Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.165
      1 /*	$NetBSD: kern_proc.c,v 1.165 2010/06/10 19:06:26 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.165 2010/06/10 19:06:26 pooka Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/resourcevar.h>
     78 #include <sys/buf.h>
     79 #include <sys/acct.h>
     80 #include <sys/wait.h>
     81 #include <sys/file.h>
     82 #include <ufs/ufs/quota.h>
     83 #include <sys/uio.h>
     84 #include <sys/pool.h>
     85 #include <sys/pset.h>
     86 #include <sys/mbuf.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/tty.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/ras.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/filedesc.h>
     94 #include "sys/syscall_stats.h"
     95 #include <sys/kauth.h>
     96 #include <sys/sleepq.h>
     97 #include <sys/atomic.h>
     98 #include <sys/kmem.h>
     99 #include <sys/dtrace_bsd.h>
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_extern.h>
    103 
    104 /*
    105  * Other process lists
    106  */
    107 
    108 struct proclist allproc;
    109 struct proclist zombproc;	/* resources have been freed */
    110 
    111 kmutex_t	*proc_lock;
    112 
    113 /*
    114  * pid to proc lookup is done by indexing the pid_table array.
    115  * Since pid numbers are only allocated when an empty slot
    116  * has been found, there is no need to search any lists ever.
    117  * (an orphaned pgrp will lock the slot, a session will lock
    118  * the pgrp with the same number.)
    119  * If the table is too small it is reallocated with twice the
    120  * previous size and the entries 'unzipped' into the two halves.
    121  * A linked list of free entries is passed through the pt_proc
    122  * field of 'free' items - set odd to be an invalid ptr.
    123  */
    124 
    125 struct pid_table {
    126 	struct proc	*pt_proc;
    127 	struct pgrp	*pt_pgrp;
    128 };
    129 #if 1	/* strongly typed cast - should be a noop */
    130 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    131 #else
    132 #define p2u(p) ((uint)p)
    133 #endif
    134 #define P_VALID(p) (!(p2u(p) & 1))
    135 #define P_NEXT(p) (p2u(p) >> 1)
    136 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    137 
    138 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    139 static struct pid_table *pid_table;
    140 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    141 static uint pid_alloc_lim;	/* max we allocate before growing table */
    142 static uint pid_alloc_cnt;	/* number of allocated pids */
    143 
    144 /* links through free slots - never empty! */
    145 static uint next_free_pt, last_free_pt;
    146 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    147 
    148 /* Components of the first process -- never freed. */
    149 
    150 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    151 
    152 struct session session0 = {
    153 	.s_count = 1,
    154 	.s_sid = 0,
    155 };
    156 struct pgrp pgrp0 = {
    157 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    158 	.pg_session = &session0,
    159 };
    160 filedesc_t filedesc0;
    161 struct cwdinfo cwdi0 = {
    162 	.cwdi_cmask = CMASK,		/* see cmask below */
    163 	.cwdi_refcnt = 1,
    164 };
    165 struct plimit limit0;
    166 struct pstats pstat0;
    167 struct vmspace vmspace0;
    168 struct sigacts sigacts0;
    169 struct turnstile turnstile0;
    170 struct proc proc0 = {
    171 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    172 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    173 	.p_nlwps = 1,
    174 	.p_nrlwps = 1,
    175 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    176 	.p_pgrp = &pgrp0,
    177 	.p_comm = "system",
    178 	/*
    179 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    180 	 * when they exit.  init(8) can easily wait them out for us.
    181 	 */
    182 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    183 	.p_stat = SACTIVE,
    184 	.p_nice = NZERO,
    185 	.p_emul = &emul_netbsd,
    186 	.p_cwdi = &cwdi0,
    187 	.p_limit = &limit0,
    188 	.p_fd = &filedesc0,
    189 	.p_vmspace = &vmspace0,
    190 	.p_stats = &pstat0,
    191 	.p_sigacts = &sigacts0,
    192 };
    193 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    194 #ifdef LWP0_CPU_INFO
    195 	.l_cpu = LWP0_CPU_INFO,
    196 #endif
    197 	.l_proc = &proc0,
    198 	.l_lid = 1,
    199 	.l_flag = LW_SYSTEM,
    200 	.l_stat = LSONPROC,
    201 	.l_ts = &turnstile0,
    202 	.l_syncobj = &sched_syncobj,
    203 	.l_refcnt = 1,
    204 	.l_priority = PRI_USER + NPRI_USER - 1,
    205 	.l_inheritedprio = -1,
    206 	.l_class = SCHED_OTHER,
    207 	.l_psid = PS_NONE,
    208 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    209 	.l_name = __UNCONST("swapper"),
    210 	.l_fd = &filedesc0,
    211 };
    212 kauth_cred_t cred0;
    213 
    214 int nofile = NOFILE;
    215 int maxuprc = MAXUPRC;
    216 int cmask = CMASK;
    217 
    218 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    219 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    220 
    221 /*
    222  * The process list descriptors, used during pid allocation and
    223  * by sysctl.  No locking on this data structure is needed since
    224  * it is completely static.
