Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.163
      1 /*	$NetBSD: kern_proc.c,v 1.163 2010/02/26 18:47:13 jym Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.163 2010/02/26 18:47:13 jym Exp $");
     66 
     67 #include "opt_kstack.h"
     68 #include "opt_maxuprc.h"
     69 #include "opt_dtrace.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/kernel.h>
     74 #include <sys/proc.h>
     75 #include <sys/resourcevar.h>
     76 #include <sys/buf.h>
     77 #include <sys/acct.h>
     78 #include <sys/wait.h>
     79 #include <sys/file.h>
     80 #include <ufs/ufs/quota.h>
     81 #include <sys/uio.h>
     82 #include <sys/pool.h>
     83 #include <sys/pset.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/tty.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/ras.h>
     89 #include <sys/sa.h>
     90 #include <sys/savar.h>
     91 #include <sys/filedesc.h>
     92 #include "sys/syscall_stats.h"
     93 #include <sys/kauth.h>
     94 #include <sys/sleepq.h>
     95 #include <sys/atomic.h>
     96 #include <sys/kmem.h>
     97 #include <sys/dtrace_bsd.h>
     98 
     99 #include <uvm/uvm.h>
    100 #include <uvm/uvm_extern.h>
    101 
    102 /*
    103  * Other process lists
    104  */
    105 
    106 struct proclist allproc;
    107 struct proclist zombproc;	/* resources have been freed */
    108 
    109 kmutex_t	*proc_lock;
    110 
    111 /*
    112  * pid to proc lookup is done by indexing the pid_table array.
    113  * Since pid numbers are only allocated when an empty slot
    114  * has been found, there is no need to search any lists ever.
    115  * (an orphaned pgrp will lock the slot, a session will lock
    116  * the pgrp with the same number.)
    117  * If the table is too small it is reallocated with twice the
    118  * previous size and the entries 'unzipped' into the two halves.
    119  * A linked list of free entries is passed through the pt_proc
    120  * field of 'free' items - set odd to be an invalid ptr.
    121  */
    122 
    123 struct pid_table {
    124 	struct proc	*pt_proc;
    125 	struct pgrp	*pt_pgrp;
    126 };
    127 #if 1	/* strongly typed cast - should be a noop */
    128 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    129 #else
    130 #define p2u(p) ((uint)p)
    131 #endif
    132 #define P_VALID(p) (!(p2u(p) & 1))
    133 #define P_NEXT(p) (p2u(p) >> 1)
    134 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    135 
    136 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    137 static struct pid_table *pid_table;
    138 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    139 static uint pid_alloc_lim;	/* max we allocate before growing table */
    140 static uint pid_alloc_cnt;	/* number of allocated pids */
    141 
    142 /* links through free slots - never empty! */
    143 static uint next_free_pt, last_free_pt;
    144 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    145 
    146 /* Components of the first process -- never freed. */
    147 
    148 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    149 
    150 struct session session0 = {
    151 	.s_count = 1,
    152 	.s_sid = 0,
    153 };
    154 struct pgrp pgrp0 = {
    155 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    156 	.pg_session = &session0,
    157 };
    158 filedesc_t filedesc0;
    159 struct cwdinfo cwdi0 = {
    160 	.cwdi_cmask = CMASK,		/* see cmask below */
    161 	.cwdi_refcnt = 1,
    162 };
    163 struct plimit limit0;
    164 struct pstats pstat0;
    165 struct vmspace vmspace0;
    166 struct sigacts sigacts0;
    167 struct turnstile turnstile0;
    168 struct proc proc0 = {
    169 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    170 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    171 	.p_nlwps = 1,
    172 	.p_nrlwps = 1,
    173 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    174 	.p_pgrp = &pgrp0,
    175 	.p_comm = "system",
    176 	/*
    177 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    178 	 * when they exit.  init(8) can easily wait them out for us.
    179 	 */
    180 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    181 	.p_stat = SACTIVE,
    182 	.p_nice = NZERO,
    183 	.p_emul = &emul_netbsd,
    184 	.p_cwdi = &cwdi0,
    185 	.p_limit = &limit0,
    186 	.p_fd = &filedesc0,
    187 	.p_vmspace = &vmspace0,
    188 	.p_stats = &pstat0,
    189 	.p_sigacts = &sigacts0,
    190 };
    191 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    192 #ifdef LWP0_CPU_INFO
    193 	.l_cpu = LWP0_CPU_INFO,
    194 #endif
    195 	.l_proc = &proc0,
    196 	.l_lid = 1,
    197 	.l_flag = LW_SYSTEM,
    198 	.l_stat = LSONPROC,
    199 	.l_ts = &turnstile0,
    200 	.l_syncobj = &sched_syncobj,
    201 	.l_refcnt = 1,
    202 	.l_priority = PRI_USER + NPRI_USER - 1,
    203 	.l_inheritedprio = -1,
    204 	.l_class = SCHED_OTHER,
    205 	.l_psid = PS_NONE,
    206 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    207 	.l_name = __UNCONST("swapper"),
    208 	.l_fd = &filedesc0,
    209 };
    210 kauth_cred_t cred0;
    211 
    212 int nofile = NOFILE;
    213 int maxuprc = MAXUPRC;
    214 int cmask = CMASK;
    215 
    216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    218 
    219 /*
    220  * The process list descriptors, used during pid allocation and
    221  * by sysctl.  No locking on this data structure is needed since
    222  * it is completely static.
