Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.147.2.2
      1 /*	$NetBSD: kern_proc.c,v 1.147.2.2 2009/07/23 23:32:34 jym Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.147.2.2 2009/07/23 23:32:34 jym Exp $");
     66 
     67 #include "opt_kstack.h"
     68 #include "opt_maxuprc.h"
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/kernel.h>
     73 #include <sys/proc.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/buf.h>
     76 #include <sys/acct.h>
     77 #include <sys/wait.h>
     78 #include <sys/file.h>
     79 #include <ufs/ufs/quota.h>
     80 #include <sys/uio.h>
     81 #include <sys/pool.h>
     82 #include <sys/pset.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/tty.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/ras.h>
     88 #include <sys/sa.h>
     89 #include <sys/savar.h>
     90 #include <sys/filedesc.h>
     91 #include "sys/syscall_stats.h"
     92 #include <sys/kauth.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/atomic.h>
     95 #include <sys/kmem.h>
     96 
     97 #include <uvm/uvm.h>
     98 #include <uvm/uvm_extern.h>
     99 
    100 /*
    101  * Other process lists
    102  */
    103 
    104 struct proclist allproc;
    105 struct proclist zombproc;	/* resources have been freed */
    106 
    107 kmutex_t	*proc_lock;
    108 
    109 /*
    110  * pid to proc lookup is done by indexing the pid_table array.
    111  * Since pid numbers are only allocated when an empty slot
    112  * has been found, there is no need to search any lists ever.
    113  * (an orphaned pgrp will lock the slot, a session will lock
    114  * the pgrp with the same number.)
    115  * If the table is too small it is reallocated with twice the
    116  * previous size and the entries 'unzipped' into the two halves.
    117  * A linked list of free entries is passed through the pt_proc
    118  * field of 'free' items - set odd to be an invalid ptr.
    119  */
    120 
    121 struct pid_table {
    122 	struct proc	*pt_proc;
    123 	struct pgrp	*pt_pgrp;
    124 };
    125 #if 1	/* strongly typed cast - should be a noop */
    126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    127 #else
    128 #define p2u(p) ((uint)p)
    129 #endif
    130 #define P_VALID(p) (!(p2u(p) & 1))
    131 #define P_NEXT(p) (p2u(p) >> 1)
    132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    133 
    134 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    135 static struct pid_table *pid_table;
    136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    137 static uint pid_alloc_lim;	/* max we allocate before growing table */
    138 static uint pid_alloc_cnt;	/* number of allocated pids */
    139 
    140 /* links through free slots - never empty! */
    141 static uint next_free_pt, last_free_pt;
    142 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    143 
    144 /* Components of the first process -- never freed. */
    145 
    146 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    147 
    148 struct session session0 = {
    149 	.s_count = 1,
    150 	.s_sid = 0,
    151 };
    152 struct pgrp pgrp0 = {
    153 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    154 	.pg_session = &session0,
    155 };
    156 filedesc_t filedesc0;
    157 struct cwdinfo cwdi0 = {
    158 	.cwdi_cmask = CMASK,		/* see cmask below */
    159 	.cwdi_refcnt = 1,
    160 };
    161 struct plimit limit0;
    162 struct pstats pstat0;
    163 struct vmspace vmspace0;
    164 struct sigacts sigacts0;
    165 struct turnstile turnstile0;
    166 struct proc proc0 = {
    167 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    168 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    169 	.p_nlwps = 1,
    170 	.p_nrlwps = 1,
    171 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    172 	.p_pgrp = &pgrp0,
    173 	.p_comm = "system",
    174 	/*
    175 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    176 	 * when they exit.  init(8) can easily wait them out for us.
    177 	 */
    178 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    179 	.p_stat = SACTIVE,
    180 	.p_nice = NZERO,
    181 	.p_emul = &emul_netbsd,
    182 	.p_cwdi = &cwdi0,
    183 	.p_limit = &limit0,
    184 	.p_fd = &filedesc0,
    185 	.p_vmspace = &vmspace0,
    186 	.p_stats = &pstat0,
    187 	.p_sigacts = &sigacts0,
    188 };
    189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    190 #ifdef LWP0_CPU_INFO
    191 	.l_cpu = LWP0_CPU_INFO,
    192 #endif
    193 	.l_proc = &proc0,
    194 	.l_lid = 1,
    195 	.l_flag = LW_INMEM | LW_SYSTEM,
    196 	.l_stat = LSONPROC,
    197 	.l_ts = &turnstile0,
    198 	.l_syncobj = &sched_syncobj,
    199 	.l_refcnt = 1,
    200 	.l_priority = PRI_USER + NPRI_USER - 1,
    201 	.l_inheritedprio = -1,
    202 	.l_class = SCHED_OTHER,
    203 	.l_psid = PS_NONE,
    204 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    205 	.l_name = __UNCONST("swapper"),
    206 	.l_fd = &filedesc0,
    207 };
    208 kauth_cred_t cred0;
    209 
    210 extern struct user *proc0paddr;
    211 
    212 int nofile = NOFILE;
    213 int maxuprc = MAXUPRC;
    214 int cmask = CMASK;
    215 
    216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    218 
    219 /*
    220  * The process list descriptors, used during pid allocation and
    221  * by sysctl.  No locking on this data structure is needed since
    222  * it is completely static.
