Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.157
      1 /*	$NetBSD: kern_proc.c,v 1.157 2009/11/04 15:35:09 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.157 2009/11/04 15:35:09 pooka Exp $");
     66 
     67 #include "opt_kstack.h"
     68 #include "opt_maxuprc.h"
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/kernel.h>
     73 #include <sys/proc.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/buf.h>
     76 #include <sys/acct.h>
     77 #include <sys/wait.h>
     78 #include <sys/file.h>
     79 #include <ufs/ufs/quota.h>
     80 #include <sys/uio.h>
     81 #include <sys/pool.h>
     82 #include <sys/pset.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/tty.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/ras.h>
     88 #include <sys/sa.h>
     89 #include <sys/savar.h>
     90 #include <sys/filedesc.h>
     91 #include "sys/syscall_stats.h"
     92 #include <sys/kauth.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/atomic.h>
     95 #include <sys/kmem.h>
     96 
     97 #include <uvm/uvm.h>
     98 #include <uvm/uvm_extern.h>
     99 
    100 /*
    101  * Other process lists
    102  */
    103 
    104 struct proclist allproc;
    105 struct proclist zombproc;	/* resources have been freed */
    106 
    107 kmutex_t	*proc_lock;
    108 
    109 /*
    110  * pid to proc lookup is done by indexing the pid_table array.
    111  * Since pid numbers are only allocated when an empty slot
    112  * has been found, there is no need to search any lists ever.
    113  * (an orphaned pgrp will lock the slot, a session will lock
    114  * the pgrp with the same number.)
    115  * If the table is too small it is reallocated with twice the
    116  * previous size and the entries 'unzipped' into the two halves.
    117  * A linked list of free entries is passed through the pt_proc
    118  * field of 'free' items - set odd to be an invalid ptr.
    119  */
    120 
    121 struct pid_table {
    122 	struct proc	*pt_proc;
    123 	struct pgrp	*pt_pgrp;
    124 };
    125 #if 1	/* strongly typed cast - should be a noop */
    126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    127 #else
    128 #define p2u(p) ((uint)p)
    129 #endif
    130 #define P_VALID(p) (!(p2u(p) & 1))
    131 #define P_NEXT(p) (p2u(p) >> 1)
    132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    133 
    134 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    135 static struct pid_table *pid_table;
    136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    137 static uint pid_alloc_lim;	/* max we allocate before growing table */
    138 static uint pid_alloc_cnt;	/* number of allocated pids */
    139 
    140 /* links through free slots - never empty! */
    141 static uint next_free_pt, last_free_pt;
    142 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    143 
    144 /* Components of the first process -- never freed. */
    145 
    146 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    147 
    148 struct session session0 = {
    149 	.s_count = 1,
    150 	.s_sid = 0,
    151 };
    152 struct pgrp pgrp0 = {
    153 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    154 	.pg_session = &session0,
    155 };
    156 filedesc_t filedesc0;
    157 struct cwdinfo cwdi0 = {
    158 	.cwdi_cmask = CMASK,		/* see cmask below */
    159 	.cwdi_refcnt = 1,
    160 };
    161 struct plimit limit0;
    162 struct pstats pstat0;
    163 struct vmspace vmspace0;
    164 struct sigacts sigacts0;
    165 struct turnstile turnstile0;
    166 struct proc proc0 = {
    167 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    168 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    169 	.p_nlwps = 1,
    170 	.p_nrlwps = 1,
    171 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    172 	.p_pgrp = &pgrp0,
    173 	.p_comm = "system",
    174 	/*
    175 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    176 	 * when they exit.  init(8) can easily wait them out for us.
    177 	 */
    178 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    179 	.p_stat = SACTIVE,
    180 	.p_nice = NZERO,
    181 	.p_emul = &emul_netbsd,
    182 	.p_cwdi = &cwdi0,
    183 	.p_limit = &limit0,
    184 	.p_fd = &filedesc0,
    185 	.p_vmspace = &vmspace0,
    186 	.p_stats = &pstat0,
    187 	.p_sigacts = &sigacts0,
    188 };
    189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    190 #ifdef LWP0_CPU_INFO
    191 	.l_cpu = LWP0_CPU_INFO,
    192 #endif
    193 	.l_proc = &proc0,
    194 	.l_lid = 1,
    195 	.l_flag = LW_SYSTEM,
    196 	.l_stat = LSONPROC,
    197 	.l_ts = &turnstile0,
    198 	.l_syncobj = &sched_syncobj,
    199 	.l_refcnt = 1,
    200 	.l_priority = PRI_USER + NPRI_USER - 1,
    201 	.l_inheritedprio = -1,
    202 	.l_class = SCHED_OTHER,
    203 	.l_psid = PS_NONE,
    204 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    205 	.l_name = __UNCONST("swapper"),
    206 	.l_fd = &filedesc0,
    207 };
    208 kauth_cred_t cred0;
    209 
    210 extern struct user *proc0paddr;
    211 
    212 int nofile = NOFILE;
    213 int maxuprc = MAXUPRC;
    214 int cmask = CMASK;
    215 
    216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    218 
    219 /*
    220  * The process list descriptors, used during pid allocation and
    221  * by sysctl.  No locking on this data structure is needed since
    222  * it is completely static.
