Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.167
      1 /*	$NetBSD: kern_proc.c,v 1.167 2010/07/01 02:38:30 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.167 2010/07/01 02:38:30 rmind Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/resourcevar.h>
     78 #include <sys/buf.h>
     79 #include <sys/acct.h>
     80 #include <sys/wait.h>
     81 #include <sys/file.h>
     82 #include <ufs/ufs/quota.h>
     83 #include <sys/uio.h>
     84 #include <sys/pool.h>
     85 #include <sys/pset.h>
     86 #include <sys/mbuf.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/tty.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/ras.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/filedesc.h>
     94 #include "sys/syscall_stats.h"
     95 #include <sys/kauth.h>
     96 #include <sys/sleepq.h>
     97 #include <sys/atomic.h>
     98 #include <sys/kmem.h>
     99 #include <sys/dtrace_bsd.h>
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_extern.h>
    103 
    104 /*
    105  * Other process lists
    106  */
    107 
    108 struct proclist allproc;
    109 struct proclist zombproc;	/* resources have been freed */
    110 
    111 kmutex_t	*proc_lock;
    112 
    113 /*
    114  * pid to proc lookup is done by indexing the pid_table array.
    115  * Since pid numbers are only allocated when an empty slot
    116  * has been found, there is no need to search any lists ever.
    117  * (an orphaned pgrp will lock the slot, a session will lock
    118  * the pgrp with the same number.)
    119  * If the table is too small it is reallocated with twice the
    120  * previous size and the entries 'unzipped' into the two halves.
    121  * A linked list of free entries is passed through the pt_proc
    122  * field of 'free' items - set odd to be an invalid ptr.
    123  */
    124 
    125 struct pid_table {
    126 	struct proc	*pt_proc;
    127 	struct pgrp	*pt_pgrp;
    128 };
    129 #if 1	/* strongly typed cast - should be a noop */
    130 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    131 #else
    132 #define p2u(p) ((uint)p)
    133 #endif
    134 #define P_VALID(p) (!(p2u(p) & 1))
    135 #define P_NEXT(p) (p2u(p) >> 1)
    136 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    137 
    138 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    139 static struct pid_table *pid_table;
    140 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    141 static uint pid_alloc_lim;	/* max we allocate before growing table */
    142 static uint pid_alloc_cnt;	/* number of allocated pids */
    143 
    144 /* links through free slots - never empty! */
    145 static uint next_free_pt, last_free_pt;
    146 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    147 
    148 /* Components of the first process -- never freed. */
    149 
    150 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    151 
    152 struct session session0 = {
    153 	.s_count = 1,
    154 	.s_sid = 0,
    155 };
    156 struct pgrp pgrp0 = {
    157 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    158 	.pg_session = &session0,
    159 };
    160 filedesc_t filedesc0;
    161 struct cwdinfo cwdi0 = {
    162 	.cwdi_cmask = CMASK,		/* see cmask below */
    163 	.cwdi_refcnt = 1,
    164 };
    165 struct plimit limit0;
    166 struct pstats pstat0;
    167 struct vmspace vmspace0;
    168 struct sigacts sigacts0;
    169 struct proc proc0 = {
    170 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    171 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    172 	.p_nlwps = 1,
    173 	.p_nrlwps = 1,
    174 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    175 	.p_pgrp = &pgrp0,
    176 	.p_comm = "system",
    177 	/*
    178 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    179 	 * when they exit.  init(8) can easily wait them out for us.
    180 	 */
    181 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    182 	.p_stat = SACTIVE,
    183 	.p_nice = NZERO,
    184 	.p_emul = &emul_netbsd,
    185 	.p_cwdi = &cwdi0,
    186 	.p_limit = &limit0,
    187 	.p_fd = &filedesc0,
    188 	.p_vmspace = &vmspace0,
    189 	.p_stats = &pstat0,
    190 	.p_sigacts = &sigacts0,
    191 };
    192 kauth_cred_t cred0;
    193 
    194 int nofile = NOFILE;
    195 int maxuprc = MAXUPRC;
    196 int cmask = CMASK;
    197 
    198 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    199 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    200 
    201 /*
    202  * The process list descriptors, used during pid allocation and
    203  * by sysctl.  No locking on this data structure is needed since
    204  * it is completely static.
    205  */
    206 const struct proclist_desc proclists[] = {
    207 	{ &allproc	},
    208 	{ &zombproc	},
    209 	{ NULL		},
    210 };
    211 
    212 static struct pgrp *	pg_remove(pid_t);
    213 static void		pg_delete(pid_t);
    214 static void		orphanpg(struct pgrp *);
    215 
    216 static specificdata_domain_t proc_specificdata_domain;
    217 
    218 static pool_cache_t proc_cache;
    219 
    220 static kauth_listener_t proc_listener;
    221 
    222 static int
    223 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    224     void *arg0, void *arg1, void *arg2, void *arg3)
    225 {
    226 	struct proc *p;
    227 	int result;
    228 
    229 	result = KAUTH_RESULT_DEFER;
    230 	p = arg0;
    231 
    232 	switch (action) {
    233 	case KAUTH_PROCESS_CANSEE: {
    234 		enum kauth_process_req req;
    235 
    236 		req = (enum kauth_process_req)arg1;
    237 
    238 		switch (req) {
    239 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    240 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    241 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    242 			result = KAUTH_RESULT_ALLOW;
    243 
    244 			break;
    245 
    246 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    247 			if (kauth_cred_getuid(cred) !=
    248 			    kauth_cred_getuid(p->p_cred) ||
    249 			    kauth_cred_getuid(cred) !=
    250 			    kauth_cred_getsvuid(p->p_cred))
    251 				break;
    252 
    253 			result = KAUTH_RESULT_ALLOW;
    254 
    255 			break;
    256 
    257 		default:
    258 			break;
    259 		}
    260 
    261 		break;
    262 		}
    263 
    264 	case KAUTH_PROCESS_FORK: {
    265 		int lnprocs = (int)(unsigned long)arg2;
    266 
    267 		/*
    268 		 * Don't allow a nonprivileged user to use the last few
    269 		 * processes. The variable lnprocs is the current number of
    270 		 * processes, maxproc is the limit.