    223  */
    224 const struct proclist_desc proclists[] = {
    225 	{ &allproc	},
    226 	{ &zombproc	},
    227 	{ NULL		},
    228 };
    229 
    230 static struct pgrp *	pg_remove(pid_t);
    231 static void		pg_delete(pid_t);
    232 static void		orphanpg(struct pgrp *);
    233 
    234 static specificdata_domain_t proc_specificdata_domain;
    235 
    236 static pool_cache_t proc_cache;
    237 
    238 /*
    239  * Initialize global process hashing structures.
    240  */
    241 void
    242 procinit(void)
    243 {
    244 	const struct proclist_desc *pd;
    245 	u_int i;
    246 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    247 
    248 	for (pd = proclists; pd->pd_list != NULL; pd++)
    249 		LIST_INIT(pd->pd_list);
    250 
    251 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    252 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    253 	    * sizeof(struct pid_table), KM_SLEEP);
    254 
    255 	/* Set free list running through table...
    256 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    257 	for (i = 0; i <= pid_tbl_mask; i++) {
    258 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    259 		pid_table[i].pt_pgrp = 0;
    260 	}
    261 	/* slot 0 is just grabbed */
    262 	next_free_pt = 1;
    263 	/* Need to fix last entry. */
    264 	last_free_pt = pid_tbl_mask;
    265 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    266 	/* point at which we grow table - to avoid reusing pids too often */
    267 	pid_alloc_lim = pid_tbl_mask - 1;
    268 #undef LINK_EMPTY
    269 
    270 	proc_specificdata_domain = specificdata_domain_create();
    271 	KASSERT(proc_specificdata_domain != NULL);
    272 
    273 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    274 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    275 }
    276 
    277 /*
    278  * Initialize process 0.
    279  */
    280 void
    281 proc0_init(void)
    282 {
    283 	struct proc *p;
    284 	struct pgrp *pg;
    285 	struct session *sess;
    286 	struct lwp *l;
    287 	rlim_t lim;
    288 	int i;
    289 
    290 	p = &proc0;
    291 	pg = &pgrp0;
    292 	sess = &session0;
    293 	l = &lwp0;
    294 
    295 	KASSERT(l->l_lid == p->p_nlwpid);
    296 
    297 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    298 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    299 	mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    300 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    301 
    302 	rw_init(&p->p_reflock);
    303 	cv_init(&p->p_waitcv, "wait");
    304 	cv_init(&p->p_lwpcv, "lwpwait");
    305 
    306 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    307 
    308 	pid_table[0].pt_proc = p;
    309 	LIST_INSERT_HEAD(&allproc, p, p_list);
    310 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    311 
    312 	pid_table[0].pt_pgrp = pg;
    313 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    314 
    315 #ifdef __HAVE_SYSCALL_INTERN
    316 	(*p->p_emul->e_syscall_intern)(p);
    317 #endif
    318 
    319 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    320 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    321 	cv_init(&l->l_sigcv, "sigwait");
    322 
    323 	/* Create credentials. */
    324 	cred0 = kauth_cred_alloc();
    325 	p->p_cred = cred0;
    326 	kauth_cred_hold(cred0);
    327 	l->l_cred = cred0;
    328 
    329 	/* Create the CWD info. */
    330 	rw_init(&cwdi0.cwdi_lock);
    331 
    332 	/* Create the limits structures. */
    333 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    334 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    335 		limit0.pl_rlimit[i].rlim_cur =
    336 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    337 
    338 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    339 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    340 	    maxfiles < nofile ? maxfiles : nofile;
    341 
    342 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    343 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    344 	    maxproc < maxuprc ? maxproc : maxuprc;
    345 
    346 	lim = ptoa(uvmexp.free);
    347 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    348 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    349 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    350 	limit0.pl_corename = defcorename;
    351 	limit0.pl_refcnt = 1;
    352 	limit0.pl_sv_limit = NULL;
    353 
    354 	/* Configure virtual memory system, set vm rlimits. */
    355 	uvm_init_limits(p);
    356 
    357 	/* Initialize file descriptor table for proc0. */
    358 	fd_init(&filedesc0);
    359 
    360 	/*
    361 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    362 	 * All kernel processes (which never have user space mappings)
    363 	 * share proc0's vmspace, and thus, the kernel pmap.
    364 	 */
    365 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    366 	    trunc_page(VM_MAX_ADDRESS));
    367 
    368 	l->l_addr = proc0paddr;				/* XXX */
    369 
    370 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    371 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    372 	siginit(p);
    373 
    374 	proc_initspecific(p);
    375 	lwp_initspecific(l);
    376 
    377 	SYSCALL_TIME_LWP_INIT(l);
    378 }
    379 
    380 /*
    381  * Session reference counting.
    382  */
    383 
    384 void
    385 proc_sesshold(struct session *ss)
    386 {
    387 
    388 	KASSERT(mutex_owned(proc_lock));
    389 	ss->s_count++;
    390 }
    391 
    392 void
    393 proc_sessrele(struct session *ss)
    394 {
    395 
    396 	KASSERT(mutex_owned(proc_lock));
    397 	/*
    398 	 * We keep the pgrp with the same id as the session in order to
    399 	 * stop a process being given the same pid.  Since the pgrp holds
    400 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    401 	 */
    402 	if (--ss->s_count == 0) {
    403 		struct pgrp *pg;
    404 
    405 		pg = pg_remove(ss->s_sid);
    406 		mutex_exit(proc_lock);
    407 
    408 		kmem_free(pg, sizeof(struct pgrp));
    409 		kmem_free(ss, sizeof(struct session));
    410 	} else {
    411 		mutex_exit(proc_lock);
    412 	}
    413 }
    414 
    415 /*
    416  * Check that the specified process group is in the session of the
    417  * specified process.
