Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.163.2.4
      1 /*	$NetBSD: kern_proc.c,v 1.163.2.4 2011/05/31 03:05:01 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.163.2.4 2011/05/31 03:05:01 rmind Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/kernel.h>
     77 #include <sys/proc.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/buf.h>
     80 #include <sys/acct.h>
     81 #include <sys/wait.h>
     82 #include <sys/file.h>
     83 #include <ufs/ufs/quota.h>
     84 #include <sys/uio.h>
     85 #include <sys/pool.h>
     86 #include <sys/pset.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/ras.h>
     92 #include <sys/sa.h>
     93 #include <sys/savar.h>
     94 #include <sys/filedesc.h>
     95 #include "sys/syscall_stats.h"
     96 #include <sys/kauth.h>
     97 #include <sys/sleepq.h>
     98 #include <sys/atomic.h>
     99 #include <sys/kmem.h>
    100 #include <sys/dtrace_bsd.h>
    101 #include <sys/sysctl.h>
    102 #include <sys/exec.h>
    103 #include <sys/cpu.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 #include <uvm/uvm_extern.h>
    107 
    108 #ifdef COMPAT_NETBSD32
    109 #include <compat/netbsd32/netbsd32.h>
    110 #endif
    111 
    112 /*
    113  * Process lists.
    114  */
    115 
    116 struct proclist		allproc		__cacheline_aligned;
    117 struct proclist		zombproc	__cacheline_aligned;
    118 
    119 kmutex_t *		proc_lock	__cacheline_aligned;
    120 
    121 /*
    122  * pid to proc lookup is done by indexing the pid_table array.
    123  * Since pid numbers are only allocated when an empty slot
    124  * has been found, there is no need to search any lists ever.
    125  * (an orphaned pgrp will lock the slot, a session will lock
    126  * the pgrp with the same number.)
    127  * If the table is too small it is reallocated with twice the
    128  * previous size and the entries 'unzipped' into the two halves.
    129  * A linked list of free entries is passed through the pt_proc
    130  * field of 'free' items - set odd to be an invalid ptr.
    131  */
    132 
    133 struct pid_table {
    134 	struct proc	*pt_proc;
    135 	struct pgrp	*pt_pgrp;
    136 	pid_t		pt_pid;
    137 };
    138 #if 1	/* strongly typed cast - should be a noop */
    139 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    140 #else
    141 #define p2u(p) ((uint)p)
    142 #endif
    143 #define P_VALID(p) (!(p2u(p) & 1))
    144 #define P_NEXT(p) (p2u(p) >> 1)
    145 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    146 
    147 /*
    148  * Table of process IDs (PIDs).
    149  */
    150 static struct pid_table *pid_table	__read_mostly;
    151 
    152 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    153 
    154 /* Table mask, threshold for growing and number of allocated PIDs. */
    155 static u_int		pid_tbl_mask	__read_mostly;
    156 static u_int		pid_alloc_lim	__read_mostly;
    157 static u_int		pid_alloc_cnt	__cacheline_aligned;
    158 
    159 /* Next free, last free and maximum PIDs. */
    160 static u_int		next_free_pt	__cacheline_aligned;
    161 static u_int		last_free_pt	__cacheline_aligned;
    162 static pid_t		pid_max		__read_mostly;
    163 
    164 /* Components of the first process -- never freed. */
    165 
    166 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    167 
    168 struct session session0 = {
    169 	.s_count = 1,
    170 	.s_sid = 0,
    171 };
    172 struct pgrp pgrp0 = {
    173 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    174 	.pg_session = &session0,
    175 };
    176 filedesc_t filedesc0;
    177 struct cwdinfo cwdi0 = {
    178 	.cwdi_cmask = CMASK,		/* see cmask below */
    179 	.cwdi_refcnt = 1,
    180 };
    181 struct plimit limit0;
    182 struct pstats pstat0;
    183 struct vmspace vmspace0;
    184 struct sigacts sigacts0;
    185 struct proc proc0 = {
    186 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    187 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    188 	.p_nlwps = 1,
    189 	.p_nrlwps = 1,
    190 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    191 	.p_pgrp = &pgrp0,
    192 	.p_comm = "system",
    193 	/*
    194 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    195 	 * when they exit.  init(8) can easily wait them out for us.
    196 	 */
    197 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    198 	.p_stat = SACTIVE,
    199 	.p_nice = NZERO,
    200 	.p_emul = &emul_netbsd,
    201 	.p_cwdi = &cwdi0,
    202 	.p_limit = &limit0,
    203 	.p_fd = &filedesc0,
    204 	.p_vmspace = &vmspace0,
    205 	.p_stats = &pstat0,
    206 	.p_sigacts = &sigacts0,
    207 };
    208 kauth_cred_t cred0;
    209 
    210 static const int	nofile	= NOFILE;
    211 static const int	maxuprc	= MAXUPRC;
    212 static const int	cmask	= CMASK;
    213 
    214 static int sysctl_doeproc(SYSCTLFN_PROTO);
    215 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    216 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
    217 
    218 /*
    219  * The process list descriptors, used during pid allocation and
    220  * by sysctl.  No locking on this data structure is needed since
    221  * it is completely static.
    222  */
    223 const struct proclist_desc proclists[] = {
    224 	{ &allproc	},
    225 	{ &zombproc	},
    226 	{ NULL		},
    227 };
    228 
    229 static struct pgrp *	pg_remove(pid_t);
    230 static void		pg_delete(pid_t);
    231 static void		orphanpg(struct pgrp *);
    232 
    233 static specificdata_domain_t proc_specificdata_domain;
    234 
    235 static pool_cache_t proc_cache;
    236 
    237 static kauth_listener_t proc_listener;
    238 
    239 static int
    240 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    241     void *arg0, void *arg1, void *arg2, void *arg3)
    242 {
    243 	struct proc *p;
    244 	int result;
    245 
    246 	result = KAUTH_RESULT_DEFER;
    247 	p = arg0;
    248 
    249 	switch (action) {
    250 	case KAUTH_PROCESS_CANSEE: {
    251 		enum kauth_process_req req;
    252 
    253 		req = (enum kauth_process_req)arg1;
    254 
    255 		switch (req) {
    256 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    257 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    258 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    259 			result = KAUTH_RESULT_ALLOW;
    260 
    261 			break;
    262 
    263 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    264 			if (kauth_cred_getuid(cred) !=
    265 			    kauth_cred_getuid(p->p_cred) ||
    266 			    kauth_cred_getuid(cred) !=
    267 			    kauth_cred_getsvuid(p->p_cred))
    268 				break;
    269 
    270 			result = KAUTH_RESULT_ALLOW;
    271 
    272 			break;
    273 
    274 		default:
    275 			break;
    276 		}
    277 
    278 		break;
    279 		}
    280 
    281 	case KAUTH_PROCESS_FORK: {
    282 		int lnprocs = (int)(unsigned long)arg2;
    283 
    284 		/*
    285 		 * Don't allow a nonprivileged user to use the last few
    286 		 * processes. The variable lnprocs is the current number of
    287 		 * processes, maxproc is the limit.
    288 		 */
    289 		if (__predict_false((lnprocs >= maxproc - 5)))
    290 			break;
    291 
    292 		result = KAUTH_RESULT_ALLOW;
    293 
    294 		break;
    295 		}
    296 
    297 	case KAUTH_PROCESS_CORENAME:
    298 	case KAUTH_PROCESS_STOPFLAG:
    299 		if (proc_uidmatch(cred, p->p_cred) == 0)
    300 			result = KAUTH_RESULT_ALLOW;
    301 
    302 		break;
    303 
    304 	default:
    305 		break;
    306 	}
    307 
    308 	return result;
    309 }
    310 
    311 /*
    312  * Initialize global process hashing structures.
    313  */
    314 void
    315 procinit(void)
    316 {
    317 	const struct proclist_desc *pd;
    318 	u_int i;
    319 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    320 
    321 	for (pd = proclists; pd->pd_list != NULL; pd++)
    322 		LIST_INIT(pd->pd_list);
    323 
    324 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    325 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    326 	    * sizeof(struct pid_table), KM_SLEEP);
    327 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    328 	pid_max = PID_MAX;
    329 
    330 	/* Set free list running through table...
