kern_proc.c revision 1.149 1 /* $NetBSD: kern_proc.c,v 1.149 2009/04/16 00:17:19 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.149 2009/04/16 00:17:19 rmind Exp $");
66
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/malloc.h>
82 #include <sys/pool.h>
83 #include <sys/pset.h>
84 #include <sys/mbuf.h>
85 #include <sys/ioctl.h>
86 #include <sys/tty.h>
87 #include <sys/signalvar.h>
88 #include <sys/ras.h>
89 #include <sys/sa.h>
90 #include <sys/savar.h>
91 #include <sys/filedesc.h>
92 #include "sys/syscall_stats.h"
93 #include <sys/kauth.h>
94 #include <sys/sleepq.h>
95 #include <sys/atomic.h>
96 #include <sys/kmem.h>
97
98 #include <uvm/uvm.h>
99 #include <uvm/uvm_extern.h>
100
101 /*
102 * Other process lists
103 */
104
105 struct proclist allproc;
106 struct proclist zombproc; /* resources have been freed */
107
108 kmutex_t *proc_lock;
109
110 /*
111 * pid to proc lookup is done by indexing the pid_table array.
112 * Since pid numbers are only allocated when an empty slot
113 * has been found, there is no need to search any lists ever.
114 * (an orphaned pgrp will lock the slot, a session will lock
115 * the pgrp with the same number.)
116 * If the table is too small it is reallocated with twice the
117 * previous size and the entries 'unzipped' into the two halves.
118 * A linked list of free entries is passed through the pt_proc
119 * field of 'free' items - set odd to be an invalid ptr.
120 */
121
122 struct pid_table {
123 struct proc *pt_proc;
124 struct pgrp *pt_pgrp;
125 };
126 #if 1 /* strongly typed cast - should be a noop */
127 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
128 #else
129 #define p2u(p) ((uint)p)
130 #endif
131 #define P_VALID(p) (!(p2u(p) & 1))
132 #define P_NEXT(p) (p2u(p) >> 1)
133 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
134
135 #define INITIAL_PID_TABLE_SIZE (1 << 5)
136 static struct pid_table *pid_table;
137 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
138 static uint pid_alloc_lim; /* max we allocate before growing table */
139 static uint pid_alloc_cnt; /* number of allocated pids */
140
141 /* links through free slots - never empty! */
142 static uint next_free_pt, last_free_pt;
143 static pid_t pid_max = PID_MAX; /* largest value we allocate */
144
145 /* Components of the first process -- never freed. */
146
147 extern struct emul emul_netbsd; /* defined in kern_exec.c */
148
149 struct session session0 = {
150 .s_count = 1,
151 .s_sid = 0,
152 };
153 struct pgrp pgrp0 = {
154 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
155 .pg_session = &session0,
156 };
157 filedesc_t filedesc0;
158 struct cwdinfo cwdi0 = {
159 .cwdi_cmask = CMASK, /* see cmask below */
160 .cwdi_refcnt = 1,
161 };
162 struct plimit limit0;
163 struct pstats pstat0;
164 struct vmspace vmspace0;
165 struct sigacts sigacts0;
166 struct turnstile turnstile0;
167 struct proc proc0 = {
168 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
169 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
170 .p_nlwps = 1,
171 .p_nrlwps = 1,
172 .p_nlwpid = 1, /* must match lwp0.l_lid */
173 .p_pgrp = &pgrp0,
174 .p_comm = "system",
175 /*
176 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
177 * when they exit. init(8) can easily wait them out for us.
178 */
179 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
180 .p_stat = SACTIVE,
181 .p_nice = NZERO,
182 .p_emul = &emul_netbsd,
183 .p_cwdi = &cwdi0,
184 .p_limit = &limit0,
185 .p_fd = &filedesc0,
186 .p_vmspace = &vmspace0,
187 .p_stats = &pstat0,
188 .p_sigacts = &sigacts0,
189 };
190 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
191 #ifdef LWP0_CPU_INFO
192 .l_cpu = LWP0_CPU_INFO,
193 #endif
194 .l_proc = &proc0,
195 .l_lid = 1,
196 .l_flag = LW_INMEM | LW_SYSTEM,
197 .l_stat = LSONPROC,
198 .l_ts = &turnstile0,
199 .l_syncobj = &sched_syncobj,
200 .l_refcnt = 1,
201 .l_priority = PRI_USER + NPRI_USER - 1,
202 .l_inheritedprio = -1,
203 .l_class = SCHED_OTHER,
204 .l_psid = PS_NONE,
205 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
206 .l_name = __UNCONST("swapper"),
207 };
208 kauth_cred_t cred0;
209
210 extern struct user *proc0paddr;
211
212 int nofile = NOFILE;
213 int maxuprc = MAXUPRC;
214 int cmask = CMASK;
215
216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
217 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
218 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
219
220 /*
221 * The process list descriptors, used during pid allocation and
222 * by sysctl. No locking on this data structure is needed since
223 * it is completely static.