    418  * Treats -ve ids as process ids.
    419  * Used to validate TIOCSPGRP requests.
    420  */
    421 int
    422 pgid_in_session(struct proc *p, pid_t pg_id)
    423 {
    424 	struct pgrp *pgrp;
    425 	struct session *session;
    426 	int error;
    427 
    428 	mutex_enter(proc_lock);
    429 	if (pg_id < 0) {
    430 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    431 		if (p1 == NULL)
    432 			return EINVAL;
    433 		pgrp = p1->p_pgrp;
    434 	} else {
    435 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    436 		if (pgrp == NULL)
    437 			return EINVAL;
    438 	}
    439 	session = pgrp->pg_session;
    440 	if (session != p->p_pgrp->pg_session)
    441 		error = EPERM;
    442 	else
    443 		error = 0;
    444 	mutex_exit(proc_lock);
    445 
    446 	return error;
    447 }
    448 
    449 /*
    450  * p_inferior: is p an inferior of q?
    451  */
    452 static inline bool
    453 p_inferior(struct proc *p, struct proc *q)
    454 {
    455 
    456 	KASSERT(mutex_owned(proc_lock));
    457 
    458 	for (; p != q; p = p->p_pptr)
    459 		if (p->p_pid == 0)
    460 			return false;
    461 	return true;
    462 }
    463 
    464 /*
    465  * Locate a process by number
    466  */
    467 struct proc *
    468 p_find(pid_t pid, uint flags)
    469 {
    470 	struct proc *p;
    471 	char stat;
    472 
    473 	if (!(flags & PFIND_LOCKED))
    474 		mutex_enter(proc_lock);
    475 
    476 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    477 
    478 	/* Only allow live processes to be found by pid. */
    479 	/* XXXSMP p_stat */
    480 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    481 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    482 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    483 		if (flags & PFIND_UNLOCK_OK)
    484 			 mutex_exit(proc_lock);
    485 		return p;
    486 	}
    487 	if (flags & PFIND_UNLOCK_FAIL)
    488 		mutex_exit(proc_lock);
    489 	return NULL;
    490 }
    491 
    492 
    493 /*
    494  * Locate a process group by number
    495  */
    496 struct pgrp *
    497 pg_find(pid_t pgid, uint flags)
    498 {
    499 	struct pgrp *pg;
    500 
    501 	if (!(flags & PFIND_LOCKED))
    502 		mutex_enter(proc_lock);
    503 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    504 	/*
    505 	 * Can't look up a pgrp that only exists because the session
    506 	 * hasn't died yet (traditional)
    507 	 */
    508 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    509 		if (flags & PFIND_UNLOCK_FAIL)
    510 			 mutex_exit(proc_lock);
    511 		return NULL;
    512 	}
    513 
    514 	if (flags & PFIND_UNLOCK_OK)
    515 		mutex_exit(proc_lock);
    516 	return pg;
    517 }
    518 
    519 static void
    520 expand_pid_table(void)
    521 {
    522 	size_t pt_size, tsz;
    523 	struct pid_table *n_pt, *new_pt;
    524 	struct proc *proc;
    525 	struct pgrp *pgrp;
    526 	pid_t pid;
    527 	u_int i;
    528 
    529 	pt_size = pid_tbl_mask + 1;
    530 	tsz = pt_size * 2 * sizeof(struct pid_table);
    531 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    532 
    533 	mutex_enter(proc_lock);
    534 	if (pt_size != pid_tbl_mask + 1) {
    535 		/* Another process beat us to it... */
    536 		mutex_exit(proc_lock);
    537 		kmem_free(new_pt, tsz);
    538 		return;
    539 	}
    540 
    541 	/*
    542 	 * Copy entries from old table into new one.
    543 	 * If 'pid' is 'odd' we need to place in the upper half,
    544 	 * even pid's to the lower half.
    545 	 * Free items stay in the low half so we don't have to
    546 	 * fixup the reference to them.
    547 	 * We stuff free items on the front of the freelist
    548 	 * because we can't write to unmodified entries.
    549 	 * Processing the table backwards maintains a semblance
    550 	 * of issueing pid numbers that increase with time.
    551 	 */
    552 	i = pt_size - 1;
    553 	n_pt = new_pt + i;
    554 	for (; ; i--, n_pt--) {
    555 		proc = pid_table[i].pt_proc;
    556 		pgrp = pid_table[i].pt_pgrp;
    557 		if (!P_VALID(proc)) {
    558 			/* Up 'use count' so that link is valid */
    559 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    560 			proc = P_FREE(pid);
    561 			if (pgrp)
    562 				pid = pgrp->pg_id;
    563 		} else
    564 			pid = proc->p_pid;
    565 
    566 		/* Save entry in appropriate half of table */
    567 		n_pt[pid & pt_size].pt_proc = proc;
    568 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    569 
    570 		/* Put other piece on start of free list */
    571 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    572 		n_pt[pid & pt_size].pt_proc =
    573 				    P_FREE((pid & ~pt_size) | next_free_pt);
    574 		n_pt[pid & pt_size].pt_pgrp = 0;
    575 		next_free_pt = i | (pid & pt_size);
    576 		if (i == 0)
    577 			break;
    578 	}
    579 
    580 	/* Save old table size and switch tables */
    581 	tsz = pt_size * sizeof(struct pid_table);
    582 	n_pt = pid_table;
    583 	pid_table = new_pt;
    584 	pid_tbl_mask = pt_size * 2 - 1;
    585 
    586 	/*
    587 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    588 	 * allocated pids we need it to be larger!