    271 		 */
    272 		if (__predict_false((lnprocs >= maxproc - 5)))
    273 			break;
    274 
    275 		result = KAUTH_RESULT_ALLOW;
    276 
    277 		break;
    278 		}
    279 
    280 	case KAUTH_PROCESS_CORENAME:
    281 	case KAUTH_PROCESS_STOPFLAG:
    282 		if (proc_uidmatch(cred, p->p_cred) == 0)
    283 			result = KAUTH_RESULT_ALLOW;
    284 
    285 		break;
    286 
    287 	default:
    288 		break;
    289 	}
    290 
    291 	return result;
    292 }
    293 
    294 /*
    295  * Initialize global process hashing structures.
    296  */
    297 void
    298 procinit(void)
    299 {
    300 	const struct proclist_desc *pd;
    301 	u_int i;
    302 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    303 
    304 	for (pd = proclists; pd->pd_list != NULL; pd++)
    305 		LIST_INIT(pd->pd_list);
    306 
    307 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    308 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    309 	    * sizeof(struct pid_table), KM_SLEEP);
    310 
    311 	/* Set free list running through table...
    312 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    313 	for (i = 0; i <= pid_tbl_mask; i++) {
    314 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    315 		pid_table[i].pt_pgrp = 0;
    316 	}
    317 	/* slot 0 is just grabbed */
    318 	next_free_pt = 1;
    319 	/* Need to fix last entry. */
    320 	last_free_pt = pid_tbl_mask;
    321 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    322 	/* point at which we grow table - to avoid reusing pids too often */
    323 	pid_alloc_lim = pid_tbl_mask - 1;
    324 #undef LINK_EMPTY
    325 
    326 	proc_specificdata_domain = specificdata_domain_create();
    327 	KASSERT(proc_specificdata_domain != NULL);
    328 
    329 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    330 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    331 
    332 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    333 	    proc_listener_cb, NULL);
    334 }
    335 
    336 /*
    337  * Initialize process 0.
    338  */
    339 void
    340 proc0_init(void)
    341 {
    342 	struct proc *p;
    343 	struct pgrp *pg;
    344 	rlim_t lim;
    345 	int i;
    346 
    347 	p = &proc0;
    348 	pg = &pgrp0;
    349 
    350 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    351 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    352 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    353 
    354 	rw_init(&p->p_reflock);
    355 	cv_init(&p->p_waitcv, "wait");
    356 	cv_init(&p->p_lwpcv, "lwpwait");
    357 
    358 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    359 
    360 	pid_table[0].pt_proc = p;
    361 	LIST_INSERT_HEAD(&allproc, p, p_list);
    362 
    363 	pid_table[0].pt_pgrp = pg;
    364 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    365 
    366 #ifdef __HAVE_SYSCALL_INTERN
    367 	(*p->p_emul->e_syscall_intern)(p);
    368 #endif
    369 
    370 	/* Create credentials. */
    371 	cred0 = kauth_cred_alloc();
    372 	p->p_cred = cred0;
    373 
    374 	/* Create the CWD info. */
    375 	rw_init(&cwdi0.cwdi_lock);
    376 
    377 	/* Create the limits structures. */
    378 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    379 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
    380 		limit0.pl_rlimit[i].rlim_cur =
    381 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    382 
    383 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    384 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    385 	    maxfiles < nofile ? maxfiles : nofile;
    386 
    387 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    388 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    389 	    maxproc < maxuprc ? maxproc : maxuprc;
    390 
    391 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    392 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    393 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    394 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    395 	limit0.pl_corename = defcorename;
    396 	limit0.pl_refcnt = 1;
    397 	limit0.pl_sv_limit = NULL;
    398 
    399 	/* Configure virtual memory system, set vm rlimits. */
    400 	uvm_init_limits(p);
    401 
    402 	/* Initialize file descriptor table for proc0. */
    403 	fd_init(&filedesc0);
    404 
    405 	/*
    406 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    407 	 * All kernel processes (which never have user space mappings)
    408 	 * share proc0's vmspace, and thus, the kernel pmap.
    409 	 */
    410 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    411 	    trunc_page(VM_MAX_ADDRESS));
    412 
    413 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    414 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    415 	siginit(p);
    416 
    417 	proc_initspecific(p);
    418 	kdtrace_proc_ctor(NULL, p);
    419 }
    420 
    421 /*
    422  * Session reference counting.
