kern_proc.c revision 1.171 1 /* $NetBSD: kern_proc.c,v 1.171 2011/01/28 20:31:10 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.171 2011/01/28 20:31:10 pooka Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/resourcevar.h>
79 #include <sys/buf.h>
80 #include <sys/acct.h>
81 #include <sys/wait.h>
82 #include <sys/file.h>
83 #include <ufs/ufs/quota.h>
84 #include <sys/uio.h>
85 #include <sys/pool.h>
86 #include <sys/pset.h>
87 #include <sys/mbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/signalvar.h>
91 #include <sys/ras.h>
92 #include <sys/sa.h>
93 #include <sys/savar.h>
94 #include <sys/filedesc.h>
95 #include "sys/syscall_stats.h"
96 #include <sys/kauth.h>
97 #include <sys/sleepq.h>
98 #include <sys/atomic.h>
99 #include <sys/kmem.h>
100 #include <sys/dtrace_bsd.h>
101 #include <sys/sysctl.h>
102 #include <sys/exec.h>
103 #include <sys/cpu.h>
104
105 #include <uvm/uvm_extern.h>
106 #include <uvm/uvm_extern.h>
107
108 #ifdef COMPAT_NETBSD32
109 #include <compat/netbsd32/netbsd32.h>
110 #endif
111
112 /*
113 * Other process lists
114 */
115
116 struct proclist allproc;
117 struct proclist zombproc; /* resources have been freed */
118
119 kmutex_t *proc_lock;
120
121 /*
122 * pid to proc lookup is done by indexing the pid_table array.
123 * Since pid numbers are only allocated when an empty slot
124 * has been found, there is no need to search any lists ever.
125 * (an orphaned pgrp will lock the slot, a session will lock
126 * the pgrp with the same number.)
127 * If the table is too small it is reallocated with twice the
128 * previous size and the entries 'unzipped' into the two halves.
129 * A linked list of free entries is passed through the pt_proc
130 * field of 'free' items - set odd to be an invalid ptr.
131 */
132
133 struct pid_table {
134 struct proc *pt_proc;
135 struct pgrp *pt_pgrp;
136 pid_t pt_pid;
137 };
138 #if 1 /* strongly typed cast - should be a noop */
139 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
140 #else
141 #define p2u(p) ((uint)p)
142 #endif
143 #define P_VALID(p) (!(p2u(p) & 1))
144 #define P_NEXT(p) (p2u(p) >> 1)
145 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
146
147 #define INITIAL_PID_TABLE_SIZE (1 << 5)
148 static struct pid_table *pid_table;
149 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
150 static uint pid_alloc_lim; /* max we allocate before growing table */
151 static uint pid_alloc_cnt; /* number of allocated pids */
152
153 /* links through free slots - never empty! */
154 static uint next_free_pt, last_free_pt;
155 static pid_t pid_max = PID_MAX; /* largest value we allocate */
156
157 /* Components of the first process -- never freed. */
158
159 extern struct emul emul_netbsd; /* defined in kern_exec.c */
160
161 struct session session0 = {
162 .s_count = 1,
163 .s_sid = 0,
164 };
165 struct pgrp pgrp0 = {
166 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
167 .pg_session = &session0,
168 };
169 filedesc_t filedesc0;
170 struct cwdinfo cwdi0 = {
171 .cwdi_cmask = CMASK, /* see cmask below */
172 .cwdi_refcnt = 1,
173 };
174 struct plimit limit0;
175 struct pstats pstat0;
176 struct vmspace vmspace0;
177 struct sigacts sigacts0;
178 struct proc proc0 = {
179 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
180 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
181 .p_nlwps = 1,
182 .p_nrlwps = 1,
183 .p_nlwpid = 1, /* must match lwp0.l_lid */
184 .p_pgrp = &pgrp0,
185 .p_comm = "system",
186 /*
187 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
188 * when they exit. init(8) can easily wait them out for us.
189 */
190 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
191 .p_stat = SACTIVE,
192 .p_nice = NZERO,
193 .p_emul = &emul_netbsd,
194 .p_cwdi = &cwdi0,
195 .p_limit = &limit0,
196 .p_fd = &filedesc0,
197 .p_vmspace = &vmspace0,
198 .p_stats = &pstat0,
199 .p_sigacts = &sigacts0,
200 };
201 kauth_cred_t cred0;
202
203 int nofile = NOFILE;
204 int maxuprc = MAXUPRC;
205 int cmask = CMASK;
206
207 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
208 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
209
210 static int sysctl_doeproc(SYSCTLFN_PROTO);
211 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
212 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
213
214 /*
215 * The process list descriptors, used during pid allocation and
216 * by sysctl. No locking on this data structure is needed since
217 * it is completely static.
218 */
219 const struct proclist_desc proclists[] = {
220 { &allproc },
221 { &zombproc },
222 { NULL },
223 };
224
225 static struct pgrp * pg_remove(pid_t);
226 static void pg_delete(pid_t);
227 static void orphanpg(struct pgrp *);
228
229 static specificdata_domain_t proc_specificdata_domain;
230
231 static pool_cache_t proc_cache;
232
233 static kauth_listener_t proc_listener;
234
235 static int
236 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
237 void *arg0, void *arg1, void *arg2, void *arg3)
238 {
239 struct proc *p;
240 int result;
241
242 result = KAUTH_RESULT_DEFER;
243 p = arg0;
244
245 switch (action) {
246 case KAUTH_PROCESS_CANSEE: {
247 enum kauth_process_req req;
248
249 req = (enum kauth_process_req)arg1;
250
251 switch (req) {
252 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
253 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
254 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
255 result = KAUTH_RESULT_ALLOW;
256
257 break;
258
259 case KAUTH_REQ_PROCESS_CANSEE_ENV:
260 if (kauth_cred_getuid(cred) !=
261 kauth_cred_getuid(p->p_cred) ||
262 kauth_cred_getuid(cred) !=
263 kauth_cred_getsvuid(p->p_cred))
264 break;
265
266 result = KAUTH_RESULT_ALLOW;
267
268 break;
269
270 default:
271 break;
272 }
273
274 break;
275 }
276
277 case KAUTH_PROCESS_FORK: {
278 int lnprocs = (int)(unsigned long)arg2;
279
280 /*
281 * Don't allow a nonprivileged user to use the last few
282 * processes. The variable lnprocs is the current number of
283 * processes, maxproc is the limit.
284 */
285 if (__predict_false((lnprocs >= maxproc - 5)))
286 break;
287
288 result = KAUTH_RESULT_ALLOW;
289
290 break;
291 }
292
293 case KAUTH_PROCESS_CORENAME:
294 case KAUTH_PROCESS_STOPFLAG:
295 if (proc_uidmatch(cred, p->p_cred) == 0)
296 result = KAUTH_RESULT_ALLOW;
297
298 break;
299
300 default:
301 break;
302 }
303
304 return result;
305 }
306
307 /*
308 * Initialize global process hashing structures.
309 */
310 void
311 procinit(void)
312 {
313 const struct proclist_desc *pd;
314 u_int i;
315 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
316
317 for (pd = proclists; pd->pd_list != NULL; pd++)
318 LIST_INIT(pd->pd_list);
319
320 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
321 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
322 * sizeof(struct pid_table), KM_SLEEP);
323
324 /* Set free list running through table...
325 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
326 for (i = 0; i <= pid_tbl_mask; i++) {
327 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
328 pid_table[i].pt_pgrp = 0;
329 pid_table[i].pt_pid = 0;
330 }
331 /* slot 0 is just grabbed */
332 next_free_pt = 1;
333 /* Need to fix last entry. */
334 last_free_pt = pid_tbl_mask;
335 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
336 /* point at which we grow table - to avoid reusing pids too often */
337 pid_alloc_lim = pid_tbl_mask - 1;
338 #undef LINK_EMPTY
339
340 proc_specificdata_domain = specificdata_domain_create();
341 KASSERT(proc_specificdata_domain != NULL);
342
343 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
344 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
345
346 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
347 proc_listener_cb, NULL);
348 }
349
350 void
351 procinit_sysctl(void)
352 {
353 static struct sysctllog *clog;
354
355 sysctl_createv(&clog, 0, NULL, NULL,
356 CTLFLAG_PERMANENT,
357 CTLTYPE_NODE, "kern", NULL,
358 NULL, 0, NULL, 0,
359 CTL_KERN, CTL_EOL);
360
361 sysctl_createv(&clog, 0, NULL, NULL,
362 CTLFLAG_PERMANENT,
363 CTLTYPE_NODE, "proc",
364 SYSCTL_DESCR("System-wide process information"),
365 sysctl_doeproc, 0, NULL, 0,
366 CTL_KERN, KERN_PROC, CTL_EOL);
367 sysctl_createv(&clog, 0, NULL, NULL,
368 CTLFLAG_PERMANENT,
369 CTLTYPE_NODE, "proc2",
370 SYSCTL_DESCR("Machine-independent process information"),
371 sysctl_doeproc, 0, NULL, 0,
372 CTL_KERN, KERN_PROC2, CTL_EOL);
373 sysctl_createv(&clog, 0, NULL, NULL,
374 CTLFLAG_PERMANENT,
375 CTLTYPE_NODE, "proc_args",
376 SYSCTL_DESCR("Process argument information"),
377 sysctl_kern_proc_args, 0, NULL, 0,
378 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
379
380 /*
381 "nodes" under these:
382
383 KERN_PROC_ALL
384 KERN_PROC_PID pid
385 KERN_PROC_PGRP pgrp
386 KERN_PROC_SESSION sess
387 KERN_PROC_TTY tty
388 KERN_PROC_UID uid
389 KERN_PROC_RUID uid
390 KERN_PROC_GID gid
391 KERN_PROC_RGID gid
392
393 all in all, probably not worth the effort...
