kern_proc.c revision 1.155 1 /* $NetBSD: kern_proc.c,v 1.155 2009/10/21 21:12:06 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.155 2009/10/21 21:12:06 rmind Exp $");
66
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/pool.h>
82 #include <sys/pset.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/tty.h>
86 #include <sys/signalvar.h>
87 #include <sys/ras.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/filedesc.h>
91 #include "sys/syscall_stats.h"
92 #include <sys/kauth.h>
93 #include <sys/sleepq.h>
94 #include <sys/atomic.h>
95 #include <sys/kmem.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_extern.h>
99
100 /*
101 * Other process lists
102 */
103
104 struct proclist allproc;
105 struct proclist zombproc; /* resources have been freed */
106
107 kmutex_t *proc_lock;
108
109 /*
110 * pid to proc lookup is done by indexing the pid_table array.
111 * Since pid numbers are only allocated when an empty slot
112 * has been found, there is no need to search any lists ever.
113 * (an orphaned pgrp will lock the slot, a session will lock
114 * the pgrp with the same number.)
115 * If the table is too small it is reallocated with twice the
116 * previous size and the entries 'unzipped' into the two halves.
117 * A linked list of free entries is passed through the pt_proc
118 * field of 'free' items - set odd to be an invalid ptr.
119 */
120
121 struct pid_table {
122 struct proc *pt_proc;
123 struct pgrp *pt_pgrp;
124 };
125 #if 1 /* strongly typed cast - should be a noop */
126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
127 #else
128 #define p2u(p) ((uint)p)
129 #endif
130 #define P_VALID(p) (!(p2u(p) & 1))
131 #define P_NEXT(p) (p2u(p) >> 1)
132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
133
134 #define INITIAL_PID_TABLE_SIZE (1 << 5)
135 static struct pid_table *pid_table;
136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
137 static uint pid_alloc_lim; /* max we allocate before growing table */
138 static uint pid_alloc_cnt; /* number of allocated pids */
139
140 /* links through free slots - never empty! */
141 static uint next_free_pt, last_free_pt;
142 static pid_t pid_max = PID_MAX; /* largest value we allocate */
143
144 /* Components of the first process -- never freed. */
145
146 extern struct emul emul_netbsd; /* defined in kern_exec.c */
147
148 struct session session0 = {
149 .s_count = 1,
150 .s_sid = 0,
151 };
152 struct pgrp pgrp0 = {
153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
154 .pg_session = &session0,
155 };
156 filedesc_t filedesc0;
157 struct cwdinfo cwdi0 = {
158 .cwdi_cmask = CMASK, /* see cmask below */
159 .cwdi_refcnt = 1,
160 };
161 struct plimit limit0;
162 struct pstats pstat0;
163 struct vmspace vmspace0;
164 struct sigacts sigacts0;
165 struct turnstile turnstile0;
166 struct proc proc0 = {
167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
169 .p_nlwps = 1,
170 .p_nrlwps = 1,
171 .p_nlwpid = 1, /* must match lwp0.l_lid */
172 .p_pgrp = &pgrp0,
173 .p_comm = "system",
174 /*
175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
176 * when they exit. init(8) can easily wait them out for us.
177 */
178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
179 .p_stat = SACTIVE,
180 .p_nice = NZERO,
181 .p_emul = &emul_netbsd,
182 .p_cwdi = &cwdi0,
183 .p_limit = &limit0,
184 .p_fd = &filedesc0,
185 .p_vmspace = &vmspace0,
186 .p_stats = &pstat0,
187 .p_sigacts = &sigacts0,
188 };
189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
190 #ifdef LWP0_CPU_INFO
191 .l_cpu = LWP0_CPU_INFO,
192 #endif
193 .l_proc = &proc0,
194 .l_lid = 1,
195 .l_flag = LW_SYSTEM,
196 .l_stat = LSONPROC,
197 .l_ts = &turnstile0,
198 .l_syncobj = &sched_syncobj,
199 .l_refcnt = 1,
200 .l_priority = PRI_USER + NPRI_USER - 1,
201 .l_inheritedprio = -1,
202 .l_class = SCHED_OTHER,
203 .l_psid = PS_NONE,
204 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
205 .l_name = __UNCONST("swapper"),
206 .l_fd = &filedesc0,
207 };
208 kauth_cred_t cred0;
209
210 extern struct user *proc0paddr;
211
212 int nofile = NOFILE;
213 int maxuprc = MAXUPRC;
214 int cmask = CMASK;
215
216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
218
219 /*
220 * The process list descriptors, used during pid allocation and
221 * by sysctl. No locking on this data structure is needed since
222 * it is completely static.