    423  */
    424 
    425 void
    426 proc_sesshold(struct session *ss)
    427 {
    428 
    429 	KASSERT(mutex_owned(proc_lock));
    430 	ss->s_count++;
    431 }
    432 
    433 void
    434 proc_sessrele(struct session *ss)
    435 {
    436 
    437 	KASSERT(mutex_owned(proc_lock));
    438 	/*
    439 	 * We keep the pgrp with the same id as the session in order to
    440 	 * stop a process being given the same pid.  Since the pgrp holds
    441 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    442 	 */
    443 	if (--ss->s_count == 0) {
    444 		struct pgrp *pg;
    445 
    446 		pg = pg_remove(ss->s_sid);
    447 		mutex_exit(proc_lock);
    448 
    449 		kmem_free(pg, sizeof(struct pgrp));
    450 		kmem_free(ss, sizeof(struct session));
    451 	} else {
    452 		mutex_exit(proc_lock);
    453 	}
    454 }
    455 
    456 /*
    457  * Check that the specified process group is in the session of the
    458  * specified process.
    459  * Treats -ve ids as process ids.
    460  * Used to validate TIOCSPGRP requests.
    461  */
    462 int
    463 pgid_in_session(struct proc *p, pid_t pg_id)
    464 {
    465 	struct pgrp *pgrp;
    466 	struct session *session;
    467 	int error;
    468 
    469 	mutex_enter(proc_lock);
    470 	if (pg_id < 0) {
    471 		struct proc *p1 = proc_find(-pg_id);
    472 		if (p1 == NULL) {
    473 			error = EINVAL;
    474 			goto fail;
    475 		}
    476 		pgrp = p1->p_pgrp;
    477 	} else {
    478 		pgrp = pgrp_find(pg_id);
    479 		if (pgrp == NULL) {
    480 			error = EINVAL;
    481 			goto fail;
    482 		}
    483 	}
    484 	session = pgrp->pg_session;
    485 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    486 fail:
    487 	mutex_exit(proc_lock);
    488 	return error;
    489 }
    490 
    491 /*
    492  * p_inferior: is p an inferior of q?
    493  */
    494 static inline bool
    495 p_inferior(struct proc *p, struct proc *q)
    496 {
    497 
    498 	KASSERT(mutex_owned(proc_lock));
    499 
    500 	for (; p != q; p = p->p_pptr)
    501 		if (p->p_pid == 0)
    502 			return false;
    503 	return true;
    504 }
    505 
    506 /*
    507  * proc_find: locate a process by the ID.
    508  *
    509  * => Must be called with proc_lock held.
    510  */
    511 proc_t *
    512 proc_find_raw(pid_t pid)
    513 {
    514 	proc_t *p = pid_table[pid & pid_tbl_mask].pt_proc;
    515 
    516 	if (__predict_false(!P_VALID(p) || p->p_pid != pid)) {
    517 		return NULL;
    518 	}
    519 	return p;
    520 }
    521 
    522 proc_t *
    523 proc_find(pid_t pid)
    524 {
    525 	proc_t *p;
    526 
    527 	KASSERT(mutex_owned(proc_lock));
    528 
    529 	p = proc_find_raw(pid);
    530 	if (__predict_false(p == NULL)) {
    531 		return NULL;
    532 	}
    533 	/*
    534 	 * Only allow live processes to be found by PID.
    535 	 * XXX: p_stat might change, since unlocked.
    536 	 */
    537 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    538 		return p;
    539 	}
    540 	return NULL;
    541 }
    542 
    543 /*
    544  * pgrp_find: locate a process group by the ID.
    545  *
    546  * => Must be called with proc_lock held.
    547  */
    548 struct pgrp *
    549 pgrp_find(pid_t pgid)
    550 {
    551 	struct pgrp *pg;
    552 
    553 	KASSERT(mutex_owned(proc_lock));
    554 
    555 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    556 	/*
    557 	 * Cannot look up a process group that only exists because the
    558 	 * session has not died yet (traditional).
    559 	 */
    560 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    561 		return NULL;
    562 	}
    563 	return pg;
    564 }
    565 
    566 static void
    567 expand_pid_table(void)
    568 {
    569 	size_t pt_size, tsz;
    570 	struct pid_table *n_pt, *new_pt;
    571 	struct proc *proc;
    572 	struct pgrp *pgrp;
    573 	pid_t pid;
    574 	u_int i;
    575 
    576 	pt_size = pid_tbl_mask + 1;
    577 	tsz = pt_size * 2 * sizeof(struct pid_table);
    578 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    579 
    580 	mutex_enter(proc_lock);
    581 	if (pt_size != pid_tbl_mask + 1) {
    582 		/* Another process beat us to it... */
    583 		mutex_exit(proc_lock);
    584 		kmem_free(new_pt, tsz);
    585 		return;
    586 	}
    587 
    588 	/*
    589 	 * Copy entries from old table into new one.
    590 	 * If 'pid' is 'odd' we need to place in the upper half,
    591 	 * even pid's to the lower half.
    592 	 * Free items stay in the low half so we don't have to
    593 	 * fixup the reference to them.
    594 	 * We stuff free items on the front of the freelist
    595 	 * because we can't write to unmodified entries.
    596 	 * Processing the table backwards maintains a semblance
    597 	 * of issueing pid numbers that increase with time.