    223  */
    224 const struct proclist_desc proclists[] = {
    225 	{ &allproc	},
    226 	{ &zombproc	},
    227 	{ NULL		},
    228 };
    229 
    230 static struct pgrp *	pg_remove(pid_t);
    231 static void		pg_delete(pid_t);
    232 static void		orphanpg(struct pgrp *);
    233 
    234 static specificdata_domain_t proc_specificdata_domain;
    235 
    236 static pool_cache_t proc_cache;
    237 
    238 static kauth_listener_t proc_listener;
    239 
    240 static int
    241 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    242     void *arg0, void *arg1, void *arg2, void *arg3)
    243 {
    244 	struct proc *p;
    245 	int result;
    246 
    247 	result = KAUTH_RESULT_DEFER;
    248 	p = arg0;
    249 
    250 	switch (action) {
    251 	case KAUTH_PROCESS_CANSEE: {
    252 		enum kauth_process_req req;
    253 
    254 		req = (enum kauth_process_req)arg1;
    255 
    256 		switch (req) {
    257 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    258 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    259 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    260 			result = KAUTH_RESULT_ALLOW;
    261 
    262 			break;
    263 
    264 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    265 			if (kauth_cred_getuid(cred) !=
    266 			    kauth_cred_getuid(p->p_cred) ||
    267 			    kauth_cred_getuid(cred) !=
    268 			    kauth_cred_getsvuid(p->p_cred))
    269 				break;
    270 
    271 			result = KAUTH_RESULT_ALLOW;
    272 
    273 			break;
    274 
    275 		default:
    276 			break;
    277 		}
    278 
    279 		break;
    280 		}
    281 
    282 	case KAUTH_PROCESS_FORK: {
    283 		int lnprocs = (int)(unsigned long)arg2;
    284 
    285 		/*
    286 		 * Don't allow a nonprivileged user to use the last few
    287 		 * processes. The variable lnprocs is the current number of
    288 		 * processes, maxproc is the limit.
    289 		 */
    290 		if (__predict_false((lnprocs >= maxproc - 5)))
    291 			break;
    292 
    293 		result = KAUTH_RESULT_ALLOW;
    294 
    295 		break;
    296 		}
    297 
    298 	case KAUTH_PROCESS_CORENAME:
    299 	case KAUTH_PROCESS_STOPFLAG:
    300 		if (proc_uidmatch(cred, p->p_cred) == 0)
    301 			result = KAUTH_RESULT_ALLOW;
    302 
    303 		break;
    304 
    305 	default:
    306 		break;
    307 	}
    308 
    309 	return result;
    310 }
    311 
    312 /*
    313  * Initialize global process hashing structures.
    314  */
    315 void
    316 procinit(void)
    317 {
    318 	const struct proclist_desc *pd;
    319 	u_int i;
    320 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    321 
    322 	for (pd = proclists; pd->pd_list != NULL; pd++)
    323 		LIST_INIT(pd->pd_list);
    324 
    325 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    326 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    327 	    * sizeof(struct pid_table), KM_SLEEP);
    328 
    329 	/* Set free list running through table...
    330 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    331 	for (i = 0; i <= pid_tbl_mask; i++) {
    332 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    333 		pid_table[i].pt_pgrp = 0;
    334 	}
    335 	/* slot 0 is just grabbed */
    336 	next_free_pt = 1;
    337 	/* Need to fix last entry. */
    338 	last_free_pt = pid_tbl_mask;
    339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    340 	/* point at which we grow table - to avoid reusing pids too often */
    341 	pid_alloc_lim = pid_tbl_mask - 1;
    342 #undef LINK_EMPTY
    343 
    344 	proc_specificdata_domain = specificdata_domain_create();
    345 	KASSERT(proc_specificdata_domain != NULL);
    346 
    347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    349 
    350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    351 	    proc_listener_cb, NULL);
    352 }
    353 
    354 /*
    355  * Initialize process 0.
    356  */
    357 void
    358 proc0_init(void)
    359 {
    360 	struct proc *p;
    361 	struct pgrp *pg;
    362 	struct lwp *l;
    363 	rlim_t lim;
    364 	int i;
    365 
    366 	p = &proc0;
    367 	pg = &pgrp0;
    368 	l = &lwp0;
    369 
    370 	KASSERT(l->l_lid == p->p_nlwpid);
    371 
    372 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    373 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    374 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    375 
    376 	rw_init(&p->p_reflock);
    377 	cv_init(&p->p_waitcv, "wait");
    378 	cv_init(&p->p_lwpcv, "lwpwait");
    379 
    380 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    381 
    382 	pid_table[0].pt_proc = p;
    383 	LIST_INSERT_HEAD(&allproc, p, p_list);
    384 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    385 
    386 	pid_table[0].pt_pgrp = pg;
    387 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    388 
    389 #ifdef __HAVE_SYSCALL_INTERN
    390 	(*p->p_emul->e_syscall_intern)(p);
    391 #endif
    392 
    393 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    394 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    395 	cv_init(&l->l_sigcv, "sigwait");
    396 
    397 	/* Create credentials. */
    398 	cred0 = kauth_cred_alloc();
    399 	p->p_cred = cred0;
    400 	kauth_cred_hold(cred0);
    401 	l->l_cred = cred0;
    402 
    403 	/* Create the CWD info. */
    404 	rw_init(&cwdi0.cwdi_lock);
    405 
    406 	/* Create the limits structures. */
    407 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    408 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    409 		limit0.pl_rlimit[i].rlim_cur =
    410 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    411 
    412 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    413 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    414 	    maxfiles < nofile ? maxfiles : nofile;
    415 
    416 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    417 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    418 	    maxproc < maxuprc ? maxproc : maxuprc;
    419 
    420 	lim = ptoa(uvmexp.free);
    421 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    422 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    423 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    424 	limit0.pl_corename = defcorename;
    425 	limit0.pl_refcnt = 1;
    426 	limit0.pl_sv_limit = NULL;
    427 
    428 	/* Configure virtual memory system, set vm rlimits. */
    429 	uvm_init_limits(p);
    430 
    431 	/* Initialize file descriptor table for proc0. */
    432 	fd_init(&filedesc0);
    433 
    434 	/*
    435 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    436 	 * All kernel processes (which never have user space mappings)
    437 	 * share proc0's vmspace, and thus, the kernel pmap.