223 */
224 const struct proclist_desc proclists[] = {
225 { &allproc },
226 { &zombproc },
227 { NULL },
228 };
229
230 static struct pgrp * pg_remove(pid_t);
231 static void pg_delete(pid_t);
232 static void orphanpg(struct pgrp *);
233
234 static specificdata_domain_t proc_specificdata_domain;
235
236 static pool_cache_t proc_cache;
237
238 static kauth_listener_t proc_listener;
239
240 static int
241 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
242 void *arg0, void *arg1, void *arg2, void *arg3)
243 {
244 struct proc *p;
245 int result;
246
247 result = KAUTH_RESULT_DEFER;
248 p = arg0;
249
250 switch (action) {
251 case KAUTH_PROCESS_CANSEE: {
252 enum kauth_process_req req;
253
254 req = (enum kauth_process_req)arg1;
255
256 switch (req) {
257 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
258 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
259 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
260 result = KAUTH_RESULT_ALLOW;
261
262 break;
263
264 case KAUTH_REQ_PROCESS_CANSEE_ENV:
265 if (kauth_cred_getuid(cred) !=
266 kauth_cred_getuid(p->p_cred) ||
267 kauth_cred_getuid(cred) !=
268 kauth_cred_getsvuid(p->p_cred))
269 break;
270
271 result = KAUTH_RESULT_ALLOW;
272
273 break;
274
275 default:
276 break;
277 }
278
279 break;
280 }
281
282 case KAUTH_PROCESS_FORK: {
283 int lnprocs = (int)(unsigned long)arg2;
284
285 /*
286 * Don't allow a nonprivileged user to use the last few
287 * processes. The variable lnprocs is the current number of
288 * processes, maxproc is the limit.
289 */
290 if (__predict_false((lnprocs >= maxproc - 5)))
291 break;
292
293 result = KAUTH_RESULT_ALLOW;
294
295 break;
296 }
297
298 case KAUTH_PROCESS_CORENAME:
299 case KAUTH_PROCESS_STOPFLAG:
300 if (proc_uidmatch(cred, p->p_cred) == 0)
301 result = KAUTH_RESULT_ALLOW;
302
303 break;
304
305 default:
306 break;
307 }
308
309 return result;
310 }
311
312 /*
313 * Initialize global process hashing structures.
314 */
315 void
316 procinit(void)
317 {
318 const struct proclist_desc *pd;
319 u_int i;
320 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
321
322 for (pd = proclists; pd->pd_list != NULL; pd++)
323 LIST_INIT(pd->pd_list);
324
325 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
326 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
327 * sizeof(struct pid_table), KM_SLEEP);
328
329 /* Set free list running through table...
330 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
331 for (i = 0; i <= pid_tbl_mask; i++) {
332 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
333 pid_table[i].pt_pgrp = 0;
334 }
335 /* slot 0 is just grabbed */
336 next_free_pt = 1;
337 /* Need to fix last entry. */
338 last_free_pt = pid_tbl_mask;
339 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
340 /* point at which we grow table - to avoid reusing pids too often */
341 pid_alloc_lim = pid_tbl_mask - 1;
342 #undef LINK_EMPTY
343
344 proc_specificdata_domain = specificdata_domain_create();
345 KASSERT(proc_specificdata_domain != NULL);
346
347 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
348 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
349
350 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
351 proc_listener_cb, NULL);
352 }
353
354 /*
355 * Initialize process 0.
356 */
357 void
358 proc0_init(void)
359 {
360 struct proc *p;
361 struct pgrp *pg;
362 struct session *sess;
363 struct lwp *l;
364 rlim_t lim;
365 int i;
366
367 p = &proc0;
368 pg = &pgrp0;
369 sess = &session0;
370 l = &lwp0;
371
372 KASSERT(l->l_lid == p->p_nlwpid);
373
374 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
375 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
376 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
377
378 rw_init(&p->p_reflock);
379 cv_init(&p->p_waitcv, "wait");
380 cv_init(&p->p_lwpcv, "lwpwait");
381
382 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
383
384 pid_table[0].pt_proc = p;
385 LIST_INSERT_HEAD(&allproc, p, p_list);
386 LIST_INSERT_HEAD(&alllwp, l, l_list);
387
388 pid_table[0].pt_pgrp = pg;
389 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
390
391 #ifdef __HAVE_SYSCALL_INTERN
392 (*p->p_emul->e_syscall_intern)(p);
393 #endif
394
395 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
396 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
397 cv_init(&l->l_sigcv, "sigwait");
398
399 /* Create credentials. */
400 cred0 = kauth_cred_alloc();
401 p->p_cred = cred0;
402 kauth_cred_hold(cred0);
403 l->l_cred = cred0;
404
405 /* Create the CWD info. */
406 rw_init(&cwdi0.cwdi_lock);
407
408 /* Create the limits structures. */
409 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
410 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
411 limit0.pl_rlimit[i].rlim_cur =
412 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
413
414 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
415 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
416 maxfiles < nofile ? maxfiles : nofile;
417
418 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
419 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
420 maxproc < maxuprc ? maxproc : maxuprc;
421
422 lim = ptoa(uvmexp.free);
423 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
424 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
425 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
426 limit0.pl_corename = defcorename;
427 limit0.pl_refcnt = 1;
428 limit0.pl_sv_limit = NULL;
429
430 /* Configure virtual memory system, set vm rlimits. */
431 uvm_init_limits(p);
432
433 /* Initialize file descriptor table for proc0. */
434 fd_init(&filedesc0);
435
436 /*
437 * Initialize proc0's vmspace, which uses the kernel pmap.