    331 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    332 	for (i = 0; i <= pid_tbl_mask; i++) {
    333 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    334 		pid_table[i].pt_pgrp = 0;
    335 		pid_table[i].pt_pid = 0;
    336 	}
    337 	/* slot 0 is just grabbed */
    338 	next_free_pt = 1;
    339 	/* Need to fix last entry. */
    340 	last_free_pt = pid_tbl_mask;
    341 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    342 	/* point at which we grow table - to avoid reusing pids too often */
    343 	pid_alloc_lim = pid_tbl_mask - 1;
    344 #undef LINK_EMPTY
    345 
    346 	proc_specificdata_domain = specificdata_domain_create();
    347 	KASSERT(proc_specificdata_domain != NULL);
    348 
    349 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    350 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    351 
    352 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    353 	    proc_listener_cb, NULL);
    354 }
    355 
    356 void
    357 procinit_sysctl(void)
    358 {
    359 	static struct sysctllog *clog;
    360 
    361 	sysctl_createv(&clog, 0, NULL, NULL,
    362 		       CTLFLAG_PERMANENT,
    363 		       CTLTYPE_NODE, "kern", NULL,
    364 		       NULL, 0, NULL, 0,
    365 		       CTL_KERN, CTL_EOL);
    366 
    367 	sysctl_createv(&clog, 0, NULL, NULL,
    368 		       CTLFLAG_PERMANENT,
    369 		       CTLTYPE_NODE, "proc",
    370 		       SYSCTL_DESCR("System-wide process information"),
    371 		       sysctl_doeproc, 0, NULL, 0,
    372 		       CTL_KERN, KERN_PROC, CTL_EOL);
    373 	sysctl_createv(&clog, 0, NULL, NULL,
    374 		       CTLFLAG_PERMANENT,
    375 		       CTLTYPE_NODE, "proc2",
    376 		       SYSCTL_DESCR("Machine-independent process information"),
    377 		       sysctl_doeproc, 0, NULL, 0,
    378 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    379 	sysctl_createv(&clog, 0, NULL, NULL,
    380 		       CTLFLAG_PERMANENT,
    381 		       CTLTYPE_NODE, "proc_args",
    382 		       SYSCTL_DESCR("Process argument information"),
    383 		       sysctl_kern_proc_args, 0, NULL, 0,
    384 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    385 
    386 	/*
    387 	  "nodes" under these:
    388 
    389 	  KERN_PROC_ALL
    390 	  KERN_PROC_PID pid
    391 	  KERN_PROC_PGRP pgrp
    392 	  KERN_PROC_SESSION sess
    393 	  KERN_PROC_TTY tty
    394 	  KERN_PROC_UID uid
    395 	  KERN_PROC_RUID uid
    396 	  KERN_PROC_GID gid
    397 	  KERN_PROC_RGID gid
    398 
    399 	  all in all, probably not worth the effort...
    400 	*/
    401 }
    402 
    403 /*
    404  * Initialize process 0.
    405  */
    406 void
    407 proc0_init(void)
    408 {
    409 	struct proc *p;
    410 	struct pgrp *pg;
    411 	struct rlimit *rlim;
    412 	rlim_t lim;
    413 	int i;
    414 
    415 	p = &proc0;
    416 	pg = &pgrp0;
    417 
    418 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    419 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    420 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    421 
    422 	rw_init(&p->p_reflock);
    423 	cv_init(&p->p_waitcv, "wait");
    424 	cv_init(&p->p_lwpcv, "lwpwait");
    425 
    426 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    427 
    428 	pid_table[0].pt_proc = p;
    429 	LIST_INSERT_HEAD(&allproc, p, p_list);
    430 
    431 	pid_table[0].pt_pgrp = pg;
    432 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    433 
    434 #ifdef __HAVE_SYSCALL_INTERN
    435 	(*p->p_emul->e_syscall_intern)(p);
    436 #endif
    437 
    438 	/* Create credentials. */
    439 	cred0 = kauth_cred_alloc();
    440 	p->p_cred = cred0;
    441 
    442 	/* Create the CWD info. */
    443 	rw_init(&cwdi0.cwdi_lock);
    444 
    445 	/* Create the limits structures. */
    446 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    447 
    448 	rlim = limit0.pl_rlimit;
    449 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    450 		rlim[i].rlim_cur = RLIM_INFINITY;
    451 		rlim[i].rlim_max = RLIM_INFINITY;
    452 	}
    453 
    454 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    455 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    456 
    457 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    458 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    459 
    460 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    461 	rlim[RLIMIT_RSS].rlim_max = lim;
    462 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    463 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    464 
    465 	/* Note that default core name has zero length. */
    466 	limit0.pl_corename = defcorename;
    467 	limit0.pl_cnlen = 0;
    468 	limit0.pl_refcnt = 1;
    469 	limit0.pl_writeable = false;
    470 	limit0.pl_sv_limit = NULL;
    471 
    472 	/* Configure virtual memory system, set vm rlimits. */
    473 	uvm_init_limits(p);
    474 
    475 	/* Initialize file descriptor table for proc0. */
    476 	fd_init(&filedesc0);
    477 
    478 	/*
    479 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    480 	 * All kernel processes (which never have user space mappings)
    481 	 * share proc0's vmspace, and thus, the kernel pmap.
    482 	 */
    483 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    484 	    trunc_page(VM_MAX_ADDRESS));
    485 
    486 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    487 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    488 	siginit(p);
    489 
    490 	proc_initspecific(p);
    491 	kdtrace_proc_ctor(NULL, p);
    492 }
    493 
    494 /*
    495  * Session reference counting.
    496  */
    497 
    498 void
    499 proc_sesshold(struct session *ss)
    500 {
    501 
    502 	KASSERT(mutex_owned(proc_lock));
    503 	ss->s_count++;
    504 }
    505 
    506 void
    507 proc_sessrele(struct session *ss)
    508 {
    509 
    510 	KASSERT(mutex_owned(proc_lock));
    511 	/*
    512 	 * We keep the pgrp with the same id as the session in order to
    513 	 * stop a process being given the same pid.  Since the pgrp holds
    514 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    515 	 */
    516 	if (--ss->s_count == 0) {
    517 		struct pgrp *pg;
    518 
    519 		pg = pg_remove(ss->s_sid);
    520 		mutex_exit(proc_lock);
    521 
    522 		kmem_free(pg, sizeof(struct pgrp));
    523 		kmem_free(ss, sizeof(struct session));
    524 	} else {
    525 		mutex_exit(proc_lock);
    526 	}
    527 }
    528 
    529 /*
    530  * Check that the specified process group is in the session of the
    531  * specified process.
    532  * Treats -ve ids as process ids.
    533  * Used to validate TIOCSPGRP requests.
    534  */
    535 int
    536 pgid_in_session(struct proc *p, pid_t pg_id)
    537 {
    538 	struct pgrp *pgrp;
    539 	struct session *session;
    540 	int error;
    541 
    542 	mutex_enter(proc_lock);
    543 	if (pg_id < 0) {
    544 		struct proc *p1 = proc_find(-pg_id);
    545 		if (p1 == NULL) {
    546 			error = EINVAL;
    547 			goto fail;
    548 		}
    549 		pgrp = p1->p_pgrp;
    550 	} else {
    551 		pgrp = pgrp_find(pg_id);
    552 		if (pgrp == NULL) {
    553 			error = EINVAL;
    554 			goto fail;
    555 		}
    556 	}
    557 	session = pgrp->pg_session;
    558 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    559 fail:
    560 	mutex_exit(proc_lock);
    561 	return error;
    562 }
    563 
    564 /*
    565  * p_inferior: is p an inferior of q?
    566  */
    567 static inline bool
    568 p_inferior(struct proc *p, struct proc *q)
    569 {
    570 
    571 	KASSERT(mutex_owned(proc_lock));
    572 
    573 	for (; p != q; p = p->p_pptr)
    574 		if (p->p_pid == 0)
    575 			return false;
    576 	return true;
    577 }
    578 
    579 /*
    580  * proc_find: locate a process by the ID.
    581  *
    582  * => Must be called with proc_lock held.
    583  */
    584 proc_t *
    585 proc_find_raw(pid_t pid)
    586 {
    587 	struct pid_table *pt;
    588 	proc_t *p;
    589 
    590 	KASSERT(mutex_owned(proc_lock));
    591 	pt = &pid_table[pid & pid_tbl_mask];
    592 	p = pt->pt_proc;
    593 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    594 		return NULL;
    595 	}
    596 	return p;
    597 }
    598 
    599 proc_t *
    600 proc_find(pid_t pid)
    601 {
    602 	proc_t *p;
    603 
    604 	p = proc_find_raw(pid);
    605 	if (__predict_false(p == NULL)) {
    606 		return NULL;
    607 	}
    608 
    609 	/*
    610 	 * Only allow live processes to be found by PID.
    611 	 * XXX: p_stat might change, since unlocked.
    612 	 */
    613 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    614 		return p;
    615 	}
    616 	return NULL;
    617 }
    618 
    619 /*
    620  * pgrp_find: locate a process group by the ID.
    621  *
    622  * => Must be called with proc_lock held.
    623  */
    624 struct pgrp *
    625 pgrp_find(pid_t pgid)
    626 {
    627 	struct pgrp *pg;
    628 
    629 	KASSERT(mutex_owned(proc_lock));
    630 
    631 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    632 
    633 	/*
    634 	 * Cannot look up a process group that only exists because the
    635 	 * session has not died yet (traditional).
    636 	 */
    637 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    638 		return NULL;
    639 	}
    640 	return pg;
    641 }
    642 
    643 static void
    644 expand_pid_table(void)
    645 {
    646 	size_t pt_size, tsz;
    647 	struct pid_table *n_pt, *new_pt;
    648 	struct proc *proc;
    649 	struct pgrp *pgrp;
    650 	pid_t pid, rpid;
    651 	u_int i;
    652 	uint new_pt_mask;
    653 
    654 	pt_size = pid_tbl_mask + 1;
    655 	tsz = pt_size * 2 * sizeof(struct pid_table);
    656 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    657 	new_pt_mask = pt_size * 2 - 1;
    658 
    659 	mutex_enter(proc_lock);
    660 	if (pt_size != pid_tbl_mask + 1) {
    661 		/* Another process beat us to it... */
    662 		mutex_exit(proc_lock);
    663 		kmem_free(new_pt, tsz);
    664 		return;
    665 	}
    666 
    667 	/*
    668 	 * Copy entries from old table into new one.
    669 	 * If 'pid' is 'odd' we need to place in the upper half,
    670 	 * even pid's to the lower half.
    671 	 * Free items stay in the low half so we don't have to
    672 	 * fixup the reference to them.