    223  */
    224 const struct proclist_desc proclists[] = {
    225 	{ &allproc	},
    226 	{ &zombproc	},
    227 	{ NULL		},
    228 };
    229 
    230 static struct pgrp *	pg_remove(pid_t);
    231 static void		pg_delete(pid_t);
    232 static void		orphanpg(struct pgrp *);
    233 
    234 static specificdata_domain_t proc_specificdata_domain;
    235 
    236 static pool_cache_t proc_cache;
    237 
    238 static kauth_listener_t proc_listener;
    239 
    240 static int
    241 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    242     void *arg0, void *arg1, void *arg2, void *arg3)
    243 {
    244 	struct proc *p;
    245 	int result;
    246 
    247 	result = KAUTH_RESULT_DEFER;
    248 	p = arg0;
    249 
    250 	switch (action) {
    251 	case KAUTH_PROCESS_CANSEE: {
    252 		enum kauth_process_req req;
    253 
    254 		req = (enum kauth_process_req)arg1;
    255 
    256 		switch (req) {
    257 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    258 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    259 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    260 			result = KAUTH_RESULT_ALLOW;
    261 
    262 			break;
    263 
    264 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    265 			if (kauth_cred_getuid(cred) !=
    266 			    kauth_cred_getuid(p->p_cred) ||
    267 			    kauth_cred_getuid(cred) !=
    268 			    kauth_cred_getsvuid(p->p_cred))
    269 				break;
    270 
    271 			result = KAUTH_RESULT_ALLOW;
    272 
    273 			break;
    274 
    275 		default:
    276 			break;
    277 		}
    278 
    279 		break;
    280 		}
    281 
    282 	case KAUTH_PROCESS_FORK: {
    283 		int lnprocs = (int)(unsigned long)arg2;
    284 
    285 		/*
    286 		 * Don't allow a nonprivileged user to use the last few
    287 		 * processes. The variable lnprocs is the current number of
    288 		 * processes, maxproc is the limit.
    289 		 */
    290 		if (__predict_false((lnprocs >= maxproc - 5)))
    291 			break;
    292 
    293 		result = KAUTH_RESULT_ALLOW;
    294 
    295 		break;
    296 		}
    297 
    298 	case KAUTH_PROCESS_CORENAME:
    299 	case KAUTH_PROCESS_STOPFLAG:
    300 		if (proc_uidmatch(cred, p->p_cred) == 0)
    301 			result = KAUTH_RESULT_ALLOW;
    302 
    303 		break;
    304 
    305 	default:
    306 		break;
    307 	}
    308 
    309 	return result;
    310 }
    311 
    312 /*
    313  * Initialize global process hashing structures.
    314  */
    315 void
    316 procinit(void)
    317 {
    318 	const struct proclist_desc *pd;
    319 	u_int i;
    320 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    321 
    322 	for (pd = proclists; pd->pd_list != NULL; pd++)
    323 		LIST_INIT(pd->pd_list);
    324 
    325 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    326 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    327 	    * sizeof(struct pid_table), KM_SLEEP);
    328 
    329 	/* Set free list running through table...
    330 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    331 	for (i = 0; i <= pid_tbl_mask; i++) {
    332 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    333 		pid_table[i].pt_pgrp = 0;
    334 	}
    335 	/* slot 0 is just grabbed */
    336 	next_free_pt = 1;
    337 	/* Need to fix last entry. */
    338 	last_free_pt = pid_tbl_mask;
    339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    340 	/* point at which we grow table - to avoid reusing pids too often */
    341 	pid_alloc_lim = pid_tbl_mask - 1;
    342 #undef LINK_EMPTY
    343 
    344 	proc_specificdata_domain = specificdata_domain_create();
    345 	KASSERT(proc_specificdata_domain != NULL);
    346 
    347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    349 
    350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    351 	    proc_listener_cb, NULL);
    352 }
    353 
    354 /*
    355  * Initialize process 0.
    356  */
    357 void
    358 proc0_init(void)
    359 {
    360 	struct proc *p;
    361 	struct pgrp *pg;
    362 	struct lwp *l;
    363 	rlim_t lim;
    364 	int i;
    365 
    366 	p = &proc0;
    367 	pg = &pgrp0;
    368 	l = &lwp0;
    369 
    370 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    371 	KASSERT(l->l_lid == p->p_nlwpid);
    372 
    373 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    374 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    375 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    376 
    377 	rw_init(&p->p_reflock);
    378 	cv_init(&p->p_waitcv, "wait");
    379 	cv_init(&p->p_lwpcv, "lwpwait");
    380 
    381 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    382 
    383 	pid_table[0].pt_proc = p;
    384 	LIST_INSERT_HEAD(&allproc, p, p_list);
    385 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    386 
    387 	pid_table[0].pt_pgrp = pg;
    388 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    389 
    390 #ifdef __HAVE_SYSCALL_INTERN
    391 	(*p->p_emul->e_syscall_intern)(p);
    392 #endif
    393 
    394 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    395 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    396 	cv_init(&l->l_sigcv, "sigwait");
    397 
    398 	/* Create credentials. */
    399 	cred0 = kauth_cred_alloc();
    400 	p->p_cred = cred0;
    401 	kauth_cred_hold(cred0);
    402 	l->l_cred = cred0;
    403 
    404 	/* Create the CWD info. */
    405 	rw_init(&cwdi0.cwdi_lock);
    406 
    407 	/* Create the limits structures. */
    408 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    409 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    410 		limit0.pl_rlimit[i].rlim_cur =
    411 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    412 
    413 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    414 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    415 	    maxfiles < nofile ? maxfiles : nofile;
    416 
    417 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    418 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    419 	    maxproc < maxuprc ? maxproc : maxuprc;
    420 
    421 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    422 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    423 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    424 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    425 	limit0.pl_corename = defcorename;
    426 	limit0.pl_refcnt = 1;
    427 	limit0.pl_sv_limit = NULL;
    428 
    429 	/* Configure virtual memory system, set vm rlimits. */
    430 	uvm_init_limits(p);
    431 
    432 	/* Initialize file descriptor table for proc0. */
    433 	fd_init(&filedesc0);
    434 
    435 	/*
    436 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    437 	 * All kernel processes (which never have user space mappings)
    438 	 * share proc0's vmspace, and thus, the kernel pmap.