    589 	 */
    590 	if (pid_tbl_mask > PID_MAX) {
    591 		pid_max = pid_tbl_mask * 2 + 1;
    592 		pid_alloc_lim |= pid_alloc_lim << 1;
    593 	} else
    594 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    595 
    596 	mutex_exit(proc_lock);
    597 	kmem_free(n_pt, tsz);
    598 }
    599 
    600 struct proc *
    601 proc_alloc(void)
    602 {
    603 	struct proc *p;
    604 	int nxt;
    605 	pid_t pid;
    606 	struct pid_table *pt;
    607 
    608 	p = pool_cache_get(proc_cache, PR_WAITOK);
    609 	p->p_stat = SIDL;			/* protect against others */
    610 
    611 	proc_initspecific(p);
    612 	/* allocate next free pid */
    613 
    614 	for (;;expand_pid_table()) {
    615 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    616 			/* ensure pids cycle through 2000+ values */
    617 			continue;
    618 		mutex_enter(proc_lock);
    619 		pt = &pid_table[next_free_pt];
    620 #ifdef DIAGNOSTIC
    621 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    622 			panic("proc_alloc: slot busy");
    623 #endif
    624 		nxt = P_NEXT(pt->pt_proc);
    625 		if (nxt & pid_tbl_mask)
    626 			break;
    627 		/* Table full - expand (NB last entry not used....) */
    628 		mutex_exit(proc_lock);
    629 	}
    630 
    631 	/* pid is 'saved use count' + 'size' + entry */
    632 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    633 	if ((uint)pid > (uint)pid_max)
    634 		pid &= pid_tbl_mask;
    635 	p->p_pid = pid;
    636 	next_free_pt = nxt & pid_tbl_mask;
    637 
    638 	/* Grab table slot */
    639 	pt->pt_proc = p;
    640 	pid_alloc_cnt++;
    641 
    642 	mutex_exit(proc_lock);
    643 
    644 	return p;
    645 }
    646 
    647 /*
    648  * Free a process id - called from proc_free (in kern_exit.c)
    649  *
    650  * Called with the proc_lock held.
    651  */
    652 void
    653 proc_free_pid(struct proc *p)
    654 {
    655 	pid_t pid = p->p_pid;
    656 	struct pid_table *pt;
    657 
    658 	KASSERT(mutex_owned(proc_lock));
    659 
    660 	pt = &pid_table[pid & pid_tbl_mask];
    661 #ifdef DIAGNOSTIC
    662 	if (__predict_false(pt->pt_proc != p))
    663 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    664 			pid, p);
    665 #endif
    666 	/* save pid use count in slot */
    667 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    668 
    669 	if (pt->pt_pgrp == NULL) {
    670 		/* link last freed entry onto ours */
    671 		pid &= pid_tbl_mask;
    672 		pt = &pid_table[last_free_pt];
    673 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    674 		last_free_pt = pid;
    675 		pid_alloc_cnt--;
    676 	}
    677 
    678 	atomic_dec_uint(&nprocs);
    679 }
    680 
    681 void
    682 proc_free_mem(struct proc *p)
    683 {
    684 
    685 	pool_cache_put(proc_cache, p);
    686 }
    687 
    688 /*
    689  * proc_enterpgrp: move p to a new or existing process group (and session).
    690  *
    691  * If we are creating a new pgrp, the pgid should equal
    692  * the calling process' pid.
    693  * If is only valid to enter a process group that is in the session
    694  * of the process.
    695  * Also mksess should only be set if we are creating a process group
    696  *
    697  * Only called from sys_setsid and sys_setpgid.
