kern_proc.c revision 1.167 1 /* $NetBSD: kern_proc.c,v 1.167 2010/07/01 02:38:30 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.167 2010/07/01 02:38:30 rmind Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/resourcevar.h>
78 #include <sys/buf.h>
79 #include <sys/acct.h>
80 #include <sys/wait.h>
81 #include <sys/file.h>
82 #include <ufs/ufs/quota.h>
83 #include <sys/uio.h>
84 #include <sys/pool.h>
85 #include <sys/pset.h>
86 #include <sys/mbuf.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/signalvar.h>
90 #include <sys/ras.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/filedesc.h>
94 #include "sys/syscall_stats.h"
95 #include <sys/kauth.h>
96 #include <sys/sleepq.h>
97 #include <sys/atomic.h>
98 #include <sys/kmem.h>
99 #include <sys/dtrace_bsd.h>
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 /*
105 * Other process lists
106 */
107
108 struct proclist allproc;
109 struct proclist zombproc; /* resources have been freed */
110
111 kmutex_t *proc_lock;
112
113 /*
114 * pid to proc lookup is done by indexing the pid_table array.
115 * Since pid numbers are only allocated when an empty slot
116 * has been found, there is no need to search any lists ever.
117 * (an orphaned pgrp will lock the slot, a session will lock
118 * the pgrp with the same number.)
119 * If the table is too small it is reallocated with twice the
120 * previous size and the entries 'unzipped' into the two halves.
121 * A linked list of free entries is passed through the pt_proc
122 * field of 'free' items - set odd to be an invalid ptr.
123 */
124
125 struct pid_table {
126 struct proc *pt_proc;
127 struct pgrp *pt_pgrp;
128 };
129 #if 1 /* strongly typed cast - should be a noop */
130 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
131 #else
132 #define p2u(p) ((uint)p)
133 #endif
134 #define P_VALID(p) (!(p2u(p) & 1))
135 #define P_NEXT(p) (p2u(p) >> 1)
136 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
137
138 #define INITIAL_PID_TABLE_SIZE (1 << 5)
139 static struct pid_table *pid_table;
140 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
141 static uint pid_alloc_lim; /* max we allocate before growing table */
142 static uint pid_alloc_cnt; /* number of allocated pids */
143
144 /* links through free slots - never empty! */
145 static uint next_free_pt, last_free_pt;
146 static pid_t pid_max = PID_MAX; /* largest value we allocate */
147
148 /* Components of the first process -- never freed. */
149
150 extern struct emul emul_netbsd; /* defined in kern_exec.c */
151
152 struct session session0 = {
153 .s_count = 1,
154 .s_sid = 0,
155 };
156 struct pgrp pgrp0 = {
157 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
158 .pg_session = &session0,
159 };
160 filedesc_t filedesc0;
161 struct cwdinfo cwdi0 = {
162 .cwdi_cmask = CMASK, /* see cmask below */
163 .cwdi_refcnt = 1,
164 };
165 struct plimit limit0;
166 struct pstats pstat0;
167 struct vmspace vmspace0;
168 struct sigacts sigacts0;
169 struct proc proc0 = {
170 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
171 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
172 .p_nlwps = 1,
173 .p_nrlwps = 1,
174 .p_nlwpid = 1, /* must match lwp0.l_lid */
175 .p_pgrp = &pgrp0,
176 .p_comm = "system",
177 /*
178 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
179 * when they exit. init(8) can easily wait them out for us.
180 */
181 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
182 .p_stat = SACTIVE,
183 .p_nice = NZERO,
184 .p_emul = &emul_netbsd,
185 .p_cwdi = &cwdi0,
186 .p_limit = &limit0,
187 .p_fd = &filedesc0,
188 .p_vmspace = &vmspace0,
189 .p_stats = &pstat0,
190 .p_sigacts = &sigacts0,
191 };
192 kauth_cred_t cred0;
193
194 int nofile = NOFILE;
195 int maxuprc = MAXUPRC;
196 int cmask = CMASK;
197
198 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
199 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
200
201 /*
202 * The process list descriptors, used during pid allocation and
203 * by sysctl. No locking on this data structure is needed since
204 * it is completely static.