438 * All kernel processes (which never have user space mappings)
439 * share proc0's vmspace, and thus, the kernel pmap.
440 */
441 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
442 trunc_page(VM_MAX_ADDRESS));
443
444 l->l_addr = proc0paddr; /* XXX */
445
446 /* Initialize signal state for proc0. XXX IPL_SCHED */
447 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
448 siginit(p);
449
450 proc_initspecific(p);
451 lwp_initspecific(l);
452
453 SYSCALL_TIME_LWP_INIT(l);
454 }
455
456 /*
457 * Session reference counting.
458 */
459
460 void
461 proc_sesshold(struct session *ss)
462 {
463
464 KASSERT(mutex_owned(proc_lock));
465 ss->s_count++;
466 }
467
468 void
469 proc_sessrele(struct session *ss)
470 {
471
472 KASSERT(mutex_owned(proc_lock));
473 /*
474 * We keep the pgrp with the same id as the session in order to
475 * stop a process being given the same pid. Since the pgrp holds
476 * a reference to the session, it must be a 'zombie' pgrp by now.
477 */
478 if (--ss->s_count == 0) {
479 struct pgrp *pg;
480
481 pg = pg_remove(ss->s_sid);
482 mutex_exit(proc_lock);
483
484 kmem_free(pg, sizeof(struct pgrp));
485 kmem_free(ss, sizeof(struct session));
486 } else {
487 mutex_exit(proc_lock);
488 }
489 }
490
491 /*
492 * Check that the specified process group is in the session of the
493 * specified process.
494 * Treats -ve ids as process ids.
495 * Used to validate TIOCSPGRP requests.
496 */
497 int
498 pgid_in_session(struct proc *p, pid_t pg_id)
499 {
500 struct pgrp *pgrp;
501 struct session *session;
502 int error;
503
504 mutex_enter(proc_lock);
505 if (pg_id < 0) {
506 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
507 if (p1 == NULL)
508 return EINVAL;
509 pgrp = p1->p_pgrp;
510 } else {
511 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
512 if (pgrp == NULL)
513 return EINVAL;
514 }
515 session = pgrp->pg_session;
516 if (session != p->p_pgrp->pg_session)
517 error = EPERM;
518 else
519 error = 0;
520 mutex_exit(proc_lock);
521
522 return error;
523 }
524
525 /*
526 * p_inferior: is p an inferior of q?
527 */
528 static inline bool
529 p_inferior(struct proc *p, struct proc *q)
530 {
531
532 KASSERT(mutex_owned(proc_lock));
533
534 for (; p != q; p = p->p_pptr)
535 if (p->p_pid == 0)
536 return false;
537 return true;
538 }
539
540 /*
541 * Locate a process by number
542 */
543 struct proc *
544 p_find(pid_t pid, uint flags)
545 {
546 struct proc *p;
547 char stat;
548
549 if (!(flags & PFIND_LOCKED))
550 mutex_enter(proc_lock);
551
552 p = pid_table[pid & pid_tbl_mask].pt_proc;
553
554 /* Only allow live processes to be found by pid. */
555 /* XXXSMP p_stat */
556 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
557 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
558 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
559 if (flags & PFIND_UNLOCK_OK)
560 mutex_exit(proc_lock);
561 return p;
562 }
563 if (flags & PFIND_UNLOCK_FAIL)
564 mutex_exit(proc_lock);
565 return NULL;
566 }
567
568
569 /*
570 * Locate a process group by number
571 */
572 struct pgrp *
573 pg_find(pid_t pgid, uint flags)
574 {
575 struct pgrp *pg;
576
577 if (!(flags & PFIND_LOCKED))
578 mutex_enter(proc_lock);
579 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
580 /*
581 * Can't look up a pgrp that only exists because the session
582 * hasn't died yet (traditional)
583 */
584 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
585 if (flags & PFIND_UNLOCK_FAIL)
586 mutex_exit(proc_lock);
587 return NULL;
588 }
589
590 if (flags & PFIND_UNLOCK_OK)
591 mutex_exit(proc_lock);
592 return pg;
593 }
594
595 static void
596 expand_pid_table(void)
597 {
598 size_t pt_size, tsz;
599 struct pid_table *n_pt, *new_pt;
600 struct proc *proc;
601 struct pgrp *pgrp;
602 pid_t pid;
603 u_int i;
604
605 pt_size = pid_tbl_mask + 1;
606 tsz = pt_size * 2 * sizeof(struct pid_table);
607 new_pt = kmem_alloc(tsz, KM_SLEEP);
608
609 mutex_enter(proc_lock);
610 if (pt_size != pid_tbl_mask + 1) {
611 /* Another process beat us to it... */
612 mutex_exit(proc_lock);
613 kmem_free(new_pt, tsz);
614 return;
615 }
616
617 /*
618 * Copy entries from old table into new one.
619 * If 'pid' is 'odd' we need to place in the upper half,
620 * even pid's to the lower half.
621 * Free items stay in the low half so we don't have to
622 * fixup the reference to them.
623 * We stuff free items on the front of the freelist
624 * because we can't write to unmodified entries.
625 * Processing the table backwards maintains a semblance
626 * of issueing pid numbers that increase with time.