    438 	 */
    439 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    440 	    trunc_page(VM_MAX_ADDRESS));
    441 
    442 	l->l_addr = proc0paddr;				/* XXX */
    443 
    444 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    445 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    446 	siginit(p);
    447 
    448 	proc_initspecific(p);
    449 	lwp_initspecific(l);
    450 
    451 	SYSCALL_TIME_LWP_INIT(l);
    452 }
    453 
    454 /*
    455  * Session reference counting.
    456  */
    457 
    458 void
    459 proc_sesshold(struct session *ss)
    460 {
    461 
    462 	KASSERT(mutex_owned(proc_lock));
    463 	ss->s_count++;
    464 }
    465 
    466 void
    467 proc_sessrele(struct session *ss)
    468 {
    469 
    470 	KASSERT(mutex_owned(proc_lock));
    471 	/*
    472 	 * We keep the pgrp with the same id as the session in order to
    473 	 * stop a process being given the same pid.  Since the pgrp holds
    474 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    475 	 */
    476 	if (--ss->s_count == 0) {
    477 		struct pgrp *pg;
    478 
    479 		pg = pg_remove(ss->s_sid);
    480 		mutex_exit(proc_lock);
    481 
    482 		kmem_free(pg, sizeof(struct pgrp));
    483 		kmem_free(ss, sizeof(struct session));
    484 	} else {
    485 		mutex_exit(proc_lock);
    486 	}
    487 }
    488 
    489 /*
    490  * Check that the specified process group is in the session of the
    491  * specified process.
    492  * Treats -ve ids as process ids.
    493  * Used to validate TIOCSPGRP requests.
    494  */
    495 int
    496 pgid_in_session(struct proc *p, pid_t pg_id)
    497 {
    498 	struct pgrp *pgrp;
    499 	struct session *session;
    500 	int error;
    501 
    502 	mutex_enter(proc_lock);
    503 	if (pg_id < 0) {
    504 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    505 		if (p1 == NULL)
    506 			return EINVAL;
    507 		pgrp = p1->p_pgrp;
    508 	} else {
    509 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    510 		if (pgrp == NULL)
    511 			return EINVAL;
    512 	}
    513 	session = pgrp->pg_session;
    514 	if (session != p->p_pgrp->pg_session)
    515 		error = EPERM;
    516 	else
    517 		error = 0;
    518 	mutex_exit(proc_lock);
    519 
    520 	return error;
    521 }
    522 
    523 /*
    524  * p_inferior: is p an inferior of q?
    525  */
    526 static inline bool
    527 p_inferior(struct proc *p, struct proc *q)
    528 {
    529 
    530 	KASSERT(mutex_owned(proc_lock));
    531 
    532 	for (; p != q; p = p->p_pptr)
    533 		if (p->p_pid == 0)
    534 			return false;
    535 	return true;
    536 }
    537 
    538 /*
    539  * Locate a process by number
    540  */
    541 struct proc *
    542 p_find(pid_t pid, uint flags)
    543 {
    544 	struct proc *p;
    545 	char stat;
    546 
    547 	if (!(flags & PFIND_LOCKED))
    548 		mutex_enter(proc_lock);
    549 
    550 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    551 
    552 	/* Only allow live processes to be found by pid. */
    553 	/* XXXSMP p_stat */
    554 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    555 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    556 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    557 		if (flags & PFIND_UNLOCK_OK)
    558 			 mutex_exit(proc_lock);
    559 		return p;
    560 	}
    561 	if (flags & PFIND_UNLOCK_FAIL)
    562 		mutex_exit(proc_lock);
    563 	return NULL;
    564 }
    565 
    566 
    567 /*
    568  * Locate a process group by number
    569  */
    570 struct pgrp *
    571 pg_find(pid_t pgid, uint flags)
    572 {
    573 	struct pgrp *pg;
    574 
    575 	if (!(flags & PFIND_LOCKED))
    576 		mutex_enter(proc_lock);
    577 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    578 	/*
    579 	 * Can't look up a pgrp that only exists because the session
    580 	 * hasn't died yet (traditional)
    581 	 */
    582 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    583 		if (flags & PFIND_UNLOCK_FAIL)
    584 			 mutex_exit(proc_lock);
    585 		return NULL;
    586 	}
    587 
    588 	if (flags & PFIND_UNLOCK_OK)
    589 		mutex_exit(proc_lock);
    590 	return pg;
    591 }
    592 
    593 static void
    594 expand_pid_table(void)
    595 {
    596 	size_t pt_size, tsz;
    597 	struct pid_table *n_pt, *new_pt;
    598 	struct proc *proc;
    599 	struct pgrp *pgrp;
    600 	pid_t pid;
    601 	u_int i;
    602 
    603 	pt_size = pid_tbl_mask + 1;
    604 	tsz = pt_size * 2 * sizeof(struct pid_table);
    605 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    606 
    607 	mutex_enter(proc_lock);
    608 	if (pt_size != pid_tbl_mask + 1) {
    609 		/* Another process beat us to it... */
    610 		mutex_exit(proc_lock);
    611 		kmem_free(new_pt, tsz);
    612 		return;
    613 	}
    614 
    615 	/*
    616 	 * Copy entries from old table into new one.
    617 	 * If 'pid' is 'odd' we need to place in the upper half,
    618 	 * even pid's to the lower half.
    619 	 * Free items stay in the low half so we don't have to
    620 	 * fixup the reference to them.