    673 	 * We stuff free items on the front of the freelist
    674 	 * because we can't write to unmodified entries.
    675 	 * Processing the table backwards maintains a semblance
    676 	 * of issuing pid numbers that increase with time.
    677 	 */
    678 	i = pt_size - 1;
    679 	n_pt = new_pt + i;
    680 	for (; ; i--, n_pt--) {
    681 		proc = pid_table[i].pt_proc;
    682 		pgrp = pid_table[i].pt_pgrp;
    683 		if (!P_VALID(proc)) {
    684 			/* Up 'use count' so that link is valid */
    685 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    686 			rpid = 0;
    687 			proc = P_FREE(pid);
    688 			if (pgrp)
    689 				pid = pgrp->pg_id;
    690 		} else {
    691 			pid = pid_table[i].pt_pid;
    692 			rpid = pid;
    693 		}
    694 
    695 		/* Save entry in appropriate half of table */
    696 		n_pt[pid & pt_size].pt_proc = proc;
    697 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    698 		n_pt[pid & pt_size].pt_pid = rpid;
    699 
    700 		/* Put other piece on start of free list */
    701 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    702 		n_pt[pid & pt_size].pt_proc =
    703 			P_FREE((pid & ~pt_size) | next_free_pt);
    704 		n_pt[pid & pt_size].pt_pgrp = 0;
    705 		n_pt[pid & pt_size].pt_pid = 0;
    706 
    707 		next_free_pt = i | (pid & pt_size);
    708 		if (i == 0)
    709 			break;
    710 	}
    711 
    712 	/* Save old table size and switch tables */
    713 	tsz = pt_size * sizeof(struct pid_table);
    714 	n_pt = pid_table;
    715 	pid_table = new_pt;
    716 	pid_tbl_mask = new_pt_mask;
    717 
    718 	/*
    719 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    720 	 * allocated pids we need it to be larger!
    721 	 */
    722 	if (pid_tbl_mask > PID_MAX) {
    723 		pid_max = pid_tbl_mask * 2 + 1;
    724 		pid_alloc_lim |= pid_alloc_lim << 1;
    725 	} else
    726 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    727 
    728 	mutex_exit(proc_lock);
    729 	kmem_free(n_pt, tsz);
    730 }
    731 
    732 struct proc *
    733 proc_alloc(void)
    734 {
    735 	struct proc *p;
    736 
    737 	p = pool_cache_get(proc_cache, PR_WAITOK);
    738 	p->p_stat = SIDL;			/* protect against others */
    739 	proc_initspecific(p);
    740 	kdtrace_proc_ctor(NULL, p);
    741 	p->p_pid = -1;
    742 	proc_alloc_pid(p);
    743 	return p;
    744 }
    745 
    746 pid_t
    747 proc_alloc_pid(struct proc *p)
    748 {
    749 	struct pid_table *pt;
    750 	pid_t pid;
    751 	int nxt;
    752 
    753 	for (;;expand_pid_table()) {
    754 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    755 			/* ensure pids cycle through 2000+ values */
    756 			continue;
    757 		mutex_enter(proc_lock);
    758 		pt = &pid_table[next_free_pt];
    759 #ifdef DIAGNOSTIC
    760 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    761 			panic("proc_alloc: slot busy");
    762 #endif
    763 		nxt = P_NEXT(pt->pt_proc);
    764 		if (nxt & pid_tbl_mask)
    765 			break;
    766 		/* Table full - expand (NB last entry not used....) */
    767 		mutex_exit(proc_lock);
    768 	}
    769 
    770 	/* pid is 'saved use count' + 'size' + entry */
    771 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    772 	if ((uint)pid > (uint)pid_max)
    773 		pid &= pid_tbl_mask;
    774 	next_free_pt = nxt & pid_tbl_mask;
    775 
    776 	/* Grab table slot */
    777 	pt->pt_proc = p;
    778 
    779 	KASSERT(pt->pt_pid == 0);
    780 	pt->pt_pid = pid;
    781 	if (p->p_pid == -1) {
    782 		p->p_pid = pid;
    783 	}
    784 	pid_alloc_cnt++;
    785 	mutex_exit(proc_lock);
    786 
    787 	return pid;
    788 }
    789 
    790 /*
    791  * Free a process id - called from proc_free (in kern_exit.c)
    792  *
    793  * Called with the proc_lock held.
    794  */
    795 void
    796 proc_free_pid(pid_t pid)
    797 {
    798 	struct pid_table *pt;
    799 
    800 	KASSERT(mutex_owned(proc_lock));
    801 
    802 	pt = &pid_table[pid & pid_tbl_mask];
    803 
    804 	/* save pid use count in slot */
    805 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    806 	KASSERT(pt->pt_pid == pid);
    807 	pt->pt_pid = 0;
    808 
    809 	if (pt->pt_pgrp == NULL) {
    810 		/* link last freed entry onto ours */
    811 		pid &= pid_tbl_mask;
    812 		pt = &pid_table[last_free_pt];
    813 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    814 		pt->pt_pid = 0;
    815 		last_free_pt = pid;
    816 		pid_alloc_cnt--;
    817 	}
    818 
    819 	atomic_dec_uint(&nprocs);
    820 }
    821 
    822 void
    823 proc_free_mem(struct proc *p)
    824 {
    825 
    826 	kdtrace_proc_dtor(NULL, p);
    827 	pool_cache_put(proc_cache, p);
    828 }
    829 
    830 /*
    831  * proc_enterpgrp: move p to a new or existing process group (and session).
    832  *
    833  * If we are creating a new pgrp, the pgid should equal
    834  * the calling process' pid.
    835  * If is only valid to enter a process group that is in the session
    836  * of the process.
    837  * Also mksess should only be set if we are creating a process group
    838  *
    839  * Only called from sys_setsid and sys_setpgid.
    840  */
    841 int
    842 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    843 {
    844 	struct pgrp *new_pgrp, *pgrp;
    845 	struct session *sess;
    846 	struct proc *p;
    847 	int rval;
    848 	pid_t pg_id = NO_PGID;
    849 
    850 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    851 
    852 	/* Allocate data areas we might need before doing any validity checks */
    853 	mutex_enter(proc_lock);		/* Because pid_table might change */
    854 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    855 		mutex_exit(proc_lock);
    856 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    857 		mutex_enter(proc_lock);
    858 	} else
    859 		new_pgrp = NULL;
    860 	rval = EPERM;	/* most common error (to save typing) */
    861 
    862 	/* Check pgrp exists or can be created */
    863 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    864 	if (pgrp != NULL && pgrp->pg_id != pgid)
    865 		goto done;
    866 
    867 	/* Can only set another process under restricted circumstances. */
    868 	if (pid != curp->p_pid) {
    869 		/* Must exist and be one of our children... */
    870 		p = proc_find(pid);
    871 		if (p == NULL || !p_inferior(p, curp)) {
    872 			rval = ESRCH;
    873 			goto done;
    874 		}
    875 		/* ... in the same session... */
    876 		if (sess != NULL || p->p_session != curp->p_session)
    877 			goto done;
    878 		/* ... existing pgid must be in same session ... */
    879 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    880 			goto done;
    881 		/* ... and not done an exec. */
    882 		if (p->p_flag & PK_EXEC) {
    883 			rval = EACCES;
    884 			goto done;
    885 		}
    886 	} else {
    887 		/* ... setsid() cannot re-enter a pgrp */
    888 		if (mksess && (curp->p_pgid == curp->p_pid ||
    889 		    pgrp_find(curp->p_pid)))
    890 			goto done;
    891 		p = curp;
    892 	}
    893 
    894 	/* Changing the process group/session of a session
    895 	   leader is definitely off limits. */
    896 	if (SESS_LEADER(p)) {
    897 		if (sess == NULL && p->p_pgrp == pgrp)
    898 			/* unless it's a definite noop */
    899 			rval = 0;
    900 		goto done;
    901 	}
    902 
    903 	/* Can only create a process group with id of process */
    904 	if (pgrp == NULL && pgid != pid)
    905 		goto done;
    906 
    907 	/* Can only create a session if creating pgrp */
    908 	if (sess != NULL && pgrp != NULL)
    909 		goto done;
    910 
    911 	/* Check we allocated memory for a pgrp... */
    912 	if (pgrp == NULL && new_pgrp == NULL)
    913 		goto done;
    914 
    915 	/* Don't attach to 'zombie' pgrp */
    916 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    917 		goto done;
    918 
    919 	/* Expect to succeed now */
    920 	rval = 0;
    921 
    922 	if (pgrp == p->p_pgrp)
    923 		/* nothing to do */
    924 		goto done;
    925 
    926 	/* Ok all setup, link up required structures */
    927 
    928 	if (pgrp == NULL) {
    929 		pgrp = new_pgrp;
    930 		new_pgrp = NULL;
    931 		if (sess != NULL) {
    932 			sess->s_sid = p->p_pid;
    933 			sess->s_leader = p;
    934 			sess->s_count = 1;
    935 			sess->s_ttyvp = NULL;
    936 			sess->s_ttyp = NULL;
    937 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    938 			memcpy(sess->s_login, p->p_session->s_login,
    939 			    sizeof(sess->s_login));
    940 			p->p_lflag &= ~PL_CONTROLT;
    941 		} else {
    942 			sess = p->p_pgrp->pg_session;
    943 			proc_sesshold(sess);
    944 		}
    945 		pgrp->pg_session = sess;
    946 		sess = NULL;
    947 
    948 		pgrp->pg_id = pgid;
    949 		LIST_INIT(&pgrp->pg_members);
    950 #ifdef DIAGNOSTIC
    951 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    952 			panic("enterpgrp: pgrp table slot in use");
    953 		if (__predict_false(mksess && p != curp))
    954 			panic("enterpgrp: mksession and p != curproc");
    955 #endif
    956 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    957 		pgrp->pg_jobc = 0;
    958 	}
    959 
    960 	/*
    961 	 * Adjust eligibility of affected pgrps to participate in job control.
