Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.159.2.2
      1 /*	$NetBSD: kern_proc.c,v 1.159.2.2 2010/08/17 06:47:28 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.159.2.2 2010/08/17 06:47:28 uebayasi Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/resourcevar.h>
     78 #include <sys/buf.h>
     79 #include <sys/acct.h>
     80 #include <sys/wait.h>
     81 #include <sys/file.h>
     82 #include <ufs/ufs/quota.h>
     83 #include <sys/uio.h>
     84 #include <sys/pool.h>
     85 #include <sys/pset.h>
     86 #include <sys/mbuf.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/tty.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/ras.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/filedesc.h>
     94 #include "sys/syscall_stats.h"
     95 #include <sys/kauth.h>
     96 #include <sys/sleepq.h>
     97 #include <sys/atomic.h>
     98 #include <sys/kmem.h>
     99 #include <sys/dtrace_bsd.h>
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_extern.h>
    103 
    104 /*
    105  * Other process lists
    106  */
    107 
    108 struct proclist allproc;
    109 struct proclist zombproc;	/* resources have been freed */
    110 
    111 kmutex_t	*proc_lock;
    112 
    113 /*
    114  * pid to proc lookup is done by indexing the pid_table array.
    115  * Since pid numbers are only allocated when an empty slot
    116  * has been found, there is no need to search any lists ever.
    117  * (an orphaned pgrp will lock the slot, a session will lock
    118  * the pgrp with the same number.)
    119  * If the table is too small it is reallocated with twice the
    120  * previous size and the entries 'unzipped' into the two halves.
    121  * A linked list of free entries is passed through the pt_proc
    122  * field of 'free' items - set odd to be an invalid ptr.
    123  */
    124 
    125 struct pid_table {
    126 	struct proc	*pt_proc;
    127 	struct pgrp	*pt_pgrp;
    128 	pid_t		pt_pid;
    129 };
    130 #if 1	/* strongly typed cast - should be a noop */
    131 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    132 #else
    133 #define p2u(p) ((uint)p)
    134 #endif
    135 #define P_VALID(p) (!(p2u(p) & 1))
    136 #define P_NEXT(p) (p2u(p) >> 1)
    137 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    138 
    139 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    140 static struct pid_table *pid_table;
    141 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    142 static uint pid_alloc_lim;	/* max we allocate before growing table */
    143 static uint pid_alloc_cnt;	/* number of allocated pids */
    144 
    145 /* links through free slots - never empty! */
    146 static uint next_free_pt, last_free_pt;
    147 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    148 
    149 /* Components of the first process -- never freed. */
    150 
    151 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    152 
    153 struct session session0 = {
    154 	.s_count = 1,
    155 	.s_sid = 0,
    156 };
    157 struct pgrp pgrp0 = {
    158 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    159 	.pg_session = &session0,
    160 };
    161 filedesc_t filedesc0;
    162 struct cwdinfo cwdi0 = {
    163 	.cwdi_cmask = CMASK,		/* see cmask below */
    164 	.cwdi_refcnt = 1,
    165 };
    166 struct plimit limit0;
    167 struct pstats pstat0;
    168 struct vmspace vmspace0;
    169 struct sigacts sigacts0;
    170 struct proc proc0 = {
    171 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    172 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    173 	.p_nlwps = 1,
    174 	.p_nrlwps = 1,
    175 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    176 	.p_pgrp = &pgrp0,
    177 	.p_comm = "system",
    178 	/*
    179 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    180 	 * when they exit.  init(8) can easily wait them out for us.
    181 	 */
    182 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    183 	.p_stat = SACTIVE,
    184 	.p_nice = NZERO,
    185 	.p_emul = &emul_netbsd,
    186 	.p_cwdi = &cwdi0,
    187 	.p_limit = &limit0,
    188 	.p_fd = &filedesc0,
    189 	.p_vmspace = &vmspace0,
    190 	.p_stats = &pstat0,
    191 	.p_sigacts = &sigacts0,
    192 };
    193 kauth_cred_t cred0;
    194 
    195 int nofile = NOFILE;
    196 int maxuprc = MAXUPRC;
    197 int cmask = CMASK;
    198 
    199 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    200 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    201 
    202 /*
    203  * The process list descriptors, used during pid allocation and
    204  * by sysctl.  No locking on this data structure is needed since
    205  * it is completely static.
    206  */
    207 const struct proclist_desc proclists[] = {
    208 	{ &allproc	},
    209 	{ &zombproc	},
    210 	{ NULL		},
    211 };
    212 
    213 static struct pgrp *	pg_remove(pid_t);
    214 static void		pg_delete(pid_t);
    215 static void		orphanpg(struct pgrp *);
    216 
    217 static specificdata_domain_t proc_specificdata_domain;
    218 
    219 static pool_cache_t proc_cache;
    220 
    221 static kauth_listener_t proc_listener;
    222 
    223 static int
    224 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    225     void *arg0, void *arg1, void *arg2, void *arg3)
    226 {
    227 	struct proc *p;
    228 	int result;
    229 
    230 	result = KAUTH_RESULT_DEFER;
    231 	p = arg0;
    232 
    233 	switch (action) {
    234 	case KAUTH_PROCESS_CANSEE: {
    235 		enum kauth_process_req req;
    236 
    237 		req = (enum kauth_process_req)arg1;
    238 
    239 		switch (req) {
    240 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    241 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    242 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    243 			result = KAUTH_RESULT_ALLOW;
    244 
    245 			break;
    246 
    247 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    248 			if (kauth_cred_getuid(cred) !=
    249 			    kauth_cred_getuid(p->p_cred) ||
    250 			    kauth_cred_getuid(cred) !=
    251 			    kauth_cred_getsvuid(p->p_cred))
    252 				break;
    253 
    254 			result = KAUTH_RESULT_ALLOW;
    255 
    256 			break;
    257 
    258 		default:
    259 			break;
    260 		}
    261 
    262 		break;
    263 		}
    264 
    265 	case KAUTH_PROCESS_FORK: {
    266 		int lnprocs = (int)(unsigned long)arg2;
    267 
    268 		/*
    269 		 * Don't allow a nonprivileged user to use the last few
    270 		 * processes. The variable lnprocs is the current number of
    271 		 * processes, maxproc is the limit.