    225  */
    226 const struct proclist_desc proclists[] = {
    227 	{ &allproc	},
    228 	{ &zombproc	},
    229 	{ NULL		},
    230 };
    231 
    232 static struct pgrp *	pg_remove(pid_t);
    233 static void		pg_delete(pid_t);
    234 static void		orphanpg(struct pgrp *);
    235 
    236 static specificdata_domain_t proc_specificdata_domain;
    237 
    238 static pool_cache_t proc_cache;
    239 
    240 static kauth_listener_t proc_listener;
    241 
    242 static int
    243 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    244     void *arg0, void *arg1, void *arg2, void *arg3)
    245 {
    246 	struct proc *p;
    247 	int result;
    248 
    249 	result = KAUTH_RESULT_DEFER;
    250 	p = arg0;
    251 
    252 	switch (action) {
    253 	case KAUTH_PROCESS_CANSEE: {
    254 		enum kauth_process_req req;
    255 
    256 		req = (enum kauth_process_req)arg1;
    257 
    258 		switch (req) {
    259 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    260 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    261 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    262 			result = KAUTH_RESULT_ALLOW;
    263 
    264 			break;
    265 
    266 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    267 			if (kauth_cred_getuid(cred) !=
    268 			    kauth_cred_getuid(p->p_cred) ||
    269 			    kauth_cred_getuid(cred) !=
    270 			    kauth_cred_getsvuid(p->p_cred))
    271 				break;
    272 
    273 			result = KAUTH_RESULT_ALLOW;
    274 
    275 			break;
    276 
    277 		default:
    278 			break;
    279 		}
    280 
    281 		break;
    282 		}
    283 
    284 	case KAUTH_PROCESS_FORK: {
    285 		int lnprocs = (int)(unsigned long)arg2;
    286 
    287 		/*
    288 		 * Don't allow a nonprivileged user to use the last few
    289 		 * processes. The variable lnprocs is the current number of
    290 		 * processes, maxproc is the limit.
    291 		 */
    292 		if (__predict_false((lnprocs >= maxproc - 5)))
    293 			break;
    294 
    295 		result = KAUTH_RESULT_ALLOW;
    296 
    297 		break;
    298 		}
    299 
    300 	case KAUTH_PROCESS_CORENAME:
    301 	case KAUTH_PROCESS_STOPFLAG:
    302 		if (proc_uidmatch(cred, p->p_cred) == 0)
    303 			result = KAUTH_RESULT_ALLOW;
    304 
    305 		break;
    306 
    307 	default:
    308 		break;
    309 	}
    310 
    311 	return result;
    312 }
    313 
    314 /*
    315  * Initialize global process hashing structures.
    316  */
    317 void
    318 procinit(void)
    319 {
    320 	const struct proclist_desc *pd;
    321 	u_int i;
    322 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    323 
    324 	for (pd = proclists; pd->pd_list != NULL; pd++)
    325 		LIST_INIT(pd->pd_list);
    326 
    327 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    328 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    329 	    * sizeof(struct pid_table), KM_SLEEP);
    330 
    331 	/* Set free list running through table...
    332 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    333 	for (i = 0; i <= pid_tbl_mask; i++) {
    334 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    335 		pid_table[i].pt_pgrp = 0;
    336 	}
    337 	/* slot 0 is just grabbed */
    338 	next_free_pt = 1;
    339 	/* Need to fix last entry. */
    340 	last_free_pt = pid_tbl_mask;
    341 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    342 	/* point at which we grow table - to avoid reusing pids too often */
    343 	pid_alloc_lim = pid_tbl_mask - 1;
    344 #undef LINK_EMPTY
    345 
    346 	proc_specificdata_domain = specificdata_domain_create();
    347 	KASSERT(proc_specificdata_domain != NULL);
    348 
    349 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    350 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    351 
    352 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    353 	    proc_listener_cb, NULL);
    354 }
    355 
    356 /*
    357  * Initialize process 0.
    358  */
    359 void
    360 proc0_init(void)
    361 {
    362 	struct proc *p;
    363 	struct pgrp *pg;
    364 	struct lwp *l;
    365 	rlim_t lim;
    366 	int i;
    367 
    368 	p = &proc0;
    369 	pg = &pgrp0;
    370 	l = &lwp0;
    371 
    372 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    373 	KASSERT(l->l_lid == p->p_nlwpid);
    374 
    375 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    376 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    377 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    378 
    379 	rw_init(&p->p_reflock);
    380 	cv_init(&p->p_waitcv, "wait");
    381 	cv_init(&p->p_lwpcv, "lwpwait");
    382 
    383 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    384 
    385 	pid_table[0].pt_proc = p;
    386 	LIST_INSERT_HEAD(&allproc, p, p_list);
    387 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    388 
    389 	pid_table[0].pt_pgrp = pg;
    390 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    391 
    392 #ifdef __HAVE_SYSCALL_INTERN
    393 	(*p->p_emul->e_syscall_intern)(p);
    394 #endif
    395 
    396 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    397 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    398 	cv_init(&l->l_sigcv, "sigwait");
    399 
    400 	/* Create credentials. */
    401 	cred0 = kauth_cred_alloc();
    402 	p->p_cred = cred0;
    403 	kauth_cred_hold(cred0);
    404 	l->l_cred = cred0;
    405 
    406 	/* Create the CWD info. */
    407 	rw_init(&cwdi0.cwdi_lock);
    408 
    409 	/* Create the limits structures. */
    410 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    411 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    412 		limit0.pl_rlimit[i].rlim_cur =
    413 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    414 
    415 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    416 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    417 	    maxfiles < nofile ? maxfiles : nofile;
    418 
    419 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    420 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    421 	    maxproc < maxuprc ? maxproc : maxuprc;
    422 
    423 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    424 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    425 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    426 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    427 	limit0.pl_corename = defcorename;
    428 	limit0.pl_refcnt = 1;
    429 	limit0.pl_sv_limit = NULL;
    430 
    431 	/* Configure virtual memory system, set vm rlimits. */
    432 	uvm_init_limits(p);
    433 
    434 	/* Initialize file descriptor table for proc0. */
    435 	fd_init(&filedesc0);
    436 
    437 	/*
    438 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    439 	 * All kernel processes (which never have user space mappings)
    440 	 * share proc0's vmspace, and thus, the kernel pmap.