    962 	 * Increment eligibility counts before decrementing, otherwise we
    963 	 * could reach 0 spuriously during the first call.
    964 	 */
    965 	fixjobc(p, pgrp, 1);
    966 	fixjobc(p, p->p_pgrp, 0);
    967 
    968 	/* Interlock with ttread(). */
    969 	mutex_spin_enter(&tty_lock);
    970 
    971 	/* Move process to requested group. */
    972 	LIST_REMOVE(p, p_pglist);
    973 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    974 		/* defer delete until we've dumped the lock */
    975 		pg_id = p->p_pgrp->pg_id;
    976 	p->p_pgrp = pgrp;
    977 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    978 
    979 	/* Done with the swap; we can release the tty mutex. */
    980 	mutex_spin_exit(&tty_lock);
    981 
    982     done:
    983 	if (pg_id != NO_PGID) {
    984 		/* Releases proc_lock. */
    985 		pg_delete(pg_id);
    986 	} else {
    987 		mutex_exit(proc_lock);
    988 	}
    989 	if (sess != NULL)
    990 		kmem_free(sess, sizeof(*sess));
    991 	if (new_pgrp != NULL)
    992 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    993 #ifdef DEBUG_PGRP
    994 	if (__predict_false(rval))
    995 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    996 			pid, pgid, mksess, curp->p_pid, rval);
    997 #endif
    998 	return rval;
    999 }
   1000 
   1001 /*
   1002  * proc_leavepgrp: remove a process from its process group.
   1003  *  => must be called with the proc_lock held, which will be released;
   1004  */
   1005 void
   1006 proc_leavepgrp(struct proc *p)
   1007 {
   1008 	struct pgrp *pgrp;
   1009 
   1010 	KASSERT(mutex_owned(proc_lock));
   1011 
   1012 	/* Interlock with ttread() */
   1013 	mutex_spin_enter(&tty_lock);
   1014 	pgrp = p->p_pgrp;
   1015 	LIST_REMOVE(p, p_pglist);
   1016 	p->p_pgrp = NULL;
   1017 	mutex_spin_exit(&tty_lock);
   1018 
   1019 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1020 		/* Releases proc_lock. */
   1021 		pg_delete(pgrp->pg_id);
   1022 	} else {
   1023 		mutex_exit(proc_lock);
   1024 	}
   1025 }
   1026 
   1027 /*
   1028  * pg_remove: remove a process group from the table.
   1029  *  => must be called with the proc_lock held;
   1030  *  => returns process group to free;
   1031  */
   1032 static struct pgrp *
   1033 pg_remove(pid_t pg_id)
   1034 {
   1035 	struct pgrp *pgrp;
   1036 	struct pid_table *pt;
   1037 
   1038 	KASSERT(mutex_owned(proc_lock));
   1039 
   1040 	pt = &pid_table[pg_id & pid_tbl_mask];
   1041 	pgrp = pt->pt_pgrp;
   1042 
   1043 	KASSERT(pgrp != NULL);
   1044 	KASSERT(pgrp->pg_id == pg_id);
   1045 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1046 
   1047 	pt->pt_pgrp = NULL;
   1048 
   1049 	if (!P_VALID(pt->pt_proc)) {
   1050 		/* Orphaned pgrp, put slot onto free list. */
   1051 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1052 		pg_id &= pid_tbl_mask;
   1053 		pt = &pid_table[last_free_pt];
   1054 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1055 		KASSERT(pt->pt_pid == 0);
   1056 		last_free_pt = pg_id;
   1057 		pid_alloc_cnt--;
   1058 	}
   1059 	return pgrp;
   1060 }
   1061 
   1062 /*
   1063  * pg_delete: delete and free a process group.
   1064  *  => must be called with the proc_lock held, which will be released.
   1065  */
   1066 static void
   1067 pg_delete(pid_t pg_id)
   1068 {
   1069 	struct pgrp *pg;
   1070 	struct tty *ttyp;
   1071 	struct session *ss;
   1072 
   1073 	KASSERT(mutex_owned(proc_lock));
   1074 
   1075 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1076 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1077 		mutex_exit(proc_lock);
   1078 		return;
   1079 	}
   1080 
   1081 	ss = pg->pg_session;
   1082 
   1083 	/* Remove reference (if any) from tty to this process group */
   1084 	mutex_spin_enter(&tty_lock);
   1085 	ttyp = ss->s_ttyp;
   1086 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1087 		ttyp->t_pgrp = NULL;
   1088 		KASSERT(ttyp->t_session == ss);
   1089 	}
   1090 	mutex_spin_exit(&tty_lock);
   1091 
   1092 	/*
   1093 	 * The leading process group in a session is freed by proc_sessrele(),
   1094 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1095 	 */
   1096 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1097 	proc_sessrele(ss);
   1098 
   1099 	if (pg != NULL) {
   1100 		/* Free it, if was not done by proc_sessrele(). */
   1101 		kmem_free(pg, sizeof(struct pgrp));
   1102 	}
   1103 }
   1104 
   1105 /*
   1106  * Adjust pgrp jobc counters when specified process changes process group.
   1107  * We count the number of processes in each process group that "qualify"
   1108  * the group for terminal job control (those with a parent in a different
   1109  * process group of the same session).  If that count reaches zero, the
   1110  * process group becomes orphaned.  Check both the specified process'
   1111  * process group and that of its children.
   1112  * entering == 0 => p is leaving specified group.
   1113  * entering == 1 => p is entering specified group.
   1114  *
   1115  * Call with proc_lock held.
   1116  */
   1117 void
   1118 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1119 {
   1120 	struct pgrp *hispgrp;
   1121 	struct session *mysession = pgrp->pg_session;
   1122 	struct proc *child;
   1123 
   1124 	KASSERT(mutex_owned(proc_lock));
   1125 
   1126 	/*
   1127 	 * Check p's parent to see whether p qualifies its own process
   1128 	 * group; if so, adjust count for p's process group.
   1129 	 */
   1130 	hispgrp = p->p_pptr->p_pgrp;
   1131 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1132 		if (entering) {
   1133 			pgrp->pg_jobc++;
   1134 			p->p_lflag &= ~PL_ORPHANPG;
   1135 		} else if (--pgrp->pg_jobc == 0)
   1136 			orphanpg(pgrp);
   1137 	}
   1138 
   1139 	/*
   1140 	 * Check this process' children to see whether they qualify
   1141 	 * their process groups; if so, adjust counts for children's
   1142 	 * process groups.
   1143 	 */
   1144 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1145 		hispgrp = child->p_pgrp;
   1146 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1147 		    !P_ZOMBIE(child)) {
   1148 			if (entering) {
   1149 				child->p_lflag &= ~PL_ORPHANPG;
   1150 				hispgrp->pg_jobc++;
   1151 			} else if (--hispgrp->pg_jobc == 0)
   1152 				orphanpg(hispgrp);
   1153 		}
   1154 	}
   1155 }
   1156 
   1157 /*
   1158  * A process group has become orphaned;
   1159  * if there are any stopped processes in the group,
   1160  * hang-up all process in that group.
   1161  *
   1162  * Call with proc_lock held.
   1163  */
   1164 static void
   1165 orphanpg(struct pgrp *pg)
   1166 {
   1167 	struct proc *p;
   1168 
   1169 	KASSERT(mutex_owned(proc_lock));
   1170 
   1171 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1172 		if (p->p_stat == SSTOP) {
   1173 			p->p_lflag |= PL_ORPHANPG;
   1174 			psignal(p, SIGHUP);
   1175 			psignal(p, SIGCONT);
   1176 		}
   1177 	}
   1178 }
   1179 
   1180 #ifdef DDB
   1181 #include <ddb/db_output.h>
   1182 void pidtbl_dump(void);
   1183 void
   1184 pidtbl_dump(void)
   1185 {
   1186 	struct pid_table *pt;
   1187 	struct proc *p;
   1188 	struct pgrp *pgrp;
   1189 	int id;
   1190 
   1191 	db_printf("pid table %p size %x, next %x, last %x\n",
   1192 		pid_table, pid_tbl_mask+1,
   1193 		next_free_pt, last_free_pt);
   1194 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1195 		p = pt->pt_proc;
   1196 		if (!P_VALID(p) && !pt->pt_pgrp)
   1197 			continue;
   1198 		db_printf("  id %x: ", id);
   1199 		if (P_VALID(p))
   1200 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1201 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1202 		else
   1203 			db_printf("next %x use %x\n",
   1204 				P_NEXT(p) & pid_tbl_mask,
   1205 				P_NEXT(p) & ~pid_tbl_mask);
   1206 		if ((pgrp = pt->pt_pgrp)) {
   1207 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1208 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1209 			    pgrp->pg_session->s_count,
   1210 			    pgrp->pg_session->s_login);
   1211 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1212 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1213 			    LIST_FIRST(&pgrp->pg_members));
   1214 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1215 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1216 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1217 			}
   1218 		}
   1219 	}
   1220 }
   1221 #endif /* DDB */
   1222 
   1223 #ifdef KSTACK_CHECK_MAGIC
   1224 
   1225 #define	KSTACK_MAGIC	0xdeadbeaf
   1226 
   1227 /* XXX should be per process basis? */
   1228 static int	kstackleftmin = KSTACK_SIZE;
   1229 static int	kstackleftthres = KSTACK_SIZE / 8;
   1230 
   1231 void
   1232 kstack_setup_magic(const struct lwp *l)
   1233 {
   1234 	uint32_t *ip;
   1235 	uint32_t const *end;
   1236 
   1237 	KASSERT(l != NULL);
   1238 	KASSERT(l != &lwp0);
   1239 
   1240 	/*
   1241 	 * fill all the stack with magic number
   1242 	 * so that later modification on it can be detected.