224 */
225 const struct proclist_desc proclists[] = {
226 { &allproc },
227 { &zombproc },
228 { NULL },
229 };
230
231 static void orphanpg(struct pgrp *);
232 static void pg_delete(pid_t);
233
234 static specificdata_domain_t proc_specificdata_domain;
235
236 static pool_cache_t proc_cache;
237
238 /*
239 * Initialize global process hashing structures.
240 */
241 void
242 procinit(void)
243 {
244 const struct proclist_desc *pd;
245 int i;
246 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
247
248 for (pd = proclists; pd->pd_list != NULL; pd++)
249 LIST_INIT(pd->pd_list);
250
251 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
252
253 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
254 M_PROC, M_WAITOK);
255 /* Set free list running through table...
256 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
257 for (i = 0; i <= pid_tbl_mask; i++) {
258 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
259 pid_table[i].pt_pgrp = 0;
260 }
261 /* slot 0 is just grabbed */
262 next_free_pt = 1;
263 /* Need to fix last entry. */
264 last_free_pt = pid_tbl_mask;
265 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
266 /* point at which we grow table - to avoid reusing pids too often */
267 pid_alloc_lim = pid_tbl_mask - 1;
268 #undef LINK_EMPTY
269
270 proc_specificdata_domain = specificdata_domain_create();
271 KASSERT(proc_specificdata_domain != NULL);
272
273 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
274 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
275 }
276
277 /*
278 * Initialize process 0.
279 */
280 void
281 proc0_init(void)
282 {
283 struct proc *p;
284 struct pgrp *pg;
285 struct session *sess;
286 struct lwp *l;
287 rlim_t lim;
288 int i;
289
290 p = &proc0;
291 pg = &pgrp0;
292 sess = &session0;
293 l = &lwp0;
294
295 KASSERT(l->l_lid == p->p_nlwpid);
296
297 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
298 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
299 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
300 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
301
302 rw_init(&p->p_reflock);
303 cv_init(&p->p_waitcv, "wait");
304 cv_init(&p->p_lwpcv, "lwpwait");
305
306 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
307
308 pid_table[0].pt_proc = p;
309 LIST_INSERT_HEAD(&allproc, p, p_list);
310 LIST_INSERT_HEAD(&alllwp, l, l_list);
311
312 pid_table[0].pt_pgrp = pg;
313 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
314
315 #ifdef __HAVE_SYSCALL_INTERN
316 (*p->p_emul->e_syscall_intern)(p);
317 #endif
318
319 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
320 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
321 cv_init(&l->l_sigcv, "sigwait");
322
323 /* Create credentials. */
324 cred0 = kauth_cred_alloc();
325 p->p_cred = cred0;
326 kauth_cred_hold(cred0);
327 l->l_cred = cred0;
328
329 /* Create the CWD info. */
330 rw_init(&cwdi0.cwdi_lock);
331
332 /* Create the limits structures. */
333 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
334 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
335 limit0.pl_rlimit[i].rlim_cur =
336 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
337
338 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
339 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
340 maxfiles < nofile ? maxfiles : nofile;
341
342 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
343 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
344 maxproc < maxuprc ? maxproc : maxuprc;
345
346 lim = ptoa(uvmexp.free);
347 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
348 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
349 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
350 limit0.pl_corename = defcorename;
351 limit0.pl_refcnt = 1;
352 limit0.pl_sv_limit = NULL;
353
354 /* Configure virtual memory system, set vm rlimits. */
355 uvm_init_limits(p);
356
357 /* Initialize file descriptor table for proc0. */
358 fd_init(&filedesc0);
359
360 /*
361 * Initialize proc0's vmspace, which uses the kernel pmap.
362 * All kernel processes (which never have user space mappings)
363 * share proc0's vmspace, and thus, the kernel pmap.
364 */
365 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
366 trunc_page(VM_MAX_ADDRESS));
367
368 l->l_addr = proc0paddr; /* XXX */
369
370 /* Initialize signal state for proc0. XXX IPL_SCHED */
371 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
372 siginit(p);
373
374 proc_initspecific(p);
375 lwp_initspecific(l);
376
377 SYSCALL_TIME_LWP_INIT(l);
378 }
379
380 /*
381 * Check that the specified process group is in the session of the
382 * specified process.
383 * Treats -ve ids as process ids.
384 * Used to validate TIOCSPGRP requests.