394 */
395 }
396
397 /*
398 * Initialize process 0.
399 */
400 void
401 proc0_init(void)
402 {
403 struct proc *p;
404 struct pgrp *pg;
405 rlim_t lim;
406 int i;
407
408 p = &proc0;
409 pg = &pgrp0;
410
411 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
412 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
413 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
414
415 rw_init(&p->p_reflock);
416 cv_init(&p->p_waitcv, "wait");
417 cv_init(&p->p_lwpcv, "lwpwait");
418
419 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
420
421 pid_table[0].pt_proc = p;
422 LIST_INSERT_HEAD(&allproc, p, p_list);
423
424 pid_table[0].pt_pgrp = pg;
425 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
426
427 #ifdef __HAVE_SYSCALL_INTERN
428 (*p->p_emul->e_syscall_intern)(p);
429 #endif
430
431 /* Create credentials. */
432 cred0 = kauth_cred_alloc();
433 p->p_cred = cred0;
434
435 /* Create the CWD info. */
436 rw_init(&cwdi0.cwdi_lock);
437
438 /* Create the limits structures. */
439 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
440 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
441 limit0.pl_rlimit[i].rlim_cur =
442 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
443
444 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
445 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
446 maxfiles < nofile ? maxfiles : nofile;
447
448 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
449 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
450 maxproc < maxuprc ? maxproc : maxuprc;
451
452 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
453 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
454 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
455 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
456 limit0.pl_corename = defcorename;
457 limit0.pl_refcnt = 1;
458 limit0.pl_sv_limit = NULL;
459
460 /* Configure virtual memory system, set vm rlimits. */
461 uvm_init_limits(p);
462
463 /* Initialize file descriptor table for proc0. */
464 fd_init(&filedesc0);
465
466 /*
467 * Initialize proc0's vmspace, which uses the kernel pmap.
468 * All kernel processes (which never have user space mappings)
469 * share proc0's vmspace, and thus, the kernel pmap.
470 */
471 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
472 trunc_page(VM_MAX_ADDRESS));
473
474 /* Initialize signal state for proc0. XXX IPL_SCHED */
475 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
476 siginit(p);
477
478 proc_initspecific(p);
479 kdtrace_proc_ctor(NULL, p);
480 }
481
482 /*
483 * Session reference counting.
484 */
485
486 void
487 proc_sesshold(struct session *ss)
488 {
489
490 KASSERT(mutex_owned(proc_lock));
491 ss->s_count++;
492 }
493
494 void
495 proc_sessrele(struct session *ss)
496 {
497
498 KASSERT(mutex_owned(proc_lock));
499 /*
500 * We keep the pgrp with the same id as the session in order to
501 * stop a process being given the same pid. Since the pgrp holds
502 * a reference to the session, it must be a 'zombie' pgrp by now.
503 */
504 if (--ss->s_count == 0) {
505 struct pgrp *pg;
506
507 pg = pg_remove(ss->s_sid);
508 mutex_exit(proc_lock);
509
510 kmem_free(pg, sizeof(struct pgrp));
511 kmem_free(ss, sizeof(struct session));
512 } else {
513 mutex_exit(proc_lock);
514 }
515 }
516
517 /*
518 * Check that the specified process group is in the session of the
519 * specified process.
520 * Treats -ve ids as process ids.
521 * Used to validate TIOCSPGRP requests.
522 */
523 int
524 pgid_in_session(struct proc *p, pid_t pg_id)
525 {
526 struct pgrp *pgrp;
527 struct session *session;
528 int error;
529
530 mutex_enter(proc_lock);
531 if (pg_id < 0) {
532 struct proc *p1 = proc_find(-pg_id);
533 if (p1 == NULL) {
534 error = EINVAL;
535 goto fail;
536 }
537 pgrp = p1->p_pgrp;
538 } else {
539 pgrp = pgrp_find(pg_id);
540 if (pgrp == NULL) {
541 error = EINVAL;
542 goto fail;
543 }
544 }
545 session = pgrp->pg_session;
546 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
547 fail:
548 mutex_exit(proc_lock);
549 return error;
550 }
551
552 /*
553 * p_inferior: is p an inferior of q?
554 */
555 static inline bool
556 p_inferior(struct proc *p, struct proc *q)
557 {
558
559 KASSERT(mutex_owned(proc_lock));
560
561 for (; p != q; p = p->p_pptr)
562 if (p->p_pid == 0)
563 return false;
564 return true;
565 }
566
567 /*
568 * proc_find: locate a process by the ID.
569 *
570 * => Must be called with proc_lock held.
571 */
572 proc_t *
573 proc_find_raw(pid_t pid)
574 {
575 struct pid_table *pt;
576 proc_t *p;
577
578 KASSERT(mutex_owned(proc_lock));
579 pt = &pid_table[pid & pid_tbl_mask];
580 p = pt->pt_proc;
581 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
582 return NULL;
583 }
584 return p;
585 }
586
587 proc_t *
588 proc_find(pid_t pid)
589 {
590 proc_t *p;
591
592 p = proc_find_raw(pid);
593 if (__predict_false(p == NULL)) {
594 return NULL;
595 }
596
597 /*
598 * Only allow live processes to be found by PID.
599 * XXX: p_stat might change, since unlocked.
600 */
601 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
602 return p;
603 }
604 return NULL;
605 }
606
607 /*
608 * pgrp_find: locate a process group by the ID.
609 *
610 * => Must be called with proc_lock held.
611 */
612 struct pgrp *
613 pgrp_find(pid_t pgid)
614 {
615 struct pgrp *pg;
616
617 KASSERT(mutex_owned(proc_lock));
618
619 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
620
621 /*
622 * Cannot look up a process group that only exists because the
623 * session has not died yet (traditional).
624 */
625 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
626 return NULL;
627 }
628 return pg;
629 }
630
631 static void
632 expand_pid_table(void)
633 {
634 size_t pt_size, tsz;
635 struct pid_table *n_pt, *new_pt;
636 struct proc *proc;
637 struct pgrp *pgrp;
638 pid_t pid, rpid;
639 u_int i;
640 uint new_pt_mask;
641
642 pt_size = pid_tbl_mask + 1;
643 tsz = pt_size * 2 * sizeof(struct pid_table);
644 new_pt = kmem_alloc(tsz, KM_SLEEP);
645 new_pt_mask = pt_size * 2 - 1;
646
647 mutex_enter(proc_lock);
648 if (pt_size != pid_tbl_mask + 1) {
649 /* Another process beat us to it... */
650 mutex_exit(proc_lock);
651 kmem_free(new_pt, tsz);
652 return;
653 }
654
655 /*
656 * Copy entries from old table into new one.
657 * If 'pid' is 'odd' we need to place in the upper half,
658 * even pid's to the lower half.
659 * Free items stay in the low half so we don't have to
660 * fixup the reference to them.
661 * We stuff free items on the front of the freelist
662 * because we can't write to unmodified entries.
663 * Processing the table backwards maintains a semblance
664 * of issuing pid numbers that increase with time.