    598 	 */
    599 	i = pt_size - 1;
    600 	n_pt = new_pt + i;
    601 	for (; ; i--, n_pt--) {
    602 		proc = pid_table[i].pt_proc;
    603 		pgrp = pid_table[i].pt_pgrp;
    604 		if (!P_VALID(proc)) {
    605 			/* Up 'use count' so that link is valid */
    606 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    607 			proc = P_FREE(pid);
    608 			if (pgrp)
    609 				pid = pgrp->pg_id;
    610 		} else
    611 			pid = proc->p_pid;
    612 
    613 		/* Save entry in appropriate half of table */
    614 		n_pt[pid & pt_size].pt_proc = proc;
    615 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    616 
    617 		/* Put other piece on start of free list */
    618 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    619 		n_pt[pid & pt_size].pt_proc =
    620 				    P_FREE((pid & ~pt_size) | next_free_pt);
    621 		n_pt[pid & pt_size].pt_pgrp = 0;
    622 		next_free_pt = i | (pid & pt_size);
    623 		if (i == 0)
    624 			break;
    625 	}
    626 
    627 	/* Save old table size and switch tables */
    628 	tsz = pt_size * sizeof(struct pid_table);
    629 	n_pt = pid_table;
    630 	pid_table = new_pt;
    631 	pid_tbl_mask = pt_size * 2 - 1;
    632 
    633 	/*
    634 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    635 	 * allocated pids we need it to be larger!
    636 	 */
    637 	if (pid_tbl_mask > PID_MAX) {
    638 		pid_max = pid_tbl_mask * 2 + 1;
    639 		pid_alloc_lim |= pid_alloc_lim << 1;
    640 	} else
    641 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    642 
    643 	mutex_exit(proc_lock);
    644 	kmem_free(n_pt, tsz);
    645 }
    646 
    647 struct proc *
    648 proc_alloc(void)
    649 {
    650 	struct proc *p;
    651 	int nxt;
    652 	pid_t pid;
    653 	struct pid_table *pt;
    654 
    655 	p = pool_cache_get(proc_cache, PR_WAITOK);
    656 	p->p_stat = SIDL;			/* protect against others */
    657 
    658 	proc_initspecific(p);
    659 	kdtrace_proc_ctor(NULL, p);
    660 
    661 	for (;;expand_pid_table()) {
    662 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    663 			/* ensure pids cycle through 2000+ values */
    664 			continue;
    665 		mutex_enter(proc_lock);
    666 		pt = &pid_table[next_free_pt];
    667 #ifdef DIAGNOSTIC
    668 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    669 			panic("proc_alloc: slot busy");
    670 #endif
    671 		nxt = P_NEXT(pt->pt_proc);
    672 		if (nxt & pid_tbl_mask)
    673 			break;
    674 		/* Table full - expand (NB last entry not used....) */
    675 		mutex_exit(proc_lock);
    676 	}
    677 
    678 	/* pid is 'saved use count' + 'size' + entry */
    679 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    680 	if ((uint)pid > (uint)pid_max)
    681 		pid &= pid_tbl_mask;
    682 	p->p_pid = pid;
    683 	next_free_pt = nxt & pid_tbl_mask;
    684 
    685 	/* Grab table slot */
    686 	pt->pt_proc = p;
    687 	pid_alloc_cnt++;
    688 	mutex_exit(proc_lock);
    689 
    690 	return p;
    691 }
    692 
    693 /*
    694  * Free a process id - called from proc_free (in kern_exit.c)
    695  *
    696  * Called with the proc_lock held.
    697  */
    698 void
    699 proc_free_pid(struct proc *p)
    700 {
    701 	pid_t pid = p->p_pid;
    702 	struct pid_table *pt;
    703 
    704 	KASSERT(mutex_owned(proc_lock));
    705 
    706 	pt = &pid_table[pid & pid_tbl_mask];
    707 #ifdef DIAGNOSTIC
    708 	if (__predict_false(pt->pt_proc != p))
    709 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    710 			pid, p);
    711 #endif
    712 	/* save pid use count in slot */
    713 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    714 
    715 	if (pt->pt_pgrp == NULL) {
    716 		/* link last freed entry onto ours */
    717 		pid &= pid_tbl_mask;
    718 		pt = &pid_table[last_free_pt];
    719 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    720 		last_free_pt = pid;
    721 		pid_alloc_cnt--;
    722 	}
    723 
    724 	atomic_dec_uint(&nprocs);
    725 }
    726 
    727 void
    728 proc_free_mem(struct proc *p)
    729 {
    730 
    731 	kdtrace_proc_dtor(NULL, p);
    732 	pool_cache_put(proc_cache, p);
    733 }
    734 
    735 /*
    736  * proc_enterpgrp: move p to a new or existing process group (and session).
    737  *
    738  * If we are creating a new pgrp, the pgid should equal
    739  * the calling process' pid.
    740  * If is only valid to enter a process group that is in the session
    741  * of the process.
    742  * Also mksess should only be set if we are creating a process group
    743  *
    744  * Only called from sys_setsid and sys_setpgid.