627 */
628 i = pt_size - 1;
629 n_pt = new_pt + i;
630 for (; ; i--, n_pt--) {
631 proc = pid_table[i].pt_proc;
632 pgrp = pid_table[i].pt_pgrp;
633 if (!P_VALID(proc)) {
634 /* Up 'use count' so that link is valid */
635 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
636 proc = P_FREE(pid);
637 if (pgrp)
638 pid = pgrp->pg_id;
639 } else
640 pid = proc->p_pid;
641
642 /* Save entry in appropriate half of table */
643 n_pt[pid & pt_size].pt_proc = proc;
644 n_pt[pid & pt_size].pt_pgrp = pgrp;
645
646 /* Put other piece on start of free list */
647 pid = (pid ^ pt_size) & ~pid_tbl_mask;
648 n_pt[pid & pt_size].pt_proc =
649 P_FREE((pid & ~pt_size) | next_free_pt);
650 n_pt[pid & pt_size].pt_pgrp = 0;
651 next_free_pt = i | (pid & pt_size);
652 if (i == 0)
653 break;
654 }
655
656 /* Save old table size and switch tables */
657 tsz = pt_size * sizeof(struct pid_table);
658 n_pt = pid_table;
659 pid_table = new_pt;
660 pid_tbl_mask = pt_size * 2 - 1;
661
662 /*
663 * pid_max starts as PID_MAX (= 30000), once we have 16384
664 * allocated pids we need it to be larger!
665 */
666 if (pid_tbl_mask > PID_MAX) {
667 pid_max = pid_tbl_mask * 2 + 1;
668 pid_alloc_lim |= pid_alloc_lim << 1;
669 } else
670 pid_alloc_lim <<= 1; /* doubles number of free slots... */
671
672 mutex_exit(proc_lock);
673 kmem_free(n_pt, tsz);
674 }
675
676 struct proc *
677 proc_alloc(void)
678 {
679 struct proc *p;
680 int nxt;
681 pid_t pid;
682 struct pid_table *pt;
683
684 p = pool_cache_get(proc_cache, PR_WAITOK);
685 p->p_stat = SIDL; /* protect against others */
686
687 proc_initspecific(p);
688 /* allocate next free pid */
689
690 for (;;expand_pid_table()) {
691 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
692 /* ensure pids cycle through 2000+ values */
693 continue;
694 mutex_enter(proc_lock);
695 pt = &pid_table[next_free_pt];
696 #ifdef DIAGNOSTIC
697 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
698 panic("proc_alloc: slot busy");
699 #endif
700 nxt = P_NEXT(pt->pt_proc);
701 if (nxt & pid_tbl_mask)
702 break;
703 /* Table full - expand (NB last entry not used....) */
704 mutex_exit(proc_lock);
705 }
706
707 /* pid is 'saved use count' + 'size' + entry */
708 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
709 if ((uint)pid > (uint)pid_max)
710 pid &= pid_tbl_mask;
711 p->p_pid = pid;
712 next_free_pt = nxt & pid_tbl_mask;
713
714 /* Grab table slot */
715 pt->pt_proc = p;
716 pid_alloc_cnt++;
717
718 mutex_exit(proc_lock);
719
720 return p;
721 }
722
723 /*
724 * Free a process id - called from proc_free (in kern_exit.c)
725 *
726 * Called with the proc_lock held.
727 */
728 void
729 proc_free_pid(struct proc *p)
730 {
731 pid_t pid = p->p_pid;
732 struct pid_table *pt;
733
734 KASSERT(mutex_owned(proc_lock));
735
736 pt = &pid_table[pid & pid_tbl_mask];
737 #ifdef DIAGNOSTIC
738 if (__predict_false(pt->pt_proc != p))
739 panic("proc_free: pid_table mismatch, pid %x, proc %p",
740 pid, p);
741 #endif
742 /* save pid use count in slot */
743 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
744
745 if (pt->pt_pgrp == NULL) {
746 /* link last freed entry onto ours */
747 pid &= pid_tbl_mask;
748 pt = &pid_table[last_free_pt];
749 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
750 last_free_pt = pid;
751 pid_alloc_cnt--;
752 }
753
754 atomic_dec_uint(&nprocs);
755 }
756
757 void
758 proc_free_mem(struct proc *p)
759 {
760
761 pool_cache_put(proc_cache, p);
762 }
763
764 /*
765 * proc_enterpgrp: move p to a new or existing process group (and session).
766 *
767 * If we are creating a new pgrp, the pgid should equal
768 * the calling process' pid.
769 * If is only valid to enter a process group that is in the session
770 * of the process.
771 * Also mksess should only be set if we are creating a process group
772 *
773 * Only called from sys_setsid and sys_setpgid.