   1243 	 */
   1244 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1245 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1246 	for (; ip < end; ip++) {
   1247 		*ip = KSTACK_MAGIC;
   1248 	}
   1249 }
   1250 
   1251 void
   1252 kstack_check_magic(const struct lwp *l)
   1253 {
   1254 	uint32_t const *ip, *end;
   1255 	int stackleft;
   1256 
   1257 	KASSERT(l != NULL);
   1258 
   1259 	/* don't check proc0 */ /*XXX*/
   1260 	if (l == &lwp0)
   1261 		return;
   1262 
   1263 #ifdef __MACHINE_STACK_GROWS_UP
   1264 	/* stack grows upwards (eg. hppa) */
   1265 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1266 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1267 	for (ip--; ip >= end; ip--)
   1268 		if (*ip != KSTACK_MAGIC)
   1269 			break;
   1270 
   1271 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1272 #else /* __MACHINE_STACK_GROWS_UP */
   1273 	/* stack grows downwards (eg. i386) */
   1274 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1275 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1276 	for (; ip < end; ip++)
   1277 		if (*ip != KSTACK_MAGIC)
   1278 			break;
   1279 
   1280 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1281 #endif /* __MACHINE_STACK_GROWS_UP */
   1282 
   1283 	if (kstackleftmin > stackleft) {
   1284 		kstackleftmin = stackleft;
   1285 		if (stackleft < kstackleftthres)
   1286 			printf("warning: kernel stack left %d bytes"
   1287 			    "(pid %u:lid %u)\n", stackleft,
   1288 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1289 	}
   1290 
   1291 	if (stackleft <= 0) {
   1292 		panic("magic on the top of kernel stack changed for "
   1293 		    "pid %u, lid %u: maybe kernel stack overflow",
   1294 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1295 	}
   1296 }
   1297 #endif /* KSTACK_CHECK_MAGIC */
   1298 
   1299 int
   1300 proclist_foreach_call(struct proclist *list,
   1301     int (*callback)(struct proc *, void *arg), void *arg)
   1302 {
   1303 	struct proc marker;
   1304 	struct proc *p;
   1305 	int ret = 0;
   1306 
   1307 	marker.p_flag = PK_MARKER;
   1308 	mutex_enter(proc_lock);
   1309 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1310 		if (p->p_flag & PK_MARKER) {
   1311 			p = LIST_NEXT(p, p_list);
   1312 			continue;
   1313 		}
   1314 		LIST_INSERT_AFTER(p, &marker, p_list);
   1315 		ret = (*callback)(p, arg);
   1316 		KASSERT(mutex_owned(proc_lock));
   1317 		p = LIST_NEXT(&marker, p_list);
   1318 		LIST_REMOVE(&marker, p_list);
   1319 	}
   1320 	mutex_exit(proc_lock);
   1321 
   1322 	return ret;
   1323 }
   1324 
   1325 int
   1326 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1327 {
   1328 
   1329 	/* XXXCDC: how should locking work here? */
   1330 
   1331 	/* curproc exception is for coredump. */
   1332 
   1333 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1334 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1335 		return EFAULT;
   1336 	}
   1337 
   1338 	uvmspace_addref(p->p_vmspace);
   1339 	*vm = p->p_vmspace;
   1340 
   1341 	return 0;
   1342 }
   1343 
   1344 /*
   1345  * Acquire a write lock on the process credential.
   1346  */
   1347 void
   1348 proc_crmod_enter(void)
   1349 {
   1350 	struct lwp *l = curlwp;
   1351 	struct proc *p = l->l_proc;
   1352 	kauth_cred_t oc;
   1353 
   1354 	/* Reset what needs to be reset in plimit. */
   1355 	if (p->p_limit->pl_corename != defcorename) {
   1356 		lim_setcorename(p, defcorename, 0);
   1357 	}
   1358 
   1359 	mutex_enter(p->p_lock);
   1360 
   1361 	/* Ensure the LWP cached credentials are up to date. */
   1362 	if ((oc = l->l_cred) != p->p_cred) {
   1363 		kauth_cred_hold(p->p_cred);
   1364 		l->l_cred = p->p_cred;
   1365 		kauth_cred_free(oc);
   1366 	}
   1367 }
   1368 
   1369 /*
   1370  * Set in a new process credential, and drop the write lock.  The credential
   1371  * must have a reference already.  Optionally, free a no-longer required
   1372  * credential.  The scheduler also needs to inspect p_cred, so we also
   1373  * briefly acquire the sched state mutex.
   1374  */
   1375 void
   1376 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1377 {
   1378 	struct lwp *l = curlwp, *l2;
   1379 	struct proc *p = l->l_proc;
   1380 	kauth_cred_t oc;
   1381 
   1382 	KASSERT(mutex_owned(p->p_lock));
   1383 
   1384 	/* Is there a new credential to set in? */
   1385 	if (scred != NULL) {
   1386 		p->p_cred = scred;
   1387 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1388 			if (l2 != l)
   1389 				l2->l_prflag |= LPR_CRMOD;
   1390 		}
   1391 
   1392 		/* Ensure the LWP cached credentials are up to date. */
   1393 		if ((oc = l->l_cred) != scred) {
   1394 			kauth_cred_hold(scred);
   1395 			l->l_cred = scred;
   1396 		}
   1397 	} else
   1398 		oc = NULL;	/* XXXgcc */
   1399 
   1400 	if (sugid) {
   1401 		/*
   1402 		 * Mark process as having changed credentials, stops
   1403 		 * tracing etc.
   1404 		 */
   1405 		p->p_flag |= PK_SUGID;
   1406 	}
   1407 
   1408 	mutex_exit(p->p_lock);
   1409 
   1410 	/* If there is a credential to be released, free it now. */
   1411 	if (fcred != NULL) {
   1412 		KASSERT(scred != NULL);
   1413 		kauth_cred_free(fcred);
   1414 		if (oc != scred)
   1415 			kauth_cred_free(oc);
   1416 	}
   1417 }
   1418 
   1419 /*
   1420  * proc_specific_key_create --
   1421  *	Create a key for subsystem proc-specific data.
   1422  */
   1423 int
   1424 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1425 {
   1426 
   1427 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1428 }
   1429 
   1430 /*
   1431  * proc_specific_key_delete --
   1432  *	Delete a key for subsystem proc-specific data.
   1433  */
   1434 void
   1435 proc_specific_key_delete(specificdata_key_t key)
   1436 {
   1437 
   1438 	specificdata_key_delete(proc_specificdata_domain, key);
   1439 }
   1440 
   1441 /*
   1442  * proc_initspecific --
   1443  *	Initialize a proc's specificdata container.
   1444  */
   1445 void
   1446 proc_initspecific(struct proc *p)
   1447 {
   1448 	int error;
   1449 
   1450 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1451 	KASSERT(error == 0);
   1452 }
   1453 
   1454 /*
   1455  * proc_finispecific --
   1456  *	Finalize a proc's specificdata container.
   1457  */
   1458 void
   1459 proc_finispecific(struct proc *p)
   1460 {
   1461 
   1462 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1463 }
   1464 
   1465 /*
   1466  * proc_getspecific --
   1467  *	Return proc-specific data corresponding to the specified key.
   1468  */
   1469 void *
   1470 proc_getspecific(struct proc *p, specificdata_key_t key)
   1471 {
   1472 
   1473 	return (specificdata_getspecific(proc_specificdata_domain,
   1474 					 &p->p_specdataref, key));
   1475 }
   1476 
   1477 /*
   1478  * proc_setspecific --
   1479  *	Set proc-specific data corresponding to the specified key.