    745  */
    746 int
    747 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    748 {
    749 	struct pgrp *new_pgrp, *pgrp;
    750 	struct session *sess;
    751 	struct proc *p;
    752 	int rval;
    753 	pid_t pg_id = NO_PGID;
    754 
    755 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    756 
    757 	/* Allocate data areas we might need before doing any validity checks */
    758 	mutex_enter(proc_lock);		/* Because pid_table might change */
    759 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    760 		mutex_exit(proc_lock);
    761 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    762 		mutex_enter(proc_lock);
    763 	} else
    764 		new_pgrp = NULL;
    765 	rval = EPERM;	/* most common error (to save typing) */
    766 
    767 	/* Check pgrp exists or can be created */
    768 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    769 	if (pgrp != NULL && pgrp->pg_id != pgid)
    770 		goto done;
    771 
    772 	/* Can only set another process under restricted circumstances. */
    773 	if (pid != curp->p_pid) {
    774 		/* Must exist and be one of our children... */
    775 		p = proc_find(pid);
    776 		if (p == NULL || !p_inferior(p, curp)) {
    777 			rval = ESRCH;
    778 			goto done;
    779 		}
    780 		/* ... in the same session... */
    781 		if (sess != NULL || p->p_session != curp->p_session)
    782 			goto done;
    783 		/* ... existing pgid must be in same session ... */
    784 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    785 			goto done;
    786 		/* ... and not done an exec. */
    787 		if (p->p_flag & PK_EXEC) {
    788 			rval = EACCES;
    789 			goto done;
    790 		}
    791 	} else {
    792 		/* ... setsid() cannot re-enter a pgrp */
    793 		if (mksess && (curp->p_pgid == curp->p_pid ||
    794 		    pgrp_find(curp->p_pid)))
    795 			goto done;
    796 		p = curp;
    797 	}
    798 
    799 	/* Changing the process group/session of a session
    800 	   leader is definitely off limits. */
    801 	if (SESS_LEADER(p)) {
    802 		if (sess == NULL && p->p_pgrp == pgrp)
    803 			/* unless it's a definite noop */
    804 			rval = 0;
    805 		goto done;
    806 	}
    807 
    808 	/* Can only create a process group with id of process */
    809 	if (pgrp == NULL && pgid != pid)
    810 		goto done;
    811 
    812 	/* Can only create a session if creating pgrp */
    813 	if (sess != NULL && pgrp != NULL)
    814 		goto done;
    815 
    816 	/* Check we allocated memory for a pgrp... */
    817 	if (pgrp == NULL && new_pgrp == NULL)
    818 		goto done;
    819 
    820 	/* Don't attach to 'zombie' pgrp */
    821 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    822 		goto done;
    823 
    824 	/* Expect to succeed now */
    825 	rval = 0;
    826 
    827 	if (pgrp == p->p_pgrp)
    828 		/* nothing to do */
    829 		goto done;
    830 
    831 	/* Ok all setup, link up required structures */
    832 
    833 	if (pgrp == NULL) {
    834 		pgrp = new_pgrp;
    835 		new_pgrp = NULL;
    836 		if (sess != NULL) {
    837 			sess->s_sid = p->p_pid;
    838 			sess->s_leader = p;
    839 			sess->s_count = 1;
    840 			sess->s_ttyvp = NULL;
    841 			sess->s_ttyp = NULL;
    842 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    843 			memcpy(sess->s_login, p->p_session->s_login,
    844 			    sizeof(sess->s_login));
    845 			p->p_lflag &= ~PL_CONTROLT;
    846 		} else {
    847 			sess = p->p_pgrp->pg_session;
    848 			proc_sesshold(sess);
    849 		}
    850 		pgrp->pg_session = sess;
    851 		sess = NULL;
    852 
    853 		pgrp->pg_id = pgid;
    854 		LIST_INIT(&pgrp->pg_members);
    855 #ifdef DIAGNOSTIC
    856 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    857 			panic("enterpgrp: pgrp table slot in use");
    858 		if (__predict_false(mksess && p != curp))
    859 			panic("enterpgrp: mksession and p != curproc");
    860 #endif
    861 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    862 		pgrp->pg_jobc = 0;
    863 	}
    864 
    865 	/*
    866 	 * Adjust eligibility of affected pgrps to participate in job control.
    867 	 * Increment eligibility counts before decrementing, otherwise we
    868 	 * could reach 0 spuriously during the first call.
    869 	 */
    870 	fixjobc(p, pgrp, 1);
    871 	fixjobc(p, p->p_pgrp, 0);
    872 
    873 	/* Interlock with ttread(). */
    874 	mutex_spin_enter(&tty_lock);
    875 
    876 	/* Move process to requested group. */
    877 	LIST_REMOVE(p, p_pglist);
    878 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    879 		/* defer delete until we've dumped the lock */
    880 		pg_id = p->p_pgrp->pg_id;
    881 	p->p_pgrp = pgrp;
    882 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    883 
    884 	/* Done with the swap; we can release the tty mutex. */
    885 	mutex_spin_exit(&tty_lock);
    886 
    887     done:
    888 	if (pg_id != NO_PGID) {
    889 		/* Releases proc_lock. */
    890 		pg_delete(pg_id);
    891 	} else {
    892 		mutex_exit(proc_lock);
    893 	}
    894 	if (sess != NULL)
    895 		kmem_free(sess, sizeof(*sess));
    896 	if (new_pgrp != NULL)
    897 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    898 #ifdef DEBUG_PGRP
    899 	if (__predict_false(rval))
    900 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    901 			pid, pgid, mksess, curp->p_pid, rval);
    902 #endif
    903 	return rval;
    904 }
    905 
    906 /*
    907  * proc_leavepgrp: remove a process from its process group.
    908  *  => must be called with the proc_lock held, which will be released;
    909  */
    910 void
    911 proc_leavepgrp(struct proc *p)
    912 {
    913 	struct pgrp *pgrp;
    914 
    915 	KASSERT(mutex_owned(proc_lock));
    916 
    917 	/* Interlock with ttread() */
    918 	mutex_spin_enter(&tty_lock);
    919 	pgrp = p->p_pgrp;
    920 	LIST_REMOVE(p, p_pglist);
    921 	p->p_pgrp = NULL;
    922 	mutex_spin_exit(&tty_lock);
    923 
    924 	if (LIST_EMPTY(&pgrp->pg_members)) {
    925 		/* Releases proc_lock. */
    926 		pg_delete(pgrp->pg_id);
    927 	} else {
    928 		mutex_exit(proc_lock);
    929 	}
    930 }
    931 
    932 /*
    933  * pg_remove: remove a process group from the table.