665 */
666 i = pt_size - 1;
667 n_pt = new_pt + i;
668 for (; ; i--, n_pt--) {
669 proc = pid_table[i].pt_proc;
670 pgrp = pid_table[i].pt_pgrp;
671 if (!P_VALID(proc)) {
672 /* Up 'use count' so that link is valid */
673 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
674 rpid = 0;
675 proc = P_FREE(pid);
676 if (pgrp)
677 pid = pgrp->pg_id;
678 } else {
679 pid = pid_table[i].pt_pid;
680 rpid = pid;
681 }
682
683 /* Save entry in appropriate half of table */
684 n_pt[pid & pt_size].pt_proc = proc;
685 n_pt[pid & pt_size].pt_pgrp = pgrp;
686 n_pt[pid & pt_size].pt_pid = rpid;
687
688 /* Put other piece on start of free list */
689 pid = (pid ^ pt_size) & ~pid_tbl_mask;
690 n_pt[pid & pt_size].pt_proc =
691 P_FREE((pid & ~pt_size) | next_free_pt);
692 n_pt[pid & pt_size].pt_pgrp = 0;
693 n_pt[pid & pt_size].pt_pid = 0;
694
695 next_free_pt = i | (pid & pt_size);
696 if (i == 0)
697 break;
698 }
699
700 /* Save old table size and switch tables */
701 tsz = pt_size * sizeof(struct pid_table);
702 n_pt = pid_table;
703 pid_table = new_pt;
704 pid_tbl_mask = new_pt_mask;
705
706 /*
707 * pid_max starts as PID_MAX (= 30000), once we have 16384
708 * allocated pids we need it to be larger!
709 */
710 if (pid_tbl_mask > PID_MAX) {
711 pid_max = pid_tbl_mask * 2 + 1;
712 pid_alloc_lim |= pid_alloc_lim << 1;
713 } else
714 pid_alloc_lim <<= 1; /* doubles number of free slots... */
715
716 mutex_exit(proc_lock);
717 kmem_free(n_pt, tsz);
718 }
719
720 struct proc *
721 proc_alloc(void)
722 {
723 struct proc *p;
724
725 p = pool_cache_get(proc_cache, PR_WAITOK);
726 p->p_stat = SIDL; /* protect against others */
727 proc_initspecific(p);
728 kdtrace_proc_ctor(NULL, p);
729 p->p_pid = -1;
730 proc_alloc_pid(p);
731 return p;
732 }
733
734 pid_t
735 proc_alloc_pid(struct proc *p)
736 {
737 struct pid_table *pt;
738 pid_t pid;
739 int nxt;
740
741 for (;;expand_pid_table()) {
742 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
743 /* ensure pids cycle through 2000+ values */
744 continue;
745 mutex_enter(proc_lock);
746 pt = &pid_table[next_free_pt];
747 #ifdef DIAGNOSTIC
748 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
749 panic("proc_alloc: slot busy");
750 #endif
751 nxt = P_NEXT(pt->pt_proc);
752 if (nxt & pid_tbl_mask)
753 break;
754 /* Table full - expand (NB last entry not used....) */
755 mutex_exit(proc_lock);
756 }
757
758 /* pid is 'saved use count' + 'size' + entry */
759 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
760 if ((uint)pid > (uint)pid_max)
761 pid &= pid_tbl_mask;
762 next_free_pt = nxt & pid_tbl_mask;
763
764 /* Grab table slot */
765 pt->pt_proc = p;
766
767 KASSERT(pt->pt_pid == 0);
768 pt->pt_pid = pid;
769 if (p->p_pid == -1) {
770 p->p_pid = pid;
771 }
772 pid_alloc_cnt++;
773 mutex_exit(proc_lock);
774
775 return pid;
776 }
777
778 /*
779 * Free a process id - called from proc_free (in kern_exit.c)
780 *
781 * Called with the proc_lock held.
782 */
783 void
784 proc_free_pid(pid_t pid)
785 {
786 struct pid_table *pt;
787
788 KASSERT(mutex_owned(proc_lock));
789
790 pt = &pid_table[pid & pid_tbl_mask];
791
792 /* save pid use count in slot */
793 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
794 KASSERT(pt->pt_pid == pid);
795 pt->pt_pid = 0;
796
797 if (pt->pt_pgrp == NULL) {
798 /* link last freed entry onto ours */
799 pid &= pid_tbl_mask;
800 pt = &pid_table[last_free_pt];
801 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
802 pt->pt_pid = 0;
803 last_free_pt = pid;
804 pid_alloc_cnt--;
805 }
806
807 atomic_dec_uint(&nprocs);
808 }
809
810 void
811 proc_free_mem(struct proc *p)
812 {
813
814 kdtrace_proc_dtor(NULL, p);
815 pool_cache_put(proc_cache, p);
816 }
817
818 /*
819 * proc_enterpgrp: move p to a new or existing process group (and session).
820 *
821 * If we are creating a new pgrp, the pgid should equal
822 * the calling process' pid.
823 * If is only valid to enter a process group that is in the session
824 * of the process.
825 * Also mksess should only be set if we are creating a process group
826 *
827 * Only called from sys_setsid and sys_setpgid.
828 */
829 int
830 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
831 {
832 struct pgrp *new_pgrp, *pgrp;
833 struct session *sess;
834 struct proc *p;
835 int rval;
836 pid_t pg_id = NO_PGID;
837
838 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
839
840 /* Allocate data areas we might need before doing any validity checks */
841 mutex_enter(proc_lock); /* Because pid_table might change */
842 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
843 mutex_exit(proc_lock);
844 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
845 mutex_enter(proc_lock);
846 } else
847 new_pgrp = NULL;
848 rval = EPERM; /* most common error (to save typing) */
849
850 /* Check pgrp exists or can be created */
851 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
852 if (pgrp != NULL && pgrp->pg_id != pgid)
853 goto done;
854
855 /* Can only set another process under restricted circumstances. */
856 if (pid != curp->p_pid) {
857 /* Must exist and be one of our children... */
858 p = proc_find(pid);
859 if (p == NULL || !p_inferior(p, curp)) {
860 rval = ESRCH;
861 goto done;
862 }
863 /* ... in the same session... */
864 if (sess != NULL || p->p_session != curp->p_session)
865 goto done;
866 /* ... existing pgid must be in same session ... */
867 if (pgrp != NULL && pgrp->pg_session != p->p_session)
868 goto done;
869 /* ... and not done an exec. */
870 if (p->p_flag & PK_EXEC) {
871 rval = EACCES;
872 goto done;
873 }
874 } else {
875 /* ... setsid() cannot re-enter a pgrp */
876 if (mksess && (curp->p_pgid == curp->p_pid ||
877 pgrp_find(curp->p_pid)))
878 goto done;
879 p = curp;
880 }
881
882 /* Changing the process group/session of a session
883 leader is definitely off limits. */
884 if (SESS_LEADER(p)) {
885 if (sess == NULL && p->p_pgrp == pgrp)
886 /* unless it's a definite noop */
887 rval = 0;
888 goto done;
889 }
890
891 /* Can only create a process group with id of process */
892 if (pgrp == NULL && pgid != pid)
893 goto done;
894
895 /* Can only create a session if creating pgrp */
896 if (sess != NULL && pgrp != NULL)
897 goto done;
898
899 /* Check we allocated memory for a pgrp... */
900 if (pgrp == NULL && new_pgrp == NULL)
901 goto done;
902
903 /* Don't attach to 'zombie' pgrp */
904 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
905 goto done;
906
907 /* Expect to succeed now */
908 rval = 0;
909
910 if (pgrp == p->p_pgrp)
911 /* nothing to do */
912 goto done;
913
914 /* Ok all setup, link up required structures */
915
916 if (pgrp == NULL) {
917 pgrp = new_pgrp;
918 new_pgrp = NULL;
919 if (sess != NULL) {
920 sess->s_sid = p->p_pid;
921 sess->s_leader = p;
922 sess->s_count = 1;
923 sess->s_ttyvp = NULL;
924 sess->s_ttyp = NULL;
925 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
926 memcpy(sess->s_login, p->p_session->s_login,
927 sizeof(sess->s_login));
928 p->p_lflag &= ~PL_CONTROLT;
929 } else {
930 sess = p->p_pgrp->pg_session;
931 proc_sesshold(sess);
932 }
933 pgrp->pg_session = sess;
934 sess = NULL;
935
936 pgrp->pg_id = pgid;
937 LIST_INIT(&pgrp->pg_members);
938 #ifdef DIAGNOSTIC
939 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
940 panic("enterpgrp: pgrp table slot in use");
941 if (__predict_false(mksess && p != curp))
942 panic("enterpgrp: mksession and p != curproc");
943 #endif
944 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
945 pgrp->pg_jobc = 0;
946 }
947
948 /*
949 * Adjust eligibility of affected pgrps to participate in job control.
950 * Increment eligibility counts before decrementing, otherwise we
951 * could reach 0 spuriously during the first call.