    621 	 * We stuff free items on the front of the freelist
    622 	 * because we can't write to unmodified entries.
    623 	 * Processing the table backwards maintains a semblance
    624 	 * of issueing pid numbers that increase with time.
    625 	 */
    626 	i = pt_size - 1;
    627 	n_pt = new_pt + i;
    628 	for (; ; i--, n_pt--) {
    629 		proc = pid_table[i].pt_proc;
    630 		pgrp = pid_table[i].pt_pgrp;
    631 		if (!P_VALID(proc)) {
    632 			/* Up 'use count' so that link is valid */
    633 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    634 			proc = P_FREE(pid);
    635 			if (pgrp)
    636 				pid = pgrp->pg_id;
    637 		} else
    638 			pid = proc->p_pid;
    639 
    640 		/* Save entry in appropriate half of table */
    641 		n_pt[pid & pt_size].pt_proc = proc;
    642 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    643 
    644 		/* Put other piece on start of free list */
    645 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    646 		n_pt[pid & pt_size].pt_proc =
    647 				    P_FREE((pid & ~pt_size) | next_free_pt);
    648 		n_pt[pid & pt_size].pt_pgrp = 0;
    649 		next_free_pt = i | (pid & pt_size);
    650 		if (i == 0)
    651 			break;
    652 	}
    653 
    654 	/* Save old table size and switch tables */
    655 	tsz = pt_size * sizeof(struct pid_table);
    656 	n_pt = pid_table;
    657 	pid_table = new_pt;
    658 	pid_tbl_mask = pt_size * 2 - 1;
    659 
    660 	/*
    661 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    662 	 * allocated pids we need it to be larger!
    663 	 */
    664 	if (pid_tbl_mask > PID_MAX) {
    665 		pid_max = pid_tbl_mask * 2 + 1;
    666 		pid_alloc_lim |= pid_alloc_lim << 1;
    667 	} else
    668 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    669 
    670 	mutex_exit(proc_lock);
    671 	kmem_free(n_pt, tsz);
    672 }
    673 
    674 struct proc *
    675 proc_alloc(void)
    676 {
    677 	struct proc *p;
    678 	int nxt;
    679 	pid_t pid;
    680 	struct pid_table *pt;
    681 
    682 	p = pool_cache_get(proc_cache, PR_WAITOK);
    683 	p->p_stat = SIDL;			/* protect against others */
    684 
    685 	proc_initspecific(p);
    686 	/* allocate next free pid */
    687 
    688 	for (;;expand_pid_table()) {
    689 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    690 			/* ensure pids cycle through 2000+ values */
    691 			continue;
    692 		mutex_enter(proc_lock);
    693 		pt = &pid_table[next_free_pt];
    694 #ifdef DIAGNOSTIC
    695 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    696 			panic("proc_alloc: slot busy");
    697 #endif
    698 		nxt = P_NEXT(pt->pt_proc);
    699 		if (nxt & pid_tbl_mask)
    700 			break;
    701 		/* Table full - expand (NB last entry not used....) */
    702 		mutex_exit(proc_lock);
    703 	}
    704 
    705 	/* pid is 'saved use count' + 'size' + entry */
    706 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    707 	if ((uint)pid > (uint)pid_max)
    708 		pid &= pid_tbl_mask;
    709 	p->p_pid = pid;
    710 	next_free_pt = nxt & pid_tbl_mask;
    711 
    712 	/* Grab table slot */
    713 	pt->pt_proc = p;
    714 	pid_alloc_cnt++;
    715 
    716 	mutex_exit(proc_lock);
    717 
    718 	return p;
    719 }
    720 
    721 /*
    722  * Free a process id - called from proc_free (in kern_exit.c)
    723  *
    724  * Called with the proc_lock held.
    725  */
    726 void
    727 proc_free_pid(struct proc *p)
    728 {
    729 	pid_t pid = p->p_pid;
    730 	struct pid_table *pt;
    731 
    732 	KASSERT(mutex_owned(proc_lock));
    733 
    734 	pt = &pid_table[pid & pid_tbl_mask];
    735 #ifdef DIAGNOSTIC
    736 	if (__predict_false(pt->pt_proc != p))
    737 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    738 			pid, p);
    739 #endif
    740 	/* save pid use count in slot */
    741 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    742 
    743 	if (pt->pt_pgrp == NULL) {
    744 		/* link last freed entry onto ours */
    745 		pid &= pid_tbl_mask;
    746 		pt = &pid_table[last_free_pt];
    747 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    748 		last_free_pt = pid;
    749 		pid_alloc_cnt--;
    750 	}
    751 
    752 	atomic_dec_uint(&nprocs);
    753 }
    754 
    755 void
    756 proc_free_mem(struct proc *p)
    757 {
    758 
    759 	pool_cache_put(proc_cache, p);
    760 }
    761 
    762 /*
    763  * proc_enterpgrp: move p to a new or existing process group (and session).
    764  *
    765  * If we are creating a new pgrp, the pgid should equal
    766  * the calling process' pid.
    767  * If is only valid to enter a process group that is in the session
    768  * of the process.
    769  * Also mksess should only be set if we are creating a process group
    770  *
    771  * Only called from sys_setsid and sys_setpgid.