    698  */
    699 int
    700 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    701 {
    702 	struct pgrp *new_pgrp, *pgrp;
    703 	struct session *sess;
    704 	struct proc *p;
    705 	int rval;
    706 	pid_t pg_id = NO_PGID;
    707 
    708 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    709 
    710 	/* Allocate data areas we might need before doing any validity checks */
    711 	mutex_enter(proc_lock);		/* Because pid_table might change */
    712 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    713 		mutex_exit(proc_lock);
    714 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    715 		mutex_enter(proc_lock);
    716 	} else
    717 		new_pgrp = NULL;
    718 	rval = EPERM;	/* most common error (to save typing) */
    719 
    720 	/* Check pgrp exists or can be created */
    721 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    722 	if (pgrp != NULL && pgrp->pg_id != pgid)
    723 		goto done;
    724 
    725 	/* Can only set another process under restricted circumstances. */
    726 	if (pid != curp->p_pid) {
    727 		/* must exist and be one of our children... */
    728 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    729 		    !p_inferior(p, curp)) {
    730 			rval = ESRCH;
    731 			goto done;
    732 		}
    733 		/* ... in the same session... */
    734 		if (sess != NULL || p->p_session != curp->p_session)
    735 			goto done;
    736 		/* ... existing pgid must be in same session ... */
    737 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    738 			goto done;
    739 		/* ... and not done an exec. */
    740 		if (p->p_flag & PK_EXEC) {
    741 			rval = EACCES;
    742 			goto done;
    743 		}
    744 	} else {
    745 		/* ... setsid() cannot re-enter a pgrp */
    746 		if (mksess && (curp->p_pgid == curp->p_pid ||
    747 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    748 			goto done;
    749 		p = curp;
    750 	}
    751 
    752 	/* Changing the process group/session of a session
    753 	   leader is definitely off limits. */
    754 	if (SESS_LEADER(p)) {
    755 		if (sess == NULL && p->p_pgrp == pgrp)
    756 			/* unless it's a definite noop */
    757 			rval = 0;
    758 		goto done;
    759 	}
    760 
    761 	/* Can only create a process group with id of process */
    762 	if (pgrp == NULL && pgid != pid)
    763 		goto done;
    764 
    765 	/* Can only create a session if creating pgrp */
    766 	if (sess != NULL && pgrp != NULL)
    767 		goto done;
    768 
    769 	/* Check we allocated memory for a pgrp... */
    770 	if (pgrp == NULL && new_pgrp == NULL)
    771 		goto done;
    772 
    773 	/* Don't attach to 'zombie' pgrp */
    774 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    775 		goto done;
    776 
    777 	/* Expect to succeed now */
    778 	rval = 0;
    779 
    780 	if (pgrp == p->p_pgrp)
    781 		/* nothing to do */
    782 		goto done;
    783 
    784 	/* Ok all setup, link up required structures */
    785 
    786 	if (pgrp == NULL) {
    787 		pgrp = new_pgrp;
    788 		new_pgrp = NULL;
    789 		if (sess != NULL) {
    790 			sess->s_sid = p->p_pid;
    791 			sess->s_leader = p;
    792 			sess->s_count = 1;
    793 			sess->s_ttyvp = NULL;
    794 			sess->s_ttyp = NULL;
    795 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    796 			memcpy(sess->s_login, p->p_session->s_login,
    797 			    sizeof(sess->s_login));
    798 			p->p_lflag &= ~PL_CONTROLT;
    799 		} else {
    800 			sess = p->p_pgrp->pg_session;
    801 			proc_sesshold(sess);
    802 		}
    803 		pgrp->pg_session = sess;
    804 		sess = NULL;
    805 
    806 		pgrp->pg_id = pgid;
    807 		LIST_INIT(&pgrp->pg_members);
    808 #ifdef DIAGNOSTIC
    809 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    810 			panic("enterpgrp: pgrp table slot in use");
    811 		if (__predict_false(mksess && p != curp))
    812 			panic("enterpgrp: mksession and p != curproc");
    813 #endif
    814 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    815 		pgrp->pg_jobc = 0;
    816 	}
    817 
    818 	/*
    819 	 * Adjust eligibility of affected pgrps to participate in job control.
    820 	 * Increment eligibility counts before decrementing, otherwise we
    821 	 * could reach 0 spuriously during the first call.
    822 	 */
    823 	fixjobc(p, pgrp, 1);
    824 	fixjobc(p, p->p_pgrp, 0);
    825 
    826 	/* Interlock with ttread(). */
    827 	mutex_spin_enter(&tty_lock);
    828 
    829 	/* Move process to requested group. */
    830 	LIST_REMOVE(p, p_pglist);
    831 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    832 		/* defer delete until we've dumped the lock */
    833 		pg_id = p->p_pgrp->pg_id;
    834 	p->p_pgrp = pgrp;
    835 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    836 
    837 	/* Done with the swap; we can release the tty mutex. */
    838 	mutex_spin_exit(&tty_lock);
    839 
    840     done:
    841 	if (pg_id != NO_PGID) {
    842 		/* Releases proc_lock. */
    843 		pg_delete(pg_id);
    844 	} else {
    845 		mutex_exit(proc_lock);
    846 	}
    847 	if (sess != NULL)
    848 		kmem_free(sess, sizeof(*sess));
    849 	if (new_pgrp != NULL)
    850 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    851 #ifdef DEBUG_PGRP
    852 	if (__predict_false(rval))
    853 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    854 			pid, pgid, mksess, curp->p_pid, rval);
    855 #endif
    856 	return rval;
    857 }
    858 
    859 /*
    860  * proc_leavepgrp: remove a process from its process group.
    861  *  => must be called with the proc_lock held, which will be released;
    862  */
    863 void
    864 proc_leavepgrp(struct proc *p)
    865 {
    866 	struct pgrp *pgrp;
    867 
    868 	KASSERT(mutex_owned(proc_lock));
    869 
    870 	/* Interlock with ttread() */
    871 	mutex_spin_enter(&tty_lock);
    872 	pgrp = p->p_pgrp;
    873 	LIST_REMOVE(p, p_pglist);
    874 	p->p_pgrp = NULL;
    875 	mutex_spin_exit(&tty_lock);
    876 
    877 	if (LIST_EMPTY(&pgrp->pg_members)) {
    878 		/* Releases proc_lock. */
    879 		pg_delete(pgrp->pg_id);
    880 	} else {
    881 		mutex_exit(proc_lock);
    882 	}
    883 }
    884 
    885 /*
    886  * pg_remove: remove a process group from the table.