    441 	 */
    442 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    443 	    trunc_page(VM_MAX_ADDRESS));
    444 
    445 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    446 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    447 	siginit(p);
    448 
    449 	proc_initspecific(p);
    450 	kdtrace_proc_ctor(NULL, p);
    451 	lwp_initspecific(l);
    452 
    453 	SYSCALL_TIME_LWP_INIT(l);
    454 }
    455 
    456 /*
    457  * Session reference counting.
    458  */
    459 
    460 void
    461 proc_sesshold(struct session *ss)
    462 {
    463 
    464 	KASSERT(mutex_owned(proc_lock));
    465 	ss->s_count++;
    466 }
    467 
    468 void
    469 proc_sessrele(struct session *ss)
    470 {
    471 
    472 	KASSERT(mutex_owned(proc_lock));
    473 	/*
    474 	 * We keep the pgrp with the same id as the session in order to
    475 	 * stop a process being given the same pid.  Since the pgrp holds
    476 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    477 	 */
    478 	if (--ss->s_count == 0) {
    479 		struct pgrp *pg;
    480 
    481 		pg = pg_remove(ss->s_sid);
    482 		mutex_exit(proc_lock);
    483 
    484 		kmem_free(pg, sizeof(struct pgrp));
    485 		kmem_free(ss, sizeof(struct session));
    486 	} else {
    487 		mutex_exit(proc_lock);
    488 	}
    489 }
    490 
    491 /*
    492  * Check that the specified process group is in the session of the
    493  * specified process.
    494  * Treats -ve ids as process ids.
    495  * Used to validate TIOCSPGRP requests.
    496  */
    497 int
    498 pgid_in_session(struct proc *p, pid_t pg_id)
    499 {
    500 	struct pgrp *pgrp;
    501 	struct session *session;
    502 	int error;
    503 
    504 	mutex_enter(proc_lock);
    505 	if (pg_id < 0) {
    506 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    507 		if (p1 == NULL)
    508 			return EINVAL;
    509 		pgrp = p1->p_pgrp;
    510 	} else {
    511 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    512 		if (pgrp == NULL)
    513 			return EINVAL;
    514 	}
    515 	session = pgrp->pg_session;
    516 	if (session != p->p_pgrp->pg_session)
    517 		error = EPERM;
    518 	else
    519 		error = 0;
    520 	mutex_exit(proc_lock);
    521 
    522 	return error;
    523 }
    524 
    525 /*
    526  * p_inferior: is p an inferior of q?
    527  */
    528 static inline bool
    529 p_inferior(struct proc *p, struct proc *q)
    530 {
    531 
    532 	KASSERT(mutex_owned(proc_lock));
    533 
    534 	for (; p != q; p = p->p_pptr)
    535 		if (p->p_pid == 0)
    536 			return false;
    537 	return true;
    538 }
    539 
    540 /*
    541  * Locate a process by number
    542  */
    543 struct proc *
    544 p_find(pid_t pid, uint flags)
    545 {
    546 	struct proc *p;
    547 	char stat;
    548 
    549 	if (!(flags & PFIND_LOCKED))
    550 		mutex_enter(proc_lock);
    551 
    552 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    553 
    554 	/* Only allow live processes to be found by pid. */
    555 	/* XXXSMP p_stat */
    556 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    557 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    558 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    559 		if (flags & PFIND_UNLOCK_OK)
    560 			 mutex_exit(proc_lock);
    561 		return p;
    562 	}
    563 	if (flags & PFIND_UNLOCK_FAIL)
    564 		mutex_exit(proc_lock);
    565 	return NULL;
    566 }
    567 
    568 
    569 /*
    570  * Locate a process group by number
    571  */
    572 struct pgrp *
    573 pg_find(pid_t pgid, uint flags)
    574 {
    575 	struct pgrp *pg;
    576 
    577 	if (!(flags & PFIND_LOCKED))
    578 		mutex_enter(proc_lock);
    579 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    580 	/*
    581 	 * Can't look up a pgrp that only exists because the session
    582 	 * hasn't died yet (traditional)
    583 	 */
    584 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    585 		if (flags & PFIND_UNLOCK_FAIL)
    586 			 mutex_exit(proc_lock);
    587 		return NULL;
    588 	}
    589 
    590 	if (flags & PFIND_UNLOCK_OK)
    591 		mutex_exit(proc_lock);
    592 	return pg;
    593 }
    594 
    595 static void
    596 expand_pid_table(void)
    597 {
    598 	size_t pt_size, tsz;
    599 	struct pid_table *n_pt, *new_pt;
    600 	struct proc *proc;
    601 	struct pgrp *pgrp;
    602 	pid_t pid;
    603 	u_int i;
    604 
    605 	pt_size = pid_tbl_mask + 1;
    606 	tsz = pt_size * 2 * sizeof(struct pid_table);
    607 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    608 
    609 	mutex_enter(proc_lock);
    610 	if (pt_size != pid_tbl_mask + 1) {
    611 		/* Another process beat us to it... */
    612 		mutex_exit(proc_lock);
    613 		kmem_free(new_pt, tsz);
    614 		return;
    615 	}
    616 
    617 	/*
    618 	 * Copy entries from old table into new one.
    619 	 * If 'pid' is 'odd' we need to place in the upper half,
    620 	 * even pid's to the lower half.
    621 	 * Free items stay in the low half so we don't have to
    622 	 * fixup the reference to them.
    623 	 * We stuff free items on the front of the freelist
    624 	 * because we can't write to unmodified entries.