774 */
775 int
776 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
777 {
778 struct pgrp *new_pgrp, *pgrp;
779 struct session *sess;
780 struct proc *p;
781 int rval;
782 pid_t pg_id = NO_PGID;
783
784 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
785
786 /* Allocate data areas we might need before doing any validity checks */
787 mutex_enter(proc_lock); /* Because pid_table might change */
788 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
789 mutex_exit(proc_lock);
790 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
791 mutex_enter(proc_lock);
792 } else
793 new_pgrp = NULL;
794 rval = EPERM; /* most common error (to save typing) */
795
796 /* Check pgrp exists or can be created */
797 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
798 if (pgrp != NULL && pgrp->pg_id != pgid)
799 goto done;
800
801 /* Can only set another process under restricted circumstances. */
802 if (pid != curp->p_pid) {
803 /* must exist and be one of our children... */
804 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
805 !p_inferior(p, curp)) {
806 rval = ESRCH;
807 goto done;
808 }
809 /* ... in the same session... */
810 if (sess != NULL || p->p_session != curp->p_session)
811 goto done;
812 /* ... existing pgid must be in same session ... */
813 if (pgrp != NULL && pgrp->pg_session != p->p_session)
814 goto done;
815 /* ... and not done an exec. */
816 if (p->p_flag & PK_EXEC) {
817 rval = EACCES;
818 goto done;
819 }
820 } else {
821 /* ... setsid() cannot re-enter a pgrp */
822 if (mksess && (curp->p_pgid == curp->p_pid ||
823 pg_find(curp->p_pid, PFIND_LOCKED)))
824 goto done;
825 p = curp;
826 }
827
828 /* Changing the process group/session of a session
829 leader is definitely off limits. */
830 if (SESS_LEADER(p)) {
831 if (sess == NULL && p->p_pgrp == pgrp)
832 /* unless it's a definite noop */
833 rval = 0;
834 goto done;
835 }
836
837 /* Can only create a process group with id of process */
838 if (pgrp == NULL && pgid != pid)
839 goto done;
840
841 /* Can only create a session if creating pgrp */
842 if (sess != NULL && pgrp != NULL)
843 goto done;
844
845 /* Check we allocated memory for a pgrp... */
846 if (pgrp == NULL && new_pgrp == NULL)
847 goto done;
848
849 /* Don't attach to 'zombie' pgrp */
850 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
851 goto done;
852
853 /* Expect to succeed now */
854 rval = 0;
855
856 if (pgrp == p->p_pgrp)
857 /* nothing to do */
858 goto done;
859
860 /* Ok all setup, link up required structures */
861
862 if (pgrp == NULL) {
863 pgrp = new_pgrp;
864 new_pgrp = NULL;
865 if (sess != NULL) {
866 sess->s_sid = p->p_pid;
867 sess->s_leader = p;
868 sess->s_count = 1;
869 sess->s_ttyvp = NULL;
870 sess->s_ttyp = NULL;
871 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
872 memcpy(sess->s_login, p->p_session->s_login,
873 sizeof(sess->s_login));
874 p->p_lflag &= ~PL_CONTROLT;
875 } else {
876 sess = p->p_pgrp->pg_session;
877 proc_sesshold(sess);
878 }
879 pgrp->pg_session = sess;
880 sess = NULL;
881
882 pgrp->pg_id = pgid;
883 LIST_INIT(&pgrp->pg_members);
884 #ifdef DIAGNOSTIC
885 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
886 panic("enterpgrp: pgrp table slot in use");
887 if (__predict_false(mksess && p != curp))
888 panic("enterpgrp: mksession and p != curproc");
889 #endif
890 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
891 pgrp->pg_jobc = 0;
892 }
893
894 /*
895 * Adjust eligibility of affected pgrps to participate in job control.
896 * Increment eligibility counts before decrementing, otherwise we
897 * could reach 0 spuriously during the first call.
898 */
899 fixjobc(p, pgrp, 1);
900 fixjobc(p, p->p_pgrp, 0);
901
902 /* Interlock with ttread(). */
903 mutex_spin_enter(&tty_lock);
904
905 /* Move process to requested group. */
906 LIST_REMOVE(p, p_pglist);
907 if (LIST_EMPTY(&p->p_pgrp->pg_members))
908 /* defer delete until we've dumped the lock */
909 pg_id = p->p_pgrp->pg_id;
910 p->p_pgrp = pgrp;
911 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
912
913 /* Done with the swap; we can release the tty mutex. */
914 mutex_spin_exit(&tty_lock);
915
916 done:
917 if (pg_id != NO_PGID) {
918 /* Releases proc_lock. */
919 pg_delete(pg_id);
920 } else {
921 mutex_exit(proc_lock);
922 }
923 if (sess != NULL)
924 kmem_free(sess, sizeof(*sess));
925 if (new_pgrp != NULL)
926 kmem_free(new_pgrp, sizeof(*new_pgrp));
927 #ifdef DEBUG_PGRP
928 if (__predict_false(rval))
929 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
930 pid, pgid, mksess, curp->p_pid, rval);
931 #endif
932 return rval;
933 }
934
935 /*
936 * proc_leavepgrp: remove a process from its process group.