    887  *  => must be called with the proc_lock held;
    888  *  => returns process group to free;
    889  */
    890 static struct pgrp *
    891 pg_remove(pid_t pg_id)
    892 {
    893 	struct pgrp *pgrp;
    894 	struct pid_table *pt;
    895 
    896 	KASSERT(mutex_owned(proc_lock));
    897 
    898 	pt = &pid_table[pg_id & pid_tbl_mask];
    899 	pgrp = pt->pt_pgrp;
    900 
    901 	KASSERT(pgrp != NULL);
    902 	KASSERT(pgrp->pg_id == pg_id);
    903 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    904 
    905 	pt->pt_pgrp = NULL;
    906 
    907 	if (!P_VALID(pt->pt_proc)) {
    908 		/* Orphaned pgrp, put slot onto free list. */
    909 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    910 		pg_id &= pid_tbl_mask;
    911 		pt = &pid_table[last_free_pt];
    912 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    913 		last_free_pt = pg_id;
    914 		pid_alloc_cnt--;
    915 	}
    916 	return pgrp;
    917 }
    918 
    919 /*
    920  * pg_delete: delete and free a process group.
    921  *  => must be called with the proc_lock held, which will be released.
    922  */
    923 static void
    924 pg_delete(pid_t pg_id)
    925 {
    926 	struct pgrp *pg;
    927 	struct tty *ttyp;
    928 	struct session *ss;
    929 
    930 	KASSERT(mutex_owned(proc_lock));
    931 
    932 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    933 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
    934 		mutex_exit(proc_lock);
    935 		return;
    936 	}
    937 
    938 	ss = pg->pg_session;
    939 
    940 	/* Remove reference (if any) from tty to this process group */
    941 	mutex_spin_enter(&tty_lock);
    942 	ttyp = ss->s_ttyp;
    943 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
    944 		ttyp->t_pgrp = NULL;
    945 		KASSERT(ttyp->t_session == ss);
    946 	}
    947 	mutex_spin_exit(&tty_lock);
    948 
    949 	/*
    950 	 * The leading process group in a session is freed by proc_sessrele(),
    951 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
    952 	 */
    953 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
    954 	proc_sessrele(ss);
    955 
    956 	if (pg != NULL) {
    957 		/* Free it, if was not done by proc_sessrele(). */
    958 		kmem_free(pg, sizeof(struct pgrp));
    959 	}
    960 }
    961 
    962 /*
    963  * Adjust pgrp jobc counters when specified process changes process group.
    964  * We count the number of processes in each process group that "qualify"
    965  * the group for terminal job control (those with a parent in a different
    966  * process group of the same session).  If that count reaches zero, the
    967  * process group becomes orphaned.  Check both the specified process'
    968  * process group and that of its children.
    969  * entering == 0 => p is leaving specified group.
    970  * entering == 1 => p is entering specified group.
    971  *
    972  * Call with proc_lock held.
    973  */
    974 void
    975 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    976 {
    977 	struct pgrp *hispgrp;
    978 	struct session *mysession = pgrp->pg_session;
    979 	struct proc *child;
    980 
    981 	KASSERT(mutex_owned(proc_lock));
    982 
    983 	/*
    984 	 * Check p's parent to see whether p qualifies its own process
    985 	 * group; if so, adjust count for p's process group.
    986 	 */
    987 	hispgrp = p->p_pptr->p_pgrp;
    988 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
    989 		if (entering) {
    990 			pgrp->pg_jobc++;
    991 			p->p_lflag &= ~PL_ORPHANPG;
    992 		} else if (--pgrp->pg_jobc == 0)
    993 			orphanpg(pgrp);
    994 	}
    995 
    996 	/*
    997 	 * Check this process' children to see whether they qualify
    998 	 * their process groups; if so, adjust counts for children's
    999 	 * process groups.
   1000 	 */
   1001 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1002 		hispgrp = child->p_pgrp;
   1003 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1004 		    !P_ZOMBIE(child)) {
   1005 			if (entering) {
   1006 				child->p_lflag &= ~PL_ORPHANPG;
   1007 				hispgrp->pg_jobc++;
   1008 			} else if (--hispgrp->pg_jobc == 0)
   1009 				orphanpg(hispgrp);
   1010 		}
   1011 	}
   1012 }
   1013 
   1014 /*
   1015  * A process group has become orphaned;
   1016  * if there are any stopped processes in the group,
   1017  * hang-up all process in that group.
   1018  *
   1019  * Call with proc_lock held.