    772  */
    773 int
    774 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    775 {
    776 	struct pgrp *new_pgrp, *pgrp;
    777 	struct session *sess;
    778 	struct proc *p;
    779 	int rval;
    780 	pid_t pg_id = NO_PGID;
    781 
    782 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    783 
    784 	/* Allocate data areas we might need before doing any validity checks */
    785 	mutex_enter(proc_lock);		/* Because pid_table might change */
    786 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    787 		mutex_exit(proc_lock);
    788 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    789 		mutex_enter(proc_lock);
    790 	} else
    791 		new_pgrp = NULL;
    792 	rval = EPERM;	/* most common error (to save typing) */
    793 
    794 	/* Check pgrp exists or can be created */
    795 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    796 	if (pgrp != NULL && pgrp->pg_id != pgid)
    797 		goto done;
    798 
    799 	/* Can only set another process under restricted circumstances. */
    800 	if (pid != curp->p_pid) {
    801 		/* must exist and be one of our children... */
    802 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    803 		    !p_inferior(p, curp)) {
    804 			rval = ESRCH;
    805 			goto done;
    806 		}
    807 		/* ... in the same session... */
    808 		if (sess != NULL || p->p_session != curp->p_session)
    809 			goto done;
    810 		/* ... existing pgid must be in same session ... */
    811 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    812 			goto done;
    813 		/* ... and not done an exec. */
    814 		if (p->p_flag & PK_EXEC) {
    815 			rval = EACCES;
    816 			goto done;
    817 		}
    818 	} else {
    819 		/* ... setsid() cannot re-enter a pgrp */
    820 		if (mksess && (curp->p_pgid == curp->p_pid ||
    821 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    822 			goto done;
    823 		p = curp;
    824 	}
    825 
    826 	/* Changing the process group/session of a session
    827 	   leader is definitely off limits. */
    828 	if (SESS_LEADER(p)) {
    829 		if (sess == NULL && p->p_pgrp == pgrp)
    830 			/* unless it's a definite noop */
    831 			rval = 0;
    832 		goto done;
    833 	}
    834 
    835 	/* Can only create a process group with id of process */
    836 	if (pgrp == NULL && pgid != pid)
    837 		goto done;
    838 
    839 	/* Can only create a session if creating pgrp */
    840 	if (sess != NULL && pgrp != NULL)
    841 		goto done;
    842 
    843 	/* Check we allocated memory for a pgrp... */
    844 	if (pgrp == NULL && new_pgrp == NULL)
    845 		goto done;
    846 
    847 	/* Don't attach to 'zombie' pgrp */
    848 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    849 		goto done;
    850 
    851 	/* Expect to succeed now */
    852 	rval = 0;
    853 
    854 	if (pgrp == p->p_pgrp)
    855 		/* nothing to do */
    856 		goto done;
    857 
    858 	/* Ok all setup, link up required structures */
    859 
    860 	if (pgrp == NULL) {
    861 		pgrp = new_pgrp;
    862 		new_pgrp = NULL;
    863 		if (sess != NULL) {
    864 			sess->s_sid = p->p_pid;
    865 			sess->s_leader = p;
    866 			sess->s_count = 1;
    867 			sess->s_ttyvp = NULL;
    868 			sess->s_ttyp = NULL;
    869 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    870 			memcpy(sess->s_login, p->p_session->s_login,
    871 			    sizeof(sess->s_login));
    872 			p->p_lflag &= ~PL_CONTROLT;
    873 		} else {
    874 			sess = p->p_pgrp->pg_session;
    875 			proc_sesshold(sess);
    876 		}
    877 		pgrp->pg_session = sess;
    878 		sess = NULL;
    879 
    880 		pgrp->pg_id = pgid;
    881 		LIST_INIT(&pgrp->pg_members);
    882 #ifdef DIAGNOSTIC
    883 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    884 			panic("enterpgrp: pgrp table slot in use");
    885 		if (__predict_false(mksess && p != curp))
    886 			panic("enterpgrp: mksession and p != curproc");
    887 #endif
    888 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    889 		pgrp->pg_jobc = 0;
    890 	}
    891 
    892 	/*
    893 	 * Adjust eligibility of affected pgrps to participate in job control.
    894 	 * Increment eligibility counts before decrementing, otherwise we
    895 	 * could reach 0 spuriously during the first call.
    896 	 */
    897 	fixjobc(p, pgrp, 1);
    898 	fixjobc(p, p->p_pgrp, 0);
    899 
    900 	/* Interlock with ttread(). */
    901 	mutex_spin_enter(&tty_lock);
    902 
    903 	/* Move process to requested group. */
    904 	LIST_REMOVE(p, p_pglist);
    905 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    906 		/* defer delete until we've dumped the lock */
    907 		pg_id = p->p_pgrp->pg_id;
    908 	p->p_pgrp = pgrp;
    909 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    910 
    911 	/* Done with the swap; we can release the tty mutex. */
    912 	mutex_spin_exit(&tty_lock);
    913 
    914     done:
    915 	if (pg_id != NO_PGID) {
    916 		/* Releases proc_lock. */
    917 		pg_delete(pg_id);
    918 	} else {
    919 		mutex_exit(proc_lock);
    920 	}
    921 	if (sess != NULL)
    922 		kmem_free(sess, sizeof(*sess));
    923 	if (new_pgrp != NULL)
    924 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    925 #ifdef DEBUG_PGRP
    926 	if (__predict_false(rval))
    927 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    928 			pid, pgid, mksess, curp->p_pid, rval);
    929 #endif
    930 	return rval;
    931 }
    932 
    933 /*
    934  * proc_leavepgrp: remove a process from its process group.
    935  *  => must be called with the proc_lock held, which will be released;
    936  */
    937 void
    938 proc_leavepgrp(struct proc *p)
    939 {
    940 	struct pgrp *pgrp;
    941 
    942 	KASSERT(mutex_owned(proc_lock));
    943 
    944 	/* Interlock with ttread() */
    945 	mutex_spin_enter(&tty_lock);
    946 	pgrp = p->p_pgrp;
    947 	LIST_REMOVE(p, p_pglist);
    948 	p->p_pgrp = NULL;
    949 	mutex_spin_exit(&tty_lock);
    950 
    951 	if (LIST_EMPTY(&pgrp->pg_members)) {
    952 		/* Releases proc_lock. */
    953 		pg_delete(pgrp->pg_id);
    954 	} else {
    955 		mutex_exit(proc_lock);
    956 	}
    957 }
    958 
    959 /*
    960  * pg_remove: remove a process group from the table.