    934  *  => must be called with the proc_lock held;
    935  *  => returns process group to free;
    936  */
    937 static struct pgrp *
    938 pg_remove(pid_t pg_id)
    939 {
    940 	struct pgrp *pgrp;
    941 	struct pid_table *pt;
    942 
    943 	KASSERT(mutex_owned(proc_lock));
    944 
    945 	pt = &pid_table[pg_id & pid_tbl_mask];
    946 	pgrp = pt->pt_pgrp;
    947 
    948 	KASSERT(pgrp != NULL);
    949 	KASSERT(pgrp->pg_id == pg_id);
    950 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
    951 
    952 	pt->pt_pgrp = NULL;
    953 
    954 	if (!P_VALID(pt->pt_proc)) {
    955 		/* Orphaned pgrp, put slot onto free list. */
    956 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
    957 		pg_id &= pid_tbl_mask;
    958 		pt = &pid_table[last_free_pt];
    959 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    960 		last_free_pt = pg_id;
    961 		pid_alloc_cnt--;
    962 	}
    963 	return pgrp;
    964 }
    965 
    966 /*
    967  * pg_delete: delete and free a process group.
    968  *  => must be called with the proc_lock held, which will be released.
    969  */
    970 static void
    971 pg_delete(pid_t pg_id)
    972 {
    973 	struct pgrp *pg;
    974 	struct tty *ttyp;
    975 	struct session *ss;
    976 
    977 	KASSERT(mutex_owned(proc_lock));
    978 
    979 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    980 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
    981 		mutex_exit(proc_lock);
    982 		return;
    983 	}
    984 
    985 	ss = pg->pg_session;
    986 
    987 	/* Remove reference (if any) from tty to this process group */
    988 	mutex_spin_enter(&tty_lock);
    989 	ttyp = ss->s_ttyp;
    990 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
    991 		ttyp->t_pgrp = NULL;
    992 		KASSERT(ttyp->t_session == ss);
    993 	}
    994 	mutex_spin_exit(&tty_lock);
    995 
    996 	/*
    997 	 * The leading process group in a session is freed by proc_sessrele(),
    998 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
    999 	 */
   1000 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1001 	proc_sessrele(ss);
   1002 
   1003 	if (pg != NULL) {
   1004 		/* Free it, if was not done by proc_sessrele(). */
   1005 		kmem_free(pg, sizeof(struct pgrp));
   1006 	}
   1007 }
   1008 
   1009 /*
   1010  * Adjust pgrp jobc counters when specified process changes process group.
   1011  * We count the number of processes in each process group that "qualify"
   1012  * the group for terminal job control (those with a parent in a different
   1013  * process group of the same session).  If that count reaches zero, the
   1014  * process group becomes orphaned.  Check both the specified process'
   1015  * process group and that of its children.
   1016  * entering == 0 => p is leaving specified group.
   1017  * entering == 1 => p is entering specified group.
   1018  *
   1019  * Call with proc_lock held.
   1020  */
   1021 void
   1022 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1023 {
   1024 	struct pgrp *hispgrp;
   1025 	struct session *mysession = pgrp->pg_session;
   1026 	struct proc *child;
   1027 
   1028 	KASSERT(mutex_owned(proc_lock));
   1029 
   1030 	/*
   1031 	 * Check p's parent to see whether p qualifies its own process
   1032 	 * group; if so, adjust count for p's process group.
   1033 	 */
   1034 	hispgrp = p->p_pptr->p_pgrp;
   1035 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1036 		if (entering) {
   1037 			pgrp->pg_jobc++;
   1038 			p->p_lflag &= ~PL_ORPHANPG;
   1039 		} else if (--pgrp->pg_jobc == 0)
   1040 			orphanpg(pgrp);
   1041 	}
   1042 
   1043 	/*
   1044 	 * Check this process' children to see whether they qualify
   1045 	 * their process groups; if so, adjust counts for children's
   1046 	 * process groups.
   1047 	 */
   1048 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1049 		hispgrp = child->p_pgrp;
   1050 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1051 		    !P_ZOMBIE(child)) {
   1052 			if (entering) {
   1053 				child->p_lflag &= ~PL_ORPHANPG;
   1054 				hispgrp->pg_jobc++;
   1055 			} else if (--hispgrp->pg_jobc == 0)
   1056 				orphanpg(hispgrp);
   1057 		}
   1058 	}
   1059 }
   1060 
   1061 /*
   1062  * A process group has become orphaned;
   1063  * if there are any stopped processes in the group,
   1064  * hang-up all process in that group.
   1065  *
   1066  * Call with proc_lock held.