952 */
953 fixjobc(p, pgrp, 1);
954 fixjobc(p, p->p_pgrp, 0);
955
956 /* Interlock with ttread(). */
957 mutex_spin_enter(&tty_lock);
958
959 /* Move process to requested group. */
960 LIST_REMOVE(p, p_pglist);
961 if (LIST_EMPTY(&p->p_pgrp->pg_members))
962 /* defer delete until we've dumped the lock */
963 pg_id = p->p_pgrp->pg_id;
964 p->p_pgrp = pgrp;
965 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
966
967 /* Done with the swap; we can release the tty mutex. */
968 mutex_spin_exit(&tty_lock);
969
970 done:
971 if (pg_id != NO_PGID) {
972 /* Releases proc_lock. */
973 pg_delete(pg_id);
974 } else {
975 mutex_exit(proc_lock);
976 }
977 if (sess != NULL)
978 kmem_free(sess, sizeof(*sess));
979 if (new_pgrp != NULL)
980 kmem_free(new_pgrp, sizeof(*new_pgrp));
981 #ifdef DEBUG_PGRP
982 if (__predict_false(rval))
983 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
984 pid, pgid, mksess, curp->p_pid, rval);
985 #endif
986 return rval;
987 }
988
989 /*
990 * proc_leavepgrp: remove a process from its process group.
991 * => must be called with the proc_lock held, which will be released;
992 */
993 void
994 proc_leavepgrp(struct proc *p)
995 {
996 struct pgrp *pgrp;
997
998 KASSERT(mutex_owned(proc_lock));
999
1000 /* Interlock with ttread() */
1001 mutex_spin_enter(&tty_lock);
1002 pgrp = p->p_pgrp;
1003 LIST_REMOVE(p, p_pglist);
1004 p->p_pgrp = NULL;
1005 mutex_spin_exit(&tty_lock);
1006
1007 if (LIST_EMPTY(&pgrp->pg_members)) {
1008 /* Releases proc_lock. */
1009 pg_delete(pgrp->pg_id);
1010 } else {
1011 mutex_exit(proc_lock);
1012 }
1013 }
1014
1015 /*
1016 * pg_remove: remove a process group from the table.
1017 * => must be called with the proc_lock held;
1018 * => returns process group to free;
1019 */
1020 static struct pgrp *
1021 pg_remove(pid_t pg_id)
1022 {
1023 struct pgrp *pgrp;
1024 struct pid_table *pt;
1025
1026 KASSERT(mutex_owned(proc_lock));
1027
1028 pt = &pid_table[pg_id & pid_tbl_mask];
1029 pgrp = pt->pt_pgrp;
1030
1031 KASSERT(pgrp != NULL);
1032 KASSERT(pgrp->pg_id == pg_id);
1033 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1034
1035 pt->pt_pgrp = NULL;
1036
1037 if (!P_VALID(pt->pt_proc)) {
1038 /* Orphaned pgrp, put slot onto free list. */
1039 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1040 pg_id &= pid_tbl_mask;
1041 pt = &pid_table[last_free_pt];
1042 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1043 KASSERT(pt->pt_pid == 0);
1044 last_free_pt = pg_id;
1045 pid_alloc_cnt--;
1046 }
1047 return pgrp;
1048 }
1049
1050 /*
1051 * pg_delete: delete and free a process group.
1052 * => must be called with the proc_lock held, which will be released.
1053 */
1054 static void
1055 pg_delete(pid_t pg_id)
1056 {
1057 struct pgrp *pg;
1058 struct tty *ttyp;
1059 struct session *ss;
1060
1061 KASSERT(mutex_owned(proc_lock));
1062
1063 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1064 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1065 mutex_exit(proc_lock);
1066 return;
1067 }
1068
1069 ss = pg->pg_session;
1070
1071 /* Remove reference (if any) from tty to this process group */
1072 mutex_spin_enter(&tty_lock);
1073 ttyp = ss->s_ttyp;
1074 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1075 ttyp->t_pgrp = NULL;
1076 KASSERT(ttyp->t_session == ss);
1077 }
1078 mutex_spin_exit(&tty_lock);
1079
1080 /*
1081 * The leading process group in a session is freed by proc_sessrele(),
1082 * if last reference. Note: proc_sessrele() releases proc_lock.
1083 */
1084 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1085 proc_sessrele(ss);
1086
1087 if (pg != NULL) {
1088 /* Free it, if was not done by proc_sessrele(). */
1089 kmem_free(pg, sizeof(struct pgrp));
1090 }
1091 }
1092
1093 /*
1094 * Adjust pgrp jobc counters when specified process changes process group.
1095 * We count the number of processes in each process group that "qualify"
1096 * the group for terminal job control (those with a parent in a different
1097 * process group of the same session). If that count reaches zero, the
1098 * process group becomes orphaned. Check both the specified process'
1099 * process group and that of its children.
1100 * entering == 0 => p is leaving specified group.
1101 * entering == 1 => p is entering specified group.
1102 *
1103 * Call with proc_lock held.
1104 */
1105 void
1106 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1107 {
1108 struct pgrp *hispgrp;
1109 struct session *mysession = pgrp->pg_session;
1110 struct proc *child;
1111
1112 KASSERT(mutex_owned(proc_lock));
1113
1114 /*
1115 * Check p's parent to see whether p qualifies its own process
1116 * group; if so, adjust count for p's process group.
1117 */
1118 hispgrp = p->p_pptr->p_pgrp;
1119 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1120 if (entering) {
1121 pgrp->pg_jobc++;
1122 p->p_lflag &= ~PL_ORPHANPG;
1123 } else if (--pgrp->pg_jobc == 0)
1124 orphanpg(pgrp);
1125 }
1126
1127 /*
1128 * Check this process' children to see whether they qualify
1129 * their process groups; if so, adjust counts for children's
1130 * process groups.
1131 */
1132 LIST_FOREACH(child, &p->p_children, p_sibling) {
1133 hispgrp = child->p_pgrp;
1134 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1135 !P_ZOMBIE(child)) {
1136 if (entering) {
1137 child->p_lflag &= ~PL_ORPHANPG;
1138 hispgrp->pg_jobc++;
1139 } else if (--hispgrp->pg_jobc == 0)
1140 orphanpg(hispgrp);
1141 }
1142 }
1143 }
1144
1145 /*
1146 * A process group has become orphaned;
1147 * if there are any stopped processes in the group,
1148 * hang-up all process in that group.
1149 *
1150 * Call with proc_lock held.
1151 */
1152 static void
1153 orphanpg(struct pgrp *pg)
1154 {
1155 struct proc *p;
1156
1157 KASSERT(mutex_owned(proc_lock));
1158
1159 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1160 if (p->p_stat == SSTOP) {
1161 p->p_lflag |= PL_ORPHANPG;
1162 psignal(p, SIGHUP);
1163 psignal(p, SIGCONT);
1164 }
1165 }
1166 }
1167
1168 #ifdef DDB
1169 #include <ddb/db_output.h>
1170 void pidtbl_dump(void);
1171 void
1172 pidtbl_dump(void)
1173 {
1174 struct pid_table *pt;
1175 struct proc *p;
1176 struct pgrp *pgrp;
1177 int id;
1178
1179 db_printf("pid table %p size %x, next %x, last %x\n",
1180 pid_table, pid_tbl_mask+1,
1181 next_free_pt, last_free_pt);
1182 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1183 p = pt->pt_proc;
1184 if (!P_VALID(p) && !pt->pt_pgrp)
1185 continue;
1186 db_printf(" id %x: ", id);
1187 if (P_VALID(p))
1188 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1189 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1190 else
1191 db_printf("next %x use %x\n",
1192 P_NEXT(p) & pid_tbl_mask,
1193 P_NEXT(p) & ~pid_tbl_mask);
1194 if ((pgrp = pt->pt_pgrp)) {
1195 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1196 pgrp->pg_session, pgrp->pg_session->s_sid,
1197 pgrp->pg_session->s_count,
1198 pgrp->pg_session->s_login);
1199 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1200 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1201 LIST_FIRST(&pgrp->pg_members));
1202 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1203 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1204 p->p_pid, p, p->p_pgrp, p->p_comm);
1205 }
1206 }
1207 }
1208 }
1209 #endif /* DDB */
1210
1211 #ifdef KSTACK_CHECK_MAGIC
1212
1213 #define KSTACK_MAGIC 0xdeadbeaf
1214
1215 /* XXX should be per process basis? */
1216 static int kstackleftmin = KSTACK_SIZE;
1217 static int kstackleftthres = KSTACK_SIZE / 8;
1218
1219 void
1220 kstack_setup_magic(const struct lwp *l)
1221 {
1222 uint32_t *ip;
1223 uint32_t const *end;
1224
1225 KASSERT(l != NULL);
1226 KASSERT(l != &lwp0);
1227
1228 /*
1229 * fill all the stack with magic number
1230 * so that later modification on it can be detected.