    961  *  => must be called with the proc_lock held;
    962  *  => returns process group to free;
    963  */
    964 static struct pgrp *
    965 pg_remove(pid_t pg_id)
    966 {
    967 	struct pgrp *pgrp;
    968 	struct pid_table *pt;
    969 
    970 	KASSERT(mutex_owned(proc_lock));
    971 
    972 	pt = &pid_table[pg_id & pid_tbl_mask];
    973 	pgrp = pt->pt_pgrp;
    974 
    975 	KASSERT(pgrp != NULL);
    976 	KASSERT(pgrp->pg_id == pg_id);
    977 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    978 
    979 	pt->pt_pgrp = NULL;
    980 
    981 	if (!P_VALID(pt->pt_proc)) {
    982 		/* Orphaned pgrp, put slot onto free list. */
    983 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    984 		pg_id &= pid_tbl_mask;
    985 		pt = &pid_table[last_free_pt];
    986 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    987 		last_free_pt = pg_id;
    988 		pid_alloc_cnt--;
    989 	}
    990 	return pgrp;
    991 }
    992 
    993 /*
    994  * pg_delete: delete and free a process group.
    995  *  => must be called with the proc_lock held, which will be released.
    996  */
    997 static void
    998 pg_delete(pid_t pg_id)
    999 {
   1000 	struct pgrp *pg;
   1001 	struct tty *ttyp;
   1002 	struct session *ss;
   1003 
   1004 	KASSERT(mutex_owned(proc_lock));
   1005 
   1006 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1007 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1008 		mutex_exit(proc_lock);
   1009 		return;
   1010 	}
   1011 
   1012 	ss = pg->pg_session;
   1013 
   1014 	/* Remove reference (if any) from tty to this process group */
   1015 	mutex_spin_enter(&tty_lock);
   1016 	ttyp = ss->s_ttyp;
   1017 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1018 		ttyp->t_pgrp = NULL;
   1019 		KASSERT(ttyp->t_session == ss);
   1020 	}
   1021 	mutex_spin_exit(&tty_lock);
   1022 
   1023 	/*
   1024 	 * The leading process group in a session is freed by proc_sessrele(),
   1025 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1026 	 */
   1027 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1028 	proc_sessrele(ss);
   1029 
   1030 	if (pg != NULL) {
   1031 		/* Free it, if was not done by proc_sessrele(). */
   1032 		kmem_free(pg, sizeof(struct pgrp));
   1033 	}
   1034 }
   1035 
   1036 /*
   1037  * Adjust pgrp jobc counters when specified process changes process group.
   1038  * We count the number of processes in each process group that "qualify"
   1039  * the group for terminal job control (those with a parent in a different
   1040  * process group of the same session).  If that count reaches zero, the
   1041  * process group becomes orphaned.  Check both the specified process'
   1042  * process group and that of its children.
   1043  * entering == 0 => p is leaving specified group.
   1044  * entering == 1 => p is entering specified group.
   1045  *
   1046  * Call with proc_lock held.
   1047  */
   1048 void
   1049 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1050 {
   1051 	struct pgrp *hispgrp;
   1052 	struct session *mysession = pgrp->pg_session;
   1053 	struct proc *child;
   1054 
   1055 	KASSERT(mutex_owned(proc_lock));
   1056 
   1057 	/*
   1058 	 * Check p's parent to see whether p qualifies its own process
   1059 	 * group; if so, adjust count for p's process group.
   1060 	 */
   1061 	hispgrp = p->p_pptr->p_pgrp;
   1062 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1063 		if (entering) {
   1064 			pgrp->pg_jobc++;
   1065 			p->p_lflag &= ~PL_ORPHANPG;
   1066 		} else if (--pgrp->pg_jobc == 0)
   1067 			orphanpg(pgrp);
   1068 	}
   1069 
   1070 	/*
   1071 	 * Check this process' children to see whether they qualify
   1072 	 * their process groups; if so, adjust counts for children's
   1073 	 * process groups.
   1074 	 */
   1075 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1076 		hispgrp = child->p_pgrp;
   1077 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1078 		    !P_ZOMBIE(child)) {
   1079 			if (entering) {
   1080 				child->p_lflag &= ~PL_ORPHANPG;
   1081 				hispgrp->pg_jobc++;
   1082 			} else if (--hispgrp->pg_jobc == 0)
   1083 				orphanpg(hispgrp);
   1084 		}
   1085 	}
   1086 }
   1087 
   1088 /*
   1089  * A process group has become orphaned;
   1090  * if there are any stopped processes in the group,
   1091  * hang-up all process in that group.
   1092  *
   1093  * Call with proc_lock held.