    439 	 */
    440 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    441 	    trunc_page(VM_MAX_ADDRESS));
    442 
    443 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    444 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    445 	siginit(p);
    446 
    447 	kdtrace_proc_ctor(NULL, p);
    448 
    449 	proc_initspecific(p);
    450 	lwp_initspecific(l);
    451 
    452 	SYSCALL_TIME_LWP_INIT(l);
    453 }
    454 
    455 /*
    456  * Session reference counting.
    457  */
    458 
    459 void
    460 proc_sesshold(struct session *ss)
    461 {
    462 
    463 	KASSERT(mutex_owned(proc_lock));
    464 	ss->s_count++;
    465 }
    466 
    467 void
    468 proc_sessrele(struct session *ss)
    469 {
    470 
    471 	KASSERT(mutex_owned(proc_lock));
    472 	/*
    473 	 * We keep the pgrp with the same id as the session in order to
    474 	 * stop a process being given the same pid.  Since the pgrp holds
    475 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    476 	 */
    477 	if (--ss->s_count == 0) {
    478 		struct pgrp *pg;
    479 
    480 		pg = pg_remove(ss->s_sid);
    481 		mutex_exit(proc_lock);
    482 
    483 		kmem_free(pg, sizeof(struct pgrp));
    484 		kmem_free(ss, sizeof(struct session));
    485 	} else {
    486 		mutex_exit(proc_lock);
    487 	}
    488 }
    489 
    490 /*
    491  * Check that the specified process group is in the session of the
    492  * specified process.
    493  * Treats -ve ids as process ids.
    494  * Used to validate TIOCSPGRP requests.
    495  */
    496 int
    497 pgid_in_session(struct proc *p, pid_t pg_id)
    498 {
    499 	struct pgrp *pgrp;
    500 	struct session *session;
    501 	int error;
    502 
    503 	mutex_enter(proc_lock);
    504 	if (pg_id < 0) {
    505 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    506 		if (p1 == NULL)
    507 			return EINVAL;
    508 		pgrp = p1->p_pgrp;
    509 	} else {
    510 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    511 		if (pgrp == NULL)
    512 			return EINVAL;
    513 	}
    514 	session = pgrp->pg_session;
    515 	if (session != p->p_pgrp->pg_session)
    516 		error = EPERM;
    517 	else
    518 		error = 0;
    519 	mutex_exit(proc_lock);
    520 
    521 	return error;
    522 }
    523 
    524 /*
    525  * p_inferior: is p an inferior of q?
    526  */
    527 static inline bool
    528 p_inferior(struct proc *p, struct proc *q)
    529 {
    530 
    531 	KASSERT(mutex_owned(proc_lock));
    532 
    533 	for (; p != q; p = p->p_pptr)
    534 		if (p->p_pid == 0)
    535 			return false;
    536 	return true;
    537 }
    538 
    539 /*
    540  * Locate a process by number
    541  */
    542 struct proc *
    543 p_find(pid_t pid, uint flags)
    544 {
    545 	struct proc *p;
    546 	char stat;
    547 
    548 	if (!(flags & PFIND_LOCKED))
    549 		mutex_enter(proc_lock);
    550 
    551 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    552 
    553 	/* Only allow live processes to be found by pid. */
    554 	/* XXXSMP p_stat */
    555 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    556 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    557 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    558 		if (flags & PFIND_UNLOCK_OK)
    559 			 mutex_exit(proc_lock);
    560 		return p;
    561 	}
    562 	if (flags & PFIND_UNLOCK_FAIL)
    563 		mutex_exit(proc_lock);
    564 	return NULL;
    565 }
    566 
    567 
    568 /*
    569  * Locate a process group by number
    570  */
    571 struct pgrp *
    572 pg_find(pid_t pgid, uint flags)
    573 {
    574 	struct pgrp *pg;
    575 
    576 	if (!(flags & PFIND_LOCKED))
    577 		mutex_enter(proc_lock);
    578 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    579 	/*
    580 	 * Can't look up a pgrp that only exists because the session
    581 	 * hasn't died yet (traditional)
    582 	 */
    583 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    584 		if (flags & PFIND_UNLOCK_FAIL)
    585 			 mutex_exit(proc_lock);
    586 		return NULL;
    587 	}
    588 
    589 	if (flags & PFIND_UNLOCK_OK)
    590 		mutex_exit(proc_lock);
    591 	return pg;
    592 }
    593 
    594 static void
    595 expand_pid_table(void)
    596 {
    597 	size_t pt_size, tsz;
    598 	struct pid_table *n_pt, *new_pt;
    599 	struct proc *proc;
    600 	struct pgrp *pgrp;
    601 	pid_t pid;
    602 	u_int i;
    603 
    604 	pt_size = pid_tbl_mask + 1;
    605 	tsz = pt_size * 2 * sizeof(struct pid_table);
    606 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    607 
    608 	mutex_enter(proc_lock);
    609 	if (pt_size != pid_tbl_mask + 1) {
    610 		/* Another process beat us to it... */
    611 		mutex_exit(proc_lock);
    612 		kmem_free(new_pt, tsz);
    613 		return;
    614 	}
    615 
    616 	/*
    617 	 * Copy entries from old table into new one.
    618 	 * If 'pid' is 'odd' we need to place in the upper half,
    619 	 * even pid's to the lower half.