    272 		 */
    273 		if (__predict_false((lnprocs >= maxproc - 5)))
    274 			break;
    275 
    276 		result = KAUTH_RESULT_ALLOW;
    277 
    278 		break;
    279 		}
    280 
    281 	case KAUTH_PROCESS_CORENAME:
    282 	case KAUTH_PROCESS_STOPFLAG:
    283 		if (proc_uidmatch(cred, p->p_cred) == 0)
    284 			result = KAUTH_RESULT_ALLOW;
    285 
    286 		break;
    287 
    288 	default:
    289 		break;
    290 	}
    291 
    292 	return result;
    293 }
    294 
    295 /*
    296  * Initialize global process hashing structures.
    297  */
    298 void
    299 procinit(void)
    300 {
    301 	const struct proclist_desc *pd;
    302 	u_int i;
    303 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    304 
    305 	for (pd = proclists; pd->pd_list != NULL; pd++)
    306 		LIST_INIT(pd->pd_list);
    307 
    308 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    309 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    310 	    * sizeof(struct pid_table), KM_SLEEP);
    311 
    312 	/* Set free list running through table...
    313 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    314 	for (i = 0; i <= pid_tbl_mask; i++) {
    315 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    316 		pid_table[i].pt_pgrp = 0;
    317 		pid_table[i].pt_pid = 0;
    318 	}
    319 	/* slot 0 is just grabbed */
    320 	next_free_pt = 1;
    321 	/* Need to fix last entry. */
    322 	last_free_pt = pid_tbl_mask;
    323 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    324 	/* point at which we grow table - to avoid reusing pids too often */
    325 	pid_alloc_lim = pid_tbl_mask - 1;
    326 #undef LINK_EMPTY
    327 
    328 	proc_specificdata_domain = specificdata_domain_create();
    329 	KASSERT(proc_specificdata_domain != NULL);
    330 
    331 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    332 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    333 
    334 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    335 	    proc_listener_cb, NULL);
    336 }
    337 
    338 /*
    339  * Initialize process 0.
    340  */
    341 void
    342 proc0_init(void)
    343 {
    344 	struct proc *p;
    345 	struct pgrp *pg;
    346 	rlim_t lim;
    347 	int i;
    348 
    349 	p = &proc0;
    350 	pg = &pgrp0;
    351 
    352 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    353 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    354 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    355 
    356 	rw_init(&p->p_reflock);
    357 	cv_init(&p->p_waitcv, "wait");
    358 	cv_init(&p->p_lwpcv, "lwpwait");
    359 
    360 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    361 
    362 	pid_table[0].pt_proc = p;
    363 	LIST_INSERT_HEAD(&allproc, p, p_list);
    364 
    365 	pid_table[0].pt_pgrp = pg;
    366 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    367 
    368 #ifdef __HAVE_SYSCALL_INTERN
    369 	(*p->p_emul->e_syscall_intern)(p);
    370 #endif
    371 
    372 	/* Create credentials. */
    373 	cred0 = kauth_cred_alloc();
    374 	p->p_cred = cred0;
    375 
    376 	/* Create the CWD info. */
    377 	rw_init(&cwdi0.cwdi_lock);
    378 
    379 	/* Create the limits structures. */
    380 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    381 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    382 		limit0.pl_rlimit[i].rlim_cur =
    383 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    384 
    385 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    386 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    387 	    maxfiles < nofile ? maxfiles : nofile;
    388 
    389 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    390 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    391 	    maxproc < maxuprc ? maxproc : maxuprc;
    392 
    393 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    394 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    395 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    396 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    397 	limit0.pl_corename = defcorename;
    398 	limit0.pl_refcnt = 1;
    399 	limit0.pl_sv_limit = NULL;
    400 
    401 	/* Configure virtual memory system, set vm rlimits. */
    402 	uvm_init_limits(p);
    403 
    404 	/* Initialize file descriptor table for proc0. */
    405 	fd_init(&filedesc0);
    406 
    407 	/*
    408 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    409 	 * All kernel processes (which never have user space mappings)
    410 	 * share proc0's vmspace, and thus, the kernel pmap.
    411 	 */
    412 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    413 	    trunc_page(VM_MAX_ADDRESS));
    414 
    415 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    416 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    417 	siginit(p);
    418 
    419 	proc_initspecific(p);
    420 	kdtrace_proc_ctor(NULL, p);
    421 }
    422 
    423 /*
    424  * Session reference counting.