385 */
386 int
387 pgid_in_session(struct proc *p, pid_t pg_id)
388 {
389 struct pgrp *pgrp;
390 struct session *session;
391 int error;
392
393 mutex_enter(proc_lock);
394 if (pg_id < 0) {
395 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
396 if (p1 == NULL)
397 return EINVAL;
398 pgrp = p1->p_pgrp;
399 } else {
400 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
401 if (pgrp == NULL)
402 return EINVAL;
403 }
404 session = pgrp->pg_session;
405 if (session != p->p_pgrp->pg_session)
406 error = EPERM;
407 else
408 error = 0;
409 mutex_exit(proc_lock);
410
411 return error;
412 }
413
414 /*
415 * p_inferior: is p an inferior of q?
416 */
417 static inline bool
418 p_inferior(struct proc *p, struct proc *q)
419 {
420
421 KASSERT(mutex_owned(proc_lock));
422
423 for (; p != q; p = p->p_pptr)
424 if (p->p_pid == 0)
425 return false;
426 return true;
427 }
428
429 /*
430 * Locate a process by number
431 */
432 struct proc *
433 p_find(pid_t pid, uint flags)
434 {
435 struct proc *p;
436 char stat;
437
438 if (!(flags & PFIND_LOCKED))
439 mutex_enter(proc_lock);
440
441 p = pid_table[pid & pid_tbl_mask].pt_proc;
442
443 /* Only allow live processes to be found by pid. */
444 /* XXXSMP p_stat */
445 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
446 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
447 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
448 if (flags & PFIND_UNLOCK_OK)
449 mutex_exit(proc_lock);
450 return p;
451 }
452 if (flags & PFIND_UNLOCK_FAIL)
453 mutex_exit(proc_lock);
454 return NULL;
455 }
456
457
458 /*
459 * Locate a process group by number
460 */
461 struct pgrp *
462 pg_find(pid_t pgid, uint flags)
463 {
464 struct pgrp *pg;
465
466 if (!(flags & PFIND_LOCKED))
467 mutex_enter(proc_lock);
468 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
469 /*
470 * Can't look up a pgrp that only exists because the session
471 * hasn't died yet (traditional)
472 */
473 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
474 if (flags & PFIND_UNLOCK_FAIL)
475 mutex_exit(proc_lock);
476 return NULL;
477 }
478
479 if (flags & PFIND_UNLOCK_OK)
480 mutex_exit(proc_lock);
481 return pg;
482 }
483
484 static void
485 expand_pid_table(void)
486 {
487 uint pt_size = pid_tbl_mask + 1;
488 struct pid_table *n_pt, *new_pt;
489 struct proc *proc;
490 struct pgrp *pgrp;
491 int i;
492 pid_t pid;
493
494 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
495
496 mutex_enter(proc_lock);
497 if (pt_size != pid_tbl_mask + 1) {
498 /* Another process beat us to it... */
499 mutex_exit(proc_lock);
500 free(new_pt, M_PROC);
501 return;
502 }
503
504 /*
505 * Copy entries from old table into new one.
506 * If 'pid' is 'odd' we need to place in the upper half,
507 * even pid's to the lower half.
508 * Free items stay in the low half so we don't have to
509 * fixup the reference to them.
510 * We stuff free items on the front of the freelist
511 * because we can't write to unmodified entries.
512 * Processing the table backwards maintains a semblance
513 * of issueing pid numbers that increase with time.
514 */
515 i = pt_size - 1;
516 n_pt = new_pt + i;
517 for (; ; i--, n_pt--) {
518 proc = pid_table[i].pt_proc;
519 pgrp = pid_table[i].pt_pgrp;
520 if (!P_VALID(proc)) {
521 /* Up 'use count' so that link is valid */
522 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
523 proc = P_FREE(pid);
524 if (pgrp)
525 pid = pgrp->pg_id;
526 } else
527 pid = proc->p_pid;
528
529 /* Save entry in appropriate half of table */
530 n_pt[pid & pt_size].pt_proc = proc;
531 n_pt[pid & pt_size].pt_pgrp = pgrp;
532
533 /* Put other piece on start of free list */
534 pid = (pid ^ pt_size) & ~pid_tbl_mask;
535 n_pt[pid & pt_size].pt_proc =
536 P_FREE((pid & ~pt_size) | next_free_pt);
537 n_pt[pid & pt_size].pt_pgrp = 0;
538 next_free_pt = i | (pid & pt_size);
539 if (i == 0)
540 break;
541 }
542
543 /* Switch tables */
544 n_pt = pid_table;
545 pid_table = new_pt;
546 pid_tbl_mask = pt_size * 2 - 1;
547
548 /*
549 * pid_max starts as PID_MAX (= 30000), once we have 16384
550 * allocated pids we need it to be larger!