    620 	 * Free items stay in the low half so we don't have to
    621 	 * fixup the reference to them.
    622 	 * We stuff free items on the front of the freelist
    623 	 * because we can't write to unmodified entries.
    624 	 * Processing the table backwards maintains a semblance
    625 	 * of issueing pid numbers that increase with time.
    626 	 */
    627 	i = pt_size - 1;
    628 	n_pt = new_pt + i;
    629 	for (; ; i--, n_pt--) {
    630 		proc = pid_table[i].pt_proc;
    631 		pgrp = pid_table[i].pt_pgrp;
    632 		if (!P_VALID(proc)) {
    633 			/* Up 'use count' so that link is valid */
    634 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    635 			proc = P_FREE(pid);
    636 			if (pgrp)
    637 				pid = pgrp->pg_id;
    638 		} else
    639 			pid = proc->p_pid;
    640 
    641 		/* Save entry in appropriate half of table */
    642 		n_pt[pid & pt_size].pt_proc = proc;
    643 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    644 
    645 		/* Put other piece on start of free list */
    646 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    647 		n_pt[pid & pt_size].pt_proc =
    648 				    P_FREE((pid & ~pt_size) | next_free_pt);
    649 		n_pt[pid & pt_size].pt_pgrp = 0;
    650 		next_free_pt = i | (pid & pt_size);
    651 		if (i == 0)
    652 			break;
    653 	}
    654 
    655 	/* Save old table size and switch tables */
    656 	tsz = pt_size * sizeof(struct pid_table);
    657 	n_pt = pid_table;
    658 	pid_table = new_pt;
    659 	pid_tbl_mask = pt_size * 2 - 1;
    660 
    661 	/*
    662 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    663 	 * allocated pids we need it to be larger!
    664 	 */
    665 	if (pid_tbl_mask > PID_MAX) {
    666 		pid_max = pid_tbl_mask * 2 + 1;
    667 		pid_alloc_lim |= pid_alloc_lim << 1;
    668 	} else
    669 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    670 
    671 	mutex_exit(proc_lock);
    672 	kmem_free(n_pt, tsz);
    673 }
    674 
    675 struct proc *
    676 proc_alloc(void)
    677 {
    678 	struct proc *p;
    679 	int nxt;
    680 	pid_t pid;
    681 	struct pid_table *pt;
    682 
    683 	p = pool_cache_get(proc_cache, PR_WAITOK);
    684 	p->p_stat = SIDL;			/* protect against others */
    685 
    686 	proc_initspecific(p);
    687 	/* allocate next free pid */
    688 
    689 	for (;;expand_pid_table()) {
    690 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    691 			/* ensure pids cycle through 2000+ values */
    692 			continue;
    693 		mutex_enter(proc_lock);
    694 		pt = &pid_table[next_free_pt];
    695 #ifdef DIAGNOSTIC
    696 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    697 			panic("proc_alloc: slot busy");
    698 #endif
    699 		nxt = P_NEXT(pt->pt_proc);
    700 		if (nxt & pid_tbl_mask)
    701 			break;
    702 		/* Table full - expand (NB last entry not used....) */
    703 		mutex_exit(proc_lock);
    704 	}
    705 
    706 	/* pid is 'saved use count' + 'size' + entry */
    707 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    708 	if ((uint)pid > (uint)pid_max)
    709 		pid &= pid_tbl_mask;
    710 	p->p_pid = pid;
    711 	next_free_pt = nxt & pid_tbl_mask;
    712 
    713 	/* Grab table slot */
    714 	pt->pt_proc = p;
    715 	pid_alloc_cnt++;
    716 
    717 	kdtrace_proc_ctor(NULL, p);
    718 
    719 	mutex_exit(proc_lock);
    720 
    721 	return p;
    722 }
    723 
    724 /*
    725  * Free a process id - called from proc_free (in kern_exit.c)
    726  *
    727  * Called with the proc_lock held.
    728  */
    729 void
    730 proc_free_pid(struct proc *p)
    731 {
    732 	pid_t pid = p->p_pid;
    733 	struct pid_table *pt;
    734 
    735 	KASSERT(mutex_owned(proc_lock));
    736 
    737 	pt = &pid_table[pid & pid_tbl_mask];
    738 #ifdef DIAGNOSTIC
    739 	if (__predict_false(pt->pt_proc != p))
    740 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    741 			pid, p);
    742 #endif
    743 	/* save pid use count in slot */
    744 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    745 
    746 	if (pt->pt_pgrp == NULL) {
    747 		/* link last freed entry onto ours */
    748 		pid &= pid_tbl_mask;
    749 		pt = &pid_table[last_free_pt];
    750 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    751 		last_free_pt = pid;
    752 		pid_alloc_cnt--;
    753 	}
    754 
    755 	atomic_dec_uint(&nprocs);
    756 }
    757 
    758 void
    759 proc_free_mem(struct proc *p)
    760 {
    761 
    762 	kdtrace_proc_dtor(NULL, p);
    763 	pool_cache_put(proc_cache, p);
    764 }
    765 
    766 /*
    767  * proc_enterpgrp: move p to a new or existing process group (and session).
    768  *
    769  * If we are creating a new pgrp, the pgid should equal
    770  * the calling process' pid.
    771  * If is only valid to enter a process group that is in the session
    772  * of the process.
    773  * Also mksess should only be set if we are creating a process group
    774  *
    775  * Only called from sys_setsid and sys_setpgid.