    425  */
    426 
    427 void
    428 proc_sesshold(struct session *ss)
    429 {
    430 
    431 	KASSERT(mutex_owned(proc_lock));
    432 	ss->s_count++;
    433 }
    434 
    435 void
    436 proc_sessrele(struct session *ss)
    437 {
    438 
    439 	KASSERT(mutex_owned(proc_lock));
    440 	/*
    441 	 * We keep the pgrp with the same id as the session in order to
    442 	 * stop a process being given the same pid.  Since the pgrp holds
    443 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    444 	 */
    445 	if (--ss->s_count == 0) {
    446 		struct pgrp *pg;
    447 
    448 		pg = pg_remove(ss->s_sid);
    449 		mutex_exit(proc_lock);
    450 
    451 		kmem_free(pg, sizeof(struct pgrp));
    452 		kmem_free(ss, sizeof(struct session));
    453 	} else {
    454 		mutex_exit(proc_lock);
    455 	}
    456 }
    457 
    458 /*
    459  * Check that the specified process group is in the session of the
    460  * specified process.
    461  * Treats -ve ids as process ids.
    462  * Used to validate TIOCSPGRP requests.
    463  */
    464 int
    465 pgid_in_session(struct proc *p, pid_t pg_id)
    466 {
    467 	struct pgrp *pgrp;
    468 	struct session *session;
    469 	int error;
    470 
    471 	mutex_enter(proc_lock);
    472 	if (pg_id < 0) {
    473 		struct proc *p1 = proc_find(-pg_id);
    474 		if (p1 == NULL) {
    475 			error = EINVAL;
    476 			goto fail;
    477 		}
    478 		pgrp = p1->p_pgrp;
    479 	} else {
    480 		pgrp = pgrp_find(pg_id);
    481 		if (pgrp == NULL) {
    482 			error = EINVAL;
    483 			goto fail;
    484 		}
    485 	}
    486 	session = pgrp->pg_session;
    487 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    488 fail:
    489 	mutex_exit(proc_lock);
    490 	return error;
    491 }
    492 
    493 /*
    494  * p_inferior: is p an inferior of q?
    495  */
    496 static inline bool
    497 p_inferior(struct proc *p, struct proc *q)
    498 {
    499 
    500 	KASSERT(mutex_owned(proc_lock));
    501 
    502 	for (; p != q; p = p->p_pptr)
    503 		if (p->p_pid == 0)
    504 			return false;
    505 	return true;
    506 }
    507 
    508 /*
    509  * proc_find: locate a process by the ID.
    510  *
    511  * => Must be called with proc_lock held.
    512  */
    513 proc_t *
    514 proc_find_raw(pid_t pid)
    515 {
    516 	struct pid_table *pt;
    517 	proc_t *p;
    518 
    519 	KASSERT(mutex_owned(proc_lock));
    520 	pt = &pid_table[pid & pid_tbl_mask];
    521 	p = pt->pt_proc;
    522 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    523 		return NULL;
    524 	}
    525 	return p;
    526 }
    527 
    528 proc_t *
    529 proc_find(pid_t pid)
    530 {
    531 	proc_t *p;
    532 
    533 	p = proc_find_raw(pid);
    534 	if (__predict_false(p == NULL)) {
    535 		return NULL;
    536 	}
    537 
    538 	/*
    539 	 * Only allow live processes to be found by PID.
    540 	 * XXX: p_stat might change, since unlocked.
    541 	 */
    542 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    543 		return p;
    544 	}
    545 	return NULL;
    546 }
    547 
    548 /*
    549  * pgrp_find: locate a process group by the ID.
    550  *
    551  * => Must be called with proc_lock held.
    552  */
    553 struct pgrp *
    554 pgrp_find(pid_t pgid)
    555 {
    556 	struct pgrp *pg;
    557 
    558 	KASSERT(mutex_owned(proc_lock));
    559 
    560 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    561 
    562 	/*
    563 	 * Cannot look up a process group that only exists because the
    564 	 * session has not died yet (traditional).
    565 	 */
    566 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    567 		return NULL;
    568 	}
    569 	return pg;
    570 }
    571 
    572 static void
    573 expand_pid_table(void)
    574 {
    575 	size_t pt_size, tsz;
    576 	struct pid_table *n_pt, *new_pt;
    577 	struct proc *proc;
    578 	struct pgrp *pgrp;
    579 	pid_t pid, rpid;
    580 	u_int i;
    581 	uint new_pt_mask;
    582 
    583 	pt_size = pid_tbl_mask + 1;
    584 	tsz = pt_size * 2 * sizeof(struct pid_table);
    585 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    586 	new_pt_mask = pt_size * 2 - 1;
    587 
    588 	mutex_enter(proc_lock);
    589 	if (pt_size != pid_tbl_mask + 1) {
    590 		/* Another process beat us to it... */
    591 		mutex_exit(proc_lock);
    592 		kmem_free(new_pt, tsz);
    593 		return;
    594 	}
    595 
    596 	/*
    597 	 * Copy entries from old table into new one.
    598 	 * If 'pid' is 'odd' we need to place in the upper half,
    599 	 * even pid's to the lower half.
    600 	 * Free items stay in the low half so we don't have to
    601 	 * fixup the reference to them.
    602 	 * We stuff free items on the front of the freelist
    603 	 * because we can't write to unmodified entries.
    604 	 * Processing the table backwards maintains a semblance
    605 	 * of issuing pid numbers that increase with time.