551 */
552 if (pid_tbl_mask > PID_MAX) {
553 pid_max = pid_tbl_mask * 2 + 1;
554 pid_alloc_lim |= pid_alloc_lim << 1;
555 } else
556 pid_alloc_lim <<= 1; /* doubles number of free slots... */
557
558 mutex_exit(proc_lock);
559 free(n_pt, M_PROC);
560 }
561
562 struct proc *
563 proc_alloc(void)
564 {
565 struct proc *p;
566 int nxt;
567 pid_t pid;
568 struct pid_table *pt;
569
570 p = pool_cache_get(proc_cache, PR_WAITOK);
571 p->p_stat = SIDL; /* protect against others */
572
573 proc_initspecific(p);
574 /* allocate next free pid */
575
576 for (;;expand_pid_table()) {
577 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
578 /* ensure pids cycle through 2000+ values */
579 continue;
580 mutex_enter(proc_lock);
581 pt = &pid_table[next_free_pt];
582 #ifdef DIAGNOSTIC
583 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
584 panic("proc_alloc: slot busy");
585 #endif
586 nxt = P_NEXT(pt->pt_proc);
587 if (nxt & pid_tbl_mask)
588 break;
589 /* Table full - expand (NB last entry not used....) */
590 mutex_exit(proc_lock);
591 }
592
593 /* pid is 'saved use count' + 'size' + entry */
594 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
595 if ((uint)pid > (uint)pid_max)
596 pid &= pid_tbl_mask;
597 p->p_pid = pid;
598 next_free_pt = nxt & pid_tbl_mask;
599
600 /* Grab table slot */
601 pt->pt_proc = p;
602 pid_alloc_cnt++;
603
604 mutex_exit(proc_lock);
605
606 return p;
607 }
608
609 /*
610 * Free a process id - called from proc_free (in kern_exit.c)
611 *
612 * Called with the proc_lock held.
613 */
614 void
615 proc_free_pid(struct proc *p)
616 {
617 pid_t pid = p->p_pid;
618 struct pid_table *pt;
619
620 KASSERT(mutex_owned(proc_lock));
621
622 pt = &pid_table[pid & pid_tbl_mask];
623 #ifdef DIAGNOSTIC
624 if (__predict_false(pt->pt_proc != p))
625 panic("proc_free: pid_table mismatch, pid %x, proc %p",
626 pid, p);
627 #endif
628 /* save pid use count in slot */
629 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
630
631 if (pt->pt_pgrp == NULL) {
632 /* link last freed entry onto ours */
633 pid &= pid_tbl_mask;
634 pt = &pid_table[last_free_pt];
635 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
636 last_free_pt = pid;
637 pid_alloc_cnt--;
638 }
639
640 atomic_dec_uint(&nprocs);
641 }
642
643 void
644 proc_free_mem(struct proc *p)
645 {
646
647 pool_cache_put(proc_cache, p);
648 }
649
650 /*
651 * Move p to a new or existing process group (and session)
652 *
653 * If we are creating a new pgrp, the pgid should equal
654 * the calling process' pid.
655 * If is only valid to enter a process group that is in the session
656 * of the process.
657 * Also mksess should only be set if we are creating a process group
658 *
659 * Only called from sys_setsid and sys_setpgid.
660 */
661 int
662 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
663 {
664 struct pgrp *new_pgrp, *pgrp;
665 struct session *sess;
666 struct proc *p;
667 int rval;
668 pid_t pg_id = NO_PGID;
669
670 if (mksess)
671 sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
672 else
673 sess = NULL;
674
675 /* Allocate data areas we might need before doing any validity checks */
676 mutex_enter(proc_lock); /* Because pid_table might change */
677 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
678 mutex_exit(proc_lock);
679 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
680 mutex_enter(proc_lock);
681 } else
682 new_pgrp = NULL;
683 rval = EPERM; /* most common error (to save typing) */
684
685 /* Check pgrp exists or can be created */
686 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
687 if (pgrp != NULL && pgrp->pg_id != pgid)
688 goto done;
689
690 /* Can only set another process under restricted circumstances. */
691 if (pid != curp->p_pid) {
692 /* must exist and be one of our children... */
693 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
694 !p_inferior(p, curp)) {
695 rval = ESRCH;
696 goto done;
697 }
698 /* ... in the same session... */
699 if (sess != NULL || p->p_session != curp->p_session)
700 goto done;
701 /* ... existing pgid must be in same session ... */
702 if (pgrp != NULL && pgrp->pg_session != p->p_session)
703 goto done;
704 /* ... and not done an exec. */
705 if (p->p_flag & PK_EXEC) {
706 rval = EACCES;
707 goto done;
708 }
709 } else {
710 /* ... setsid() cannot re-enter a pgrp */
711 if (mksess && (curp->p_pgid == curp->p_pid ||
712 pg_find(curp->p_pid, PFIND_LOCKED)))
713 goto done;