    625 	 * Processing the table backwards maintains a semblance
    626 	 * of issueing pid numbers that increase with time.
    627 	 */
    628 	i = pt_size - 1;
    629 	n_pt = new_pt + i;
    630 	for (; ; i--, n_pt--) {
    631 		proc = pid_table[i].pt_proc;
    632 		pgrp = pid_table[i].pt_pgrp;
    633 		if (!P_VALID(proc)) {
    634 			/* Up 'use count' so that link is valid */
    635 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    636 			proc = P_FREE(pid);
    637 			if (pgrp)
    638 				pid = pgrp->pg_id;
    639 		} else
    640 			pid = proc->p_pid;
    641 
    642 		/* Save entry in appropriate half of table */
    643 		n_pt[pid & pt_size].pt_proc = proc;
    644 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    645 
    646 		/* Put other piece on start of free list */
    647 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    648 		n_pt[pid & pt_size].pt_proc =
    649 				    P_FREE((pid & ~pt_size) | next_free_pt);
    650 		n_pt[pid & pt_size].pt_pgrp = 0;
    651 		next_free_pt = i | (pid & pt_size);
    652 		if (i == 0)
    653 			break;
    654 	}
    655 
    656 	/* Save old table size and switch tables */
    657 	tsz = pt_size * sizeof(struct pid_table);
    658 	n_pt = pid_table;
    659 	pid_table = new_pt;
    660 	pid_tbl_mask = pt_size * 2 - 1;
    661 
    662 	/*
    663 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    664 	 * allocated pids we need it to be larger!
    665 	 */
    666 	if (pid_tbl_mask > PID_MAX) {
    667 		pid_max = pid_tbl_mask * 2 + 1;
    668 		pid_alloc_lim |= pid_alloc_lim << 1;
    669 	} else
    670 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    671 
    672 	mutex_exit(proc_lock);
    673 	kmem_free(n_pt, tsz);
    674 }
    675 
    676 struct proc *
    677 proc_alloc(void)
    678 {
    679 	struct proc *p;
    680 	int nxt;
    681 	pid_t pid;
    682 	struct pid_table *pt;
    683 
    684 	p = pool_cache_get(proc_cache, PR_WAITOK);
    685 	p->p_stat = SIDL;			/* protect against others */
    686 
    687 	proc_initspecific(p);
    688 	kdtrace_proc_ctor(NULL, p);
    689 
    690 	for (;;expand_pid_table()) {
    691 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    692 			/* ensure pids cycle through 2000+ values */
    693 			continue;
    694 		mutex_enter(proc_lock);
    695 		pt = &pid_table[next_free_pt];
    696 #ifdef DIAGNOSTIC
    697 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    698 			panic("proc_alloc: slot busy");
    699 #endif
    700 		nxt = P_NEXT(pt->pt_proc);
    701 		if (nxt & pid_tbl_mask)
    702 			break;
    703 		/* Table full - expand (NB last entry not used....) */
    704 		mutex_exit(proc_lock);
    705 	}
    706 
    707 	/* pid is 'saved use count' + 'size' + entry */
    708 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    709 	if ((uint)pid > (uint)pid_max)
    710 		pid &= pid_tbl_mask;
    711 	p->p_pid = pid;
    712 	next_free_pt = nxt & pid_tbl_mask;
    713 
    714 	/* Grab table slot */
    715 	pt->pt_proc = p;
    716 	pid_alloc_cnt++;
    717 	mutex_exit(proc_lock);
    718 
    719 	return p;
    720 }
    721 
    722 /*
    723  * Free a process id - called from proc_free (in kern_exit.c)
    724  *
    725  * Called with the proc_lock held.
    726  */
    727 void
    728 proc_free_pid(struct proc *p)
    729 {
    730 	pid_t pid = p->p_pid;
    731 	struct pid_table *pt;
    732 
    733 	KASSERT(mutex_owned(proc_lock));
    734 
    735 	pt = &pid_table[pid & pid_tbl_mask];
    736 #ifdef DIAGNOSTIC
    737 	if (__predict_false(pt->pt_proc != p))
    738 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    739 			pid, p);
    740 #endif
    741 	/* save pid use count in slot */
    742 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    743 
    744 	if (pt->pt_pgrp == NULL) {
    745 		/* link last freed entry onto ours */
    746 		pid &= pid_tbl_mask;
    747 		pt = &pid_table[last_free_pt];
    748 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    749 		last_free_pt = pid;
    750 		pid_alloc_cnt--;
    751 	}
    752 
    753 	atomic_dec_uint(&nprocs);
    754 }
    755 
    756 void
    757 proc_free_mem(struct proc *p)
    758 {
    759 
    760 	kdtrace_proc_dtor(NULL, p);
    761 	pool_cache_put(proc_cache, p);
    762 }
    763 
    764 /*
    765  * proc_enterpgrp: move p to a new or existing process group (and session).
    766  *
    767  * If we are creating a new pgrp, the pgid should equal
    768  * the calling process' pid.
    769  * If is only valid to enter a process group that is in the session
    770  * of the process.
    771  * Also mksess should only be set if we are creating a process group
    772  *
    773  * Only called from sys_setsid and sys_setpgid.