   1067  */
   1068 static void
   1069 orphanpg(struct pgrp *pg)
   1070 {
   1071 	struct proc *p;
   1072 
   1073 	KASSERT(mutex_owned(proc_lock));
   1074 
   1075 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1076 		if (p->p_stat == SSTOP) {
   1077 			p->p_lflag |= PL_ORPHANPG;
   1078 			psignal(p, SIGHUP);
   1079 			psignal(p, SIGCONT);
   1080 		}
   1081 	}
   1082 }
   1083 
   1084 #ifdef DDB
   1085 #include <ddb/db_output.h>
   1086 void pidtbl_dump(void);
   1087 void
   1088 pidtbl_dump(void)
   1089 {
   1090 	struct pid_table *pt;
   1091 	struct proc *p;
   1092 	struct pgrp *pgrp;
   1093 	int id;
   1094 
   1095 	db_printf("pid table %p size %x, next %x, last %x\n",
   1096 		pid_table, pid_tbl_mask+1,
   1097 		next_free_pt, last_free_pt);
   1098 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1099 		p = pt->pt_proc;
   1100 		if (!P_VALID(p) && !pt->pt_pgrp)
   1101 			continue;
   1102 		db_printf("  id %x: ", id);
   1103 		if (P_VALID(p))
   1104 			db_printf("proc %p id %d (0x%x) %s\n",
   1105 				p, p->p_pid, p->p_pid, p->p_comm);
   1106 		else
   1107 			db_printf("next %x use %x\n",
   1108 				P_NEXT(p) & pid_tbl_mask,
   1109 				P_NEXT(p) & ~pid_tbl_mask);
   1110 		if ((pgrp = pt->pt_pgrp)) {
   1111 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1112 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1113 			    pgrp->pg_session->s_count,
   1114 			    pgrp->pg_session->s_login);
   1115 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1116 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1117 			    LIST_FIRST(&pgrp->pg_members));
   1118 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1119 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1120 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1121 			}
   1122 		}
   1123 	}
   1124 }
   1125 #endif /* DDB */
   1126 
   1127 #ifdef KSTACK_CHECK_MAGIC
   1128 
   1129 #define	KSTACK_MAGIC	0xdeadbeaf
   1130 
   1131 /* XXX should be per process basis? */
   1132 static int	kstackleftmin = KSTACK_SIZE;
   1133 static int	kstackleftthres = KSTACK_SIZE / 8;
   1134 
   1135 void
   1136 kstack_setup_magic(const struct lwp *l)
   1137 {
   1138 	uint32_t *ip;
   1139 	uint32_t const *end;
   1140 
   1141 	KASSERT(l != NULL);
   1142 	KASSERT(l != &lwp0);
   1143 
   1144 	/*
   1145 	 * fill all the stack with magic number
   1146 	 * so that later modification on it can be detected.
   1147 	 */
   1148 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1149 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1150 	for (; ip < end; ip++) {
   1151 		*ip = KSTACK_MAGIC;
   1152 	}
   1153 }
   1154 
   1155 void
   1156 kstack_check_magic(const struct lwp *l)
   1157 {
   1158 	uint32_t const *ip, *end;
   1159 	int stackleft;
   1160 
   1161 	KASSERT(l != NULL);
   1162 
   1163 	/* don't check proc0 */ /*XXX*/
   1164 	if (l == &lwp0)
   1165 		return;
   1166 
   1167 #ifdef __MACHINE_STACK_GROWS_UP
   1168 	/* stack grows upwards (eg. hppa) */
   1169 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1170 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1171 	for (ip--; ip >= end; ip--)
   1172 		if (*ip != KSTACK_MAGIC)
   1173 			break;
   1174 
   1175 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1176 #else /* __MACHINE_STACK_GROWS_UP */
   1177 	/* stack grows downwards (eg. i386) */
   1178 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1179 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1180 	for (; ip < end; ip++)
   1181 		if (*ip != KSTACK_MAGIC)
   1182 			break;
   1183 
   1184 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1185 #endif /* __MACHINE_STACK_GROWS_UP */
   1186 
   1187 	if (kstackleftmin > stackleft) {
   1188 		kstackleftmin = stackleft;
   1189 		if (stackleft < kstackleftthres)
   1190 			printf("warning: kernel stack left %d bytes"
   1191 			    "(pid %u:lid %u)\n", stackleft,
   1192 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1193 	}
   1194 
   1195 	if (stackleft <= 0) {
   1196 		panic("magic on the top of kernel stack changed for "
   1197 		    "pid %u, lid %u: maybe kernel stack overflow",
   1198 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1199 	}
   1200 }
   1201 #endif /* KSTACK_CHECK_MAGIC */
   1202 
   1203 int
   1204 proclist_foreach_call(struct proclist *list,
   1205     int (*callback)(struct proc *, void *arg), void *arg)
   1206 {
   1207 	struct proc marker;
   1208 	struct proc *p;
   1209 	int ret = 0;
   1210 
   1211 	marker.p_flag = PK_MARKER;
   1212 	mutex_enter(proc_lock);
   1213 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1214 		if (p->p_flag & PK_MARKER) {
   1215 			p = LIST_NEXT(p, p_list);
   1216 			continue;
   1217 		}
   1218 		LIST_INSERT_AFTER(p, &marker, p_list);
   1219 		ret = (*callback)(p, arg);
   1220 		KASSERT(mutex_owned(proc_lock));
   1221 		p = LIST_NEXT(&marker, p_list);
   1222 		LIST_REMOVE(&marker, p_list);
   1223 	}
   1224 	mutex_exit(proc_lock);
   1225 
   1226 	return ret;
   1227 }
   1228 
   1229 int
   1230 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1231 {
   1232 
   1233 	/* XXXCDC: how should locking work here? */
   1234 
   1235 	/* curproc exception is for coredump. */
   1236 
   1237 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1238 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1239 		return EFAULT;
   1240 	}
   1241 
   1242 	uvmspace_addref(p->p_vmspace);
   1243 	*vm = p->p_vmspace;
   1244 
   1245 	return 0;
   1246 }
   1247 
   1248 /*
   1249  * Acquire a write lock on the process credential.