   1480  */
   1481 void
   1482 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1483 {
   1484 
   1485 	specificdata_setspecific(proc_specificdata_domain,
   1486 				 &p->p_specdataref, key, data);
   1487 }
   1488 
   1489 int
   1490 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1491 {
   1492 	int r = 0;
   1493 
   1494 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1495 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1496 		/*
   1497 		 * suid proc of ours or proc not ours
   1498 		 */
   1499 		r = EPERM;
   1500 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1501 		/*
   1502 		 * sgid proc has sgid back to us temporarily
   1503 		 */
   1504 		r = EPERM;
   1505 	} else {
   1506 		/*
   1507 		 * our rgid must be in target's group list (ie,
   1508 		 * sub-processes started by a sgid process)
   1509 		 */
   1510 		int ismember = 0;
   1511 
   1512 		if (kauth_cred_ismember_gid(cred,
   1513 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1514 		    !ismember)
   1515 			r = EPERM;
   1516 	}
   1517 
   1518 	return (r);
   1519 }
   1520 
   1521 /*
   1522  * sysctl stuff
   1523  */
   1524 
   1525 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1526 
   1527 static const u_int sysctl_flagmap[] = {
   1528 	PK_ADVLOCK, P_ADVLOCK,
   1529 	PK_EXEC, P_EXEC,
   1530 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1531 	PK_32, P_32,
   1532 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1533 	PK_SUGID, P_SUGID,
   1534 	0
   1535 };
   1536 
   1537 static const u_int sysctl_sflagmap[] = {
   1538 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1539 	PS_WEXIT, P_WEXIT,
   1540 	PS_STOPFORK, P_STOPFORK,
   1541 	PS_STOPEXEC, P_STOPEXEC,
   1542 	PS_STOPEXIT, P_STOPEXIT,
   1543 	0
   1544 };
   1545 
   1546 static const u_int sysctl_slflagmap[] = {
   1547 	PSL_TRACED, P_TRACED,
   1548 	PSL_FSTRACE, P_FSTRACE,
   1549 	PSL_CHTRACED, P_CHTRACED,
   1550 	PSL_SYSCALL, P_SYSCALL,
   1551 	0
   1552 };
   1553 
   1554 static const u_int sysctl_lflagmap[] = {
   1555 	PL_CONTROLT, P_CONTROLT,
   1556 	PL_PPWAIT, P_PPWAIT,
   1557 	0
   1558 };
   1559 
   1560 static const u_int sysctl_stflagmap[] = {
   1561 	PST_PROFIL, P_PROFIL,
   1562 	0
   1563 
   1564 };
   1565 
   1566 /* used by kern_lwp also */
   1567 const u_int sysctl_lwpflagmap[] = {
   1568 	LW_SINTR, L_SINTR,
   1569 	LW_SYSTEM, L_SYSTEM,
   1570 	LW_SA, L_SA,	/* WRS ??? */
   1571 	0
   1572 };
   1573 
   1574 /*
   1575  * Find the most ``active'' lwp of a process and return it for ps display
   1576  * purposes
   1577  */
   1578 static struct lwp *
   1579 proc_active_lwp(struct proc *p)
   1580 {
   1581 	static const int ostat[] = {
   1582 		0,
   1583 		2,	/* LSIDL */
   1584 		6,	/* LSRUN */
   1585 		5,	/* LSSLEEP */
   1586 		4,	/* LSSTOP */
   1587 		0,	/* LSZOMB */
   1588 		1,	/* LSDEAD */
   1589 		7,	/* LSONPROC */
   1590 		3	/* LSSUSPENDED */
   1591 	};
   1592 
   1593 	struct lwp *l, *lp = NULL;
   1594 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1595 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1596 		if (lp == NULL ||
   1597 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1598 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1599 		    l->l_cpticks > lp->l_cpticks)) {
   1600 			lp = l;
   1601 			continue;
   1602 		}
   1603 	}
   1604 	return lp;
   1605 }
   1606 
   1607 static int
   1608 sysctl_doeproc(SYSCTLFN_ARGS)
   1609 {
   1610 	union {
   1611 		struct kinfo_proc kproc;
   1612 		struct kinfo_proc2 kproc2;
   1613 	} *kbuf;
   1614 	struct proc *p, *next, *marker;
   1615 	char *where, *dp;
   1616 	int type, op, arg, error;
   1617 	u_int elem_size, kelem_size, elem_count;
   1618 	size_t buflen, needed;
   1619 	bool match, zombie, mmmbrains;
   1620 
   1621 	if (namelen == 1 && name[0] == CTL_QUERY)
   1622 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1623 
   1624 	dp = where = oldp;
   1625 	buflen = where != NULL ? *oldlenp : 0;
   1626 	error = 0;
   1627 	needed = 0;
   1628 	type = rnode->sysctl_num;
   1629 
   1630 	if (type == KERN_PROC) {
   1631 		if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
   1632 			return (EINVAL);
   1633 		op = name[0];
   1634 		if (op != KERN_PROC_ALL)
   1635 			arg = name[1];
   1636 		else
   1637 			arg = 0;		/* Quell compiler warning */
   1638 		elem_count = 0;	/* Ditto */
   1639 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1640 	} else {
   1641 		if (namelen != 4)
   1642 			return (EINVAL);
   1643 		op = name[0];
   1644 		arg = name[1];
   1645 		elem_size = name[2];
   1646 		elem_count = name[3];
   1647 		kelem_size = sizeof(kbuf->kproc2);
   1648 	}
   1649 
   1650 	sysctl_unlock();
   1651 
   1652 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1653 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1654 	marker->p_flag = PK_MARKER;
   1655 
   1656 	mutex_enter(proc_lock);
   1657 	mmmbrains = false;
   1658 	for (p = LIST_FIRST(&allproc);; p = next) {
   1659 		if (p == NULL) {
   1660 			if (!mmmbrains) {
   1661 				p = LIST_FIRST(&zombproc);
   1662 				mmmbrains = true;
   1663 			}
   1664 			if (p == NULL)
   1665 				break;
   1666 		}
   1667 		next = LIST_NEXT(p, p_list);
   1668 		if ((p->p_flag & PK_MARKER) != 0)
   1669 			continue;
   1670 
   1671 		/*
   1672 		 * Skip embryonic processes.
   1673 		 */
   1674 		if (p->p_stat == SIDL)
   1675 			continue;
   1676 
   1677 		mutex_enter(p->p_lock);
   1678 		error = kauth_authorize_process(l->l_cred,
   1679 		    KAUTH_PROCESS_CANSEE, p,
   1680 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1681 		if (error != 0) {
   1682 			mutex_exit(p->p_lock);
   1683 			continue;
   1684 		}
   1685 
   1686 		/*
   1687 		 * TODO - make more efficient (see notes below).
   1688 		 * do by session.
   1689 		 */
   1690 		switch (op) {
   1691 		case KERN_PROC_PID:
   1692 			/* could do this with just a lookup */
   1693 			match = (p->p_pid == (pid_t)arg);
   1694 			break;
   1695 
   1696 		case KERN_PROC_PGRP:
   1697 			/* could do this by traversing pgrp */
   1698 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1699 			break;
   1700 
   1701 		case KERN_PROC_SESSION:
   1702 			match = (p->p_session->s_sid == (pid_t)arg);
   1703 			break;
   1704 
   1705 		case KERN_PROC_TTY:
   1706 			match = true;
   1707 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1708 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1709 				    p->p_session->s_ttyp == NULL ||
   1710 				    p->p_session->s_ttyvp != NULL) {
   1711 				    	match = false;
   1712 				}
   1713 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1714 			    p->p_session->s_ttyp == NULL) {
   1715 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1716 					match = false;
   1717 				}
   1718 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1719 				match = false;
   1720 			}
   1721 			break;
   1722 
   1723 		case KERN_PROC_UID:
   1724 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1725 			break;
   1726 
   1727 		case KERN_PROC_RUID:
   1728 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1729 			break;
   1730 
   1731 		case KERN_PROC_GID:
   1732 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1733 			break;
   1734 
   1735 		case KERN_PROC_RGID:
   1736 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1737 			break;
   1738 
   1739 		case KERN_PROC_ALL:
   1740 			match = true;
   1741 			/* allow everything */
   1742 			break;
   1743 
   1744 		default:
   1745 			error = EINVAL;
   1746 			mutex_exit(p->p_lock);
   1747 			goto cleanup;
   1748 		}
   1749 		if (!match) {
   1750 			mutex_exit(p->p_lock);
   1751 			continue;
   1752 		}
   1753 
   1754 		/*
   1755 		 * Grab a hold on the process.
   1756 		 */
   1757 		if (mmmbrains) {
   1758 			zombie = true;
   1759 		} else {
   1760 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1761 		}
   1762 		if (zombie) {
   1763 			LIST_INSERT_AFTER(p, marker, p_list);
   1764 		}
   1765 
   1766 		if (buflen >= elem_size &&
   1767 		    (type == KERN_PROC || elem_count > 0)) {
   1768 			if (type == KERN_PROC) {
   1769 				kbuf->kproc.kp_proc = *p;
   1770 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1771 			} else {
   1772 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1773 				elem_count--;
   1774 			}
   1775 			mutex_exit(p->p_lock);
   1776 			mutex_exit(proc_lock);
   1777 			/*
   1778 			 * Copy out elem_size, but not larger than kelem_size
   1779 			 */
   1780 			error = sysctl_copyout(l, kbuf, dp,
   1781 			    min(kelem_size, elem_size));
   1782 			mutex_enter(proc_lock);
   1783 			if (error) {
   1784 				goto bah;
   1785 			}
   1786 			dp += elem_size;
   1787 			buflen -= elem_size;
   1788 		} else {
   1789 			mutex_exit(p->p_lock);
   1790 		}
   1791 		needed += elem_size;
   1792 
   1793 		/*
   1794 		 * Release reference to process.