205 */
206 const struct proclist_desc proclists[] = {
207 { &allproc },
208 { &zombproc },
209 { NULL },
210 };
211
212 static struct pgrp * pg_remove(pid_t);
213 static void pg_delete(pid_t);
214 static void orphanpg(struct pgrp *);
215
216 static specificdata_domain_t proc_specificdata_domain;
217
218 static pool_cache_t proc_cache;
219
220 static kauth_listener_t proc_listener;
221
222 static int
223 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
224 void *arg0, void *arg1, void *arg2, void *arg3)
225 {
226 struct proc *p;
227 int result;
228
229 result = KAUTH_RESULT_DEFER;
230 p = arg0;
231
232 switch (action) {
233 case KAUTH_PROCESS_CANSEE: {
234 enum kauth_process_req req;
235
236 req = (enum kauth_process_req)arg1;
237
238 switch (req) {
239 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
240 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
241 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
242 result = KAUTH_RESULT_ALLOW;
243
244 break;
245
246 case KAUTH_REQ_PROCESS_CANSEE_ENV:
247 if (kauth_cred_getuid(cred) !=
248 kauth_cred_getuid(p->p_cred) ||
249 kauth_cred_getuid(cred) !=
250 kauth_cred_getsvuid(p->p_cred))
251 break;
252
253 result = KAUTH_RESULT_ALLOW;
254
255 break;
256
257 default:
258 break;
259 }
260
261 break;
262 }
263
264 case KAUTH_PROCESS_FORK: {
265 int lnprocs = (int)(unsigned long)arg2;
266
267 /*
268 * Don't allow a nonprivileged user to use the last few
269 * processes. The variable lnprocs is the current number of
270 * processes, maxproc is the limit.
271 */
272 if (__predict_false((lnprocs >= maxproc - 5)))
273 break;
274
275 result = KAUTH_RESULT_ALLOW;
276
277 break;
278 }
279
280 case KAUTH_PROCESS_CORENAME:
281 case KAUTH_PROCESS_STOPFLAG:
282 if (proc_uidmatch(cred, p->p_cred) == 0)
283 result = KAUTH_RESULT_ALLOW;
284
285 break;
286
287 default:
288 break;
289 }
290
291 return result;
292 }
293
294 /*
295 * Initialize global process hashing structures.
296 */
297 void
298 procinit(void)
299 {
300 const struct proclist_desc *pd;
301 u_int i;
302 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
303
304 for (pd = proclists; pd->pd_list != NULL; pd++)
305 LIST_INIT(pd->pd_list);
306
307 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
308 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
309 * sizeof(struct pid_table), KM_SLEEP);
310
311 /* Set free list running through table...
312 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
313 for (i = 0; i <= pid_tbl_mask; i++) {
314 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
315 pid_table[i].pt_pgrp = 0;
316 }
317 /* slot 0 is just grabbed */
318 next_free_pt = 1;
319 /* Need to fix last entry. */
320 last_free_pt = pid_tbl_mask;
321 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
322 /* point at which we grow table - to avoid reusing pids too often */
323 pid_alloc_lim = pid_tbl_mask - 1;
324 #undef LINK_EMPTY
325
326 proc_specificdata_domain = specificdata_domain_create();
327 KASSERT(proc_specificdata_domain != NULL);
328
329 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
330 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
331
332 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
333 proc_listener_cb, NULL);
334 }
335
336 /*
337 * Initialize process 0.
338 */
339 void
340 proc0_init(void)
341 {
342 struct proc *p;
343 struct pgrp *pg;
344 rlim_t lim;
345 int i;
346
347 p = &proc0;
348 pg = &pgrp0;
349
350 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
351 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
352 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
353
354 rw_init(&p->p_reflock);
355 cv_init(&p->p_waitcv, "wait");
356 cv_init(&p->p_lwpcv, "lwpwait");
357
358 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
359
360 pid_table[0].pt_proc = p;
361 LIST_INSERT_HEAD(&allproc, p, p_list);
362
363 pid_table[0].pt_pgrp = pg;
364 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
365
366 #ifdef __HAVE_SYSCALL_INTERN
367 (*p->p_emul->e_syscall_intern)(p);
368 #endif
369
370 /* Create credentials. */
371 cred0 = kauth_cred_alloc();
372 p->p_cred = cred0;
373
374 /* Create the CWD info. */
375 rw_init(&cwdi0.cwdi_lock);
376
377 /* Create the limits structures. */
378 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
379 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
380 limit0.pl_rlimit[i].rlim_cur =
381 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
382
383 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
384 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
385 maxfiles < nofile ? maxfiles : nofile;
386
387 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
388 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
389 maxproc < maxuprc ? maxproc : maxuprc;
390
391 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
392 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
393 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
394 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
395 limit0.pl_corename = defcorename;
396 limit0.pl_refcnt = 1;
397 limit0.pl_sv_limit = NULL;
398
399 /* Configure virtual memory system, set vm rlimits. */
400 uvm_init_limits(p);
401
402 /* Initialize file descriptor table for proc0. */
403 fd_init(&filedesc0);
404
405 /*
406 * Initialize proc0's vmspace, which uses the kernel pmap.
407 * All kernel processes (which never have user space mappings)
408 * share proc0's vmspace, and thus, the kernel pmap.
409 */
410 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
411 trunc_page(VM_MAX_ADDRESS));
412
413 /* Initialize signal state for proc0. XXX IPL_SCHED */
414 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
415 siginit(p);
416
417 proc_initspecific(p);
418 kdtrace_proc_ctor(NULL, p);
419 }
420
421 /*
422 * Session reference counting.