937 * => must be called with the proc_lock held, which will be released;
938 */
939 void
940 proc_leavepgrp(struct proc *p)
941 {
942 struct pgrp *pgrp;
943
944 KASSERT(mutex_owned(proc_lock));
945
946 /* Interlock with ttread() */
947 mutex_spin_enter(&tty_lock);
948 pgrp = p->p_pgrp;
949 LIST_REMOVE(p, p_pglist);
950 p->p_pgrp = NULL;
951 mutex_spin_exit(&tty_lock);
952
953 if (LIST_EMPTY(&pgrp->pg_members)) {
954 /* Releases proc_lock. */
955 pg_delete(pgrp->pg_id);
956 } else {
957 mutex_exit(proc_lock);
958 }
959 }
960
961 /*
962 * pg_remove: remove a process group from the table.
963 * => must be called with the proc_lock held;
964 * => returns process group to free;
965 */
966 static struct pgrp *
967 pg_remove(pid_t pg_id)
968 {
969 struct pgrp *pgrp;
970 struct pid_table *pt;
971
972 KASSERT(mutex_owned(proc_lock));
973
974 pt = &pid_table[pg_id & pid_tbl_mask];
975 pgrp = pt->pt_pgrp;
976
977 KASSERT(pgrp != NULL);
978 KASSERT(pgrp->pg_id == pg_id);
979 KASSERT(LIST_EMPTY(&pgrp->pg_members));
980
981 pt->pt_pgrp = NULL;
982
983 if (!P_VALID(pt->pt_proc)) {
984 /* Orphaned pgrp, put slot onto free list. */
985 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
986 pg_id &= pid_tbl_mask;
987 pt = &pid_table[last_free_pt];
988 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
989 last_free_pt = pg_id;
990 pid_alloc_cnt--;
991 }
992 return pgrp;
993 }
994
995 /*
996 * pg_delete: delete and free a process group.
997 * => must be called with the proc_lock held, which will be released.
998 */
999 static void
1000 pg_delete(pid_t pg_id)
1001 {
1002 struct pgrp *pg;
1003 struct tty *ttyp;
1004 struct session *ss;
1005
1006 KASSERT(mutex_owned(proc_lock));
1007
1008 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1009 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1010 mutex_exit(proc_lock);
1011 return;
1012 }
1013
1014 ss = pg->pg_session;
1015
1016 /* Remove reference (if any) from tty to this process group */
1017 mutex_spin_enter(&tty_lock);
1018 ttyp = ss->s_ttyp;
1019 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1020 ttyp->t_pgrp = NULL;
1021 KASSERT(ttyp->t_session == ss);
1022 }
1023 mutex_spin_exit(&tty_lock);
1024
1025 /*
1026 * The leading process group in a session is freed by proc_sessrele(),
1027 * if last reference. Note: proc_sessrele() releases proc_lock.
1028 */
1029 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1030 proc_sessrele(ss);
1031
1032 if (pg != NULL) {
1033 /* Free it, if was not done by proc_sessrele(). */
1034 kmem_free(pg, sizeof(struct pgrp));
1035 }
1036 }
1037
1038 /*
1039 * Adjust pgrp jobc counters when specified process changes process group.
1040 * We count the number of processes in each process group that "qualify"
1041 * the group for terminal job control (those with a parent in a different
1042 * process group of the same session). If that count reaches zero, the
1043 * process group becomes orphaned. Check both the specified process'
1044 * process group and that of its children.
1045 * entering == 0 => p is leaving specified group.
1046 * entering == 1 => p is entering specified group.
1047 *
1048 * Call with proc_lock held.
1049 */
1050 void
1051 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1052 {
1053 struct pgrp *hispgrp;
1054 struct session *mysession = pgrp->pg_session;
1055 struct proc *child;
1056
1057 KASSERT(mutex_owned(proc_lock));
1058
1059 /*
1060 * Check p's parent to see whether p qualifies its own process
1061 * group; if so, adjust count for p's process group.
1062 */
1063 hispgrp = p->p_pptr->p_pgrp;
1064 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1065 if (entering) {
1066 pgrp->pg_jobc++;
1067 p->p_lflag &= ~PL_ORPHANPG;
1068 } else if (--pgrp->pg_jobc == 0)
1069 orphanpg(pgrp);
1070 }
1071
1072 /*
1073 * Check this process' children to see whether they qualify
1074 * their process groups; if so, adjust counts for children's
1075 * process groups.
1076 */
1077 LIST_FOREACH(child, &p->p_children, p_sibling) {
1078 hispgrp = child->p_pgrp;
1079 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1080 !P_ZOMBIE(child)) {
1081 if (entering) {
1082 child->p_lflag &= ~PL_ORPHANPG;
1083 hispgrp->pg_jobc++;
1084 } else if (--hispgrp->pg_jobc == 0)
1085 orphanpg(hispgrp);
1086 }
1087 }
1088 }
1089
1090 /*
1091 * A process group has become orphaned;
1092 * if there are any stopped processes in the group,
1093 * hang-up all process in that group.
1094 *
1095 * Call with proc_lock held.