   1795 		 */
   1796 	 	if (zombie) {
   1797 			next = LIST_NEXT(marker, p_list);
   1798  			LIST_REMOVE(marker, p_list);
   1799 		} else {
   1800 			rw_exit(&p->p_reflock);
   1801 			next = LIST_NEXT(p, p_list);
   1802 		}
   1803 	}
   1804 	mutex_exit(proc_lock);
   1805 
   1806 	if (where != NULL) {
   1807 		*oldlenp = dp - where;
   1808 		if (needed > *oldlenp) {
   1809 			error = ENOMEM;
   1810 			goto out;
   1811 		}
   1812 	} else {
   1813 		needed += KERN_PROCSLOP;
   1814 		*oldlenp = needed;
   1815 	}
   1816 	if (kbuf)
   1817 		kmem_free(kbuf, sizeof(*kbuf));
   1818 	if (marker)
   1819 		kmem_free(marker, sizeof(*marker));
   1820 	sysctl_relock();
   1821 	return 0;
   1822  bah:
   1823  	if (zombie)
   1824  		LIST_REMOVE(marker, p_list);
   1825 	else
   1826 		rw_exit(&p->p_reflock);
   1827  cleanup:
   1828 	mutex_exit(proc_lock);
   1829  out:
   1830 	if (kbuf)
   1831 		kmem_free(kbuf, sizeof(*kbuf));
   1832 	if (marker)
   1833 		kmem_free(marker, sizeof(*marker));
   1834 	sysctl_relock();
   1835 	return error;
   1836 }
   1837 
   1838 int
   1839 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1840 {
   1841 
   1842 #ifdef COMPAT_NETBSD32
   1843 	if (p->p_flag & PK_32) {
   1844 		struct ps_strings32 arginfo32;
   1845 
   1846 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1847 		    sizeof(arginfo32));
   1848 		if (error)
   1849 			return error;
   1850 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1851 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1852 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1853 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1854 		return 0;
   1855 	}
   1856 #endif
   1857 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1858 }
   1859 
   1860 static int
   1861 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1862 {
   1863 	void **cookie = cookie_;
   1864 	struct lwp *l = cookie[0];
   1865 	char *dst = cookie[1];
   1866 
   1867 	return sysctl_copyout(l, src, dst + off, len);
   1868 }
   1869 
   1870 /*
   1871  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1872  */
   1873 static int
   1874 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1875 {
   1876 	struct ps_strings pss;
   1877 	struct proc *p;
   1878 	pid_t pid;
   1879 	int type, error;
   1880 	void *cookie[2];
   1881 
   1882 	if (namelen == 1 && name[0] == CTL_QUERY)
   1883 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1884 
   1885 	if (newp != NULL || namelen != 2)
   1886 		return (EINVAL);
   1887 	pid = name[0];
   1888 	type = name[1];
   1889 
   1890 	switch (type) {
   1891 	case KERN_PROC_ARGV:
   1892 	case KERN_PROC_NARGV:
   1893 	case KERN_PROC_ENV:
   1894 	case KERN_PROC_NENV:
   1895 		/* ok */
   1896 		break;
   1897 	default:
   1898 		return (EINVAL);
   1899 	}
   1900 
   1901 	sysctl_unlock();
   1902 
   1903 	/* check pid */
   1904 	mutex_enter(proc_lock);
   1905 	if ((p = proc_find(pid)) == NULL) {
   1906 		error = EINVAL;
   1907 		goto out_locked;
   1908 	}
   1909 	mutex_enter(p->p_lock);
   1910 
   1911 	/* Check permission. */
   1912 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1913 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1914 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1915 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1916 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1917 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1918 	else
   1919 		error = EINVAL; /* XXXGCC */
   1920 	if (error) {
   1921 		mutex_exit(p->p_lock);
   1922 		goto out_locked;
   1923 	}
   1924 
   1925 	if (oldp == NULL) {
   1926 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1927 			*oldlenp = sizeof (int);
   1928 		else
   1929 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1930 		error = 0;
   1931 		mutex_exit(p->p_lock);
   1932 		goto out_locked;
   1933 	}
   1934 
   1935 	/*
   1936 	 * Zombies don't have a stack, so we can't read their psstrings.
   1937 	 * System processes also don't have a user stack.
   1938 	 */
   1939 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1940 		error = EINVAL;
   1941 		mutex_exit(p->p_lock);
   1942 		goto out_locked;
   1943 	}
   1944 
   1945 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1946 	mutex_exit(p->p_lock);
   1947 	if (error) {
   1948 		goto out_locked;
   1949 	}
   1950 	mutex_exit(proc_lock);
   1951 
   1952 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1953 		int value;
   1954 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1955 			if (type == KERN_PROC_NARGV)
   1956 				value = pss.ps_nargvstr;
   1957 			else
   1958 				value = pss.ps_nenvstr;
   1959 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1960 			*oldlenp = sizeof(value);
   1961 		}
   1962 	} else {
   1963 		cookie[0] = l;
   1964 		cookie[1] = oldp;
   1965 		error = copy_procargs(p, type, oldlenp,
   1966 		    copy_procargs_sysctl_cb, cookie);
   1967 	}
   1968 	rw_exit(&p->p_reflock);
   1969 	sysctl_relock();
   1970 	return error;
   1971 
   1972 out_locked:
   1973 	mutex_exit(proc_lock);
   1974 	sysctl_relock();
   1975 	return error;
   1976 }
   1977 
   1978 int
   1979 copy_procargs(struct proc *p, int oid, size_t *limit,
   1980     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   1981 {
   1982 	struct ps_strings pss;
   1983 	size_t len, i, loaded, entry_len;
   1984 	struct uio auio;
   1985 	struct iovec aiov;
   1986 	int error, argvlen;
   1987 	char *arg;
   1988 	char **argv;
   1989 	vaddr_t user_argv;
   1990 	struct vmspace *vmspace;
   1991 
   1992 	/*
   1993 	 * Allocate a temporary buffer to hold the argument vector and
   1994 	 * the arguments themselve.
   1995 	 */
   1996 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   1997 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   1998 
   1999 	/*
   2000 	 * Lock the process down in memory.
   2001 	 */
   2002 	vmspace = p->p_vmspace;
   2003 	uvmspace_addref(vmspace);
   2004 
   2005 	/*
   2006 	 * Read in the ps_strings structure.
   2007 	 */
   2008 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2009 		goto done;
   2010 
   2011 	/*
   2012 	 * Now read the address of the argument vector.
   2013 	 */
   2014 	switch (oid) {
   2015 	case KERN_PROC_ARGV:
   2016 		user_argv = (uintptr_t)pss.ps_argvstr;
   2017 		argvlen = pss.ps_nargvstr;
   2018 		break;
   2019 	case KERN_PROC_ENV:
   2020 		user_argv = (uintptr_t)pss.ps_envstr;
   2021 		argvlen = pss.ps_nenvstr;
   2022 		break;
   2023 	default:
   2024 		error = EINVAL;
   2025 		goto done;
   2026 	}
   2027 
   2028 	if (argvlen < 0) {
   2029 		error = EIO;
   2030 		goto done;
   2031 	}
   2032 
   2033 #ifdef COMPAT_NETBSD32
   2034 	if (p->p_flag & PK_32)
   2035 		entry_len = sizeof(netbsd32_charp);
   2036 	else
   2037 #endif
   2038 		entry_len = sizeof(char *);
   2039 
   2040 	/*
   2041 	 * Now copy each string.
   2042 	 */
   2043 	len = 0; /* bytes written to user buffer */
   2044 	loaded = 0; /* bytes from argv already processed */
   2045 	i = 0; /* To make compiler happy */
   2046 
   2047 	for (; argvlen; --argvlen) {
   2048 		int finished = 0;
   2049 		vaddr_t base;
   2050 		size_t xlen;
   2051 		int j;
   2052 
   2053 		if (loaded == 0) {
   2054 			size_t rem = entry_len * argvlen;
   2055 			loaded = MIN(rem, PAGE_SIZE);
   2056 			error = copyin_vmspace(vmspace,
   2057 			    (const void *)user_argv, argv, loaded);
   2058 			if (error)
   2059 				break;
   2060 			user_argv += loaded;
   2061 			i = 0;
   2062 		}
   2063 
   2064 #ifdef COMPAT_NETBSD32
   2065 		if (p->p_flag & PK_32) {
   2066 			netbsd32_charp *argv32;
   2067 
   2068 			argv32 = (netbsd32_charp *)argv;
   2069 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2070 		} else
   2071 #endif
   2072 			base = (vaddr_t)argv[i++];
   2073 		loaded -= entry_len;
   2074 
   2075 		/*
   2076 		 * The program has messed around with its arguments,
   2077 		 * possibly deleting some, and replacing them with
   2078 		 * NULL's. Treat this as the last argument and not
   2079 		 * a failure.
   2080 		 */
   2081 		if (base == 0)
   2082 			break;
   2083 
   2084 		while (!finished) {
   2085 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2086 
   2087 			aiov.iov_base = arg;
   2088 			aiov.iov_len = PAGE_SIZE;
   2089 			auio.uio_iov = &aiov;
   2090 			auio.uio_iovcnt = 1;
   2091 			auio.uio_offset = base;
   2092 			auio.uio_resid = xlen;
   2093 			auio.uio_rw = UIO_READ;
   2094 			UIO_SETUP_SYSSPACE(&auio);
   2095 			error = uvm_io(&vmspace->vm_map, &auio);
   2096 			if (error)
   2097 				goto done;
   2098 
   2099 			/* Look for the end of the string */
   2100 			for (j = 0; j < xlen; j++) {
   2101 				if (arg[j] == '\0') {
   2102 					xlen = j + 1;
   2103 					finished = 1;
   2104 					break;
   2105 				}
   2106 			}
   2107 
   2108 			/* Check for user buffer overflow */
   2109 			if (len + xlen > *limit) {
   2110 				finished = 1;
   2111 				if (len > *limit)
   2112 					xlen = 0;
   2113 				else
   2114 					xlen = *limit - len;
   2115 			}
   2116 
   2117 			/* Copyout the page */
   2118 			error = (*cb)(cookie, arg, len, xlen);
   2119 			if (error)
   2120 				goto done;
   2121 
   2122 			len += xlen;
   2123 			base += xlen;
   2124 		}
   2125 	}
   2126 	*limit = len;
   2127 
   2128 done:
   2129 	kmem_free(argv, PAGE_SIZE);
   2130 	kmem_free(arg, PAGE_SIZE);
   2131 	uvmspace_free(vmspace);
   2132 	return error;
   2133 }
   2134 
   2135 /*
   2136  * Fill in an eproc structure for the specified process.
