >= end; ip--)
1129 if (*ip != KSTACK_MAGIC)
1130 break;
1131
1132 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1133 #else /* __MACHINE_STACK_GROWS_UP */
1134 /* stack grows downwards (eg. i386) */
1135 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1136 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1137 for (; ip < end; ip++)
1138 if (*ip != KSTACK_MAGIC)
1139 break;
1140
1141 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1142 #endif /* __MACHINE_STACK_GROWS_UP */
1143
1144 if (kstackleftmin > stackleft) {
1145 kstackleftmin = stackleft;
1146 if (stackleft < kstackleftthres)
1147 printf("warning: kernel stack left %d bytes"
1148 "(pid %u:lid %u)\n", stackleft,
1149 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1150 }
1151
1152 if (stackleft <= 0) {
1153 panic("magic on the top of kernel stack changed for "
1154 "pid %u, lid %u: maybe kernel stack overflow",
1155 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1156 }
1157 }
1158 #endif /* KSTACK_CHECK_MAGIC */
1159
1160 int
1161 proclist_foreach_call(struct proclist *list,
1162 int (*callback)(struct proc *, void *arg), void *arg)
1163 {
1164 struct proc marker;
1165 struct proc *p;
1166 struct lwp * const l = curlwp;
1167 int ret = 0;
1168
1169 marker.p_flag = PK_MARKER;
1170 uvm_lwp_hold(l);
1171 mutex_enter(proc_lock);
1172 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1173 if (p->p_flag & PK_MARKER) {
1174 p = LIST_NEXT(p, p_list);
1175 continue;
1176 }
1177 LIST_INSERT_AFTER(p, &marker, p_list);
1178 ret = (*callback)(p, arg);
1179 KASSERT(mutex_owned(proc_lock));
1180 p = LIST_NEXT(&marker, p_list);
1181 LIST_REMOVE(&marker, p_list);
1182 }
1183 mutex_exit(proc_lock);
1184 uvm_lwp_rele(l);
1185
1186 return ret;
1187 }
1188
1189 int
1190 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1191 {
1192
1193 /* XXXCDC: how should locking work here? */
1194
1195 /* curproc exception is for coredump. */
1196
1197 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1198 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1199 return EFAULT;
1200 }
1201
1202 uvmspace_addref(p->p_vmspace);
1203 *vm = p->p_vmspace;
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Acquire a write lock on the process credential.
1210 */
1211 void
1212 proc_crmod_enter(void)
1213 {
1214 struct lwp *l = curlwp;
1215 struct proc *p = l->l_proc;
1216 struct plimit *lim;
1217 kauth_cred_t oc;
1218 char *cn;
1219
1220 /* Reset what needs to be reset in plimit. */
1221 if (p->p_limit->pl_corename != defcorename) {
1222 lim_privatise(p, false);
1223 lim = p->p_limit;
1224 mutex_enter(&lim->pl_lock);
1225 cn = lim->pl_corename;
1226 lim->pl_corename = defcorename;
1227 mutex_exit(&lim->pl_lock);
1228 if (cn != defcorename)
1229 free(cn, M_TEMP);
1230 }
1231
1232 mutex_enter(p->p_lock);
1233
1234 /* Ensure the LWP cached credentials are up to date. */
1235 if ((oc = l->l_cred) != p->p_cred) {
1236 kauth_cred_hold(p->p_cred);
1237 l->l_cred = p->p_cred;
1238 kauth_cred_free(oc);
1239 }
1240
1241 }
1242
1243 /*
1244 * Set in a new process credential, and drop the write lock. The credential
1245 * must have a reference already. Optionally, free a no-longer required
1246 * credential. The scheduler also needs to inspect p_cred, so we also
1247 * briefly acquire the sched state mutex.
1248 */
1249 void
1250 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1251 {
1252 struct lwp *l = curlwp, *l2;
1253 struct proc *p = l->l_proc;
1254 kauth_cred_t oc;
1255
1256 KASSERT(mutex_owned(p->p_lock));
1257
1258 /* Is there a new credential to set in? */
1259 if (scred != NULL) {
1260 p->p_cred = scred;
1261 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1262 if (l2 != l)
1263 l2->l_prflag |= LPR_CRMOD;
1264 }
1265
1266 /* Ensure the LWP cached credentials are up to date. */
1267 if ((oc = l->l_cred) != scred) {
1268 kauth_cred_hold(scred);
1269 l->l_cred = scred;
1270 }
1271 } else
1272 oc = NULL; /* XXXgcc */
1273
1274 if (sugid) {
1275 /*
1276 * Mark process as having changed credentials, stops
1277 * tracing etc.
1278 */
1279 p->p_flag |= PK_SUGID;
1280 }
1281
1282 mutex_exit(p->p_lock);
1283
1284 /* If there is a credential to be released, free it now. */
1285 if (fcred != NULL) {
1286 KASSERT(scred != NULL);
1287 kauth_cred_free(fcred);
1288 if (oc != scred)
1289 kauth_cred_free(oc);
1290 }
1291 }
1292
1293 /*
1294 * proc_specific_key_create --
1295 * Create a key for subsystem proc-specific data.
1296 */
1297 int
1298 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1299 {
1300
1301 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1302 }
1303
1304 /*
1305 * proc_specific_key_delete --
1306 * Delete a key for subsystem proc-specific data.
1307 */
1308 void
1309 proc_specific_key_delete(specificdata_key_t key)
1310 {
1311
1312 specificdata_key_delete(proc_specificdata_domain, key);
1313 }
1314
1315 /*
1316 * proc_initspecific --
1317 * Initialize a proc's specificdata container.
1318 */
1319 void
1320 proc_initspecific(struct proc *p)
1321 {
1322 int error;
1323
1324 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1325 KASSERT(error == 0);
1326 }
1327
1328 /*
1329 * proc_finispecific --
1330 * Finalize a proc's specificdata container.
1331 */
1332 void
1333 proc_finispecific(struct proc *p)
1334 {
1335
1336 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1337 }
1338
1339 /*
1340 * proc_getspecific --
1341 * Return proc-specific data corresponding to the specified key.
1342 */
1343 void *
1344 proc_getspecific(struct proc *p, specificdata_key_t key)
1345 {
1346
1347 return (specificdata_getspecific(proc_specificdata_domain,
1348 &p->p_specdataref, key));
1349 }
1350
1351 /*
1352 * proc_setspecific --
1353 * Set proc-specific data corresponding to the specified key.
1354 */
1355 void
1356 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1357 {
1358
1359 specificdata_setspecific(proc_specificdata_domain,
1360 &p->p_specdataref, key, data);
1361 }
1362