423 */
424
425 void
426 proc_sesshold(struct session *ss)
427 {
428
429 KASSERT(mutex_owned(proc_lock));
430 ss->s_count++;
431 }
432
433 void
434 proc_sessrele(struct session *ss)
435 {
436
437 KASSERT(mutex_owned(proc_lock));
438 /*
439 * We keep the pgrp with the same id as the session in order to
440 * stop a process being given the same pid. Since the pgrp holds
441 * a reference to the session, it must be a 'zombie' pgrp by now.
442 */
443 if (--ss->s_count == 0) {
444 struct pgrp *pg;
445
446 pg = pg_remove(ss->s_sid);
447 mutex_exit(proc_lock);
448
449 kmem_free(pg, sizeof(struct pgrp));
450 kmem_free(ss, sizeof(struct session));
451 } else {
452 mutex_exit(proc_lock);
453 }
454 }
455
456 /*
457 * Check that the specified process group is in the session of the
458 * specified process.
459 * Treats -ve ids as process ids.
460 * Used to validate TIOCSPGRP requests.
461 */
462 int
463 pgid_in_session(struct proc *p, pid_t pg_id)
464 {
465 struct pgrp *pgrp;
466 struct session *session;
467 int error;
468
469 mutex_enter(proc_lock);
470 if (pg_id < 0) {
471 struct proc *p1 = proc_find(-pg_id);
472 if (p1 == NULL) {
473 error = EINVAL;
474 goto fail;
475 }
476 pgrp = p1->p_pgrp;
477 } else {
478 pgrp = pgrp_find(pg_id);
479 if (pgrp == NULL) {
480 error = EINVAL;
481 goto fail;
482 }
483 }
484 session = pgrp->pg_session;
485 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
486 fail:
487 mutex_exit(proc_lock);
488 return error;
489 }
490
491 /*
492 * p_inferior: is p an inferior of q?
493 */
494 static inline bool
495 p_inferior(struct proc *p, struct proc *q)
496 {
497
498 KASSERT(mutex_owned(proc_lock));
499
500 for (; p != q; p = p->p_pptr)
501 if (p->p_pid == 0)
502 return false;
503 return true;
504 }
505
506 /*
507 * proc_find: locate a process by the ID.
508 *
509 * => Must be called with proc_lock held.
510 */
511 proc_t *
512 proc_find_raw(pid_t pid)
513 {
514 proc_t *p = pid_table[pid & pid_tbl_mask].pt_proc;
515
516 if (__predict_false(!P_VALID(p) || p->p_pid != pid)) {
517 return NULL;
518 }
519 return p;
520 }
521
522 proc_t *
523 proc_find(pid_t pid)
524 {
525 proc_t *p;
526
527 KASSERT(mutex_owned(proc_lock));
528
529 p = proc_find_raw(pid);
530 if (__predict_false(p == NULL)) {
531 return NULL;
532 }
533 /*
534 * Only allow live processes to be found by PID.
535 * XXX: p_stat might change, since unlocked.
536 */
537 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
538 return p;
539 }
540 return NULL;
541 }
542
543 /*
544 * pgrp_find: locate a process group by the ID.
545 *
546 * => Must be called with proc_lock held.
547 */
548 struct pgrp *
549 pgrp_find(pid_t pgid)
550 {
551 struct pgrp *pg;
552
553 KASSERT(mutex_owned(proc_lock));
554
555 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
556 /*
557 * Cannot look up a process group that only exists because the
558 * session has not died yet (traditional).
559 */
560 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
561 return NULL;
562 }
563 return pg;
564 }
565
566 static void
567 expand_pid_table(void)
568 {
569 size_t pt_size, tsz;
570 struct pid_table *n_pt, *new_pt;
571 struct proc *proc;
572 struct pgrp *pgrp;
573 pid_t pid;
574 u_int i;
575
576 pt_size = pid_tbl_mask + 1;
577 tsz = pt_size * 2 * sizeof(struct pid_table);
578 new_pt = kmem_alloc(tsz, KM_SLEEP);
579
580 mutex_enter(proc_lock);
581 if (pt_size != pid_tbl_mask + 1) {
582 /* Another process beat us to it... */
583 mutex_exit(proc_lock);
584 kmem_free(new_pt, tsz);
585 return;
586 }
587
588 /*
589 * Copy entries from old table into new one.
590 * If 'pid' is 'odd' we need to place in the upper half,
591 * even pid's to the lower half.
592 * Free items stay in the low half so we don't have to
593 * fixup the reference to them.
594 * We stuff free items on the front of the freelist
595 * because we can't write to unmodified entries.
596 * Processing the table backwards maintains a semblance
597 * of issueing pid numbers that increase with time.