1231 */
1232 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1233 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1234 for (; ip < end; ip++) {
1235 *ip = KSTACK_MAGIC;
1236 }
1237 }
1238
1239 void
1240 kstack_check_magic(const struct lwp *l)
1241 {
1242 uint32_t const *ip, *end;
1243 int stackleft;
1244
1245 KASSERT(l != NULL);
1246
1247 /* don't check proc0 */ /*XXX*/
1248 if (l == &lwp0)
1249 return;
1250
1251 #ifdef __MACHINE_STACK_GROWS_UP
1252 /* stack grows upwards (eg. hppa) */
1253 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1254 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1255 for (ip--; ip >= end; ip--)
1256 if (*ip != KSTACK_MAGIC)
1257 break;
1258
1259 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1260 #else /* __MACHINE_STACK_GROWS_UP */
1261 /* stack grows downwards (eg. i386) */
1262 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1263 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1264 for (; ip < end; ip++)
1265 if (*ip != KSTACK_MAGIC)
1266 break;
1267
1268 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1269 #endif /* __MACHINE_STACK_GROWS_UP */
1270
1271 if (kstackleftmin > stackleft) {
1272 kstackleftmin = stackleft;
1273 if (stackleft < kstackleftthres)
1274 printf("warning: kernel stack left %d bytes"
1275 "(pid %u:lid %u)\n", stackleft,
1276 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1277 }
1278
1279 if (stackleft <= 0) {
1280 panic("magic on the top of kernel stack changed for "
1281 "pid %u, lid %u: maybe kernel stack overflow",
1282 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1283 }
1284 }
1285 #endif /* KSTACK_CHECK_MAGIC */
1286
1287 int
1288 proclist_foreach_call(struct proclist *list,
1289 int (*callback)(struct proc *, void *arg), void *arg)
1290 {
1291 struct proc marker;
1292 struct proc *p;
1293 int ret = 0;
1294
1295 marker.p_flag = PK_MARKER;
1296 mutex_enter(proc_lock);
1297 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1298 if (p->p_flag & PK_MARKER) {
1299 p = LIST_NEXT(p, p_list);
1300 continue;
1301 }
1302 LIST_INSERT_AFTER(p, &marker, p_list);
1303 ret = (*callback)(p, arg);
1304 KASSERT(mutex_owned(proc_lock));
1305 p = LIST_NEXT(&marker, p_list);
1306 LIST_REMOVE(&marker, p_list);
1307 }
1308 mutex_exit(proc_lock);
1309
1310 return ret;
1311 }
1312
1313 int
1314 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1315 {
1316
1317 /* XXXCDC: how should locking work here? */
1318
1319 /* curproc exception is for coredump. */
1320
1321 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1322 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1323 return EFAULT;
1324 }
1325
1326 uvmspace_addref(p->p_vmspace);
1327 *vm = p->p_vmspace;
1328
1329 return 0;
1330 }
1331
1332 /*
1333 * Acquire a write lock on the process credential.
1334 */
1335 void
1336 proc_crmod_enter(void)
1337 {
1338 struct lwp *l = curlwp;
1339 struct proc *p = l->l_proc;
1340 struct plimit *lim;
1341 kauth_cred_t oc;
1342 char *cn;
1343
1344 /* Reset what needs to be reset in plimit. */
1345 if (p->p_limit->pl_corename != defcorename) {
1346 lim_privatise(p, false);
1347 lim = p->p_limit;
1348 mutex_enter(&lim->pl_lock);
1349 cn = lim->pl_corename;
1350 lim->pl_corename = defcorename;
1351 mutex_exit(&lim->pl_lock);
1352 if (cn != defcorename)
1353 free(cn, M_TEMP);
1354 }
1355
1356 mutex_enter(p->p_lock);
1357
1358 /* Ensure the LWP cached credentials are up to date. */
1359 if ((oc = l->l_cred) != p->p_cred) {
1360 kauth_cred_hold(p->p_cred);
1361 l->l_cred = p->p_cred;
1362 kauth_cred_free(oc);
1363 }
1364
1365 }
1366
1367 /*
1368 * Set in a new process credential, and drop the write lock. The credential
1369 * must have a reference already. Optionally, free a no-longer required
1370 * credential. The scheduler also needs to inspect p_cred, so we also
1371 * briefly acquire the sched state mutex.
1372 */
1373 void
1374 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1375 {
1376 struct lwp *l = curlwp, *l2;
1377 struct proc *p = l->l_proc;
1378 kauth_cred_t oc;
1379
1380 KASSERT(mutex_owned(p->p_lock));
1381
1382 /* Is there a new credential to set in? */
1383 if (scred != NULL) {
1384 p->p_cred = scred;
1385 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1386 if (l2 != l)
1387 l2->l_prflag |= LPR_CRMOD;
1388 }
1389
1390 /* Ensure the LWP cached credentials are up to date. */
1391 if ((oc = l->l_cred) != scred) {
1392 kauth_cred_hold(scred);
1393 l->l_cred = scred;
1394 }
1395 } else
1396 oc = NULL; /* XXXgcc */
1397
1398 if (sugid) {
1399 /*
1400 * Mark process as having changed credentials, stops
1401 * tracing etc.
1402 */
1403 p->p_flag |= PK_SUGID;
1404 }
1405
1406 mutex_exit(p->p_lock);
1407
1408 /* If there is a credential to be released, free it now. */
1409 if (fcred != NULL) {
1410 KASSERT(scred != NULL);
1411 kauth_cred_free(fcred);
1412 if (oc != scred)
1413 kauth_cred_free(oc);
1414 }
1415 }
1416
1417 /*
1418 * proc_specific_key_create --
1419 * Create a key for subsystem proc-specific data.
1420 */
1421 int
1422 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1423 {
1424
1425 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1426 }
1427
1428 /*
1429 * proc_specific_key_delete --
1430 * Delete a key for subsystem proc-specific data.
1431 */
1432 void
1433 proc_specific_key_delete(specificdata_key_t key)
1434 {
1435
1436 specificdata_key_delete(proc_specificdata_domain, key);
1437 }
1438
1439 /*
1440 * proc_initspecific --
1441 * Initialize a proc's specificdata container.
1442 */
1443 void
1444 proc_initspecific(struct proc *p)
1445 {
1446 int error;
1447
1448 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1449 KASSERT(error == 0);
1450 }
1451
1452 /*
1453 * proc_finispecific --
1454 * Finalize a proc's specificdata container.
1455 */
1456 void
1457 proc_finispecific(struct proc *p)
1458 {
1459
1460 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1461 }
1462
1463 /*
1464 * proc_getspecific --
1465 * Return proc-specific data corresponding to the specified key.
1466 */
1467 void *
1468 proc_getspecific(struct proc *p, specificdata_key_t key)
1469 {
1470
1471 return (specificdata_getspecific(proc_specificdata_domain,
1472 &p->p_specdataref, key));
1473 }
1474
1475 /*
1476 * proc_setspecific --
1477 * Set proc-specific data corresponding to the specified key.