    776  */
    777 int
    778 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    779 {
    780 	struct pgrp *new_pgrp, *pgrp;
    781 	struct session *sess;
    782 	struct proc *p;
    783 	int rval;
    784 	pid_t pg_id = NO_PGID;
    785 
    786 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    787 
    788 	/* Allocate data areas we might need before doing any validity checks */
    789 	mutex_enter(proc_lock);		/* Because pid_table might change */
    790 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    791 		mutex_exit(proc_lock);
    792 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    793 		mutex_enter(proc_lock);
    794 	} else
    795 		new_pgrp = NULL;
    796 	rval = EPERM;	/* most common error (to save typing) */
    797 
    798 	/* Check pgrp exists or can be created */
    799 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    800 	if (pgrp != NULL && pgrp->pg_id != pgid)
    801 		goto done;
    802 
    803 	/* Can only set another process under restricted circumstances. */
    804 	if (pid != curp->p_pid) {
    805 		/* must exist and be one of our children... */
    806 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    807 		    !p_inferior(p, curp)) {
    808 			rval = ESRCH;
    809 			goto done;
    810 		}
    811 		/* ... in the same session... */
    812 		if (sess != NULL || p->p_session != curp->p_session)
    813 			goto done;
    814 		/* ... existing pgid must be in same session ... */
    815 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    816 			goto done;
    817 		/* ... and not done an exec. */
    818 		if (p->p_flag & PK_EXEC) {
    819 			rval = EACCES;
    820 			goto done;
    821 		}
    822 	} else {
    823 		/* ... setsid() cannot re-enter a pgrp */
    824 		if (mksess && (curp->p_pgid == curp->p_pid ||
    825 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    826 			goto done;
    827 		p = curp;
    828 	}
    829 
    830 	/* Changing the process group/session of a session
    831 	   leader is definitely off limits. */
    832 	if (SESS_LEADER(p)) {
    833 		if (sess == NULL && p->p_pgrp == pgrp)
    834 			/* unless it's a definite noop */
    835 			rval = 0;
    836 		goto done;
    837 	}
    838 
    839 	/* Can only create a process group with id of process */
    840 	if (pgrp == NULL && pgid != pid)
    841 		goto done;
    842 
    843 	/* Can only create a session if creating pgrp */
    844 	if (sess != NULL && pgrp != NULL)
    845 		goto done;
    846 
    847 	/* Check we allocated memory for a pgrp... */
    848 	if (pgrp == NULL && new_pgrp == NULL)
    849 		goto done;
    850 
    851 	/* Don't attach to 'zombie' pgrp */
    852 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    853 		goto done;
    854 
    855 	/* Expect to succeed now */
    856 	rval = 0;
    857 
    858 	if (pgrp == p->p_pgrp)
    859 		/* nothing to do */
    860 		goto done;
    861 
    862 	/* Ok all setup, link up required structures */
    863 
    864 	if (pgrp == NULL) {
    865 		pgrp = new_pgrp;
    866 		new_pgrp = NULL;
    867 		if (sess != NULL) {
    868 			sess->s_sid = p->p_pid;
    869 			sess->s_leader = p;
    870 			sess->s_count = 1;
    871 			sess->s_ttyvp = NULL;
    872 			sess->s_ttyp = NULL;
    873 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    874 			memcpy(sess->s_login, p->p_session->s_login,
    875 			    sizeof(sess->s_login));
    876 			p->p_lflag &= ~PL_CONTROLT;
    877 		} else {
    878 			sess = p->p_pgrp->pg_session;
    879 			proc_sesshold(sess);
    880 		}
    881 		pgrp->pg_session = sess;
    882 		sess = NULL;
    883 
    884 		pgrp->pg_id = pgid;
    885 		LIST_INIT(&pgrp->pg_members);
    886 #ifdef DIAGNOSTIC
    887 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    888 			panic("enterpgrp: pgrp table slot in use");
    889 		if (__predict_false(mksess && p != curp))
    890 			panic("enterpgrp: mksession and p != curproc");
    891 #endif
    892 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    893 		pgrp->pg_jobc = 0;
    894 	}
    895 
    896 	/*
    897 	 * Adjust eligibility of affected pgrps to participate in job control.
    898 	 * Increment eligibility counts before decrementing, otherwise we
    899 	 * could reach 0 spuriously during the first call.
    900 	 */
    901 	fixjobc(p, pgrp, 1);
    902 	fixjobc(p, p->p_pgrp, 0);
    903 
    904 	/* Interlock with ttread(). */
    905 	mutex_spin_enter(&tty_lock);
    906 
    907 	/* Move process to requested group. */
    908 	LIST_REMOVE(p, p_pglist);
    909 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    910 		/* defer delete until we've dumped the lock */
    911 		pg_id = p->p_pgrp->pg_id;
    912 	p->p_pgrp = pgrp;
    913 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    914 
    915 	/* Done with the swap; we can release the tty mutex. */
    916 	mutex_spin_exit(&tty_lock);
    917 
    918     done:
    919 	if (pg_id != NO_PGID) {
    920 		/* Releases proc_lock. */
    921 		pg_delete(pg_id);
    922 	} else {
    923 		mutex_exit(proc_lock);
    924 	}
    925 	if (sess != NULL)
    926 		kmem_free(sess, sizeof(*sess));
    927 	if (new_pgrp != NULL)
    928 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    929 #ifdef DEBUG_PGRP
    930 	if (__predict_false(rval))
    931 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    932 			pid, pgid, mksess, curp->p_pid, rval);
    933 #endif
    934 	return rval;
    935 }
    936 
    937 /*
    938  * proc_leavepgrp: remove a process from its process group.