598 */
599 i = pt_size - 1;
600 n_pt = new_pt + i;
601 for (; ; i--, n_pt--) {
602 proc = pid_table[i].pt_proc;
603 pgrp = pid_table[i].pt_pgrp;
604 if (!P_VALID(proc)) {
605 /* Up 'use count' so that link is valid */
606 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
607 proc = P_FREE(pid);
608 if (pgrp)
609 pid = pgrp->pg_id;
610 } else
611 pid = proc->p_pid;
612
613 /* Save entry in appropriate half of table */
614 n_pt[pid & pt_size].pt_proc = proc;
615 n_pt[pid & pt_size].pt_pgrp = pgrp;
616
617 /* Put other piece on start of free list */
618 pid = (pid ^ pt_size) & ~pid_tbl_mask;
619 n_pt[pid & pt_size].pt_proc =
620 P_FREE((pid & ~pt_size) | next_free_pt);
621 n_pt[pid & pt_size].pt_pgrp = 0;
622 next_free_pt = i | (pid & pt_size);
623 if (i == 0)
624 break;
625 }
626
627 /* Save old table size and switch tables */
628 tsz = pt_size * sizeof(struct pid_table);
629 n_pt = pid_table;
630 pid_table = new_pt;
631 pid_tbl_mask = pt_size * 2 - 1;
632
633 /*
634 * pid_max starts as PID_MAX (= 30000), once we have 16384
635 * allocated pids we need it to be larger!
636 */
637 if (pid_tbl_mask > PID_MAX) {
638 pid_max = pid_tbl_mask * 2 + 1;
639 pid_alloc_lim |= pid_alloc_lim << 1;
640 } else
641 pid_alloc_lim <<= 1; /* doubles number of free slots... */
642
643 mutex_exit(proc_lock);
644 kmem_free(n_pt, tsz);
645 }
646
647 struct proc *
648 proc_alloc(void)
649 {
650 struct proc *p;
651 int nxt;
652 pid_t pid;
653 struct pid_table *pt;
654
655 p = pool_cache_get(proc_cache, PR_WAITOK);
656 p->p_stat = SIDL; /* protect against others */
657
658 proc_initspecific(p);
659 kdtrace_proc_ctor(NULL, p);
660
661 for (;;expand_pid_table()) {
662 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
663 /* ensure pids cycle through 2000+ values */
664 continue;
665 mutex_enter(proc_lock);
666 pt = &pid_table[next_free_pt];
667 #ifdef DIAGNOSTIC
668 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
669 panic("proc_alloc: slot busy");
670 #endif
671 nxt = P_NEXT(pt->pt_proc);
672 if (nxt & pid_tbl_mask)
673 break;
674 /* Table full - expand (NB last entry not used....) */
675 mutex_exit(proc_lock);
676 }
677
678 /* pid is 'saved use count' + 'size' + entry */
679 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
680 if ((uint)pid > (uint)pid_max)
681 pid &= pid_tbl_mask;
682 p->p_pid = pid;
683 next_free_pt = nxt & pid_tbl_mask;
684
685 /* Grab table slot */
686 pt->pt_proc = p;
687 pid_alloc_cnt++;
688 mutex_exit(proc_lock);
689
690 return p;
691 }
692
693 /*
694 * Free a process id - called from proc_free (in kern_exit.c)
695 *
696 * Called with the proc_lock held.
697 */
698 void
699 proc_free_pid(struct proc *p)
700 {
701 pid_t pid = p->p_pid;
702 struct pid_table *pt;
703
704 KASSERT(mutex_owned(proc_lock));
705
706 pt = &pid_table[pid & pid_tbl_mask];
707 #ifdef DIAGNOSTIC
708 if (__predict_false(pt->pt_proc != p))
709 panic("proc_free: pid_table mismatch, pid %x, proc %p",
710 pid, p);
711 #endif
712 /* save pid use count in slot */
713 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
714
715 if (pt->pt_pgrp == NULL) {
716 /* link last freed entry onto ours */
717 pid &= pid_tbl_mask;
718 pt = &pid_table[last_free_pt];
719 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
720 last_free_pt = pid;
721 pid_alloc_cnt--;
722 }
723
724 atomic_dec_uint(&nprocs);
725 }
726
727 void
728 proc_free_mem(struct proc *p)
729 {
730
731 kdtrace_proc_dtor(NULL, p);
732 pool_cache_put(proc_cache, p);
733 }
734
735 /*
736 * proc_enterpgrp: move p to a new or existing process group (and session).
737 *
738 * If we are creating a new pgrp, the pgid should equal
739 * the calling process' pid.
740 * If is only valid to enter a process group that is in the session
741 * of the process.
742 * Also mksess should only be set if we are creating a process group
743 *
744 * Only called from sys_setsid and sys_setpgid.