1096 */
1097 static void
1098 orphanpg(struct pgrp *pg)
1099 {
1100 struct proc *p;
1101 int doit;
1102
1103 KASSERT(mutex_owned(proc_lock));
1104
1105 doit = 0;
1106
1107 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1108 if (p->p_stat == SSTOP) {
1109 p->p_lflag |= PL_ORPHANPG;
1110 psignal(p, SIGHUP);
1111 psignal(p, SIGCONT);
1112 }
1113 }
1114 }
1115
1116 #ifdef DDB
1117 #include <ddb/db_output.h>
1118 void pidtbl_dump(void);
1119 void
1120 pidtbl_dump(void)
1121 {
1122 struct pid_table *pt;
1123 struct proc *p;
1124 struct pgrp *pgrp;
1125 int id;
1126
1127 db_printf("pid table %p size %x, next %x, last %x\n",
1128 pid_table, pid_tbl_mask+1,
1129 next_free_pt, last_free_pt);
1130 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1131 p = pt->pt_proc;
1132 if (!P_VALID(p) && !pt->pt_pgrp)
1133 continue;
1134 db_printf(" id %x: ", id);
1135 if (P_VALID(p))
1136 db_printf("proc %p id %d (0x%x) %s\n",
1137 p, p->p_pid, p->p_pid, p->p_comm);
1138 else
1139 db_printf("next %x use %x\n",
1140 P_NEXT(p) & pid_tbl_mask,
1141 P_NEXT(p) & ~pid_tbl_mask);
1142 if ((pgrp = pt->pt_pgrp)) {
1143 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1144 pgrp->pg_session, pgrp->pg_session->s_sid,
1145 pgrp->pg_session->s_count,
1146 pgrp->pg_session->s_login);
1147 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1148 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1149 LIST_FIRST(&pgrp->pg_members));
1150 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1151 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1152 p->p_pid, p, p->p_pgrp, p->p_comm);
1153 }
1154 }
1155 }
1156 }
1157 #endif /* DDB */
1158
1159 #ifdef KSTACK_CHECK_MAGIC
1160 #include <sys/user.h>
1161
1162 #define KSTACK_MAGIC 0xdeadbeaf
1163
1164 /* XXX should be per process basis? */
1165 static int kstackleftmin = KSTACK_SIZE;
1166 static int kstackleftthres = KSTACK_SIZE / 8;
1167
1168 void
1169 kstack_setup_magic(const struct lwp *l)
1170 {
1171 uint32_t *ip;
1172 uint32_t const *end;
1173
1174 KASSERT(l != NULL);
1175 KASSERT(l != &lwp0);
1176
1177 /*
1178 * fill all the stack with magic number
1179 * so that later modification on it can be detected.
1180 */
1181 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1182 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1183 for (; ip < end; ip++) {
1184 *ip = KSTACK_MAGIC;
1185 }
1186 }
1187
1188 void
1189 kstack_check_magic(const struct lwp *l)
1190 {
1191 uint32_t const *ip, *end;
1192 int stackleft;
1193
1194 KASSERT(l != NULL);
1195
1196 /* don't check proc0 */ /*XXX*/
1197 if (l == &lwp0)
1198 return;
1199
1200 #ifdef __MACHINE_STACK_GROWS_UP
1201 /* stack grows upwards (eg. hppa) */
1202 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1203 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1204 for (ip--; ip >= end; ip--)
1205 if (*ip != KSTACK_MAGIC)
1206 break;
1207
1208 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1209 #else /* __MACHINE_STACK_GROWS_UP */
1210 /* stack grows downwards (eg. i386) */
1211 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1212 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1213 for (; ip < end; ip++)
1214 if (*ip != KSTACK_MAGIC)
1215 break;
1216
1217 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1218 #endif /* __MACHINE_STACK_GROWS_UP */
1219
1220 if (kstackleftmin > stackleft) {
1221 kstackleftmin = stackleft;
1222 if (stackleft < kstackleftthres)
1223 printf("warning: kernel stack left %d bytes"
1224 "(pid %u:lid %u)\n", stackleft,
1225 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1226 }
1227
1228 if (stackleft <= 0) {
1229 panic("magic on the top of kernel stack changed for "
1230 "pid %u, lid %u: maybe kernel stack overflow",
1231 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1232 }
1233 }
1234 #endif /* KSTACK_CHECK_MAGIC */
1235
1236 int
1237 proclist_foreach_call(struct proclist *list,
1238 int (*callback)(struct proc *, void *arg), void *arg)
1239 {
1240 struct proc marker;
1241 struct proc *p;
1242 int ret = 0;
1243
1244 marker.p_flag = PK_MARKER;
1245 mutex_enter(proc_lock);
1246 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1247 if (p->p_flag & PK_MARKER) {
1248 p = LIST_NEXT(p, p_list);
1249 continue;
1250 }
1251 LIST_INSERT_AFTER(p, &marker, p_list);
1252 ret = (*callback)(p, arg);
1253 KASSERT(mutex_owned(proc_lock));
1254 p = LIST_NEXT(&marker, p_list);
1255 LIST_REMOVE(&marker, p_list);
1256 }
1257 mutex_exit(proc_lock);
1258
1259 return ret;
1260 }
1261
1262 int
1263 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1264 {
1265
1266 /* XXXCDC: how should locking work here? */
1267
1268 /* curproc exception is for coredump. */
1269
1270 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1271 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1272 return EFAULT;
1273 }
1274
1275 uvmspace_addref(p->p_vmspace);
1276 *vm = p->p_vmspace;
1277
1278 return 0;
1279 }
1280
1281 /*
1282 * Acquire a write lock on the process credential.