    774  */
    775 int
    776 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    777 {
    778 	struct pgrp *new_pgrp, *pgrp;
    779 	struct session *sess;
    780 	struct proc *p;
    781 	int rval;
    782 	pid_t pg_id = NO_PGID;
    783 
    784 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    785 
    786 	/* Allocate data areas we might need before doing any validity checks */
    787 	mutex_enter(proc_lock);		/* Because pid_table might change */
    788 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    789 		mutex_exit(proc_lock);
    790 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    791 		mutex_enter(proc_lock);
    792 	} else
    793 		new_pgrp = NULL;
    794 	rval = EPERM;	/* most common error (to save typing) */
    795 
    796 	/* Check pgrp exists or can be created */
    797 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    798 	if (pgrp != NULL && pgrp->pg_id != pgid)
    799 		goto done;
    800 
    801 	/* Can only set another process under restricted circumstances. */
    802 	if (pid != curp->p_pid) {
    803 		/* must exist and be one of our children... */
    804 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    805 		    !p_inferior(p, curp)) {
    806 			rval = ESRCH;
    807 			goto done;
    808 		}
    809 		/* ... in the same session... */
    810 		if (sess != NULL || p->p_session != curp->p_session)
    811 			goto done;
    812 		/* ... existing pgid must be in same session ... */
    813 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    814 			goto done;
    815 		/* ... and not done an exec. */
    816 		if (p->p_flag & PK_EXEC) {
    817 			rval = EACCES;
    818 			goto done;
    819 		}
    820 	} else {
    821 		/* ... setsid() cannot re-enter a pgrp */
    822 		if (mksess && (curp->p_pgid == curp->p_pid ||
    823 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    824 			goto done;
    825 		p = curp;
    826 	}
    827 
    828 	/* Changing the process group/session of a session
    829 	   leader is definitely off limits. */
    830 	if (SESS_LEADER(p)) {
    831 		if (sess == NULL && p->p_pgrp == pgrp)
    832 			/* unless it's a definite noop */
    833 			rval = 0;
    834 		goto done;
    835 	}
    836 
    837 	/* Can only create a process group with id of process */
    838 	if (pgrp == NULL && pgid != pid)
    839 		goto done;
    840 
    841 	/* Can only create a session if creating pgrp */
    842 	if (sess != NULL && pgrp != NULL)
    843 		goto done;
    844 
    845 	/* Check we allocated memory for a pgrp... */
    846 	if (pgrp == NULL && new_pgrp == NULL)
    847 		goto done;
    848 
    849 	/* Don't attach to 'zombie' pgrp */
    850 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    851 		goto done;
    852 
    853 	/* Expect to succeed now */
    854 	rval = 0;
    855 
    856 	if (pgrp == p->p_pgrp)
    857 		/* nothing to do */
    858 		goto done;
    859 
    860 	/* Ok all setup, link up required structures */
    861 
    862 	if (pgrp == NULL) {
    863 		pgrp = new_pgrp;
    864 		new_pgrp = NULL;
    865 		if (sess != NULL) {
    866 			sess->s_sid = p->p_pid;
    867 			sess->s_leader = p;
    868 			sess->s_count = 1;
    869 			sess->s_ttyvp = NULL;
    870 			sess->s_ttyp = NULL;
    871 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    872 			memcpy(sess->s_login, p->p_session->s_login,
    873 			    sizeof(sess->s_login));
    874 			p->p_lflag &= ~PL_CONTROLT;
    875 		} else {
    876 			sess = p->p_pgrp->pg_session;
    877 			proc_sesshold(sess);
    878 		}
    879 		pgrp->pg_session = sess;
    880 		sess = NULL;
    881 
    882 		pgrp->pg_id = pgid;
    883 		LIST_INIT(&pgrp->pg_members);
    884 #ifdef DIAGNOSTIC
    885 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    886 			panic("enterpgrp: pgrp table slot in use");
    887 		if (__predict_false(mksess && p != curp))
    888 			panic("enterpgrp: mksession and p != curproc");
    889 #endif
    890 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    891 		pgrp->pg_jobc = 0;
    892 	}
    893 
    894 	/*
    895 	 * Adjust eligibility of affected pgrps to participate in job control.
    896 	 * Increment eligibility counts before decrementing, otherwise we
    897 	 * could reach 0 spuriously during the first call.
    898 	 */
    899 	fixjobc(p, pgrp, 1);
    900 	fixjobc(p, p->p_pgrp, 0);
    901 
    902 	/* Interlock with ttread(). */
    903 	mutex_spin_enter(&tty_lock);
    904 
    905 	/* Move process to requested group. */
    906 	LIST_REMOVE(p, p_pglist);
    907 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    908 		/* defer delete until we've dumped the lock */
    909 		pg_id = p->p_pgrp->pg_id;
    910 	p->p_pgrp = pgrp;
    911 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    912 
    913 	/* Done with the swap; we can release the tty mutex. */
    914 	mutex_spin_exit(&tty_lock);
    915 
    916     done:
    917 	if (pg_id != NO_PGID) {
    918 		/* Releases proc_lock. */
    919 		pg_delete(pg_id);
    920 	} else {
    921 		mutex_exit(proc_lock);
    922 	}
    923 	if (sess != NULL)
    924 		kmem_free(sess, sizeof(*sess));
    925 	if (new_pgrp != NULL)
    926 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    927 #ifdef DEBUG_PGRP
    928 	if (__predict_false(rval))
    929 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    930 			pid, pgid, mksess, curp->p_pid, rval);
    931 #endif
    932 	return rval;
    933 }
    934 
    935 /*
    936  * proc_leavepgrp: remove a process from its process group.
    937  *  => must be called with the proc_lock held, which will be released;
    938  */
    939 void
    940 proc_leavepgrp(struct proc *p)
    941 {
    942 	struct pgrp *pgrp;
    943 
    944 	KASSERT(mutex_owned(proc_lock));
    945 
    946 	/* Interlock with ttread() */
    947 	mutex_spin_enter(&tty_lock);
    948 	pgrp = p->p_pgrp;
    949 	LIST_REMOVE(p, p_pglist);
    950 	p->p_pgrp = NULL;
    951 	mutex_spin_exit(&tty_lock);
    952 
    953 	if (LIST_EMPTY(&pgrp->pg_members)) {
    954 		/* Releases proc_lock. */
    955 		pg_delete(pgrp->pg_id);
    956 	} else {
    957 		mutex_exit(proc_lock);
    958 	}
    959 }
    960 
    961 /*
    962  * pg_remove: remove a process group from the table.