714 p = curp;
715 }
716
717 /* Changing the process group/session of a session
718 leader is definitely off limits. */
719 if (SESS_LEADER(p)) {
720 if (sess == NULL && p->p_pgrp == pgrp)
721 /* unless it's a definite noop */
722 rval = 0;
723 goto done;
724 }
725
726 /* Can only create a process group with id of process */
727 if (pgrp == NULL && pgid != pid)
728 goto done;
729
730 /* Can only create a session if creating pgrp */
731 if (sess != NULL && pgrp != NULL)
732 goto done;
733
734 /* Check we allocated memory for a pgrp... */
735 if (pgrp == NULL && new_pgrp == NULL)
736 goto done;
737
738 /* Don't attach to 'zombie' pgrp */
739 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
740 goto done;
741
742 /* Expect to succeed now */
743 rval = 0;
744
745 if (pgrp == p->p_pgrp)
746 /* nothing to do */
747 goto done;
748
749 /* Ok all setup, link up required structures */
750
751 if (pgrp == NULL) {
752 pgrp = new_pgrp;
753 new_pgrp = NULL;
754 if (sess != NULL) {
755 sess->s_sid = p->p_pid;
756 sess->s_leader = p;
757 sess->s_count = 1;
758 sess->s_ttyvp = NULL;
759 sess->s_ttyp = NULL;
760 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
761 memcpy(sess->s_login, p->p_session->s_login,
762 sizeof(sess->s_login));
763 p->p_lflag &= ~PL_CONTROLT;
764 } else {
765 sess = p->p_pgrp->pg_session;
766 SESSHOLD(sess);
767 }
768 pgrp->pg_session = sess;
769 sess = NULL;
770
771 pgrp->pg_id = pgid;
772 LIST_INIT(&pgrp->pg_members);
773 #ifdef DIAGNOSTIC
774 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
775 panic("enterpgrp: pgrp table slot in use");
776 if (__predict_false(mksess && p != curp))
777 panic("enterpgrp: mksession and p != curproc");
778 #endif
779 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
780 pgrp->pg_jobc = 0;
781 }
782
783 /*
784 * Adjust eligibility of affected pgrps to participate in job control.
785 * Increment eligibility counts before decrementing, otherwise we
786 * could reach 0 spuriously during the first call.
787 */
788 fixjobc(p, pgrp, 1);
789 fixjobc(p, p->p_pgrp, 0);
790
791 /* Interlock with ttread(). */
792 mutex_spin_enter(&tty_lock);
793
794 /* Move process to requested group. */
795 LIST_REMOVE(p, p_pglist);
796 if (LIST_EMPTY(&p->p_pgrp->pg_members))
797 /* defer delete until we've dumped the lock */
798 pg_id = p->p_pgrp->pg_id;
799 p->p_pgrp = pgrp;
800 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
801
802 /* Done with the swap; we can release the tty mutex. */
803 mutex_spin_exit(&tty_lock);
804
805 done:
806 if (pg_id != NO_PGID)
807 pg_delete(pg_id);
808 mutex_exit(proc_lock);
809 if (sess != NULL)
810 kmem_free(sess, sizeof(*sess));
811 if (new_pgrp != NULL)
812 kmem_free(new_pgrp, sizeof(*new_pgrp));
813 #ifdef DEBUG_PGRP
814 if (__predict_false(rval))
815 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
816 pid, pgid, mksess, curp->p_pid, rval);
817 #endif
818 return rval;
819 }
820
821 /*
822 * Remove a process from its process group. Must be called with the
823 * proc_lock held.
824 */
825 void
826 leavepgrp(struct proc *p)
827 {
828 struct pgrp *pgrp;
829
830 KASSERT(mutex_owned(proc_lock));
831
832 /* Interlock with ttread() */
833 mutex_spin_enter(&tty_lock);
834 pgrp = p->p_pgrp;
835 LIST_REMOVE(p, p_pglist);
836 p->p_pgrp = NULL;
837 mutex_spin_exit(&tty_lock);
838
839 if (LIST_EMPTY(&pgrp->pg_members))
840 pg_delete(pgrp->pg_id);
841 }
842
843 /*
844 * Free a process group. Must be called with the proc_lock held.
845 */
846 static void
847 pg_free(pid_t pg_id)
848 {
849 struct pgrp *pgrp;
850 struct pid_table *pt;
851
852 KASSERT(mutex_owned(proc_lock));
853
854 pt = &pid_table[pg_id & pid_tbl_mask];
855 pgrp = pt->pt_pgrp;
856 #ifdef DIAGNOSTIC
857 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
858 || !LIST_EMPTY(&pgrp->pg_members)))
859 panic("pg_free: process group absent or has members");
860 #endif
861 pt->pt_pgrp = 0;
862
863 if (!P_VALID(pt->pt_proc)) {
864 /* orphaned pgrp, put slot onto free list */
865 #ifdef DIAGNOSTIC
866 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
867 panic("pg_free: process slot on free list");
868 #endif
869 pg_id &= pid_tbl_mask;
870 pt = &pid_table[last_free_pt];
871 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
872 last_free_pt = pg_id;
873 pid_alloc_cnt--;
874 }
875 kmem_free(pgrp, sizeof(*pgrp));
876 }
877
878 /*
879 * Delete a process group. Must be called with the proc_lock held.