745 */
746 int
747 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
748 {
749 struct pgrp *new_pgrp, *pgrp;
750 struct session *sess;
751 struct proc *p;
752 int rval;
753 pid_t pg_id = NO_PGID;
754
755 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
756
757 /* Allocate data areas we might need before doing any validity checks */
758 mutex_enter(proc_lock); /* Because pid_table might change */
759 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
760 mutex_exit(proc_lock);
761 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
762 mutex_enter(proc_lock);
763 } else
764 new_pgrp = NULL;
765 rval = EPERM; /* most common error (to save typing) */
766
767 /* Check pgrp exists or can be created */
768 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
769 if (pgrp != NULL && pgrp->pg_id != pgid)
770 goto done;
771
772 /* Can only set another process under restricted circumstances. */
773 if (pid != curp->p_pid) {
774 /* Must exist and be one of our children... */
775 p = proc_find(pid);
776 if (p == NULL || !p_inferior(p, curp)) {
777 rval = ESRCH;
778 goto done;
779 }
780 /* ... in the same session... */
781 if (sess != NULL || p->p_session != curp->p_session)
782 goto done;
783 /* ... existing pgid must be in same session ... */
784 if (pgrp != NULL && pgrp->pg_session != p->p_session)
785 goto done;
786 /* ... and not done an exec. */
787 if (p->p_flag & PK_EXEC) {
788 rval = EACCES;
789 goto done;
790 }
791 } else {
792 /* ... setsid() cannot re-enter a pgrp */
793 if (mksess && (curp->p_pgid == curp->p_pid ||
794 pgrp_find(curp->p_pid)))
795 goto done;
796 p = curp;
797 }
798
799 /* Changing the process group/session of a session
800 leader is definitely off limits. */
801 if (SESS_LEADER(p)) {
802 if (sess == NULL && p->p_pgrp == pgrp)
803 /* unless it's a definite noop */
804 rval = 0;
805 goto done;
806 }
807
808 /* Can only create a process group with id of process */
809 if (pgrp == NULL && pgid != pid)
810 goto done;
811
812 /* Can only create a session if creating pgrp */
813 if (sess != NULL && pgrp != NULL)
814 goto done;
815
816 /* Check we allocated memory for a pgrp... */
817 if (pgrp == NULL && new_pgrp == NULL)
818 goto done;
819
820 /* Don't attach to 'zombie' pgrp */
821 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
822 goto done;
823
824 /* Expect to succeed now */
825 rval = 0;
826
827 if (pgrp == p->p_pgrp)
828 /* nothing to do */
829 goto done;
830
831 /* Ok all setup, link up required structures */
832
833 if (pgrp == NULL) {
834 pgrp = new_pgrp;
835 new_pgrp = NULL;
836 if (sess != NULL) {
837 sess->s_sid = p->p_pid;
838 sess->s_leader = p;
839 sess->s_count = 1;
840 sess->s_ttyvp = NULL;
841 sess->s_ttyp = NULL;
842 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
843 memcpy(sess->s_login, p->p_session->s_login,
844 sizeof(sess->s_login));
845 p->p_lflag &= ~PL_CONTROLT;
846 } else {
847 sess = p->p_pgrp->pg_session;
848 proc_sesshold(sess);
849 }
850 pgrp->pg_session = sess;
851 sess = NULL;
852
853 pgrp->pg_id = pgid;
854 LIST_INIT(&pgrp->pg_members);
855 #ifdef DIAGNOSTIC
856 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
857 panic("enterpgrp: pgrp table slot in use");
858 if (__predict_false(mksess && p != curp))
859 panic("enterpgrp: mksession and p != curproc");
860 #endif
861 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
862 pgrp->pg_jobc = 0;
863 }
864
865 /*
866 * Adjust eligibility of affected pgrps to participate in job control.
867 * Increment eligibility counts before decrementing, otherwise we
868 * could reach 0 spuriously during the first call.
869 */
870 fixjobc(p, pgrp, 1);
871 fixjobc(p, p->p_pgrp, 0);
872
873 /* Interlock with ttread(). */
874 mutex_spin_enter(&tty_lock);
875
876 /* Move process to requested group. */
877 LIST_REMOVE(p, p_pglist);
878 if (LIST_EMPTY(&p->p_pgrp->pg_members))
879 /* defer delete until we've dumped the lock */
880 pg_id = p->p_pgrp->pg_id;
881 p->p_pgrp = pgrp;
882 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
883
884 /* Done with the swap; we can release the tty mutex. */
885 mutex_spin_exit(&tty_lock);
886
887 done:
888 if (pg_id != NO_PGID) {
889 /* Releases proc_lock. */
890 pg_delete(pg_id);
891 } else {
892 mutex_exit(proc_lock);
893 }
894 if (sess != NULL)
895 kmem_free(sess, sizeof(*sess));
896 if (new_pgrp != NULL)
897 kmem_free(new_pgrp, sizeof(*new_pgrp));
898 #ifdef DEBUG_PGRP
899 if (__predict_false(rval))
900 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
901 pid, pgid, mksess, curp->p_pid, rval);
902 #endif
903 return rval;
904 }
905
906 /*
907 * proc_leavepgrp: remove a process from its process group.
908 * => must be called with the proc_lock held, which will be released;
909 */
910 void
911 proc_leavepgrp(struct proc *p)
912 {
913 struct pgrp *pgrp;
914
915 KASSERT(mutex_owned(proc_lock));
916
917 /* Interlock with ttread() */
918 mutex_spin_enter(&tty_lock);
919 pgrp = p->p_pgrp;
920 LIST_REMOVE(p, p_pglist);
921 p->p_pgrp = NULL;
922 mutex_spin_exit(&tty_lock);
923
924 if (LIST_EMPTY(&pgrp->pg_members)) {
925 /* Releases proc_lock. */
926 pg_delete(pgrp->pg_id);
927 } else {
928 mutex_exit(proc_lock);
929 }
930 }
931
932 /*
933 * pg_remove: remove a process group from the table.