    963  *  => must be called with the proc_lock held;
    964  *  => returns process group to free;
    965  */
    966 static struct pgrp *
    967 pg_remove(pid_t pg_id)
    968 {
    969 	struct pgrp *pgrp;
    970 	struct pid_table *pt;
    971 
    972 	KASSERT(mutex_owned(proc_lock));
    973 
    974 	pt = &pid_table[pg_id & pid_tbl_mask];
    975 	pgrp = pt->pt_pgrp;
    976 
    977 	KASSERT(pgrp != NULL);
    978 	KASSERT(pgrp->pg_id == pg_id);
    979 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    980 
    981 	pt->pt_pgrp = NULL;
    982 
    983 	if (!P_VALID(pt->pt_proc)) {
    984 		/* Orphaned pgrp, put slot onto free list. */
    985 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    986 		pg_id &= pid_tbl_mask;
    987 		pt = &pid_table[last_free_pt];
    988 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    989 		last_free_pt = pg_id;
    990 		pid_alloc_cnt--;
    991 	}
    992 	return pgrp;
    993 }
    994 
    995 /*
    996  * pg_delete: delete and free a process group.
    997  *  => must be called with the proc_lock held, which will be released.
    998  */
    999 static void
   1000 pg_delete(pid_t pg_id)
   1001 {
   1002 	struct pgrp *pg;
   1003 	struct tty *ttyp;
   1004 	struct session *ss;
   1005 
   1006 	KASSERT(mutex_owned(proc_lock));
   1007 
   1008 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1009 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1010 		mutex_exit(proc_lock);
   1011 		return;
   1012 	}
   1013 
   1014 	ss = pg->pg_session;
   1015 
   1016 	/* Remove reference (if any) from tty to this process group */
   1017 	mutex_spin_enter(&tty_lock);
   1018 	ttyp = ss->s_ttyp;
   1019 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1020 		ttyp->t_pgrp = NULL;
   1021 		KASSERT(ttyp->t_session == ss);
   1022 	}
   1023 	mutex_spin_exit(&tty_lock);
   1024 
   1025 	/*
   1026 	 * The leading process group in a session is freed by proc_sessrele(),
   1027 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1028 	 */
   1029 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1030 	proc_sessrele(ss);
   1031 
   1032 	if (pg != NULL) {
   1033 		/* Free it, if was not done by proc_sessrele(). */
   1034 		kmem_free(pg, sizeof(struct pgrp));
   1035 	}
   1036 }
   1037 
   1038 /*
   1039  * Adjust pgrp jobc counters when specified process changes process group.
   1040  * We count the number of processes in each process group that "qualify"
   1041  * the group for terminal job control (those with a parent in a different
   1042  * process group of the same session).  If that count reaches zero, the
   1043  * process group becomes orphaned.  Check both the specified process'
   1044  * process group and that of its children.
   1045  * entering == 0 => p is leaving specified group.
   1046  * entering == 1 => p is entering specified group.
   1047  *
   1048  * Call with proc_lock held.
   1049  */
   1050 void
   1051 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1052 {
   1053 	struct pgrp *hispgrp;
   1054 	struct session *mysession = pgrp->pg_session;
   1055 	struct proc *child;
   1056 
   1057 	KASSERT(mutex_owned(proc_lock));
   1058 
   1059 	/*
   1060 	 * Check p's parent to see whether p qualifies its own process
   1061 	 * group; if so, adjust count for p's process group.
   1062 	 */
   1063 	hispgrp = p->p_pptr->p_pgrp;
   1064 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1065 		if (entering) {
   1066 			pgrp->pg_jobc++;
   1067 			p->p_lflag &= ~PL_ORPHANPG;
   1068 		} else if (--pgrp->pg_jobc == 0)
   1069 			orphanpg(pgrp);
   1070 	}
   1071 
   1072 	/*
   1073 	 * Check this process' children to see whether they qualify
   1074 	 * their process groups; if so, adjust counts for children's
   1075 	 * process groups.
   1076 	 */
   1077 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1078 		hispgrp = child->p_pgrp;
   1079 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1080 		    !P_ZOMBIE(child)) {
   1081 			if (entering) {
   1082 				child->p_lflag &= ~PL_ORPHANPG;
   1083 				hispgrp->pg_jobc++;
   1084 			} else if (--hispgrp->pg_jobc == 0)
   1085 				orphanpg(hispgrp);
   1086 		}
   1087 	}
   1088 }
   1089 
   1090 /*
   1091  * A process group has become orphaned;
   1092  * if there are any stopped processes in the group,
   1093  * hang-up all process in that group.
   1094  *
   1095  * Call with proc_lock held.