880 */
881 static void
882 pg_delete(pid_t pg_id)
883 {
884 struct pgrp *pgrp;
885 struct tty *ttyp;
886 struct session *ss;
887 int is_pgrp_leader;
888
889 KASSERT(mutex_owned(proc_lock));
890
891 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
892 if (pgrp == NULL || pgrp->pg_id != pg_id ||
893 !LIST_EMPTY(&pgrp->pg_members))
894 return;
895
896 ss = pgrp->pg_session;
897
898 /* Remove reference (if any) from tty to this process group */
899 mutex_spin_enter(&tty_lock);
900 ttyp = ss->s_ttyp;
901 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
902 ttyp->t_pgrp = NULL;
903 #ifdef DIAGNOSTIC
904 if (ttyp->t_session != ss)
905 panic("pg_delete: wrong session on terminal");
906 #endif
907 }
908 mutex_spin_exit(&tty_lock);
909
910 /*
911 * The leading process group in a session is freed
912 * by sessdelete() if last reference.
913 */
914 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
915 SESSRELE(ss);
916
917 if (is_pgrp_leader)
918 return;
919
920 pg_free(pg_id);
921 }
922
923 /*
924 * Delete session - called from SESSRELE when s_count becomes zero.
925 * Must be called with the proc_lock held.
926 */
927 void
928 sessdelete(struct session *ss)
929 {
930
931 KASSERT(mutex_owned(proc_lock));
932
933 /*
934 * We keep the pgrp with the same id as the session in
935 * order to stop a process being given the same pid.
936 * Since the pgrp holds a reference to the session, it
937 * must be a 'zombie' pgrp by now.
938 */
939 pg_free(ss->s_sid);
940 kmem_free(ss, sizeof(*ss));
941 }
942
943 /*
944 * Adjust pgrp jobc counters when specified process changes process group.
945 * We count the number of processes in each process group that "qualify"
946 * the group for terminal job control (those with a parent in a different
947 * process group of the same session). If that count reaches zero, the
948 * process group becomes orphaned. Check both the specified process'
949 * process group and that of its children.
950 * entering == 0 => p is leaving specified group.
951 * entering == 1 => p is entering specified group.
952 *
953 * Call with proc_lock held.
954 */
955 void
956 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
957 {
958 struct pgrp *hispgrp;
959 struct session *mysession = pgrp->pg_session;
960 struct proc *child;
961
962 KASSERT(mutex_owned(proc_lock));
963
964 /*
965 * Check p's parent to see whether p qualifies its own process
966 * group; if so, adjust count for p's process group.
967 */
968 hispgrp = p->p_pptr->p_pgrp;
969 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
970 if (entering) {
971 pgrp->pg_jobc++;
972 p->p_lflag &= ~PL_ORPHANPG;
973 } else if (--pgrp->pg_jobc == 0)
974 orphanpg(pgrp);
975 }
976
977 /*
978 * Check this process' children to see whether they qualify
979 * their process groups; if so, adjust counts for children's
980 * process groups.
981 */
982 LIST_FOREACH(child, &p->p_children, p_sibling) {
983 hispgrp = child->p_pgrp;
984 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
985 !P_ZOMBIE(child)) {
986 if (entering) {
987 child->p_lflag &= ~PL_ORPHANPG;
988 hispgrp->pg_jobc++;
989 } else if (--hispgrp->pg_jobc == 0)
990 orphanpg(hispgrp);
991 }
992 }
993 }
994
995 /*
996 * A process group has become orphaned;
997 * if there are any stopped processes in the group,
998 * hang-up all process in that group.
999 *
1000 * Call with proc_lock held.