934 * => must be called with the proc_lock held;
935 * => returns process group to free;
936 */
937 static struct pgrp *
938 pg_remove(pid_t pg_id)
939 {
940 struct pgrp *pgrp;
941 struct pid_table *pt;
942
943 KASSERT(mutex_owned(proc_lock));
944
945 pt = &pid_table[pg_id & pid_tbl_mask];
946 pgrp = pt->pt_pgrp;
947
948 KASSERT(pgrp != NULL);
949 KASSERT(pgrp->pg_id == pg_id);
950 KASSERT(LIST_EMPTY(&pgrp->pg_members));
951
952 pt->pt_pgrp = NULL;
953
954 if (!P_VALID(pt->pt_proc)) {
955 /* Orphaned pgrp, put slot onto free list. */
956 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
957 pg_id &= pid_tbl_mask;
958 pt = &pid_table[last_free_pt];
959 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
960 last_free_pt = pg_id;
961 pid_alloc_cnt--;
962 }
963 return pgrp;
964 }
965
966 /*
967 * pg_delete: delete and free a process group.
968 * => must be called with the proc_lock held, which will be released.
969 */
970 static void
971 pg_delete(pid_t pg_id)
972 {
973 struct pgrp *pg;
974 struct tty *ttyp;
975 struct session *ss;
976
977 KASSERT(mutex_owned(proc_lock));
978
979 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
980 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
981 mutex_exit(proc_lock);
982 return;
983 }
984
985 ss = pg->pg_session;
986
987 /* Remove reference (if any) from tty to this process group */
988 mutex_spin_enter(&tty_lock);
989 ttyp = ss->s_ttyp;
990 if (ttyp != NULL && ttyp->t_pgrp == pg) {
991 ttyp->t_pgrp = NULL;
992 KASSERT(ttyp->t_session == ss);
993 }
994 mutex_spin_exit(&tty_lock);
995
996 /*
997 * The leading process group in a session is freed by proc_sessrele(),
998 * if last reference. Note: proc_sessrele() releases proc_lock.
999 */
1000 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1001 proc_sessrele(ss);
1002
1003 if (pg != NULL) {
1004 /* Free it, if was not done by proc_sessrele(). */
1005 kmem_free(pg, sizeof(struct pgrp));
1006 }
1007 }
1008
1009 /*
1010 * Adjust pgrp jobc counters when specified process changes process group.
1011 * We count the number of processes in each process group that "qualify"
1012 * the group for terminal job control (those with a parent in a different
1013 * process group of the same session). If that count reaches zero, the
1014 * process group becomes orphaned. Check both the specified process'
1015 * process group and that of its children.
1016 * entering == 0 => p is leaving specified group.
1017 * entering == 1 => p is entering specified group.
1018 *
1019 * Call with proc_lock held.
1020 */
1021 void
1022 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1023 {
1024 struct pgrp *hispgrp;
1025 struct session *mysession = pgrp->pg_session;
1026 struct proc *child;
1027
1028 KASSERT(mutex_owned(proc_lock));
1029
1030 /*
1031 * Check p's parent to see whether p qualifies its own process
1032 * group; if so, adjust count for p's process group.
1033 */
1034 hispgrp = p->p_pptr->p_pgrp;
1035 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1036 if (entering) {
1037 pgrp->pg_jobc++;
1038 p->p_lflag &= ~PL_ORPHANPG;
1039 } else if (--pgrp->pg_jobc == 0)
1040 orphanpg(pgrp);
1041 }
1042
1043 /*
1044 * Check this process' children to see whether they qualify
1045 * their process groups; if so, adjust counts for children's
1046 * process groups.
1047 */
1048 LIST_FOREACH(child, &p->p_children, p_sibling) {
1049 hispgrp = child->p_pgrp;
1050 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1051 !P_ZOMBIE(child)) {
1052 if (entering) {
1053 child->p_lflag &= ~PL_ORPHANPG;
1054 hispgrp->pg_jobc++;
1055 } else if (--hispgrp->pg_jobc == 0)
1056 orphanpg(hispgrp);
1057 }
1058 }
1059 }
1060
1061 /*
1062 * A process group has become orphaned;
1063 * if there are any stopped processes in the group,
1064 * hang-up all process in that group.
1065 *
1066 * Call with proc_lock held.