1478 */
1479 void
1480 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1481 {
1482
1483 specificdata_setspecific(proc_specificdata_domain,
1484 &p->p_specdataref, key, data);
1485 }
1486
1487 int
1488 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1489 {
1490 int r = 0;
1491
1492 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1493 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1494 /*
1495 * suid proc of ours or proc not ours
1496 */
1497 r = EPERM;
1498 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1499 /*
1500 * sgid proc has sgid back to us temporarily
1501 */
1502 r = EPERM;
1503 } else {
1504 /*
1505 * our rgid must be in target's group list (ie,
1506 * sub-processes started by a sgid process)
1507 */
1508 int ismember = 0;
1509
1510 if (kauth_cred_ismember_gid(cred,
1511 kauth_cred_getgid(target), &ismember) != 0 ||
1512 !ismember)
1513 r = EPERM;
1514 }
1515
1516 return (r);
1517 }
1518
1519 /*
1520 * sysctl stuff
1521 */
1522
1523 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1524
1525 static const u_int sysctl_flagmap[] = {
1526 PK_ADVLOCK, P_ADVLOCK,
1527 PK_EXEC, P_EXEC,
1528 PK_NOCLDWAIT, P_NOCLDWAIT,
1529 PK_32, P_32,
1530 PK_CLDSIGIGN, P_CLDSIGIGN,
1531 PK_SUGID, P_SUGID,
1532 0
1533 };
1534
1535 static const u_int sysctl_sflagmap[] = {
1536 PS_NOCLDSTOP, P_NOCLDSTOP,
1537 PS_WEXIT, P_WEXIT,
1538 PS_STOPFORK, P_STOPFORK,
1539 PS_STOPEXEC, P_STOPEXEC,
1540 PS_STOPEXIT, P_STOPEXIT,
1541 0
1542 };
1543
1544 static const u_int sysctl_slflagmap[] = {
1545 PSL_TRACED, P_TRACED,
1546 PSL_FSTRACE, P_FSTRACE,
1547 PSL_CHTRACED, P_CHTRACED,
1548 PSL_SYSCALL, P_SYSCALL,
1549 0
1550 };
1551
1552 static const u_int sysctl_lflagmap[] = {
1553 PL_CONTROLT, P_CONTROLT,
1554 PL_PPWAIT, P_PPWAIT,
1555 0
1556 };
1557
1558 static const u_int sysctl_stflagmap[] = {
1559 PST_PROFIL, P_PROFIL,
1560 0
1561
1562 };
1563
1564 /* used by kern_lwp also */
1565 const u_int sysctl_lwpflagmap[] = {
1566 LW_SINTR, L_SINTR,
1567 LW_SYSTEM, L_SYSTEM,
1568 LW_SA, L_SA, /* WRS ??? */
1569 0
1570 };
1571
1572 /*
1573 * Find the most ``active'' lwp of a process and return it for ps display
1574 * purposes
1575 */
1576 static struct lwp *
1577 proc_active_lwp(struct proc *p)
1578 {
1579 static const int ostat[] = {
1580 0,
1581 2, /* LSIDL */
1582 6, /* LSRUN */
1583 5, /* LSSLEEP */
1584 4, /* LSSTOP */
1585 0, /* LSZOMB */
1586 1, /* LSDEAD */
1587 7, /* LSONPROC */
1588 3 /* LSSUSPENDED */
1589 };
1590
1591 struct lwp *l, *lp = NULL;
1592 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1593 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1594 if (lp == NULL ||
1595 ostat[l->l_stat] > ostat[lp->l_stat] ||
1596 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1597 l->l_cpticks > lp->l_cpticks)) {
1598 lp = l;
1599 continue;
1600 }
1601 }
1602 return lp;
1603 }
1604
1605 static int
1606 sysctl_doeproc(SYSCTLFN_ARGS)
1607 {
1608 union {
1609 struct kinfo_proc kproc;
1610 struct kinfo_proc2 kproc2;
1611 } *kbuf;
1612 struct proc *p, *next, *marker;
1613 char *where, *dp;
1614 int type, op, arg, error;
1615 u_int elem_size, kelem_size, elem_count;
1616 size_t buflen, needed;
1617 bool match, zombie, mmmbrains;
1618
1619 if (namelen == 1 && name[0] == CTL_QUERY)
1620 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1621
1622 dp = where = oldp;
1623 buflen = where != NULL ? *oldlenp : 0;
1624 error = 0;
1625 needed = 0;
1626 type = rnode->sysctl_num;
1627
1628 if (type == KERN_PROC) {
1629 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1630 return (EINVAL);
1631 op = name[0];
1632 if (op != KERN_PROC_ALL)
1633 arg = name[1];
1634 else
1635 arg = 0; /* Quell compiler warning */
1636 elem_count = 0; /* Ditto */
1637 kelem_size = elem_size = sizeof(kbuf->kproc);
1638 } else {
1639 if (namelen != 4)
1640 return (EINVAL);
1641 op = name[0];
1642 arg = name[1];
1643 elem_size = name[2];
1644 elem_count = name[3];
1645 kelem_size = sizeof(kbuf->kproc2);
1646 }
1647
1648 sysctl_unlock();
1649
1650 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1651 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1652 marker->p_flag = PK_MARKER;
1653
1654 mutex_enter(proc_lock);
1655 mmmbrains = false;
1656 for (p = LIST_FIRST(&allproc);; p = next) {
1657 if (p == NULL) {
1658 if (!mmmbrains) {
1659 p = LIST_FIRST(&zombproc);
1660 mmmbrains = true;
1661 }
1662 if (p == NULL)
1663 break;
1664 }
1665 next = LIST_NEXT(p, p_list);
1666 if ((p->p_flag & PK_MARKER) != 0)
1667 continue;
1668
1669 /*
1670 * Skip embryonic processes.
1671 */
1672 if (p->p_stat == SIDL)
1673 continue;
1674
1675 mutex_enter(p->p_lock);
1676 error = kauth_authorize_process(l->l_cred,
1677 KAUTH_PROCESS_CANSEE, p,
1678 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1679 if (error != 0) {
1680 mutex_exit(p->p_lock);
1681 continue;
1682 }
1683
1684 /*
1685 * TODO - make more efficient (see notes below).
1686 * do by session.
1687 */
1688 switch (op) {
1689 case KERN_PROC_PID:
1690 /* could do this with just a lookup */
1691 match = (p->p_pid == (pid_t)arg);
1692 break;
1693
1694 case KERN_PROC_PGRP:
1695 /* could do this by traversing pgrp */
1696 match = (p->p_pgrp->pg_id == (pid_t)arg);
1697 break;
1698
1699 case KERN_PROC_SESSION:
1700 match = (p->p_session->s_sid == (pid_t)arg);
1701 break;
1702
1703 case KERN_PROC_TTY:
1704 match = true;
1705 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1706 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1707 p->p_session->s_ttyp == NULL ||
1708 p->p_session->s_ttyvp != NULL) {
1709 match = false;
1710 }
1711 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1712 p->p_session->s_ttyp == NULL) {
1713 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1714 match = false;
1715 }
1716 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1717 match = false;
1718 }
1719 break;
1720
1721 case KERN_PROC_UID:
1722 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1723 break;
1724
1725 case KERN_PROC_RUID:
1726 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1727 break;
1728
1729 case KERN_PROC_GID:
1730 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1731 break;
1732
1733 case KERN_PROC_RGID:
1734 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1735 break;
1736
1737 case KERN_PROC_ALL:
1738 match = true;
1739 /* allow everything */
1740 break;
1741
1742 default:
1743 error = EINVAL;
1744 mutex_exit(p->p_lock);
1745 goto cleanup;
1746 }
1747 if (!match) {
1748 mutex_exit(p->p_lock);
1749 continue;
1750 }
1751
1752 /*
1753 * Grab a hold on the process.
1754 */
1755 if (mmmbrains) {
1756 zombie = true;
1757 } else {
1758 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1759 }
1760 if (zombie) {
1761 LIST_INSERT_AFTER(p, marker, p_list);
1762 }
1763
1764 if (buflen >= elem_size &&
1765 (type == KERN_PROC || elem_count > 0)) {
1766 if (type == KERN_PROC) {
1767 kbuf->kproc.kp_proc = *p;
1768 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1769 } else {
1770 fill_kproc2(p, &kbuf->kproc2, zombie);
1771 elem_count--;
1772 }
1773 mutex_exit(p->p_lock);
1774 mutex_exit(proc_lock);
1775 /*
1776 * Copy out elem_size, but not larger than kelem_size
1777 */
1778 error = sysctl_copyout(l, kbuf, dp,
1779 min(kelem_size, elem_size));
1780 mutex_enter(proc_lock);
1781 if (error) {
1782 goto bah;
1783 }
1784 dp += elem_size;
1785 buflen -= elem_size;
1786 } else {
1787 mutex_exit(p->p_lock);
1788 }
1789 needed += elem_size;
1790
1791 /*
1792 * Release reference to process.
1793 */
1794 if (zombie) {
1795 next = LIST_NEXT(marker, p_list);
1796 LIST_REMOVE(marker, p_list);
1797 } else {
1798 rw_exit(&p->p_reflock);
1799 next = LIST_NEXT(p, p_list);
1800 }
1801 }
1802 mutex_exit(proc_lock);
1803
1804 if (where != NULL) {
1805 *oldlenp = dp - where;
1806 if (needed > *oldlenp) {
1807 error = ENOMEM;
1808 goto out;
1809 }
1810 } else {
1811 needed += KERN_PROCSLOP;
1812 *oldlenp = needed;
1813 }
1814 if (kbuf)
1815 kmem_free(kbuf, sizeof(*kbuf));
1816 if (marker)
1817 kmem_free(marker, sizeof(*marker));
1818 sysctl_relock();
1819 return 0;
1820 bah:
1821 if (zombie)
1822 LIST_REMOVE(marker, p_list);
1823 else
1824 rw_exit(&p->p_reflock);
1825 cleanup:
1826 mutex_exit(proc_lock);
1827 out:
1828 if (kbuf)
1829 kmem_free(kbuf, sizeof(*kbuf));
1830 if (marker)
1831 kmem_free(marker, sizeof(*marker));
1832 sysctl_relock();
1833 return error;
1834 }
1835
1836 /*
1837 * sysctl helper routine for kern.proc_args pseudo-subtree.