    606 	 */
    607 	i = pt_size - 1;
    608 	n_pt = new_pt + i;
    609 	for (; ; i--, n_pt--) {
    610 		proc = pid_table[i].pt_proc;
    611 		pgrp = pid_table[i].pt_pgrp;
    612 		if (!P_VALID(proc)) {
    613 			/* Up 'use count' so that link is valid */
    614 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    615 			rpid = 0;
    616 			proc = P_FREE(pid);
    617 			if (pgrp)
    618 				pid = pgrp->pg_id;
    619 		} else {
    620 			pid = pid_table[i].pt_pid;
    621 			rpid = pid;
    622 		}
    623 
    624 		/* Save entry in appropriate half of table */
    625 		n_pt[pid & pt_size].pt_proc = proc;
    626 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    627 		n_pt[pid & pt_size].pt_pid = rpid;
    628 
    629 		/* Put other piece on start of free list */
    630 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    631 		n_pt[pid & pt_size].pt_proc =
    632 			P_FREE((pid & ~pt_size) | next_free_pt);
    633 		n_pt[pid & pt_size].pt_pgrp = 0;
    634 		n_pt[pid & pt_size].pt_pid = 0;
    635 
    636 		next_free_pt = i | (pid & pt_size);
    637 		if (i == 0)
    638 			break;
    639 	}
    640 
    641 	/* Save old table size and switch tables */
    642 	tsz = pt_size * sizeof(struct pid_table);
    643 	n_pt = pid_table;
    644 	pid_table = new_pt;
    645 	pid_tbl_mask = new_pt_mask;
    646 
    647 	/*
    648 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    649 	 * allocated pids we need it to be larger!
    650 	 */
    651 	if (pid_tbl_mask > PID_MAX) {
    652 		pid_max = pid_tbl_mask * 2 + 1;
    653 		pid_alloc_lim |= pid_alloc_lim << 1;
    654 	} else
    655 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    656 
    657 	mutex_exit(proc_lock);
    658 	kmem_free(n_pt, tsz);
    659 }
    660 
    661 struct proc *
    662 proc_alloc(void)
    663 {
    664 	struct proc *p;
    665 
    666 	p = pool_cache_get(proc_cache, PR_WAITOK);
    667 	p->p_stat = SIDL;			/* protect against others */
    668 	proc_initspecific(p);
    669 	kdtrace_proc_ctor(NULL, p);
    670 	p->p_pid = -1;
    671 	proc_alloc_pid(p);
    672 	return p;
    673 }
    674 
    675 pid_t
    676 proc_alloc_pid(struct proc *p)
    677 {
    678 	struct pid_table *pt;
    679 	pid_t pid;
    680 	int nxt;
    681 
    682 	for (;;expand_pid_table()) {
    683 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    684 			/* ensure pids cycle through 2000+ values */
    685 			continue;
    686 		mutex_enter(proc_lock);
    687 		pt = &pid_table[next_free_pt];
    688 #ifdef DIAGNOSTIC
    689 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    690 			panic("proc_alloc: slot busy");
    691 #endif
    692 		nxt = P_NEXT(pt->pt_proc);
    693 		if (nxt & pid_tbl_mask)
    694 			break;
    695 		/* Table full - expand (NB last entry not used....) */
    696 		mutex_exit(proc_lock);
    697 	}
    698 
    699 	/* pid is 'saved use count' + 'size' + entry */
    700 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    701 	if ((uint)pid > (uint)pid_max)
    702 		pid &= pid_tbl_mask;
    703 	next_free_pt = nxt & pid_tbl_mask;
    704 
    705 	/* Grab table slot */
    706 	pt->pt_proc = p;
    707 
    708 	KASSERT(pt->pt_pid == 0);
    709 	pt->pt_pid = pid;
    710 	if (p->p_pid == -1) {
    711 		p->p_pid = pid;
    712 	}
    713 	pid_alloc_cnt++;
    714 	mutex_exit(proc_lock);
    715 
    716 	return pid;
    717 }
    718 
    719 /*
    720  * Free a process id - called from proc_free (in kern_exit.c)
    721  *
    722  * Called with the proc_lock held.
    723  */
    724 void
    725 proc_free_pid(pid_t pid)
    726 {
    727 	struct pid_table *pt;
    728 
    729 	KASSERT(mutex_owned(proc_lock));
    730 
    731 	pt = &pid_table[pid & pid_tbl_mask];
    732 
    733 	/* save pid use count in slot */
    734 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    735 	KASSERT(pt->pt_pid == pid);
    736 	pt->pt_pid = 0;
    737 
    738 	if (pt->pt_pgrp == NULL) {
    739 		/* link last freed entry onto ours */
    740 		pid &= pid_tbl_mask;
    741 		pt = &pid_table[last_free_pt];
    742 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    743 		pt->pt_pid = 0;
    744 		last_free_pt = pid;
    745 		pid_alloc_cnt--;
    746 	}
    747 
    748 	atomic_dec_uint(&nprocs);
    749 }
    750 
    751 void
    752 proc_free_mem(struct proc *p)
    753 {
    754 
    755 	kdtrace_proc_dtor(NULL, p);
    756 	pool_cache_put(proc_cache, p);
    757 }
    758 
    759 /*
    760  * proc_enterpgrp: move p to a new or existing process group (and session).
    761  *
    762  * If we are creating a new pgrp, the pgid should equal
    763  * the calling process' pid.
    764  * If is only valid to enter a process group that is in the session
    765  * of the process.
    766  * Also mksess should only be set if we are creating a process group
    767  *
    768  * Only called from sys_setsid and sys_setpgid.