   1020  */
   1021 static void
   1022 orphanpg(struct pgrp *pg)
   1023 {
   1024 	struct proc *p;
   1025 	int doit;
   1026 
   1027 	KASSERT(mutex_owned(proc_lock));
   1028 
   1029 	doit = 0;
   1030 
   1031 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1032 		if (p->p_stat == SSTOP) {
   1033 			p->p_lflag |= PL_ORPHANPG;
   1034 			psignal(p, SIGHUP);
   1035 			psignal(p, SIGCONT);
   1036 		}
   1037 	}
   1038 }
   1039 
   1040 #ifdef DDB
   1041 #include <ddb/db_output.h>
   1042 void pidtbl_dump(void);
   1043 void
   1044 pidtbl_dump(void)
   1045 {
   1046 	struct pid_table *pt;
   1047 	struct proc *p;
   1048 	struct pgrp *pgrp;
   1049 	int id;
   1050 
   1051 	db_printf("pid table %p size %x, next %x, last %x\n",
   1052 		pid_table, pid_tbl_mask+1,
   1053 		next_free_pt, last_free_pt);
   1054 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1055 		p = pt->pt_proc;
   1056 		if (!P_VALID(p) && !pt->pt_pgrp)
   1057 			continue;
   1058 		db_printf("  id %x: ", id);
   1059 		if (P_VALID(p))
   1060 			db_printf("proc %p id %d (0x%x) %s\n",
   1061 				p, p->p_pid, p->p_pid, p->p_comm);
   1062 		else
   1063 			db_printf("next %x use %x\n",
   1064 				P_NEXT(p) & pid_tbl_mask,
   1065 				P_NEXT(p) & ~pid_tbl_mask);
   1066 		if ((pgrp = pt->pt_pgrp)) {
   1067 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1068 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1069 			    pgrp->pg_session->s_count,
   1070 			    pgrp->pg_session->s_login);
   1071 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1072 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1073 			    LIST_FIRST(&pgrp->pg_members));
   1074 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1075 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1076 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1077 			}
   1078 		}
   1079 	}
   1080 }
   1081 #endif /* DDB */
   1082 
   1083 #ifdef KSTACK_CHECK_MAGIC
   1084 #include <sys/user.h>
   1085 
   1086 #define	KSTACK_MAGIC	0xdeadbeaf
   1087 
   1088 /* XXX should be per process basis? */
   1089 static int	kstackleftmin = KSTACK_SIZE;
   1090 static int	kstackleftthres = KSTACK_SIZE / 8;
   1091 
   1092 void
   1093 kstack_setup_magic(const struct lwp *l)
   1094 {
   1095 	uint32_t *ip;
   1096 	uint32_t const *end;
   1097 
   1098 	KASSERT(l != NULL);
   1099 	KASSERT(l != &lwp0);
   1100 
   1101 	/*
   1102 	 * fill all the stack with magic number
   1103 	 * so that later modification on it can be detected.
   1104 	 */
   1105 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1106 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1107 	for (; ip < end; ip++) {
   1108 		*ip = KSTACK_MAGIC;
   1109 	}
   1110 }
   1111 
   1112 void
   1113 kstack_check_magic(const struct lwp *l)
   1114 {
   1115 	uint32_t const *ip, *end;
   1116 	int stackleft;
   1117 
   1118 	KASSERT(l != NULL);
   1119 
   1120 	/* don't check proc0 */ /*XXX*/
   1121 	if (l == &lwp0)
   1122 		return;
   1123 
   1124 #ifdef __MACHINE_STACK_GROWS_UP
   1125 	/* stack grows upwards (eg. hppa) */
   1126 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1127 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1128 	for (ip--; ip >= end; ip--)
   1129 		if (*ip != KSTACK_MAGIC)
   1130 			break;
   1131 
   1132 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1133 #else /* __MACHINE_STACK_GROWS_UP */
   1134 	/* stack grows downwards (eg. i386) */
   1135 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1136 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1137 	for (; ip < end; ip++)
   1138 		if (*ip != KSTACK_MAGIC)
   1139 			break;
   1140 
   1141 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1142 #endif /* __MACHINE_STACK_GROWS_UP */
   1143 
   1144 	if (kstackleftmin > stackleft) {
   1145 		kstackleftmin = stackleft;
   1146 		if (stackleft < kstackleftthres)
   1147 			printf("warning: kernel stack left %d bytes"
   1148 			    "(pid %u:lid %u)\n", stackleft,
   1149 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1150 	}
   1151 
   1152 	if (stackleft <= 0) {
   1153 		panic("magic on the top of kernel stack changed for "
   1154 		    "pid %u, lid %u: maybe kernel stack overflow",
   1155 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1156 	}
   1157 }
   1158 #endif /* KSTACK_CHECK_MAGIC */
   1159 
   1160 int
   1161 proclist_foreach_call(struct proclist *list,
   1162     int (*callback)(struct proc *, void *arg), void *arg)
   1163 {
   1164 	struct proc marker;
   1165 	struct proc *p;
   1166 	struct lwp * const l = curlwp;
   1167 	int ret = 0;
   1168 
   1169 	marker.p_flag = PK_MARKER;
   1170 	uvm_lwp_hold(l);
   1171 	mutex_enter(proc_lock);
   1172 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1173 		if (p->p_flag & PK_MARKER) {
   1174 			p = LIST_NEXT(p, p_list);
   1175 			continue;
   1176 		}
   1177 		LIST_INSERT_AFTER(p, &marker, p_list);
   1178 		ret = (*callback)(p, arg);
   1179 		KASSERT(mutex_owned(proc_lock));
   1180 		p = LIST_NEXT(&marker, p_list);
   1181 		LIST_REMOVE(&marker, p_list);
   1182 	}
   1183 	mutex_exit(proc_lock);
   1184 	uvm_lwp_rele(l);
   1185 
   1186 	return ret;
   1187 }
   1188 
   1189 int
   1190 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1191 {
   1192 
   1193 	/* XXXCDC: how should locking work here? */
   1194 
   1195 	/* curproc exception is for coredump. */
   1196 
   1197 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1198 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1199 		return EFAULT;
   1200 	}
   1201 
   1202 	uvmspace_addref(p->p_vmspace);
   1203 	*vm = p->p_vmspace;
   1204 
   1205 	return 0;
   1206 }
   1207 
   1208 /*
   1209  * Acquire a write lock on the process credential.