1838 */
1839 static int
1840 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1841 {
1842 struct ps_strings pss;
1843 struct proc *p;
1844 size_t len, i;
1845 struct uio auio;
1846 struct iovec aiov;
1847 pid_t pid;
1848 int nargv, type, error, argvlen;
1849 char *arg;
1850 char **argv = NULL;
1851 char *tmp;
1852 struct vmspace *vmspace;
1853 vaddr_t psstr_addr;
1854 vaddr_t offsetn;
1855 vaddr_t offsetv;
1856
1857 if (namelen == 1 && name[0] == CTL_QUERY)
1858 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1859
1860 if (newp != NULL || namelen != 2)
1861 return (EINVAL);
1862 pid = name[0];
1863 type = name[1];
1864 argv = NULL;
1865 argvlen = 0;
1866
1867 switch (type) {
1868 case KERN_PROC_ARGV:
1869 case KERN_PROC_NARGV:
1870 case KERN_PROC_ENV:
1871 case KERN_PROC_NENV:
1872 /* ok */
1873 break;
1874 default:
1875 return (EINVAL);
1876 }
1877
1878 sysctl_unlock();
1879
1880 /* check pid */
1881 mutex_enter(proc_lock);
1882 if ((p = proc_find(pid)) == NULL) {
1883 error = EINVAL;
1884 goto out_locked;
1885 }
1886 mutex_enter(p->p_lock);
1887
1888 /* Check permission. */
1889 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1890 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1891 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1892 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1893 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1894 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1895 else
1896 error = EINVAL; /* XXXGCC */
1897 if (error) {
1898 mutex_exit(p->p_lock);
1899 goto out_locked;
1900 }
1901
1902 if (oldp == NULL) {
1903 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1904 *oldlenp = sizeof (int);
1905 else
1906 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1907 error = 0;
1908 mutex_exit(p->p_lock);
1909 goto out_locked;
1910 }
1911
1912 /*
1913 * Zombies don't have a stack, so we can't read their psstrings.
1914 * System processes also don't have a user stack.
1915 */
1916 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1917 error = EINVAL;
1918 mutex_exit(p->p_lock);
1919 goto out_locked;
1920 }
1921
1922 /*
1923 * Lock the process down in memory.
1924 */
1925 psstr_addr = (vaddr_t)p->p_psstr;
1926 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
1927 offsetn = p->p_psnargv;
1928 offsetv = p->p_psargv;
1929 } else {
1930 offsetn = p->p_psnenv;
1931 offsetv = p->p_psenv;
1932 }
1933 vmspace = p->p_vmspace;
1934 uvmspace_addref(vmspace);
1935 mutex_exit(p->p_lock);
1936 mutex_exit(proc_lock);
1937
1938 /*
1939 * Allocate a temporary buffer to hold the arguments.
1940 */
1941 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
1942
1943 /*
1944 * Read in the ps_strings structure.
1945 */
1946 aiov.iov_base = &pss;
1947 aiov.iov_len = sizeof(pss);
1948 auio.uio_iov = &aiov;
1949 auio.uio_iovcnt = 1;
1950 auio.uio_offset = psstr_addr;
1951 auio.uio_resid = sizeof(pss);
1952 auio.uio_rw = UIO_READ;
1953 UIO_SETUP_SYSSPACE(&auio);
1954 error = uvm_io(&vmspace->vm_map, &auio);
1955 if (error)
1956 goto done;
1957
1958 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
1959 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1960 error = sysctl_copyout(l, &nargv, oldp, sizeof(nargv));
1961 *oldlenp = sizeof(nargv);
1962 goto done;
1963 }
1964 /*
1965 * Now read the address of the argument vector.
1966 */
1967 switch (type) {
1968 case KERN_PROC_ARGV:
1969 /* FALLTHROUGH */
1970 case KERN_PROC_ENV:
1971 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
1972 break;
1973 default:
1974 error = EINVAL;
1975 goto done;
1976 }
1977
1978 #ifdef COMPAT_NETBSD32
1979 if (p->p_flag & PK_32)
1980 len = sizeof(netbsd32_charp) * nargv;
1981 else
1982 #endif
1983 len = sizeof(char *) * nargv;
1984
1985 if ((argvlen = len) != 0)
1986 argv = kmem_alloc(len, KM_SLEEP);
1987
1988 aiov.iov_base = argv;
1989 aiov.iov_len = len;
1990 auio.uio_iov = &aiov;
1991 auio.uio_iovcnt = 1;
1992 auio.uio_offset = (off_t)(unsigned long)tmp;
1993 auio.uio_resid = len;
1994 auio.uio_rw = UIO_READ;
1995 UIO_SETUP_SYSSPACE(&auio);
1996 error = uvm_io(&vmspace->vm_map, &auio);
1997 if (error)
1998 goto done;
1999
2000 /*
2001 * Now copy each string.
2002 */
2003 len = 0; /* bytes written to user buffer */
2004 for (i = 0; i < nargv; i++) {
2005 int finished = 0;
2006 vaddr_t base;
2007 size_t xlen;
2008 int j;
2009
2010 #ifdef COMPAT_NETBSD32
2011 if (p->p_flag & PK_32) {
2012 netbsd32_charp *argv32;
2013
2014 argv32 = (netbsd32_charp *)argv;
2015 base = (vaddr_t)NETBSD32PTR64(argv32[i]);
2016 } else
2017 #endif
2018 base = (vaddr_t)argv[i];
2019
2020 /*
2021 * The program has messed around with its arguments,
2022 * possibly deleting some, and replacing them with
2023 * NULL's. Treat this as the last argument and not
2024 * a failure.
2025 */
2026 if (base == 0)
2027 break;
2028
2029 while (!finished) {
2030 xlen = PAGE_SIZE - (base & PAGE_MASK);
2031
2032 aiov.iov_base = arg;
2033 aiov.iov_len = PAGE_SIZE;
2034 auio.uio_iov = &aiov;
2035 auio.uio_iovcnt = 1;
2036 auio.uio_offset = base;
2037 auio.uio_resid = xlen;
2038 auio.uio_rw = UIO_READ;
2039 UIO_SETUP_SYSSPACE(&auio);
2040 error = uvm_io(&vmspace->vm_map, &auio);
2041 if (error)
2042 goto done;
2043
2044 /* Look for the end of the string */
2045 for (j = 0; j < xlen; j++) {
2046 if (arg[j] == '\0') {
2047 xlen = j + 1;
2048 finished = 1;
2049 break;
2050 }
2051 }
2052
2053 /* Check for user buffer overflow */
2054 if (len + xlen > *oldlenp) {
2055 finished = 1;
2056 if (len > *oldlenp)
2057 xlen = 0;
2058 else
2059 xlen = *oldlenp - len;
2060 }
2061
2062 /* Copyout the page */
2063 error = sysctl_copyout(l, arg, (char*)oldp + len, xlen);
2064 if (error)
2065 goto done;
2066
2067 len += xlen;
2068 base += xlen;
2069 }
2070 }
2071 *oldlenp = len;
2072
2073 done:
2074 if (argvlen != 0)
2075 kmem_free(argv, argvlen);
2076 uvmspace_free(vmspace);
2077 kmem_free(arg, PAGE_SIZE);
2078 sysctl_relock();
2079 return error;
2080
2081 out_locked:
2082 mutex_exit(proc_lock);
2083 sysctl_relock();
2084 return error;
2085 }
2086
2087 /*
2088 * Fill in an eproc structure for the specified process.