    769  */
    770 int
    771 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    772 {
    773 	struct pgrp *new_pgrp, *pgrp;
    774 	struct session *sess;
    775 	struct proc *p;
    776 	int rval;
    777 	pid_t pg_id = NO_PGID;
    778 
    779 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    780 
    781 	/* Allocate data areas we might need before doing any validity checks */
    782 	mutex_enter(proc_lock);		/* Because pid_table might change */
    783 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    784 		mutex_exit(proc_lock);
    785 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    786 		mutex_enter(proc_lock);
    787 	} else
    788 		new_pgrp = NULL;
    789 	rval = EPERM;	/* most common error (to save typing) */
    790 
    791 	/* Check pgrp exists or can be created */
    792 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    793 	if (pgrp != NULL && pgrp->pg_id != pgid)
    794 		goto done;
    795 
    796 	/* Can only set another process under restricted circumstances. */
    797 	if (pid != curp->p_pid) {
    798 		/* Must exist and be one of our children... */
    799 		p = proc_find(pid);
    800 		if (p == NULL || !p_inferior(p, curp)) {
    801 			rval = ESRCH;
    802 			goto done;
    803 		}
    804 		/* ... in the same session... */
    805 		if (sess != NULL || p->p_session != curp->p_session)
    806 			goto done;
    807 		/* ... existing pgid must be in same session ... */
    808 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    809 			goto done;
    810 		/* ... and not done an exec. */
    811 		if (p->p_flag & PK_EXEC) {
    812 			rval = EACCES;
    813 			goto done;
    814 		}
    815 	} else {
    816 		/* ... setsid() cannot re-enter a pgrp */
    817 		if (mksess && (curp->p_pgid == curp->p_pid ||
    818 		    pgrp_find(curp->p_pid)))
    819 			goto done;
    820 		p = curp;
    821 	}
    822 
    823 	/* Changing the process group/session of a session
    824 	   leader is definitely off limits. */
    825 	if (SESS_LEADER(p)) {
    826 		if (sess == NULL && p->p_pgrp == pgrp)
    827 			/* unless it's a definite noop */
    828 			rval = 0;
    829 		goto done;
    830 	}
    831 
    832 	/* Can only create a process group with id of process */
    833 	if (pgrp == NULL && pgid != pid)
    834 		goto done;
    835 
    836 	/* Can only create a session if creating pgrp */
    837 	if (sess != NULL && pgrp != NULL)
    838 		goto done;
    839 
    840 	/* Check we allocated memory for a pgrp... */
    841 	if (pgrp == NULL && new_pgrp == NULL)
    842 		goto done;
    843 
    844 	/* Don't attach to 'zombie' pgrp */
    845 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    846 		goto done;
    847 
    848 	/* Expect to succeed now */
    849 	rval = 0;
    850 
    851 	if (pgrp == p->p_pgrp)
    852 		/* nothing to do */
    853 		goto done;
    854 
    855 	/* Ok all setup, link up required structures */
    856 
    857 	if (pgrp == NULL) {
    858 		pgrp = new_pgrp;
    859 		new_pgrp = NULL;
    860 		if (sess != NULL) {
    861 			sess->s_sid = p->p_pid;
    862 			sess->s_leader = p;
    863 			sess->s_count = 1;
    864 			sess->s_ttyvp = NULL;
    865 			sess->s_ttyp = NULL;
    866 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    867 			memcpy(sess->s_login, p->p_session->s_login,
    868 			    sizeof(sess->s_login));
    869 			p->p_lflag &= ~PL_CONTROLT;
    870 		} else {
    871 			sess = p->p_pgrp->pg_session;
    872 			proc_sesshold(sess);
    873 		}
    874 		pgrp->pg_session = sess;
    875 		sess = NULL;
    876 
    877 		pgrp->pg_id = pgid;
    878 		LIST_INIT(&pgrp->pg_members);
    879 #ifdef DIAGNOSTIC
    880 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    881 			panic("enterpgrp: pgrp table slot in use");
    882 		if (__predict_false(mksess && p != curp))
    883 			panic("enterpgrp: mksession and p != curproc");
    884 #endif
    885 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    886 		pgrp->pg_jobc = 0;
    887 	}
    888 
    889 	/*
    890 	 * Adjust eligibility of affected pgrps to participate in job control.
    891 	 * Increment eligibility counts before decrementing, otherwise we
    892 	 * could reach 0 spuriously during the first call.
    893 	 */
    894 	fixjobc(p, pgrp, 1);
    895 	fixjobc(p, p->p_pgrp, 0);
    896 
    897 	/* Interlock with ttread(). */
    898 	mutex_spin_enter(&tty_lock);
    899 
    900 	/* Move process to requested group. */
    901 	LIST_REMOVE(p, p_pglist);
    902 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    903 		/* defer delete until we've dumped the lock */
    904 		pg_id = p->p_pgrp->pg_id;
    905 	p->p_pgrp = pgrp;
    906 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    907 
    908 	/* Done with the swap; we can release the tty mutex. */
    909 	mutex_spin_exit(&tty_lock);
    910 
    911     done:
    912 	if (pg_id != NO_PGID) {
    913 		/* Releases proc_lock. */
    914 		pg_delete(pg_id);
    915 	} else {
    916 		mutex_exit(proc_lock);
    917 	}
    918 	if (sess != NULL)
    919 		kmem_free(sess, sizeof(*sess));
    920 	if (new_pgrp != NULL)
    921 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    922 #ifdef DEBUG_PGRP
    923 	if (__predict_false(rval))
    924 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    925 			pid, pgid, mksess, curp->p_pid, rval);
    926 #endif
    927 	return rval;
    928 }
    929 
    930 /*
    931  * proc_leavepgrp: remove a process from its process group.
    932  *  => must be called with the proc_lock held, which will be released;
    933  */
    934 void
    935 proc_leavepgrp(struct proc *p)
    936 {
    937 	struct pgrp *pgrp;
    938 
    939 	KASSERT(mutex_owned(proc_lock));
    940 
    941 	/* Interlock with ttread() */
    942 	mutex_spin_enter(&tty_lock);
    943 	pgrp = p->p_pgrp;
    944 	LIST_REMOVE(p, p_pglist);
    945 	p->p_pgrp = NULL;
    946 	mutex_spin_exit(&tty_lock);
    947 
    948 	if (LIST_EMPTY(&pgrp->pg_members)) {
    949 		/* Releases proc_lock. */
    950 		pg_delete(pgrp->pg_id);
    951 	} else {
    952 		mutex_exit(proc_lock);
    953 	}
    954 }
    955 
    956 /*
    957  * pg_remove: remove a process group from the table.