   1096  */
   1097 static void
   1098 orphanpg(struct pgrp *pg)
   1099 {
   1100 	struct proc *p;
   1101 
   1102 	KASSERT(mutex_owned(proc_lock));
   1103 
   1104 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1105 		if (p->p_stat == SSTOP) {
   1106 			p->p_lflag |= PL_ORPHANPG;
   1107 			psignal(p, SIGHUP);
   1108 			psignal(p, SIGCONT);
   1109 		}
   1110 	}
   1111 }
   1112 
   1113 #ifdef DDB
   1114 #include <ddb/db_output.h>
   1115 void pidtbl_dump(void);
   1116 void
   1117 pidtbl_dump(void)
   1118 {
   1119 	struct pid_table *pt;
   1120 	struct proc *p;
   1121 	struct pgrp *pgrp;
   1122 	int id;
   1123 
   1124 	db_printf("pid table %p size %x, next %x, last %x\n",
   1125 		pid_table, pid_tbl_mask+1,
   1126 		next_free_pt, last_free_pt);
   1127 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1128 		p = pt->pt_proc;
   1129 		if (!P_VALID(p) && !pt->pt_pgrp)
   1130 			continue;
   1131 		db_printf("  id %x: ", id);
   1132 		if (P_VALID(p))
   1133 			db_printf("proc %p id %d (0x%x) %s\n",
   1134 				p, p->p_pid, p->p_pid, p->p_comm);
   1135 		else
   1136 			db_printf("next %x use %x\n",
   1137 				P_NEXT(p) & pid_tbl_mask,
   1138 				P_NEXT(p) & ~pid_tbl_mask);
   1139 		if ((pgrp = pt->pt_pgrp)) {
   1140 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1141 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1142 			    pgrp->pg_session->s_count,
   1143 			    pgrp->pg_session->s_login);
   1144 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1145 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1146 			    LIST_FIRST(&pgrp->pg_members));
   1147 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1148 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1149 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1150 			}
   1151 		}
   1152 	}
   1153 }
   1154 #endif /* DDB */
   1155 
   1156 #ifdef KSTACK_CHECK_MAGIC
   1157 
   1158 #define	KSTACK_MAGIC	0xdeadbeaf
   1159 
   1160 /* XXX should be per process basis? */
   1161 static int	kstackleftmin = KSTACK_SIZE;
   1162 static int	kstackleftthres = KSTACK_SIZE / 8;
   1163 
   1164 void
   1165 kstack_setup_magic(const struct lwp *l)
   1166 {
   1167 	uint32_t *ip;
   1168 	uint32_t const *end;
   1169 
   1170 	KASSERT(l != NULL);
   1171 	KASSERT(l != &lwp0);
   1172 
   1173 	/*
   1174 	 * fill all the stack with magic number
   1175 	 * so that later modification on it can be detected.
   1176 	 */
   1177 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1178 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1179 	for (; ip < end; ip++) {
   1180 		*ip = KSTACK_MAGIC;
   1181 	}
   1182 }
   1183 
   1184 void
   1185 kstack_check_magic(const struct lwp *l)
   1186 {
   1187 	uint32_t const *ip, *end;
   1188 	int stackleft;
   1189 
   1190 	KASSERT(l != NULL);
   1191 
   1192 	/* don't check proc0 */ /*XXX*/
   1193 	if (l == &lwp0)
   1194 		return;
   1195 
   1196 #ifdef __MACHINE_STACK_GROWS_UP
   1197 	/* stack grows upwards (eg. hppa) */
   1198 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1199 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1200 	for (ip--; ip >= end; ip--)
   1201 		if (*ip != KSTACK_MAGIC)
   1202 			break;
   1203 
   1204 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1205 #else /* __MACHINE_STACK_GROWS_UP */
   1206 	/* stack grows downwards (eg. i386) */
   1207 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1208 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1209 	for (; ip < end; ip++)
   1210 		if (*ip != KSTACK_MAGIC)
   1211 			break;
   1212 
   1213 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1214 #endif /* __MACHINE_STACK_GROWS_UP */
   1215 
   1216 	if (kstackleftmin > stackleft) {
   1217 		kstackleftmin = stackleft;
   1218 		if (stackleft < kstackleftthres)
   1219 			printf("warning: kernel stack left %d bytes"
   1220 			    "(pid %u:lid %u)\n", stackleft,
   1221 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1222 	}
   1223 
   1224 	if (stackleft <= 0) {
   1225 		panic("magic on the top of kernel stack changed for "
   1226 		    "pid %u, lid %u: maybe kernel stack overflow",
   1227 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1228 	}
   1229 }
   1230 #endif /* KSTACK_CHECK_MAGIC */
   1231 
   1232 int
   1233 proclist_foreach_call(struct proclist *list,
   1234     int (*callback)(struct proc *, void *arg), void *arg)
   1235 {
   1236 	struct proc marker;
   1237 	struct proc *p;
   1238 	int ret = 0;
   1239 
   1240 	marker.p_flag = PK_MARKER;
   1241 	mutex_enter(proc_lock);
   1242 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1243 		if (p->p_flag & PK_MARKER) {
   1244 			p = LIST_NEXT(p, p_list);
   1245 			continue;
   1246 		}
   1247 		LIST_INSERT_AFTER(p, &marker, p_list);
   1248 		ret = (*callback)(p, arg);
   1249 		KASSERT(mutex_owned(proc_lock));
   1250 		p = LIST_NEXT(&marker, p_list);
   1251 		LIST_REMOVE(&marker, p_list);
   1252 	}
   1253 	mutex_exit(proc_lock);
   1254 
   1255 	return ret;
   1256 }
   1257 
   1258 int
   1259 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1260 {
   1261 
   1262 	/* XXXCDC: how should locking work here? */
   1263 
   1264 	/* curproc exception is for coredump. */
   1265 
   1266 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1267 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1268 		return EFAULT;
   1269 	}
   1270 
   1271 	uvmspace_addref(p->p_vmspace);
   1272 	*vm = p->p_vmspace;
   1273 
   1274 	return 0;
   1275 }
   1276 
   1277 /*
   1278  * Acquire a write lock on the process credential.