1067 */
1068 static void
1069 orphanpg(struct pgrp *pg)
1070 {
1071 struct proc *p;
1072
1073 KASSERT(mutex_owned(proc_lock));
1074
1075 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1076 if (p->p_stat == SSTOP) {
1077 p->p_lflag |= PL_ORPHANPG;
1078 psignal(p, SIGHUP);
1079 psignal(p, SIGCONT);
1080 }
1081 }
1082 }
1083
1084 #ifdef DDB
1085 #include <ddb/db_output.h>
1086 void pidtbl_dump(void);
1087 void
1088 pidtbl_dump(void)
1089 {
1090 struct pid_table *pt;
1091 struct proc *p;
1092 struct pgrp *pgrp;
1093 int id;
1094
1095 db_printf("pid table %p size %x, next %x, last %x\n",
1096 pid_table, pid_tbl_mask+1,
1097 next_free_pt, last_free_pt);
1098 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1099 p = pt->pt_proc;
1100 if (!P_VALID(p) && !pt->pt_pgrp)
1101 continue;
1102 db_printf(" id %x: ", id);
1103 if (P_VALID(p))
1104 db_printf("proc %p id %d (0x%x) %s\n",
1105 p, p->p_pid, p->p_pid, p->p_comm);
1106 else
1107 db_printf("next %x use %x\n",
1108 P_NEXT(p) & pid_tbl_mask,
1109 P_NEXT(p) & ~pid_tbl_mask);
1110 if ((pgrp = pt->pt_pgrp)) {
1111 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1112 pgrp->pg_session, pgrp->pg_session->s_sid,
1113 pgrp->pg_session->s_count,
1114 pgrp->pg_session->s_login);
1115 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1116 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1117 LIST_FIRST(&pgrp->pg_members));
1118 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1119 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1120 p->p_pid, p, p->p_pgrp, p->p_comm);
1121 }
1122 }
1123 }
1124 }
1125 #endif /* DDB */
1126
1127 #ifdef KSTACK_CHECK_MAGIC
1128
1129 #define KSTACK_MAGIC 0xdeadbeaf
1130
1131 /* XXX should be per process basis? */
1132 static int kstackleftmin = KSTACK_SIZE;
1133 static int kstackleftthres = KSTACK_SIZE / 8;
1134
1135 void
1136 kstack_setup_magic(const struct lwp *l)
1137 {
1138 uint32_t *ip;
1139 uint32_t const *end;
1140
1141 KASSERT(l != NULL);
1142 KASSERT(l != &lwp0);
1143
1144 /*
1145 * fill all the stack with magic number
1146 * so that later modification on it can be detected.
1147 */
1148 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1149 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1150 for (; ip < end; ip++) {
1151 *ip = KSTACK_MAGIC;
1152 }
1153 }
1154
1155 void
1156 kstack_check_magic(const struct lwp *l)
1157 {
1158 uint32_t const *ip, *end;
1159 int stackleft;
1160
1161 KASSERT(l != NULL);
1162
1163 /* don't check proc0 */ /*XXX*/
1164 if (l == &lwp0)
1165 return;
1166
1167 #ifdef __MACHINE_STACK_GROWS_UP
1168 /* stack grows upwards (eg. hppa) */
1169 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1170 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1171 for (ip--; ip >= end; ip--)
1172 if (*ip != KSTACK_MAGIC)
1173 break;
1174
1175 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1176 #else /* __MACHINE_STACK_GROWS_UP */
1177 /* stack grows downwards (eg. i386) */
1178 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1179 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1180 for (; ip < end; ip++)
1181 if (*ip != KSTACK_MAGIC)
1182 break;
1183
1184 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1185 #endif /* __MACHINE_STACK_GROWS_UP */
1186
1187 if (kstackleftmin > stackleft) {
1188 kstackleftmin = stackleft;
1189 if (stackleft < kstackleftthres)
1190 printf("warning: kernel stack left %d bytes"
1191 "(pid %u:lid %u)\n", stackleft,
1192 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1193 }
1194
1195 if (stackleft <= 0) {
1196 panic("magic on the top of kernel stack changed for "
1197 "pid %u, lid %u: maybe kernel stack overflow",
1198 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1199 }
1200 }
1201 #endif /* KSTACK_CHECK_MAGIC */
1202
1203 int
1204 proclist_foreach_call(struct proclist *list,
1205 int (*callback)(struct proc *, void *arg), void *arg)
1206 {
1207 struct proc marker;
1208 struct proc *p;
1209 int ret = 0;
1210
1211 marker.p_flag = PK_MARKER;
1212 mutex_enter(proc_lock);
1213 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1214 if (p->p_flag & PK_MARKER) {
1215 p = LIST_NEXT(p, p_list);
1216 continue;
1217 }
1218 LIST_INSERT_AFTER(p, &marker, p_list);
1219 ret = (*callback)(p, arg);
1220 KASSERT(mutex_owned(proc_lock));
1221 p = LIST_NEXT(&marker, p_list);
1222 LIST_REMOVE(&marker, p_list);
1223 }
1224 mutex_exit(proc_lock);
1225
1226 return ret;
1227 }
1228
1229 int
1230 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1231 {
1232
1233 /* XXXCDC: how should locking work here? */
1234
1235 /* curproc exception is for coredump. */
1236
1237 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1238 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1239 return EFAULT;
1240 }
1241
1242 uvmspace_addref(p->p_vmspace);
1243 *vm = p->p_vmspace;
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * Acquire a write lock on the process credential.