    958  *  => must be called with the proc_lock held;
    959  *  => returns process group to free;
    960  */
    961 static struct pgrp *
    962 pg_remove(pid_t pg_id)
    963 {
    964 	struct pgrp *pgrp;
    965 	struct pid_table *pt;
    966 
    967 	KASSERT(mutex_owned(proc_lock));
    968 
    969 	pt = &pid_table[pg_id & pid_tbl_mask];
    970 	pgrp = pt->pt_pgrp;
    971 
    972 	KASSERT(pgrp != NULL);
    973 	KASSERT(pgrp->pg_id == pg_id);
    974 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    975 
    976 	pt->pt_pgrp = NULL;
    977 
    978 	if (!P_VALID(pt->pt_proc)) {
    979 		/* Orphaned pgrp, put slot onto free list. */
    980 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    981 		pg_id &= pid_tbl_mask;
    982 		pt = &pid_table[last_free_pt];
    983 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    984 		KASSERT(pt->pt_pid == 0);
    985 		last_free_pt = pg_id;
    986 		pid_alloc_cnt--;
    987 	}
    988 	return pgrp;
    989 }
    990 
    991 /*
    992  * pg_delete: delete and free a process group.
    993  *  => must be called with the proc_lock held, which will be released.
    994  */
    995 static void
    996 pg_delete(pid_t pg_id)
    997 {
    998 	struct pgrp *pg;
    999 	struct tty *ttyp;
   1000 	struct session *ss;
   1001 
   1002 	KASSERT(mutex_owned(proc_lock));
   1003 
   1004 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1005 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1006 		mutex_exit(proc_lock);
   1007 		return;
   1008 	}
   1009 
   1010 	ss = pg->pg_session;
   1011 
   1012 	/* Remove reference (if any) from tty to this process group */
   1013 	mutex_spin_enter(&tty_lock);
   1014 	ttyp = ss->s_ttyp;
   1015 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1016 		ttyp->t_pgrp = NULL;
   1017 		KASSERT(ttyp->t_session == ss);
   1018 	}
   1019 	mutex_spin_exit(&tty_lock);
   1020 
   1021 	/*
   1022 	 * The leading process group in a session is freed by proc_sessrele(),
   1023 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1024 	 */
   1025 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1026 	proc_sessrele(ss);
   1027 
   1028 	if (pg != NULL) {
   1029 		/* Free it, if was not done by proc_sessrele(). */
   1030 		kmem_free(pg, sizeof(struct pgrp));
   1031 	}
   1032 }
   1033 
   1034 /*
   1035  * Adjust pgrp jobc counters when specified process changes process group.
   1036  * We count the number of processes in each process group that "qualify"
   1037  * the group for terminal job control (those with a parent in a different
   1038  * process group of the same session).  If that count reaches zero, the
   1039  * process group becomes orphaned.  Check both the specified process'
   1040  * process group and that of its children.
   1041  * entering == 0 => p is leaving specified group.
   1042  * entering == 1 => p is entering specified group.
   1043  *
   1044  * Call with proc_lock held.
   1045  */
   1046 void
   1047 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1048 {
   1049 	struct pgrp *hispgrp;
   1050 	struct session *mysession = pgrp->pg_session;
   1051 	struct proc *child;
   1052 
   1053 	KASSERT(mutex_owned(proc_lock));
   1054 
   1055 	/*
   1056 	 * Check p's parent to see whether p qualifies its own process
   1057 	 * group; if so, adjust count for p's process group.
   1058 	 */
   1059 	hispgrp = p->p_pptr->p_pgrp;
   1060 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1061 		if (entering) {
   1062 			pgrp->pg_jobc++;
   1063 			p->p_lflag &= ~PL_ORPHANPG;
   1064 		} else if (--pgrp->pg_jobc == 0)
   1065 			orphanpg(pgrp);
   1066 	}
   1067 
   1068 	/*
   1069 	 * Check this process' children to see whether they qualify
   1070 	 * their process groups; if so, adjust counts for children's
   1071 	 * process groups.
   1072 	 */
   1073 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1074 		hispgrp = child->p_pgrp;
   1075 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1076 		    !P_ZOMBIE(child)) {
   1077 			if (entering) {
   1078 				child->p_lflag &= ~PL_ORPHANPG;
   1079 				hispgrp->pg_jobc++;
   1080 			} else if (--hispgrp->pg_jobc == 0)
   1081 				orphanpg(hispgrp);
   1082 		}
   1083 	}
   1084 }
   1085 
   1086 /*
   1087  * A process group has become orphaned;
   1088  * if there are any stopped processes in the group,
   1089  * hang-up all process in that group.
   1090  *
   1091  * Call with proc_lock held.