    939  *  => must be called with the proc_lock held, which will be released;
    940  */
    941 void
    942 proc_leavepgrp(struct proc *p)
    943 {
    944 	struct pgrp *pgrp;
    945 
    946 	KASSERT(mutex_owned(proc_lock));
    947 
    948 	/* Interlock with ttread() */
    949 	mutex_spin_enter(&tty_lock);
    950 	pgrp = p->p_pgrp;
    951 	LIST_REMOVE(p, p_pglist);
    952 	p->p_pgrp = NULL;
    953 	mutex_spin_exit(&tty_lock);
    954 
    955 	if (LIST_EMPTY(&pgrp->pg_members)) {
    956 		/* Releases proc_lock. */
    957 		pg_delete(pgrp->pg_id);
    958 	} else {
    959 		mutex_exit(proc_lock);
    960 	}
    961 }
    962 
    963 /*
    964  * pg_remove: remove a process group from the table.
    965  *  => must be called with the proc_lock held;
    966  *  => returns process group to free;
    967  */
    968 static struct pgrp *
    969 pg_remove(pid_t pg_id)
    970 {
    971 	struct pgrp *pgrp;
    972 	struct pid_table *pt;
    973 
    974 	KASSERT(mutex_owned(proc_lock));
    975 
    976 	pt = &pid_table[pg_id & pid_tbl_mask];
    977 	pgrp = pt->pt_pgrp;
    978 
    979 	KASSERT(pgrp != NULL);
    980 	KASSERT(pgrp->pg_id == pg_id);
    981 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    982 
    983 	pt->pt_pgrp = NULL;
    984 
    985 	if (!P_VALID(pt->pt_proc)) {
    986 		/* Orphaned pgrp, put slot onto free list. */
    987 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    988 		pg_id &= pid_tbl_mask;
    989 		pt = &pid_table[last_free_pt];
    990 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    991 		last_free_pt = pg_id;
    992 		pid_alloc_cnt--;
    993 	}
    994 	return pgrp;
    995 }
    996 
    997 /*
    998  * pg_delete: delete and free a process group.
    999  *  => must be called with the proc_lock held, which will be released.
   1000  */
   1001 static void
   1002 pg_delete(pid_t pg_id)
   1003 {
   1004 	struct pgrp *pg;
   1005 	struct tty *ttyp;
   1006 	struct session *ss;
   1007 
   1008 	KASSERT(mutex_owned(proc_lock));
   1009 
   1010 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1011 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1012 		mutex_exit(proc_lock);
   1013 		return;
   1014 	}
   1015 
   1016 	ss = pg->pg_session;
   1017 
   1018 	/* Remove reference (if any) from tty to this process group */
   1019 	mutex_spin_enter(&tty_lock);
   1020 	ttyp = ss->s_ttyp;
   1021 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1022 		ttyp->t_pgrp = NULL;
   1023 		KASSERT(ttyp->t_session == ss);
   1024 	}
   1025 	mutex_spin_exit(&tty_lock);
   1026 
   1027 	/*
   1028 	 * The leading process group in a session is freed by proc_sessrele(),
   1029 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1030 	 */
   1031 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1032 	proc_sessrele(ss);
   1033 
   1034 	if (pg != NULL) {
   1035 		/* Free it, if was not done by proc_sessrele(). */
   1036 		kmem_free(pg, sizeof(struct pgrp));
   1037 	}
   1038 }
   1039 
   1040 /*
   1041  * Adjust pgrp jobc counters when specified process changes process group.
   1042  * We count the number of processes in each process group that "qualify"
   1043  * the group for terminal job control (those with a parent in a different
   1044  * process group of the same session).  If that count reaches zero, the
   1045  * process group becomes orphaned.  Check both the specified process'
   1046  * process group and that of its children.
   1047  * entering == 0 => p is leaving specified group.
   1048  * entering == 1 => p is entering specified group.
   1049  *
   1050  * Call with proc_lock held.
   1051  */
   1052 void
   1053 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1054 {
   1055 	struct pgrp *hispgrp;
   1056 	struct session *mysession = pgrp->pg_session;
   1057 	struct proc *child;
   1058 
   1059 	KASSERT(mutex_owned(proc_lock));
   1060 
   1061 	/*
   1062 	 * Check p's parent to see whether p qualifies its own process
   1063 	 * group; if so, adjust count for p's process group.
   1064 	 */
   1065 	hispgrp = p->p_pptr->p_pgrp;
   1066 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1067 		if (entering) {
   1068 			pgrp->pg_jobc++;
   1069 			p->p_lflag &= ~PL_ORPHANPG;
   1070 		} else if (--pgrp->pg_jobc == 0)
   1071 			orphanpg(pgrp);
   1072 	}
   1073 
   1074 	/*
   1075 	 * Check this process' children to see whether they qualify
   1076 	 * their process groups; if so, adjust counts for children's
   1077 	 * process groups.
   1078 	 */
   1079 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1080 		hispgrp = child->p_pgrp;
   1081 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1082 		    !P_ZOMBIE(child)) {
   1083 			if (entering) {
   1084 				child->p_lflag &= ~PL_ORPHANPG;
   1085 				hispgrp->pg_jobc++;
   1086 			} else if (--hispgrp->pg_jobc == 0)
   1087 				orphanpg(hispgrp);
   1088 		}
   1089 	}
   1090 }
   1091 
   1092 /*
   1093  * A process group has become orphaned;
   1094  * if there are any stopped processes in the group,
   1095  * hang-up all process in that group.
   1096  *
   1097  * Call with proc_lock held.