1250 */
1251 void
1252 proc_crmod_enter(void)
1253 {
1254 struct lwp *l = curlwp;
1255 struct proc *p = l->l_proc;
1256 struct plimit *lim;
1257 kauth_cred_t oc;
1258 char *cn;
1259
1260 /* Reset what needs to be reset in plimit. */
1261 if (p->p_limit->pl_corename != defcorename) {
1262 lim_privatise(p, false);
1263 lim = p->p_limit;
1264 mutex_enter(&lim->pl_lock);
1265 cn = lim->pl_corename;
1266 lim->pl_corename = defcorename;
1267 mutex_exit(&lim->pl_lock);
1268 if (cn != defcorename)
1269 free(cn, M_TEMP);
1270 }
1271
1272 mutex_enter(p->p_lock);
1273
1274 /* Ensure the LWP cached credentials are up to date. */
1275 if ((oc = l->l_cred) != p->p_cred) {
1276 kauth_cred_hold(p->p_cred);
1277 l->l_cred = p->p_cred;
1278 kauth_cred_free(oc);
1279 }
1280
1281 }
1282
1283 /*
1284 * Set in a new process credential, and drop the write lock. The credential
1285 * must have a reference already. Optionally, free a no-longer required
1286 * credential. The scheduler also needs to inspect p_cred, so we also
1287 * briefly acquire the sched state mutex.
1288 */
1289 void
1290 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1291 {
1292 struct lwp *l = curlwp, *l2;
1293 struct proc *p = l->l_proc;
1294 kauth_cred_t oc;
1295
1296 KASSERT(mutex_owned(p->p_lock));
1297
1298 /* Is there a new credential to set in? */
1299 if (scred != NULL) {
1300 p->p_cred = scred;
1301 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1302 if (l2 != l)
1303 l2->l_prflag |= LPR_CRMOD;
1304 }
1305
1306 /* Ensure the LWP cached credentials are up to date. */
1307 if ((oc = l->l_cred) != scred) {
1308 kauth_cred_hold(scred);
1309 l->l_cred = scred;
1310 }
1311 } else
1312 oc = NULL; /* XXXgcc */
1313
1314 if (sugid) {
1315 /*
1316 * Mark process as having changed credentials, stops
1317 * tracing etc.
1318 */
1319 p->p_flag |= PK_SUGID;
1320 }
1321
1322 mutex_exit(p->p_lock);
1323
1324 /* If there is a credential to be released, free it now. */
1325 if (fcred != NULL) {
1326 KASSERT(scred != NULL);
1327 kauth_cred_free(fcred);
1328 if (oc != scred)
1329 kauth_cred_free(oc);
1330 }
1331 }
1332
1333 /*
1334 * proc_specific_key_create --
1335 * Create a key for subsystem proc-specific data.
1336 */
1337 int
1338 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1339 {
1340
1341 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1342 }
1343
1344 /*
1345 * proc_specific_key_delete --
1346 * Delete a key for subsystem proc-specific data.
1347 */
1348 void
1349 proc_specific_key_delete(specificdata_key_t key)
1350 {
1351
1352 specificdata_key_delete(proc_specificdata_domain, key);
1353 }
1354
1355 /*
1356 * proc_initspecific --
1357 * Initialize a proc's specificdata container.
1358 */
1359 void
1360 proc_initspecific(struct proc *p)
1361 {
1362 int error;
1363
1364 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1365 KASSERT(error == 0);
1366 }
1367
1368 /*
1369 * proc_finispecific --
1370 * Finalize a proc's specificdata container.
1371 */
1372 void
1373 proc_finispecific(struct proc *p)
1374 {
1375
1376 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1377 }
1378
1379 /*
1380 * proc_getspecific --
1381 * Return proc-specific data corresponding to the specified key.
1382 */
1383 void *
1384 proc_getspecific(struct proc *p, specificdata_key_t key)
1385 {
1386
1387 return (specificdata_getspecific(proc_specificdata_domain,
1388 &p->p_specdataref, key));
1389 }
1390
1391 /*
1392 * proc_setspecific --
1393 * Set proc-specific data corresponding to the specified key.
1394 */
1395 void
1396 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1397 {
1398
1399 specificdata_setspecific(proc_specificdata_domain,
1400 &p->p_specdataref, key, data);
1401 }
1402
1403 int
1404 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1405 {
1406 int r = 0;
1407
1408 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1409 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1410 /*
1411 * suid proc of ours or proc not ours
1412 */
1413 r = EPERM;
1414 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1415 /*
1416 * sgid proc has sgid back to us temporarily
1417 */
1418 r = EPERM;
1419 } else {
1420 /*
1421 * our rgid must be in target's group list (ie,
1422 * sub-processes started by a sgid process)
1423 */
1424 int ismember = 0;
1425
1426 if (kauth_cred_ismember_gid(cred,
1427 kauth_cred_getgid(target), &ismember) != 0 ||
1428 !ismember)
1429 r = EPERM;
1430 }
1431
1432 return (r);
1433 }
1434
1435