   1092  */
   1093 static void
   1094 orphanpg(struct pgrp *pg)
   1095 {
   1096 	struct proc *p;
   1097 
   1098 	KASSERT(mutex_owned(proc_lock));
   1099 
   1100 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1101 		if (p->p_stat == SSTOP) {
   1102 			p->p_lflag |= PL_ORPHANPG;
   1103 			psignal(p, SIGHUP);
   1104 			psignal(p, SIGCONT);
   1105 		}
   1106 	}
   1107 }
   1108 
   1109 #ifdef DDB
   1110 #include <ddb/db_output.h>
   1111 void pidtbl_dump(void);
   1112 void
   1113 pidtbl_dump(void)
   1114 {
   1115 	struct pid_table *pt;
   1116 	struct proc *p;
   1117 	struct pgrp *pgrp;
   1118 	int id;
   1119 
   1120 	db_printf("pid table %p size %x, next %x, last %x\n",
   1121 		pid_table, pid_tbl_mask+1,
   1122 		next_free_pt, last_free_pt);
   1123 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1124 		p = pt->pt_proc;
   1125 		if (!P_VALID(p) && !pt->pt_pgrp)
   1126 			continue;
   1127 		db_printf("  id %x: ", id);
   1128 		if (P_VALID(p))
   1129 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1130 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1131 		else
   1132 			db_printf("next %x use %x\n",
   1133 				P_NEXT(p) & pid_tbl_mask,
   1134 				P_NEXT(p) & ~pid_tbl_mask);
   1135 		if ((pgrp = pt->pt_pgrp)) {
   1136 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1137 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1138 			    pgrp->pg_session->s_count,
   1139 			    pgrp->pg_session->s_login);
   1140 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1141 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1142 			    LIST_FIRST(&pgrp->pg_members));
   1143 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1144 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1145 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1146 			}
   1147 		}
   1148 	}
   1149 }
   1150 #endif /* DDB */
   1151 
   1152 #ifdef KSTACK_CHECK_MAGIC
   1153 
   1154 #define	KSTACK_MAGIC	0xdeadbeaf
   1155 
   1156 /* XXX should be per process basis? */
   1157 static int	kstackleftmin = KSTACK_SIZE;
   1158 static int	kstackleftthres = KSTACK_SIZE / 8;
   1159 
   1160 void
   1161 kstack_setup_magic(const struct lwp *l)
   1162 {
   1163 	uint32_t *ip;
   1164 	uint32_t const *end;
   1165 
   1166 	KASSERT(l != NULL);
   1167 	KASSERT(l != &lwp0);
   1168 
   1169 	/*
   1170 	 * fill all the stack with magic number
   1171 	 * so that later modification on it can be detected.
   1172 	 */
   1173 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1174 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1175 	for (; ip < end; ip++) {
   1176 		*ip = KSTACK_MAGIC;
   1177 	}
   1178 }
   1179 
   1180 void
   1181 kstack_check_magic(const struct lwp *l)
   1182 {
   1183 	uint32_t const *ip, *end;
   1184 	int stackleft;
   1185 
   1186 	KASSERT(l != NULL);
   1187 
   1188 	/* don't check proc0 */ /*XXX*/
   1189 	if (l == &lwp0)
   1190 		return;
   1191 
   1192 #ifdef __MACHINE_STACK_GROWS_UP
   1193 	/* stack grows upwards (eg. hppa) */
   1194 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1195 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1196 	for (ip--; ip >= end; ip--)
   1197 		if (*ip != KSTACK_MAGIC)
   1198 			break;
   1199 
   1200 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1201 #else /* __MACHINE_STACK_GROWS_UP */
   1202 	/* stack grows downwards (eg. i386) */
   1203 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1204 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1205 	for (; ip < end; ip++)
   1206 		if (*ip != KSTACK_MAGIC)
   1207 			break;
   1208 
   1209 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1210 #endif /* __MACHINE_STACK_GROWS_UP */
   1211 
   1212 	if (kstackleftmin > stackleft) {
   1213 		kstackleftmin = stackleft;
   1214 		if (stackleft < kstackleftthres)
   1215 			printf("warning: kernel stack left %d bytes"
   1216 			    "(pid %u:lid %u)\n", stackleft,
   1217 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1218 	}
   1219 
   1220 	if (stackleft <= 0) {
   1221 		panic("magic on the top of kernel stack changed for "
   1222 		    "pid %u, lid %u: maybe kernel stack overflow",
   1223 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1224 	}
   1225 }
   1226 #endif /* KSTACK_CHECK_MAGIC */
   1227 
   1228 int
   1229 proclist_foreach_call(struct proclist *list,
   1230     int (*callback)(struct proc *, void *arg), void *arg)
   1231 {
   1232 	struct proc marker;
   1233 	struct proc *p;
   1234 	int ret = 0;
   1235 
   1236 	marker.p_flag = PK_MARKER;
   1237 	mutex_enter(proc_lock);
   1238 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1239 		if (p->p_flag & PK_MARKER) {
   1240 			p = LIST_NEXT(p, p_list);
   1241 			continue;
   1242 		}
   1243 		LIST_INSERT_AFTER(p, &marker, p_list);
   1244 		ret = (*callback)(p, arg);
   1245 		KASSERT(mutex_owned(proc_lock));
   1246 		p = LIST_NEXT(&marker, p_list);
   1247 		LIST_REMOVE(&marker, p_list);
   1248 	}
   1249 	mutex_exit(proc_lock);
   1250 
   1251 	return ret;
   1252 }
   1253 
   1254 int
   1255 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1256 {
   1257 
   1258 	/* XXXCDC: how should locking work here? */
   1259 
   1260 	/* curproc exception is for coredump. */
   1261 
   1262 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1263 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1264 		return EFAULT;
   1265 	}
   1266 
   1267 	uvmspace_addref(p->p_vmspace);
   1268 	*vm = p->p_vmspace;
   1269 
   1270 	return 0;
   1271 }
   1272 
   1273 /*
   1274  * Acquire a write lock on the process credential.