   1098  */
   1099 static void
   1100 orphanpg(struct pgrp *pg)
   1101 {
   1102 	struct proc *p;
   1103 
   1104 	KASSERT(mutex_owned(proc_lock));
   1105 
   1106 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1107 		if (p->p_stat == SSTOP) {
   1108 			p->p_lflag |= PL_ORPHANPG;
   1109 			psignal(p, SIGHUP);
   1110 			psignal(p, SIGCONT);
   1111 		}
   1112 	}
   1113 }
   1114 
   1115 #ifdef DDB
   1116 #include <ddb/db_output.h>
   1117 void pidtbl_dump(void);
   1118 void
   1119 pidtbl_dump(void)
   1120 {
   1121 	struct pid_table *pt;
   1122 	struct proc *p;
   1123 	struct pgrp *pgrp;
   1124 	int id;
   1125 
   1126 	db_printf("pid table %p size %x, next %x, last %x\n",
   1127 		pid_table, pid_tbl_mask+1,
   1128 		next_free_pt, last_free_pt);
   1129 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1130 		p = pt->pt_proc;
   1131 		if (!P_VALID(p) && !pt->pt_pgrp)
   1132 			continue;
   1133 		db_printf("  id %x: ", id);
   1134 		if (P_VALID(p))
   1135 			db_printf("proc %p id %d (0x%x) %s\n",
   1136 				p, p->p_pid, p->p_pid, p->p_comm);
   1137 		else
   1138 			db_printf("next %x use %x\n",
   1139 				P_NEXT(p) & pid_tbl_mask,
   1140 				P_NEXT(p) & ~pid_tbl_mask);
   1141 		if ((pgrp = pt->pt_pgrp)) {
   1142 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1143 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1144 			    pgrp->pg_session->s_count,
   1145 			    pgrp->pg_session->s_login);
   1146 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1147 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1148 			    LIST_FIRST(&pgrp->pg_members));
   1149 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1150 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1151 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1152 			}
   1153 		}
   1154 	}
   1155 }
   1156 #endif /* DDB */
   1157 
   1158 #ifdef KSTACK_CHECK_MAGIC
   1159 
   1160 #define	KSTACK_MAGIC	0xdeadbeaf
   1161 
   1162 /* XXX should be per process basis? */
   1163 static int	kstackleftmin = KSTACK_SIZE;
   1164 static int	kstackleftthres = KSTACK_SIZE / 8;
   1165 
   1166 void
   1167 kstack_setup_magic(const struct lwp *l)
   1168 {
   1169 	uint32_t *ip;
   1170 	uint32_t const *end;
   1171 
   1172 	KASSERT(l != NULL);
   1173 	KASSERT(l != &lwp0);
   1174 
   1175 	/*
   1176 	 * fill all the stack with magic number
   1177 	 * so that later modification on it can be detected.
   1178 	 */
   1179 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1180 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1181 	for (; ip < end; ip++) {
   1182 		*ip = KSTACK_MAGIC;
   1183 	}
   1184 }
   1185 
   1186 void
   1187 kstack_check_magic(const struct lwp *l)
   1188 {
   1189 	uint32_t const *ip, *end;
   1190 	int stackleft;
   1191 
   1192 	KASSERT(l != NULL);
   1193 
   1194 	/* don't check proc0 */ /*XXX*/
   1195 	if (l == &lwp0)
   1196 		return;
   1197 
   1198 #ifdef __MACHINE_STACK_GROWS_UP
   1199 	/* stack grows upwards (eg. hppa) */
   1200 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1201 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1202 	for (ip--; ip >= end; ip--)
   1203 		if (*ip != KSTACK_MAGIC)
   1204 			break;
   1205 
   1206 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1207 #else /* __MACHINE_STACK_GROWS_UP */
   1208 	/* stack grows downwards (eg. i386) */
   1209 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1210 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1211 	for (; ip < end; ip++)
   1212 		if (*ip != KSTACK_MAGIC)
   1213 			break;
   1214 
   1215 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1216 #endif /* __MACHINE_STACK_GROWS_UP */
   1217 
   1218 	if (kstackleftmin > stackleft) {
   1219 		kstackleftmin = stackleft;
   1220 		if (stackleft < kstackleftthres)
   1221 			printf("warning: kernel stack left %d bytes"
   1222 			    "(pid %u:lid %u)\n", stackleft,
   1223 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1224 	}
   1225 
   1226 	if (stackleft <= 0) {
   1227 		panic("magic on the top of kernel stack changed for "
   1228 		    "pid %u, lid %u: maybe kernel stack overflow",
   1229 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1230 	}
   1231 }
   1232 #endif /* KSTACK_CHECK_MAGIC */
   1233 
   1234 int
   1235 proclist_foreach_call(struct proclist *list,
   1236     int (*callback)(struct proc *, void *arg), void *arg)
   1237 {
   1238 	struct proc marker;
   1239 	struct proc *p;
   1240 	int ret = 0;
   1241 
   1242 	marker.p_flag = PK_MARKER;
   1243 	mutex_enter(proc_lock);
   1244 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1245 		if (p->p_flag & PK_MARKER) {
   1246 			p = LIST_NEXT(p, p_list);
   1247 			continue;
   1248 		}
   1249 		LIST_INSERT_AFTER(p, &marker, p_list);
   1250 		ret = (*callback)(p, arg);
   1251 		KASSERT(mutex_owned(proc_lock));
   1252 		p = LIST_NEXT(&marker, p_list);
   1253 		LIST_REMOVE(&marker, p_list);
   1254 	}
   1255 	mutex_exit(proc_lock);
   1256 
   1257 	return ret;
   1258 }
   1259 
   1260 int
   1261 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1262 {
   1263 
   1264 	/* XXXCDC: how should locking work here? */
   1265 
   1266 	/* curproc exception is for coredump. */
   1267 
   1268 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1269 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1270 		return EFAULT;
   1271 	}
   1272 
   1273 	uvmspace_addref(p->p_vmspace);
   1274 	*vm = p->p_vmspace;
   1275 
   1276 	return 0;
   1277 }
   1278 
   1279 /*
   1280  * Acquire a write lock on the process credential.