1001 */
1002 static void
1003 orphanpg(struct pgrp *pg)
1004 {
1005 struct proc *p;
1006 int doit;
1007
1008 KASSERT(mutex_owned(proc_lock));
1009
1010 doit = 0;
1011
1012 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1013 if (p->p_stat == SSTOP) {
1014 p->p_lflag |= PL_ORPHANPG;
1015 psignal(p, SIGHUP);
1016 psignal(p, SIGCONT);
1017 }
1018 }
1019 }
1020
1021 #ifdef DDB
1022 #include <ddb/db_output.h>
1023 void pidtbl_dump(void);
1024 void
1025 pidtbl_dump(void)
1026 {
1027 struct pid_table *pt;
1028 struct proc *p;
1029 struct pgrp *pgrp;
1030 int id;
1031
1032 db_printf("pid table %p size %x, next %x, last %x\n",
1033 pid_table, pid_tbl_mask+1,
1034 next_free_pt, last_free_pt);
1035 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1036 p = pt->pt_proc;
1037 if (!P_VALID(p) && !pt->pt_pgrp)
1038 continue;
1039 db_printf(" id %x: ", id);
1040 if (P_VALID(p))
1041 db_printf("proc %p id %d (0x%x) %s\n",
1042 p, p->p_pid, p->p_pid, p->p_comm);
1043 else
1044 db_printf("next %x use %x\n",
1045 P_NEXT(p) & pid_tbl_mask,
1046 P_NEXT(p) & ~pid_tbl_mask);
1047 if ((pgrp = pt->pt_pgrp)) {
1048 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1049 pgrp->pg_session, pgrp->pg_session->s_sid,
1050 pgrp->pg_session->s_count,
1051 pgrp->pg_session->s_login);
1052 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1053 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1054 LIST_FIRST(&pgrp->pg_members));
1055 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1056 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1057 p->p_pid, p, p->p_pgrp, p->p_comm);
1058 }
1059 }
1060 }
1061 }
1062 #endif /* DDB */
1063
1064 #ifdef KSTACK_CHECK_MAGIC
1065 #include <sys/user.h>
1066
1067 #define KSTACK_MAGIC 0xdeadbeaf
1068
1069 /* XXX should be per process basis? */
1070 static int kstackleftmin = KSTACK_SIZE;
1071 static int kstackleftthres = KSTACK_SIZE / 8;
1072
1073 void
1074 kstack_setup_magic(const struct lwp *l)
1075 {
1076 uint32_t *ip;
1077 uint32_t const *end;
1078
1079 KASSERT(l != NULL);
1080 KASSERT(l != &lwp0);
1081
1082 /*
1083 * fill all the stack with magic number
1084 * so that later modification on it can be detected.
1085 */
1086 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1087 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1088 for (; ip < end; ip++) {
1089 *ip = KSTACK_MAGIC;
1090 }
1091 }
1092
1093 void
1094 kstack_check_magic(const struct lwp *l)
1095 {
1096 uint32_t const *ip, *end;
1097 int stackleft;
1098
1099 KASSERT(l != NULL);
1100
1101 /* don't check proc0 */ /*XXX*/
1102 if (l == &lwp0)
1103 return;
1104
1105 #ifdef __MACHINE_STACK_GROWS_UP
1106 /* stack grows upwards (eg. hppa) */
1107 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1108 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1109 for (ip--; ip >= end; ip--)
1110 if (*ip != KSTACK_MAGIC)
1111 break;
1112
1113 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1114 #else /* __MACHINE_STACK_GROWS_UP */
1115 /* stack grows downwards (eg. i386) */
1116 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1117 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1118 for (; ip < end; ip++)
1119 if (*ip != KSTACK_MAGIC)
1120 break;
1121
1122 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1123 #endif /* __MACHINE_STACK_GROWS_UP */
1124
1125 if (kstackleftmin > stackleft) {
1126 kstackleftmin = stackleft;
1127 if (stackleft < kstackleftthres)
1128 printf("warning: kernel stack left %d bytes"
1129 "(pid %u:lid %u)\n", stackleft,
1130 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1131 }
1132
1133 if (stackleft <= 0) {
1134 panic("magic on the top of kernel stack changed for "
1135 "pid %u, lid %u: maybe kernel stack overflow",
1136 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1137 }
1138 }
1139 #endif /* KSTACK_CHECK_MAGIC */
1140
1141 int
1142 proclist_foreach_call(struct proclist *list,
1143 int (*callback)(struct proc *, void *arg), void *arg)
1144 {
1145 struct proc marker;
1146 struct proc *p;
1147 struct lwp * const l = curlwp;
1148 int ret = 0;
1149
1150 marker.p_flag = PK_MARKER;
1151 uvm_lwp_hold(l);
1152 mutex_enter(proc_lock);
1153 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1154 if (p->p_flag & PK_MARKER) {
1155 p = LIST_NEXT(p, p_list);
1156 continue;
1157 }
1158 LIST_INSERT_AFTER(p, &marker, p_list);
1159 ret = (*callback)(p, arg);
1160 KASSERT(mutex_owned(proc_lock));
1161 p = LIST_NEXT(&marker, p_list);
1162 LIST_REMOVE(&marker, p_list);
1163 }
1164 mutex_exit(proc_lock);
1165 uvm_lwp_rele(l);
1166
1167 return ret;
1168 }
1169
1170 int
1171 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1172 {
1173
1174 /* XXXCDC: how should locking work here? */
1175
1176 /* curproc exception is for coredump. */
1177
1178 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1179 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1180 return EFAULT;
1181 }
1182
1183 uvmspace_addref(p->p_vmspace);
1184 *vm = p->p_vmspace;
1185
1186 return 0;
1187 }
1188
1189 /*
1190 * Acquire a write lock on the process credential.