2089 */
2090 void
2091 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2092 {
2093 struct tty *tp;
2094 struct lwp *l;
2095
2096 KASSERT(mutex_owned(proc_lock));
2097 KASSERT(mutex_owned(p->p_lock));
2098
2099 memset(ep, 0, sizeof(*ep));
2100
2101 ep->e_paddr = p;
2102 ep->e_sess = p->p_session;
2103 if (p->p_cred) {
2104 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2105 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2106 }
2107 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2108 struct vmspace *vm = p->p_vmspace;
2109
2110 ep->e_vm.vm_rssize = vm_resident_count(vm);
2111 ep->e_vm.vm_tsize = vm->vm_tsize;
2112 ep->e_vm.vm_dsize = vm->vm_dsize;
2113 ep->e_vm.vm_ssize = vm->vm_ssize;
2114 ep->e_vm.vm_map.size = vm->vm_map.size;
2115
2116 /* Pick the primary (first) LWP */
2117 l = proc_active_lwp(p);
2118 KASSERT(l != NULL);
2119 lwp_lock(l);
2120 if (l->l_wchan)
2121 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2122 lwp_unlock(l);
2123 }
2124 if (p->p_pptr)
2125 ep->e_ppid = p->p_pptr->p_pid;
2126 if (p->p_pgrp && p->p_session) {
2127 ep->e_pgid = p->p_pgrp->pg_id;
2128 ep->e_jobc = p->p_pgrp->pg_jobc;
2129 ep->e_sid = p->p_session->s_sid;
2130 if ((p->p_lflag & PL_CONTROLT) &&
2131 (tp = ep->e_sess->s_ttyp)) {
2132 ep->e_tdev = tp->t_dev;
2133 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2134 ep->e_tsess = tp->t_session;
2135 } else
2136 ep->e_tdev = (uint32_t)NODEV;
2137 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2138 if (SESS_LEADER(p))
2139 ep->e_flag |= EPROC_SLEADER;
2140 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2141 }
2142 ep->e_xsize = ep->e_xrssize = 0;
2143 ep->e_xccount = ep->e_xswrss = 0;
2144 }
2145
2146 /*
2147 * Fill in a kinfo_proc2 structure for the specified process.
2148 */
2149 static void
2150 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2151 {
2152 struct tty *tp;
2153 struct lwp *l, *l2;
2154 struct timeval ut, st, rt;
2155 sigset_t ss1, ss2;
2156 struct rusage ru;
2157 struct vmspace *vm;
2158
2159 KASSERT(mutex_owned(proc_lock));
2160 KASSERT(mutex_owned(p->p_lock));
2161
2162 sigemptyset(&ss1);
2163 sigemptyset(&ss2);
2164 memset(ki, 0, sizeof(*ki));
2165
2166 ki->p_paddr = PTRTOUINT64(p);
2167 ki->p_fd = PTRTOUINT64(p->p_fd);
2168 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2169 ki->p_stats = PTRTOUINT64(p->p_stats);
2170 ki->p_limit = PTRTOUINT64(p->p_limit);
2171 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2172 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2173 ki->p_sess = PTRTOUINT64(p->p_session);
2174 ki->p_tsess = 0; /* may be changed if controlling tty below */
2175 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2176 ki->p_eflag = 0;
2177 ki->p_exitsig = p->p_exitsig;
2178 ki->p_flag = L_INMEM; /* Process never swapped out */
2179 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2180 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2181 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2182 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2183 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2184 ki->p_pid = p->p_pid;
2185 if (p->p_pptr)
2186 ki->p_ppid = p->p_pptr->p_pid;
2187 else
2188 ki->p_ppid = 0;
2189 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2190 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2191 ki->p_gid = kauth_cred_getegid(p->p_cred);
2192 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2193 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2194 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2195 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2196 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2197 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2198 UIO_SYSSPACE);
2199
2200 ki->p_uticks = p->p_uticks;
2201 ki->p_sticks = p->p_sticks;
2202 ki->p_iticks = p->p_iticks;
2203 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2204 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2205 ki->p_traceflag = p->p_traceflag;
2206
2207 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2208 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2209
2210 ki->p_cpticks = 0;
2211 ki->p_pctcpu = p->p_pctcpu;
2212 ki->p_estcpu = 0;
2213 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2214 ki->p_realstat = p->p_stat;
2215 ki->p_nice = p->p_nice;
2216 ki->p_xstat = p->p_xstat;
2217 ki->p_acflag = p->p_acflag;
2218
2219 strncpy(ki->p_comm, p->p_comm,
2220 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2221 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2222
2223 ki->p_nlwps = p->p_nlwps;
2224 ki->p_realflag = ki->p_flag;
2225
2226 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2227 vm = p->p_vmspace;
2228 ki->p_vm_rssize = vm_resident_count(vm);
2229 ki->p_vm_tsize = vm->vm_tsize;
2230 ki->p_vm_dsize = vm->vm_dsize;
2231 ki->p_vm_ssize = vm->vm_ssize;
2232 ki->p_vm_vsize = vm->vm_map.size;
2233 /*
2234 * Since the stack is initially mapped mostly with
2235 * PROT_NONE and grown as needed, adjust the "mapped size"
2236 * to skip the unused stack portion.
2237 */
2238 ki->p_vm_msize =
2239 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2240
2241 /* Pick the primary (first) LWP */
2242 l = proc_active_lwp(p);
2243 KASSERT(l != NULL);
2244 lwp_lock(l);
2245 ki->p_nrlwps = p->p_nrlwps;
2246 ki->p_forw = 0;
2247 ki->p_back = 0;
2248 ki->p_addr = PTRTOUINT64(l->l_addr);
2249 ki->p_stat = l->l_stat;
2250 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2251 ki->p_swtime = l->l_swtime;
2252 ki->p_slptime = l->l_slptime;
2253 if (l->l_stat == LSONPROC)
2254 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2255 else
2256 ki->p_schedflags = 0;
2257 ki->p_priority = lwp_eprio(l);
2258 ki->p_usrpri = l->l_priority;
2259 if (l->l_wchan)
2260 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2261 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2262 ki->p_cpuid = cpu_index(l->l_cpu);
2263 lwp_unlock(l);
2264 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2265 /* This is hardly correct, but... */
2266 sigplusset(&l->l_sigpend.sp_set, &ss1);
2267 sigplusset(&l->l_sigmask, &ss2);
2268 ki->p_cpticks += l->l_cpticks;
2269 ki->p_pctcpu += l->l_pctcpu;
2270 ki->p_estcpu += l->l_estcpu;
2271 }
2272 }
2273 sigplusset(&p->p_sigpend.sp_set, &ss2);
2274 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2275 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2276
2277 if (p->p_session != NULL) {
2278 ki->p_sid = p->p_session->s_sid;
2279 ki->p__pgid = p->p_pgrp->pg_id;
2280 if (p->p_session->s_ttyvp)
2281 ki->p_eflag |= EPROC_CTTY;
2282 if (SESS_LEADER(p))
2283 ki->p_eflag |= EPROC_SLEADER;
2284 strncpy(ki->p_login, p->p_session->s_login,
2285 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2286 ki->p_jobc = p->p_pgrp->pg_jobc;
2287 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2288 ki->p_tdev = tp->t_dev;
2289 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2290 ki->p_tsess = PTRTOUINT64(tp->t_session);
2291 } else {
2292 ki->p_tdev = (int32_t)NODEV;
2293 }
2294 }
2295
2296 if (!P_ZOMBIE(p) && !zombie) {
2297 ki->p_uvalid = 1;
2298 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2299 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2300
2301 calcru(p, &ut, &st, NULL, &rt);
2302 ki->p_rtime_sec = rt.tv_sec;
2303 ki->p_rtime_usec = rt.tv_usec;
2304 ki->p_uutime_sec = ut.tv_sec;
2305 ki->p_uutime_usec = ut.tv_usec;
2306 ki->p_ustime_sec = st.tv_sec;
2307 ki->p_ustime_usec = st.tv_usec;
2308
2309 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2310 ki->p_uru_nvcsw = 0;
2311 ki->p_uru_nivcsw = 0;
2312 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2313 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2314 ki->p_uru_nivcsw += l2->l_nivcsw;
2315 ruadd(&ru, &l2->l_ru);
2316 }
2317 ki->p_uru_maxrss = ru.ru_maxrss;
2318 ki->p_uru_ixrss = ru.ru_ixrss;
2319 ki->p_uru_idrss = ru.ru_idrss;
2320 ki->p_uru_isrss = ru.ru_isrss;
2321 ki->p_uru_minflt = ru.ru_minflt;
2322 ki->p_uru_majflt = ru.ru_majflt;
2323 ki->p_uru_nswap = ru.ru_nswap;
2324 ki->p_uru_inblock = ru.ru_inblock;
2325 ki->p_uru_oublock = ru.ru_oublock;
2326 ki->p_uru_msgsnd = ru.ru_msgsnd;
2327 ki->p_uru_msgrcv = ru.ru_msgrcv;
2328 ki->p_uru_nsignals = ru.ru_nsignals;
2329
2330 timeradd(&p->p_stats->p_cru.ru_utime,
2331 &p->p_stats->p_cru.ru_stime, &ut);
2332 ki->p_uctime_sec = ut.tv_sec;
2333 ki->p_uctime_usec = ut.tv_usec;
2334 }
2335 }
2336