   1250  */
   1251 void
   1252 proc_crmod_enter(void)
   1253 {
   1254 	struct lwp *l = curlwp;
   1255 	struct proc *p = l->l_proc;
   1256 	struct plimit *lim;
   1257 	kauth_cred_t oc;
   1258 	char *cn;
   1259 
   1260 	/* Reset what needs to be reset in plimit. */
   1261 	if (p->p_limit->pl_corename != defcorename) {
   1262 		lim_privatise(p, false);
   1263 		lim = p->p_limit;
   1264 		mutex_enter(&lim->pl_lock);
   1265 		cn = lim->pl_corename;
   1266 		lim->pl_corename = defcorename;
   1267 		mutex_exit(&lim->pl_lock);
   1268 		if (cn != defcorename)
   1269 			free(cn, M_TEMP);
   1270 	}
   1271 
   1272 	mutex_enter(p->p_lock);
   1273 
   1274 	/* Ensure the LWP cached credentials are up to date. */
   1275 	if ((oc = l->l_cred) != p->p_cred) {
   1276 		kauth_cred_hold(p->p_cred);
   1277 		l->l_cred = p->p_cred;
   1278 		kauth_cred_free(oc);
   1279 	}
   1280 
   1281 }
   1282 
   1283 /*
   1284  * Set in a new process credential, and drop the write lock.  The credential
   1285  * must have a reference already.  Optionally, free a no-longer required
   1286  * credential.  The scheduler also needs to inspect p_cred, so we also
   1287  * briefly acquire the sched state mutex.
   1288  */
   1289 void
   1290 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1291 {
   1292 	struct lwp *l = curlwp, *l2;
   1293 	struct proc *p = l->l_proc;
   1294 	kauth_cred_t oc;
   1295 
   1296 	KASSERT(mutex_owned(p->p_lock));
   1297 
   1298 	/* Is there a new credential to set in? */
   1299 	if (scred != NULL) {
   1300 		p->p_cred = scred;
   1301 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1302 			if (l2 != l)
   1303 				l2->l_prflag |= LPR_CRMOD;
   1304 		}
   1305 
   1306 		/* Ensure the LWP cached credentials are up to date. */
   1307 		if ((oc = l->l_cred) != scred) {
   1308 			kauth_cred_hold(scred);
   1309 			l->l_cred = scred;
   1310 		}
   1311 	} else
   1312 		oc = NULL;	/* XXXgcc */
   1313 
   1314 	if (sugid) {
   1315 		/*
   1316 		 * Mark process as having changed credentials, stops
   1317 		 * tracing etc.
   1318 		 */
   1319 		p->p_flag |= PK_SUGID;
   1320 	}
   1321 
   1322 	mutex_exit(p->p_lock);
   1323 
   1324 	/* If there is a credential to be released, free it now. */
   1325 	if (fcred != NULL) {
   1326 		KASSERT(scred != NULL);
   1327 		kauth_cred_free(fcred);
   1328 		if (oc != scred)
   1329 			kauth_cred_free(oc);
   1330 	}
   1331 }
   1332 
   1333 /*
   1334  * proc_specific_key_create --
   1335  *	Create a key for subsystem proc-specific data.
   1336  */
   1337 int
   1338 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1339 {
   1340 
   1341 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1342 }
   1343 
   1344 /*
   1345  * proc_specific_key_delete --
   1346  *	Delete a key for subsystem proc-specific data.
   1347  */
   1348 void
   1349 proc_specific_key_delete(specificdata_key_t key)
   1350 {
   1351 
   1352 	specificdata_key_delete(proc_specificdata_domain, key);
   1353 }
   1354 
   1355 /*
   1356  * proc_initspecific --
   1357  *	Initialize a proc's specificdata container.
   1358  */
   1359 void
   1360 proc_initspecific(struct proc *p)
   1361 {
   1362 	int error;
   1363 
   1364 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1365 	KASSERT(error == 0);
   1366 }
   1367 
   1368 /*
   1369  * proc_finispecific --
   1370  *	Finalize a proc's specificdata container.
   1371  */
   1372 void
   1373 proc_finispecific(struct proc *p)
   1374 {
   1375 
   1376 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1377 }
   1378 
   1379 /*
   1380  * proc_getspecific --
   1381  *	Return proc-specific data corresponding to the specified key.
   1382  */
   1383 void *
   1384 proc_getspecific(struct proc *p, specificdata_key_t key)
   1385 {
   1386 
   1387 	return (specificdata_getspecific(proc_specificdata_domain,
   1388 					 &p->p_specdataref, key));
   1389 }
   1390 
   1391 /*
   1392  * proc_setspecific --
   1393  *	Set proc-specific data corresponding to the specified key.
   1394  */
   1395 void
   1396 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1397 {
   1398 
   1399 	specificdata_setspecific(proc_specificdata_domain,
   1400 				 &p->p_specdataref, key, data);
   1401 }
   1402 
   1403 int
   1404 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1405 {
   1406 	int r = 0;
   1407 
   1408 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1409 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1410 		/*
   1411 		 * suid proc of ours or proc not ours
   1412 		 */
   1413 		r = EPERM;
   1414 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1415 		/*
   1416 		 * sgid proc has sgid back to us temporarily
   1417 		 */
   1418 		r = EPERM;
   1419 	} else {
   1420 		/*
   1421 		 * our rgid must be in target's group list (ie,
   1422 		 * sub-processes started by a sgid process)
   1423 		 */
   1424 		int ismember = 0;
   1425 
   1426 		if (kauth_cred_ismember_gid(cred,
   1427 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1428 		    !ismember)
   1429 			r = EPERM;
   1430 	}
   1431 
   1432 	return (r);
   1433 }
   1434 
   1435