   1281  */
   1282 void
   1283 proc_crmod_enter(void)
   1284 {
   1285 	struct lwp *l = curlwp;
   1286 	struct proc *p = l->l_proc;
   1287 	struct plimit *lim;
   1288 	kauth_cred_t oc;
   1289 	char *cn;
   1290 
   1291 	/* Reset what needs to be reset in plimit. */
   1292 	if (p->p_limit->pl_corename != defcorename) {
   1293 		lim_privatise(p, false);
   1294 		lim = p->p_limit;
   1295 		mutex_enter(&lim->pl_lock);
   1296 		cn = lim->pl_corename;
   1297 		lim->pl_corename = defcorename;
   1298 		mutex_exit(&lim->pl_lock);
   1299 		if (cn != defcorename)
   1300 			free(cn, M_TEMP);
   1301 	}
   1302 
   1303 	mutex_enter(p->p_lock);
   1304 
   1305 	/* Ensure the LWP cached credentials are up to date. */
   1306 	if ((oc = l->l_cred) != p->p_cred) {
   1307 		kauth_cred_hold(p->p_cred);
   1308 		l->l_cred = p->p_cred;
   1309 		kauth_cred_free(oc);
   1310 	}
   1311 
   1312 }
   1313 
   1314 /*
   1315  * Set in a new process credential, and drop the write lock.  The credential
   1316  * must have a reference already.  Optionally, free a no-longer required
   1317  * credential.  The scheduler also needs to inspect p_cred, so we also
   1318  * briefly acquire the sched state mutex.
   1319  */
   1320 void
   1321 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1322 {
   1323 	struct lwp *l = curlwp, *l2;
   1324 	struct proc *p = l->l_proc;
   1325 	kauth_cred_t oc;
   1326 
   1327 	KASSERT(mutex_owned(p->p_lock));
   1328 
   1329 	/* Is there a new credential to set in? */
   1330 	if (scred != NULL) {
   1331 		p->p_cred = scred;
   1332 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1333 			if (l2 != l)
   1334 				l2->l_prflag |= LPR_CRMOD;
   1335 		}
   1336 
   1337 		/* Ensure the LWP cached credentials are up to date. */
   1338 		if ((oc = l->l_cred) != scred) {
   1339 			kauth_cred_hold(scred);
   1340 			l->l_cred = scred;
   1341 		}
   1342 	} else
   1343 		oc = NULL;	/* XXXgcc */
   1344 
   1345 	if (sugid) {
   1346 		/*
   1347 		 * Mark process as having changed credentials, stops
   1348 		 * tracing etc.
   1349 		 */
   1350 		p->p_flag |= PK_SUGID;
   1351 	}
   1352 
   1353 	mutex_exit(p->p_lock);
   1354 
   1355 	/* If there is a credential to be released, free it now. */
   1356 	if (fcred != NULL) {
   1357 		KASSERT(scred != NULL);
   1358 		kauth_cred_free(fcred);
   1359 		if (oc != scred)
   1360 			kauth_cred_free(oc);
   1361 	}
   1362 }
   1363 
   1364 /*
   1365  * proc_specific_key_create --
   1366  *	Create a key for subsystem proc-specific data.
   1367  */
   1368 int
   1369 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1370 {
   1371 
   1372 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1373 }
   1374 
   1375 /*
   1376  * proc_specific_key_delete --
   1377  *	Delete a key for subsystem proc-specific data.
   1378  */
   1379 void
   1380 proc_specific_key_delete(specificdata_key_t key)
   1381 {
   1382 
   1383 	specificdata_key_delete(proc_specificdata_domain, key);
   1384 }
   1385 
   1386 /*
   1387  * proc_initspecific --
   1388  *	Initialize a proc's specificdata container.
   1389  */
   1390 void
   1391 proc_initspecific(struct proc *p)
   1392 {
   1393 	int error;
   1394 
   1395 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1396 	KASSERT(error == 0);
   1397 }
   1398 
   1399 /*
   1400  * proc_finispecific --
   1401  *	Finalize a proc's specificdata container.
   1402  */
   1403 void
   1404 proc_finispecific(struct proc *p)
   1405 {
   1406 
   1407 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1408 }
   1409 
   1410 /*
   1411  * proc_getspecific --
   1412  *	Return proc-specific data corresponding to the specified key.
   1413  */
   1414 void *
   1415 proc_getspecific(struct proc *p, specificdata_key_t key)
   1416 {
   1417 
   1418 	return (specificdata_getspecific(proc_specificdata_domain,
   1419 					 &p->p_specdataref, key));
   1420 }
   1421 
   1422 /*
   1423  * proc_setspecific --
   1424  *	Set proc-specific data corresponding to the specified key.
   1425  */
   1426 void
   1427 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1428 {
   1429 
   1430 	specificdata_setspecific(proc_specificdata_domain,
   1431 				 &p->p_specdataref, key, data);
   1432 }
   1433 
   1434 int
   1435 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1436 {
   1437 	int r = 0;
   1438 
   1439 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1440 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1441 		/*
   1442 		 * suid proc of ours or proc not ours
   1443 		 */
   1444 		r = EPERM;
   1445 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1446 		/*
   1447 		 * sgid proc has sgid back to us temporarily
   1448 		 */
   1449 		r = EPERM;
   1450 	} else {
   1451 		/*
   1452 		 * our rgid must be in target's group list (ie,
   1453 		 * sub-processes started by a sgid process)
   1454 		 */
   1455 		int ismember = 0;
   1456 
   1457 		if (kauth_cred_ismember_gid(cred,
   1458 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1459 		    !ismember)
   1460 			r = EPERM;
   1461 	}
   1462 
   1463 	return (r);
   1464 }
   1465 
   1466