   1279  */
   1280 void
   1281 proc_crmod_enter(void)
   1282 {
   1283 	struct lwp *l = curlwp;
   1284 	struct proc *p = l->l_proc;
   1285 	struct plimit *lim;
   1286 	kauth_cred_t oc;
   1287 	char *cn;
   1288 
   1289 	/* Reset what needs to be reset in plimit. */
   1290 	if (p->p_limit->pl_corename != defcorename) {
   1291 		lim_privatise(p, false);
   1292 		lim = p->p_limit;
   1293 		mutex_enter(&lim->pl_lock);
   1294 		cn = lim->pl_corename;
   1295 		lim->pl_corename = defcorename;
   1296 		mutex_exit(&lim->pl_lock);
   1297 		if (cn != defcorename)
   1298 			free(cn, M_TEMP);
   1299 	}
   1300 
   1301 	mutex_enter(p->p_lock);
   1302 
   1303 	/* Ensure the LWP cached credentials are up to date. */
   1304 	if ((oc = l->l_cred) != p->p_cred) {
   1305 		kauth_cred_hold(p->p_cred);
   1306 		l->l_cred = p->p_cred;
   1307 		kauth_cred_free(oc);
   1308 	}
   1309 
   1310 }
   1311 
   1312 /*
   1313  * Set in a new process credential, and drop the write lock.  The credential
   1314  * must have a reference already.  Optionally, free a no-longer required
   1315  * credential.  The scheduler also needs to inspect p_cred, so we also
   1316  * briefly acquire the sched state mutex.
   1317  */
   1318 void
   1319 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1320 {
   1321 	struct lwp *l = curlwp, *l2;
   1322 	struct proc *p = l->l_proc;
   1323 	kauth_cred_t oc;
   1324 
   1325 	KASSERT(mutex_owned(p->p_lock));
   1326 
   1327 	/* Is there a new credential to set in? */
   1328 	if (scred != NULL) {
   1329 		p->p_cred = scred;
   1330 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1331 			if (l2 != l)
   1332 				l2->l_prflag |= LPR_CRMOD;
   1333 		}
   1334 
   1335 		/* Ensure the LWP cached credentials are up to date. */
   1336 		if ((oc = l->l_cred) != scred) {
   1337 			kauth_cred_hold(scred);
   1338 			l->l_cred = scred;
   1339 		}
   1340 	} else
   1341 		oc = NULL;	/* XXXgcc */
   1342 
   1343 	if (sugid) {
   1344 		/*
   1345 		 * Mark process as having changed credentials, stops
   1346 		 * tracing etc.
   1347 		 */
   1348 		p->p_flag |= PK_SUGID;
   1349 	}
   1350 
   1351 	mutex_exit(p->p_lock);
   1352 
   1353 	/* If there is a credential to be released, free it now. */
   1354 	if (fcred != NULL) {
   1355 		KASSERT(scred != NULL);
   1356 		kauth_cred_free(fcred);
   1357 		if (oc != scred)
   1358 			kauth_cred_free(oc);
   1359 	}
   1360 }
   1361 
   1362 /*
   1363  * proc_specific_key_create --
   1364  *	Create a key for subsystem proc-specific data.
   1365  */
   1366 int
   1367 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1368 {
   1369 
   1370 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1371 }
   1372 
   1373 /*
   1374  * proc_specific_key_delete --
   1375  *	Delete a key for subsystem proc-specific data.
   1376  */
   1377 void
   1378 proc_specific_key_delete(specificdata_key_t key)
   1379 {
   1380 
   1381 	specificdata_key_delete(proc_specificdata_domain, key);
   1382 }
   1383 
   1384 /*
   1385  * proc_initspecific --
   1386  *	Initialize a proc's specificdata container.
   1387  */
   1388 void
   1389 proc_initspecific(struct proc *p)
   1390 {
   1391 	int error;
   1392 
   1393 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1394 	KASSERT(error == 0);
   1395 }
   1396 
   1397 /*
   1398  * proc_finispecific --
   1399  *	Finalize a proc's specificdata container.
   1400  */
   1401 void
   1402 proc_finispecific(struct proc *p)
   1403 {
   1404 
   1405 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1406 }
   1407 
   1408 /*
   1409  * proc_getspecific --
   1410  *	Return proc-specific data corresponding to the specified key.
   1411  */
   1412 void *
   1413 proc_getspecific(struct proc *p, specificdata_key_t key)
   1414 {
   1415 
   1416 	return (specificdata_getspecific(proc_specificdata_domain,
   1417 					 &p->p_specdataref, key));
   1418 }
   1419 
   1420 /*
   1421  * proc_setspecific --
   1422  *	Set proc-specific data corresponding to the specified key.
   1423  */
   1424 void
   1425 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1426 {
   1427 
   1428 	specificdata_setspecific(proc_specificdata_domain,
   1429 				 &p->p_specdataref, key, data);
   1430 }
   1431 
   1432 int
   1433 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1434 {
   1435 	int r = 0;
   1436 
   1437 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1438 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1439 		/*
   1440 		 * suid proc of ours or proc not ours
   1441 		 */
   1442 		r = EPERM;
   1443 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1444 		/*
   1445 		 * sgid proc has sgid back to us temporarily
   1446 		 */
   1447 		r = EPERM;
   1448 	} else {
   1449 		/*
   1450 		 * our rgid must be in target's group list (ie,
   1451 		 * sub-processes started by a sgid process)
   1452 		 */
   1453 		int ismember = 0;
   1454 
   1455 		if (kauth_cred_ismember_gid(cred,
   1456 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1457 		    !ismember)
   1458 			r = EPERM;
   1459 	}
   1460 
   1461 	return (r);
   1462 }
   1463 
   1464