   1210  */
   1211 void
   1212 proc_crmod_enter(void)
   1213 {
   1214 	struct lwp *l = curlwp;
   1215 	struct proc *p = l->l_proc;
   1216 	struct plimit *lim;
   1217 	kauth_cred_t oc;
   1218 	char *cn;
   1219 
   1220 	/* Reset what needs to be reset in plimit. */
   1221 	if (p->p_limit->pl_corename != defcorename) {
   1222 		lim_privatise(p, false);
   1223 		lim = p->p_limit;
   1224 		mutex_enter(&lim->pl_lock);
   1225 		cn = lim->pl_corename;
   1226 		lim->pl_corename = defcorename;
   1227 		mutex_exit(&lim->pl_lock);
   1228 		if (cn != defcorename)
   1229 			free(cn, M_TEMP);
   1230 	}
   1231 
   1232 	mutex_enter(p->p_lock);
   1233 
   1234 	/* Ensure the LWP cached credentials are up to date. */
   1235 	if ((oc = l->l_cred) != p->p_cred) {
   1236 		kauth_cred_hold(p->p_cred);
   1237 		l->l_cred = p->p_cred;
   1238 		kauth_cred_free(oc);
   1239 	}
   1240 
   1241 }
   1242 
   1243 /*
   1244  * Set in a new process credential, and drop the write lock.  The credential
   1245  * must have a reference already.  Optionally, free a no-longer required
   1246  * credential.  The scheduler also needs to inspect p_cred, so we also
   1247  * briefly acquire the sched state mutex.
   1248  */
   1249 void
   1250 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1251 {
   1252 	struct lwp *l = curlwp, *l2;
   1253 	struct proc *p = l->l_proc;
   1254 	kauth_cred_t oc;
   1255 
   1256 	KASSERT(mutex_owned(p->p_lock));
   1257 
   1258 	/* Is there a new credential to set in? */
   1259 	if (scred != NULL) {
   1260 		p->p_cred = scred;
   1261 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1262 			if (l2 != l)
   1263 				l2->l_prflag |= LPR_CRMOD;
   1264 		}
   1265 
   1266 		/* Ensure the LWP cached credentials are up to date. */
   1267 		if ((oc = l->l_cred) != scred) {
   1268 			kauth_cred_hold(scred);
   1269 			l->l_cred = scred;
   1270 		}
   1271 	} else
   1272 		oc = NULL;	/* XXXgcc */
   1273 
   1274 	if (sugid) {
   1275 		/*
   1276 		 * Mark process as having changed credentials, stops
   1277 		 * tracing etc.
   1278 		 */
   1279 		p->p_flag |= PK_SUGID;
   1280 	}
   1281 
   1282 	mutex_exit(p->p_lock);
   1283 
   1284 	/* If there is a credential to be released, free it now. */
   1285 	if (fcred != NULL) {
   1286 		KASSERT(scred != NULL);
   1287 		kauth_cred_free(fcred);
   1288 		if (oc != scred)
   1289 			kauth_cred_free(oc);
   1290 	}
   1291 }
   1292 
   1293 /*
   1294  * proc_specific_key_create --
   1295  *	Create a key for subsystem proc-specific data.
   1296  */
   1297 int
   1298 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1299 {
   1300 
   1301 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1302 }
   1303 
   1304 /*
   1305  * proc_specific_key_delete --
   1306  *	Delete a key for subsystem proc-specific data.
   1307  */
   1308 void
   1309 proc_specific_key_delete(specificdata_key_t key)
   1310 {
   1311 
   1312 	specificdata_key_delete(proc_specificdata_domain, key);
   1313 }
   1314 
   1315 /*
   1316  * proc_initspecific --
   1317  *	Initialize a proc's specificdata container.
   1318  */
   1319 void
   1320 proc_initspecific(struct proc *p)
   1321 {
   1322 	int error;
   1323 
   1324 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1325 	KASSERT(error == 0);
   1326 }
   1327 
   1328 /*
   1329  * proc_finispecific --
   1330  *	Finalize a proc's specificdata container.
   1331  */
   1332 void
   1333 proc_finispecific(struct proc *p)
   1334 {
   1335 
   1336 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1337 }
   1338 
   1339 /*
   1340  * proc_getspecific --
   1341  *	Return proc-specific data corresponding to the specified key.
   1342  */
   1343 void *
   1344 proc_getspecific(struct proc *p, specificdata_key_t key)
   1345 {
   1346 
   1347 	return (specificdata_getspecific(proc_specificdata_domain,
   1348 					 &p->p_specdataref, key));
   1349 }
   1350 
   1351 /*
   1352  * proc_setspecific --
   1353  *	Set proc-specific data corresponding to the specified key.
   1354  */
   1355 void
   1356 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1357 {
   1358 
   1359 	specificdata_setspecific(proc_specificdata_domain,
   1360 				 &p->p_specdataref, key, data);
   1361 }
   1362