   2137  */
   2138 void
   2139 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2140 {
   2141 	struct tty *tp;
   2142 	struct lwp *l;
   2143 
   2144 	KASSERT(mutex_owned(proc_lock));
   2145 	KASSERT(mutex_owned(p->p_lock));
   2146 
   2147 	memset(ep, 0, sizeof(*ep));
   2148 
   2149 	ep->e_paddr = p;
   2150 	ep->e_sess = p->p_session;
   2151 	if (p->p_cred) {
   2152 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2153 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2154 	}
   2155 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2156 		struct vmspace *vm = p->p_vmspace;
   2157 
   2158 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2159 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2160 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2161 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2162 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2163 
   2164 		/* Pick the primary (first) LWP */
   2165 		l = proc_active_lwp(p);
   2166 		KASSERT(l != NULL);
   2167 		lwp_lock(l);
   2168 		if (l->l_wchan)
   2169 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2170 		lwp_unlock(l);
   2171 	}
   2172 	if (p->p_pptr)
   2173 		ep->e_ppid = p->p_pptr->p_pid;
   2174 	if (p->p_pgrp && p->p_session) {
   2175 		ep->e_pgid = p->p_pgrp->pg_id;
   2176 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2177 		ep->e_sid = p->p_session->s_sid;
   2178 		if ((p->p_lflag & PL_CONTROLT) &&
   2179 		    (tp = ep->e_sess->s_ttyp)) {
   2180 			ep->e_tdev = tp->t_dev;
   2181 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2182 			ep->e_tsess = tp->t_session;
   2183 		} else
   2184 			ep->e_tdev = (uint32_t)NODEV;
   2185 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2186 		if (SESS_LEADER(p))
   2187 			ep->e_flag |= EPROC_SLEADER;
   2188 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2189 	}
   2190 	ep->e_xsize = ep->e_xrssize = 0;
   2191 	ep->e_xccount = ep->e_xswrss = 0;
   2192 }
   2193 
   2194 /*
   2195  * Fill in a kinfo_proc2 structure for the specified process.
   2196  */
   2197 static void
   2198 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2199 {
   2200 	struct tty *tp;
   2201 	struct lwp *l, *l2;
   2202 	struct timeval ut, st, rt;
   2203 	sigset_t ss1, ss2;
   2204 	struct rusage ru;
   2205 	struct vmspace *vm;
   2206 
   2207 	KASSERT(mutex_owned(proc_lock));
   2208 	KASSERT(mutex_owned(p->p_lock));
   2209 
   2210 	sigemptyset(&ss1);
   2211 	sigemptyset(&ss2);
   2212 	memset(ki, 0, sizeof(*ki));
   2213 
   2214 	ki->p_paddr = PTRTOUINT64(p);
   2215 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2216 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2217 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2218 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2219 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2220 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2221 	ki->p_sess = PTRTOUINT64(p->p_session);
   2222 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2223 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2224 	ki->p_eflag = 0;
   2225 	ki->p_exitsig = p->p_exitsig;
   2226 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2227 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2228 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2229 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2230 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2231 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2232 	ki->p_pid = p->p_pid;
   2233 	if (p->p_pptr)
   2234 		ki->p_ppid = p->p_pptr->p_pid;
   2235 	else
   2236 		ki->p_ppid = 0;
   2237 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2238 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2239 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2240 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2241 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2242 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2243 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2244 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2245 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2246 	    UIO_SYSSPACE);
   2247 
   2248 	ki->p_uticks = p->p_uticks;
   2249 	ki->p_sticks = p->p_sticks;
   2250 	ki->p_iticks = p->p_iticks;
   2251 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2252 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2253 	ki->p_traceflag = p->p_traceflag;
   2254 
   2255 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2256 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2257 
   2258 	ki->p_cpticks = 0;
   2259 	ki->p_pctcpu = p->p_pctcpu;
   2260 	ki->p_estcpu = 0;
   2261 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2262 	ki->p_realstat = p->p_stat;
   2263 	ki->p_nice = p->p_nice;
   2264 	ki->p_xstat = p->p_xstat;
   2265 	ki->p_acflag = p->p_acflag;
   2266 
   2267 	strncpy(ki->p_comm, p->p_comm,
   2268 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2269 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2270 
   2271 	ki->p_nlwps = p->p_nlwps;
   2272 	ki->p_realflag = ki->p_flag;
   2273 
   2274 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2275 		vm = p->p_vmspace;
   2276 		ki->p_vm_rssize = vm_resident_count(vm);
   2277 		ki->p_vm_tsize = vm->vm_tsize;
   2278 		ki->p_vm_dsize = vm->vm_dsize;
   2279 		ki->p_vm_ssize = vm->vm_ssize;
   2280 		ki->p_vm_vsize = vm->vm_map.size;
   2281 		/*
   2282 		 * Since the stack is initially mapped mostly with
   2283 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2284 		 * to skip the unused stack portion.
   2285 		 */
   2286 		ki->p_vm_msize =
   2287 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2288 
   2289 		/* Pick the primary (first) LWP */
   2290 		l = proc_active_lwp(p);
   2291 		KASSERT(l != NULL);
   2292 		lwp_lock(l);
   2293 		ki->p_nrlwps = p->p_nrlwps;
   2294 		ki->p_forw = 0;
   2295 		ki->p_back = 0;
   2296 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2297 		ki->p_stat = l->l_stat;
   2298 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2299 		ki->p_swtime = l->l_swtime;
   2300 		ki->p_slptime = l->l_slptime;
   2301 		if (l->l_stat == LSONPROC)
   2302 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2303 		else
   2304 			ki->p_schedflags = 0;
   2305 		ki->p_priority = lwp_eprio(l);
   2306 		ki->p_usrpri = l->l_priority;
   2307 		if (l->l_wchan)
   2308 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2309 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2310 		ki->p_cpuid = cpu_index(l->l_cpu);
   2311 		lwp_unlock(l);
   2312 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2313 			/* This is hardly correct, but... */
   2314 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2315 			sigplusset(&l->l_sigmask, &ss2);
   2316 			ki->p_cpticks += l->l_cpticks;
   2317 			ki->p_pctcpu += l->l_pctcpu;
   2318 			ki->p_estcpu += l->l_estcpu;
   2319 		}
   2320 	}
   2321 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2322 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2323 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2324 
   2325 	if (p->p_session != NULL) {
   2326 		ki->p_sid = p->p_session->s_sid;
   2327 		ki->p__pgid = p->p_pgrp->pg_id;
   2328 		if (p->p_session->s_ttyvp)
   2329 			ki->p_eflag |= EPROC_CTTY;
   2330 		if (SESS_LEADER(p))
   2331 			ki->p_eflag |= EPROC_SLEADER;
   2332 		strncpy(ki->p_login, p->p_session->s_login,
   2333 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2334 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2335 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2336 			ki->p_tdev = tp->t_dev;
   2337 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2338 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2339 		} else {
   2340 			ki->p_tdev = (int32_t)NODEV;
   2341 		}
   2342 	}
   2343 
   2344 	if (!P_ZOMBIE(p) && !zombie) {
   2345 		ki->p_uvalid = 1;
   2346 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2347 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2348 
   2349 		calcru(p, &ut, &st, NULL, &rt);
   2350 		ki->p_rtime_sec = rt.tv_sec;
   2351 		ki->p_rtime_usec = rt.tv_usec;
   2352 		ki->p_uutime_sec = ut.tv_sec;
   2353 		ki->p_uutime_usec = ut.tv_usec;
   2354 		ki->p_ustime_sec = st.tv_sec;
   2355 		ki->p_ustime_usec = st.tv_usec;
   2356 
   2357 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2358 		ki->p_uru_nvcsw = 0;
   2359 		ki->p_uru_nivcsw = 0;
   2360 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2361 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2362 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2363 			ruadd(&ru, &l2->l_ru);
   2364 		}
   2365 		ki->p_uru_maxrss = ru.ru_maxrss;
   2366 		ki->p_uru_ixrss = ru.ru_ixrss;
   2367 		ki->p_uru_idrss = ru.ru_idrss;
   2368 		ki->p_uru_isrss = ru.ru_isrss;
   2369 		ki->p_uru_minflt = ru.ru_minflt;
   2370 		ki->p_uru_majflt = ru.ru_majflt;
   2371 		ki->p_uru_nswap = ru.ru_nswap;
   2372 		ki->p_uru_inblock = ru.ru_inblock;
   2373 		ki->p_uru_oublock = ru.ru_oublock;
   2374 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2375 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2376 		ki->p_uru_nsignals = ru.ru_nsignals;
   2377 
   2378 		timeradd(&p->p_stats->p_cru.ru_utime,
   2379 			 &p->p_stats->p_cru.ru_stime, &ut);
   2380 		ki->p_uctime_sec = ut.tv_sec;
   2381 		ki->p_uctime_usec = ut.tv_usec;
   2382 	}
   2383 }
   2384