1283 */
1284 void
1285 proc_crmod_enter(void)
1286 {
1287 struct lwp *l = curlwp;
1288 struct proc *p = l->l_proc;
1289 struct plimit *lim;
1290 kauth_cred_t oc;
1291 char *cn;
1292
1293 /* Reset what needs to be reset in plimit. */
1294 if (p->p_limit->pl_corename != defcorename) {
1295 lim_privatise(p, false);
1296 lim = p->p_limit;
1297 mutex_enter(&lim->pl_lock);
1298 cn = lim->pl_corename;
1299 lim->pl_corename = defcorename;
1300 mutex_exit(&lim->pl_lock);
1301 if (cn != defcorename)
1302 free(cn, M_TEMP);
1303 }
1304
1305 mutex_enter(p->p_lock);
1306
1307 /* Ensure the LWP cached credentials are up to date. */
1308 if ((oc = l->l_cred) != p->p_cred) {
1309 kauth_cred_hold(p->p_cred);
1310 l->l_cred = p->p_cred;
1311 kauth_cred_free(oc);
1312 }
1313
1314 }
1315
1316 /*
1317 * Set in a new process credential, and drop the write lock. The credential
1318 * must have a reference already. Optionally, free a no-longer required
1319 * credential. The scheduler also needs to inspect p_cred, so we also
1320 * briefly acquire the sched state mutex.
1321 */
1322 void
1323 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1324 {
1325 struct lwp *l = curlwp, *l2;
1326 struct proc *p = l->l_proc;
1327 kauth_cred_t oc;
1328
1329 KASSERT(mutex_owned(p->p_lock));
1330
1331 /* Is there a new credential to set in? */
1332 if (scred != NULL) {
1333 p->p_cred = scred;
1334 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1335 if (l2 != l)
1336 l2->l_prflag |= LPR_CRMOD;
1337 }
1338
1339 /* Ensure the LWP cached credentials are up to date. */
1340 if ((oc = l->l_cred) != scred) {
1341 kauth_cred_hold(scred);
1342 l->l_cred = scred;
1343 }
1344 } else
1345 oc = NULL; /* XXXgcc */
1346
1347 if (sugid) {
1348 /*
1349 * Mark process as having changed credentials, stops
1350 * tracing etc.
1351 */
1352 p->p_flag |= PK_SUGID;
1353 }
1354
1355 mutex_exit(p->p_lock);
1356
1357 /* If there is a credential to be released, free it now. */
1358 if (fcred != NULL) {
1359 KASSERT(scred != NULL);
1360 kauth_cred_free(fcred);
1361 if (oc != scred)
1362 kauth_cred_free(oc);
1363 }
1364 }
1365
1366 /*
1367 * proc_specific_key_create --
1368 * Create a key for subsystem proc-specific data.
1369 */
1370 int
1371 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1372 {
1373
1374 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1375 }
1376
1377 /*
1378 * proc_specific_key_delete --
1379 * Delete a key for subsystem proc-specific data.
1380 */
1381 void
1382 proc_specific_key_delete(specificdata_key_t key)
1383 {
1384
1385 specificdata_key_delete(proc_specificdata_domain, key);
1386 }
1387
1388 /*
1389 * proc_initspecific --
1390 * Initialize a proc's specificdata container.
1391 */
1392 void
1393 proc_initspecific(struct proc *p)
1394 {
1395 int error;
1396
1397 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1398 KASSERT(error == 0);
1399 }
1400
1401 /*
1402 * proc_finispecific --
1403 * Finalize a proc's specificdata container.
1404 */
1405 void
1406 proc_finispecific(struct proc *p)
1407 {
1408
1409 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1410 }
1411
1412 /*
1413 * proc_getspecific --
1414 * Return proc-specific data corresponding to the specified key.
1415 */
1416 void *
1417 proc_getspecific(struct proc *p, specificdata_key_t key)
1418 {
1419
1420 return (specificdata_getspecific(proc_specificdata_domain,
1421 &p->p_specdataref, key));
1422 }
1423
1424 /*
1425 * proc_setspecific --
1426 * Set proc-specific data corresponding to the specified key.
1427 */
1428 void
1429 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1430 {
1431
1432 specificdata_setspecific(proc_specificdata_domain,
1433 &p->p_specdataref, key, data);
1434 }
1435
1436 int
1437 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1438 {
1439 int r = 0;
1440
1441 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1442 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1443 /*
1444 * suid proc of ours or proc not ours
1445 */
1446 r = EPERM;
1447 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1448 /*
1449 * sgid proc has sgid back to us temporarily
1450 */
1451 r = EPERM;
1452 } else {
1453 /*
1454 * our rgid must be in target's group list (ie,
1455 * sub-processes started by a sgid process)
1456 */
1457 int ismember = 0;
1458
1459 if (kauth_cred_ismember_gid(cred,
1460 kauth_cred_getgid(target), &ismember) != 0 ||
1461 !ismember)
1462 r = EPERM;
1463 }
1464
1465 return (r);
1466 }
1467
1468