   1094  */
   1095 static void
   1096 orphanpg(struct pgrp *pg)
   1097 {
   1098 	struct proc *p;
   1099 
   1100 	KASSERT(mutex_owned(proc_lock));
   1101 
   1102 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1103 		if (p->p_stat == SSTOP) {
   1104 			p->p_lflag |= PL_ORPHANPG;
   1105 			psignal(p, SIGHUP);
   1106 			psignal(p, SIGCONT);
   1107 		}
   1108 	}
   1109 }
   1110 
   1111 #ifdef DDB
   1112 #include <ddb/db_output.h>
   1113 void pidtbl_dump(void);
   1114 void
   1115 pidtbl_dump(void)
   1116 {
   1117 	struct pid_table *pt;
   1118 	struct proc *p;
   1119 	struct pgrp *pgrp;
   1120 	int id;
   1121 
   1122 	db_printf("pid table %p size %x, next %x, last %x\n",
   1123 		pid_table, pid_tbl_mask+1,
   1124 		next_free_pt, last_free_pt);
   1125 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1126 		p = pt->pt_proc;
   1127 		if (!P_VALID(p) && !pt->pt_pgrp)
   1128 			continue;
   1129 		db_printf("  id %x: ", id);
   1130 		if (P_VALID(p))
   1131 			db_printf("proc %p id %d (0x%x) %s\n",
   1132 				p, p->p_pid, p->p_pid, p->p_comm);
   1133 		else
   1134 			db_printf("next %x use %x\n",
   1135 				P_NEXT(p) & pid_tbl_mask,
   1136 				P_NEXT(p) & ~pid_tbl_mask);
   1137 		if ((pgrp = pt->pt_pgrp)) {
   1138 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1139 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1140 			    pgrp->pg_session->s_count,
   1141 			    pgrp->pg_session->s_login);
   1142 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1143 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1144 			    LIST_FIRST(&pgrp->pg_members));
   1145 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1146 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1147 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1148 			}
   1149 		}
   1150 	}
   1151 }
   1152 #endif /* DDB */
   1153 
   1154 #ifdef KSTACK_CHECK_MAGIC
   1155 #include <sys/user.h>
   1156 
   1157 #define	KSTACK_MAGIC	0xdeadbeaf
   1158 
   1159 /* XXX should be per process basis? */
   1160 static int	kstackleftmin = KSTACK_SIZE;
   1161 static int	kstackleftthres = KSTACK_SIZE / 8;
   1162 
   1163 void
   1164 kstack_setup_magic(const struct lwp *l)
   1165 {
   1166 	uint32_t *ip;
   1167 	uint32_t const *end;
   1168 
   1169 	KASSERT(l != NULL);
   1170 	KASSERT(l != &lwp0);
   1171 
   1172 	/*
   1173 	 * fill all the stack with magic number
   1174 	 * so that later modification on it can be detected.
   1175 	 */
   1176 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1177 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1178 	for (; ip < end; ip++) {
   1179 		*ip = KSTACK_MAGIC;
   1180 	}
   1181 }
   1182 
   1183 void
   1184 kstack_check_magic(const struct lwp *l)
   1185 {
   1186 	uint32_t const *ip, *end;
   1187 	int stackleft;
   1188 
   1189 	KASSERT(l != NULL);
   1190 
   1191 	/* don't check proc0 */ /*XXX*/
   1192 	if (l == &lwp0)
   1193 		return;
   1194 
   1195 #ifdef __MACHINE_STACK_GROWS_UP
   1196 	/* stack grows upwards (eg. hppa) */
   1197 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1198 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1199 	for (ip--; ip >= end; ip--)
   1200 		if (*ip != KSTACK_MAGIC)
   1201 			break;
   1202 
   1203 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1204 #else /* __MACHINE_STACK_GROWS_UP */
   1205 	/* stack grows downwards (eg. i386) */
   1206 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1207 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1208 	for (; ip < end; ip++)
   1209 		if (*ip != KSTACK_MAGIC)
   1210 			break;
   1211 
   1212 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1213 #endif /* __MACHINE_STACK_GROWS_UP */
   1214 
   1215 	if (kstackleftmin > stackleft) {
   1216 		kstackleftmin = stackleft;
   1217 		if (stackleft < kstackleftthres)
   1218 			printf("warning: kernel stack left %d bytes"
   1219 			    "(pid %u:lid %u)\n", stackleft,
   1220 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1221 	}
   1222 
   1223 	if (stackleft <= 0) {
   1224 		panic("magic on the top of kernel stack changed for "
   1225 		    "pid %u, lid %u: maybe kernel stack overflow",
   1226 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1227 	}
   1228 }
   1229 #endif /* KSTACK_CHECK_MAGIC */
   1230 
   1231 int
   1232 proclist_foreach_call(struct proclist *list,
   1233     int (*callback)(struct proc *, void *arg), void *arg)
   1234 {
   1235 	struct proc marker;
   1236 	struct proc *p;
   1237 	int ret = 0;
   1238 
   1239 	marker.p_flag = PK_MARKER;
   1240 	mutex_enter(proc_lock);
   1241 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1242 		if (p->p_flag & PK_MARKER) {
   1243 			p = LIST_NEXT(p, p_list);
   1244 			continue;
   1245 		}
   1246 		LIST_INSERT_AFTER(p, &marker, p_list);
   1247 		ret = (*callback)(p, arg);
   1248 		KASSERT(mutex_owned(proc_lock));
   1249 		p = LIST_NEXT(&marker, p_list);
   1250 		LIST_REMOVE(&marker, p_list);
   1251 	}
   1252 	mutex_exit(proc_lock);
   1253 
   1254 	return ret;
   1255 }
   1256 
   1257 int
   1258 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1259 {
   1260 
   1261 	/* XXXCDC: how should locking work here? */
   1262 
   1263 	/* curproc exception is for coredump. */
   1264 
   1265 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1266 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1267 		return EFAULT;
   1268 	}
   1269 
   1270 	uvmspace_addref(p->p_vmspace);
   1271 	*vm = p->p_vmspace;
   1272 
   1273 	return 0;
   1274 }
   1275 
   1276 /*
   1277  * Acquire a write lock on the process credential.