1191 */
1192 void
1193 proc_crmod_enter(void)
1194 {
1195 struct lwp *l = curlwp;
1196 struct proc *p = l->l_proc;
1197 struct plimit *lim;
1198 kauth_cred_t oc;
1199 char *cn;
1200
1201 /* Reset what needs to be reset in plimit. */
1202 if (p->p_limit->pl_corename != defcorename) {
1203 lim_privatise(p, false);
1204 lim = p->p_limit;
1205 mutex_enter(&lim->pl_lock);
1206 cn = lim->pl_corename;
1207 lim->pl_corename = defcorename;
1208 mutex_exit(&lim->pl_lock);
1209 if (cn != defcorename)
1210 free(cn, M_TEMP);
1211 }
1212
1213 mutex_enter(p->p_lock);
1214
1215 /* Ensure the LWP cached credentials are up to date. */
1216 if ((oc = l->l_cred) != p->p_cred) {
1217 kauth_cred_hold(p->p_cred);
1218 l->l_cred = p->p_cred;
1219 kauth_cred_free(oc);
1220 }
1221
1222 }
1223
1224 /*
1225 * Set in a new process credential, and drop the write lock. The credential
1226 * must have a reference already. Optionally, free a no-longer required
1227 * credential. The scheduler also needs to inspect p_cred, so we also
1228 * briefly acquire the sched state mutex.
1229 */
1230 void
1231 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1232 {
1233 struct lwp *l = curlwp, *l2;
1234 struct proc *p = l->l_proc;
1235 kauth_cred_t oc;
1236
1237 KASSERT(mutex_owned(p->p_lock));
1238
1239 /* Is there a new credential to set in? */
1240 if (scred != NULL) {
1241 p->p_cred = scred;
1242 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1243 if (l2 != l)
1244 l2->l_prflag |= LPR_CRMOD;
1245 }
1246
1247 /* Ensure the LWP cached credentials are up to date. */
1248 if ((oc = l->l_cred) != scred) {
1249 kauth_cred_hold(scred);
1250 l->l_cred = scred;
1251 }
1252 } else
1253 oc = NULL; /* XXXgcc */
1254
1255 if (sugid) {
1256 /*
1257 * Mark process as having changed credentials, stops
1258 * tracing etc.
1259 */
1260 p->p_flag |= PK_SUGID;
1261 }
1262
1263 mutex_exit(p->p_lock);
1264
1265 /* If there is a credential to be released, free it now. */
1266 if (fcred != NULL) {
1267 KASSERT(scred != NULL);
1268 kauth_cred_free(fcred);
1269 if (oc != scred)
1270 kauth_cred_free(oc);
1271 }
1272 }
1273
1274 /*
1275 * proc_specific_key_create --
1276 * Create a key for subsystem proc-specific data.
1277 */
1278 int
1279 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1280 {
1281
1282 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1283 }
1284
1285 /*
1286 * proc_specific_key_delete --
1287 * Delete a key for subsystem proc-specific data.
1288 */
1289 void
1290 proc_specific_key_delete(specificdata_key_t key)
1291 {
1292
1293 specificdata_key_delete(proc_specificdata_domain, key);
1294 }
1295
1296 /*
1297 * proc_initspecific --
1298 * Initialize a proc's specificdata container.
1299 */
1300 void
1301 proc_initspecific(struct proc *p)
1302 {
1303 int error;
1304
1305 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1306 KASSERT(error == 0);
1307 }
1308
1309 /*
1310 * proc_finispecific --
1311 * Finalize a proc's specificdata container.
1312 */
1313 void
1314 proc_finispecific(struct proc *p)
1315 {
1316
1317 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1318 }
1319
1320 /*
1321 * proc_getspecific --
1322 * Return proc-specific data corresponding to the specified key.
1323 */
1324 void *
1325 proc_getspecific(struct proc *p, specificdata_key_t key)
1326 {
1327
1328 return (specificdata_getspecific(proc_specificdata_domain,
1329 &p->p_specdataref, key));
1330 }
1331
1332 /*
1333 * proc_setspecific --
1334 * Set proc-specific data corresponding to the specified key.
1335 */
1336 void
1337 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1338 {
1339
1340 specificdata_setspecific(proc_specificdata_domain,
1341 &p->p_specdataref, key, data);
1342 }
1343