   1275  */
   1276 void
   1277 proc_crmod_enter(void)
   1278 {
   1279 	struct lwp *l = curlwp;
   1280 	struct proc *p = l->l_proc;
   1281 	struct plimit *lim;
   1282 	kauth_cred_t oc;
   1283 	char *cn;
   1284 
   1285 	/* Reset what needs to be reset in plimit. */
   1286 	if (p->p_limit->pl_corename != defcorename) {
   1287 		lim_privatise(p, false);
   1288 		lim = p->p_limit;
   1289 		mutex_enter(&lim->pl_lock);
   1290 		cn = lim->pl_corename;
   1291 		lim->pl_corename = defcorename;
   1292 		mutex_exit(&lim->pl_lock);
   1293 		if (cn != defcorename)
   1294 			free(cn, M_TEMP);
   1295 	}
   1296 
   1297 	mutex_enter(p->p_lock);
   1298 
   1299 	/* Ensure the LWP cached credentials are up to date. */
   1300 	if ((oc = l->l_cred) != p->p_cred) {
   1301 		kauth_cred_hold(p->p_cred);
   1302 		l->l_cred = p->p_cred;
   1303 		kauth_cred_free(oc);
   1304 	}
   1305 
   1306 }
   1307 
   1308 /*
   1309  * Set in a new process credential, and drop the write lock.  The credential
   1310  * must have a reference already.  Optionally, free a no-longer required
   1311  * credential.  The scheduler also needs to inspect p_cred, so we also
   1312  * briefly acquire the sched state mutex.
   1313  */
   1314 void
   1315 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1316 {
   1317 	struct lwp *l = curlwp, *l2;
   1318 	struct proc *p = l->l_proc;
   1319 	kauth_cred_t oc;
   1320 
   1321 	KASSERT(mutex_owned(p->p_lock));
   1322 
   1323 	/* Is there a new credential to set in? */
   1324 	if (scred != NULL) {
   1325 		p->p_cred = scred;
   1326 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1327 			if (l2 != l)
   1328 				l2->l_prflag |= LPR_CRMOD;
   1329 		}
   1330 
   1331 		/* Ensure the LWP cached credentials are up to date. */
   1332 		if ((oc = l->l_cred) != scred) {
   1333 			kauth_cred_hold(scred);
   1334 			l->l_cred = scred;
   1335 		}
   1336 	} else
   1337 		oc = NULL;	/* XXXgcc */
   1338 
   1339 	if (sugid) {
   1340 		/*
   1341 		 * Mark process as having changed credentials, stops
   1342 		 * tracing etc.
   1343 		 */
   1344 		p->p_flag |= PK_SUGID;
   1345 	}
   1346 
   1347 	mutex_exit(p->p_lock);
   1348 
   1349 	/* If there is a credential to be released, free it now. */
   1350 	if (fcred != NULL) {
   1351 		KASSERT(scred != NULL);
   1352 		kauth_cred_free(fcred);
   1353 		if (oc != scred)
   1354 			kauth_cred_free(oc);
   1355 	}
   1356 }
   1357 
   1358 /*
   1359  * proc_specific_key_create --
   1360  *	Create a key for subsystem proc-specific data.
   1361  */
   1362 int
   1363 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1364 {
   1365 
   1366 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1367 }
   1368 
   1369 /*
   1370  * proc_specific_key_delete --
   1371  *	Delete a key for subsystem proc-specific data.
   1372  */
   1373 void
   1374 proc_specific_key_delete(specificdata_key_t key)
   1375 {
   1376 
   1377 	specificdata_key_delete(proc_specificdata_domain, key);
   1378 }
   1379 
   1380 /*
   1381  * proc_initspecific --
   1382  *	Initialize a proc's specificdata container.
   1383  */
   1384 void
   1385 proc_initspecific(struct proc *p)
   1386 {
   1387 	int error;
   1388 
   1389 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1390 	KASSERT(error == 0);
   1391 }
   1392 
   1393 /*
   1394  * proc_finispecific --
   1395  *	Finalize a proc's specificdata container.
   1396  */
   1397 void
   1398 proc_finispecific(struct proc *p)
   1399 {
   1400 
   1401 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1402 }
   1403 
   1404 /*
   1405  * proc_getspecific --
   1406  *	Return proc-specific data corresponding to the specified key.
   1407  */
   1408 void *
   1409 proc_getspecific(struct proc *p, specificdata_key_t key)
   1410 {
   1411 
   1412 	return (specificdata_getspecific(proc_specificdata_domain,
   1413 					 &p->p_specdataref, key));
   1414 }
   1415 
   1416 /*
   1417  * proc_setspecific --
   1418  *	Set proc-specific data corresponding to the specified key.
   1419  */
   1420 void
   1421 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1422 {
   1423 
   1424 	specificdata_setspecific(proc_specificdata_domain,
   1425 				 &p->p_specdataref, key, data);
   1426 }
   1427 
   1428 int
   1429 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1430 {
   1431 	int r = 0;
   1432 
   1433 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1434 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1435 		/*
   1436 		 * suid proc of ours or proc not ours
   1437 		 */
   1438 		r = EPERM;
   1439 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1440 		/*
   1441 		 * sgid proc has sgid back to us temporarily
   1442 		 */
   1443 		r = EPERM;
   1444 	} else {
   1445 		/*
   1446 		 * our rgid must be in target's group list (ie,
   1447 		 * sub-processes started by a sgid process)
   1448 		 */
   1449 		int ismember = 0;
   1450 
   1451 		if (kauth_cred_ismember_gid(cred,
   1452 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1453 		    !ismember)
   1454 			r = EPERM;
   1455 	}
   1456 
   1457 	return (r);
   1458 }
   1459