   1278  */
   1279 void
   1280 proc_crmod_enter(void)
   1281 {
   1282 	struct lwp *l = curlwp;
   1283 	struct proc *p = l->l_proc;
   1284 	struct plimit *lim;
   1285 	kauth_cred_t oc;
   1286 	char *cn;
   1287 
   1288 	/* Reset what needs to be reset in plimit. */
   1289 	if (p->p_limit->pl_corename != defcorename) {
   1290 		lim_privatise(p, false);
   1291 		lim = p->p_limit;
   1292 		mutex_enter(&lim->pl_lock);
   1293 		cn = lim->pl_corename;
   1294 		lim->pl_corename = defcorename;
   1295 		mutex_exit(&lim->pl_lock);
   1296 		if (cn != defcorename)
   1297 			free(cn, M_TEMP);
   1298 	}
   1299 
   1300 	mutex_enter(p->p_lock);
   1301 
   1302 	/* Ensure the LWP cached credentials are up to date. */
   1303 	if ((oc = l->l_cred) != p->p_cred) {
   1304 		kauth_cred_hold(p->p_cred);
   1305 		l->l_cred = p->p_cred;
   1306 		kauth_cred_free(oc);
   1307 	}
   1308 
   1309 }
   1310 
   1311 /*
   1312  * Set in a new process credential, and drop the write lock.  The credential
   1313  * must have a reference already.  Optionally, free a no-longer required
   1314  * credential.  The scheduler also needs to inspect p_cred, so we also
   1315  * briefly acquire the sched state mutex.
   1316  */
   1317 void
   1318 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1319 {
   1320 	struct lwp *l = curlwp, *l2;
   1321 	struct proc *p = l->l_proc;
   1322 	kauth_cred_t oc;
   1323 
   1324 	KASSERT(mutex_owned(p->p_lock));
   1325 
   1326 	/* Is there a new credential to set in? */
   1327 	if (scred != NULL) {
   1328 		p->p_cred = scred;
   1329 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1330 			if (l2 != l)
   1331 				l2->l_prflag |= LPR_CRMOD;
   1332 		}
   1333 
   1334 		/* Ensure the LWP cached credentials are up to date. */
   1335 		if ((oc = l->l_cred) != scred) {
   1336 			kauth_cred_hold(scred);
   1337 			l->l_cred = scred;
   1338 		}
   1339 	} else
   1340 		oc = NULL;	/* XXXgcc */
   1341 
   1342 	if (sugid) {
   1343 		/*
   1344 		 * Mark process as having changed credentials, stops
   1345 		 * tracing etc.
   1346 		 */
   1347 		p->p_flag |= PK_SUGID;
   1348 	}
   1349 
   1350 	mutex_exit(p->p_lock);
   1351 
   1352 	/* If there is a credential to be released, free it now. */
   1353 	if (fcred != NULL) {
   1354 		KASSERT(scred != NULL);
   1355 		kauth_cred_free(fcred);
   1356 		if (oc != scred)
   1357 			kauth_cred_free(oc);
   1358 	}
   1359 }
   1360 
   1361 /*
   1362  * proc_specific_key_create --
   1363  *	Create a key for subsystem proc-specific data.
   1364  */
   1365 int
   1366 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1367 {
   1368 
   1369 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1370 }
   1371 
   1372 /*
   1373  * proc_specific_key_delete --
   1374  *	Delete a key for subsystem proc-specific data.
   1375  */
   1376 void
   1377 proc_specific_key_delete(specificdata_key_t key)
   1378 {
   1379 
   1380 	specificdata_key_delete(proc_specificdata_domain, key);
   1381 }
   1382 
   1383 /*
   1384  * proc_initspecific --
   1385  *	Initialize a proc's specificdata container.
   1386  */
   1387 void
   1388 proc_initspecific(struct proc *p)
   1389 {
   1390 	int error;
   1391 
   1392 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1393 	KASSERT(error == 0);
   1394 }
   1395 
   1396 /*
   1397  * proc_finispecific --
   1398  *	Finalize a proc's specificdata container.
   1399  */
   1400 void
   1401 proc_finispecific(struct proc *p)
   1402 {
   1403 
   1404 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1405 }
   1406 
   1407 /*
   1408  * proc_getspecific --
   1409  *	Return proc-specific data corresponding to the specified key.
   1410  */
   1411 void *
   1412 proc_getspecific(struct proc *p, specificdata_key_t key)
   1413 {
   1414 
   1415 	return (specificdata_getspecific(proc_specificdata_domain,
   1416 					 &p->p_specdataref, key));
   1417 }
   1418 
   1419 /*
   1420  * proc_setspecific --
   1421  *	Set proc-specific data corresponding to the specified key.
   1422  */
   1423 void
   1424 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1425 {
   1426 
   1427 	specificdata_setspecific(proc_specificdata_domain,
   1428 				 &p->p_specdataref, key, data);
   1429 }
   1430 
   1431 int
   1432 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1433 {
   1434 	int r = 0;
   1435 
   1436 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1437 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1438 		/*
   1439 		 * suid proc of ours or proc not ours
   1440 		 */
   1441 		r = EPERM;
   1442 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1443 		/*
   1444 		 * sgid proc has sgid back to us temporarily
   1445 		 */
   1446 		r = EPERM;
   1447 	} else {
   1448 		/*
   1449 		 * our rgid must be in target's group list (ie,
   1450 		 * sub-processes started by a sgid process)
   1451 		 */
   1452 		int ismember = 0;
   1453 
   1454 		if (kauth_cred_ismember_gid(cred,
   1455 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1456 		    !ismember)
   1457 			r = EPERM;
   1458 	}
   1459 
   1460 	return (r);
   1461 }
   1462 
   1463