kern_proc.c revision 1.180.8.1 1 /* $NetBSD: kern_proc.c,v 1.180.8.1 2012/02/18 07:35:30 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.180.8.1 2012/02/18 07:35:30 mrg Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/resourcevar.h>
79 #include <sys/buf.h>
80 #include <sys/acct.h>
81 #include <sys/wait.h>
82 #include <sys/file.h>
83 #include <ufs/ufs/quota.h>
84 #include <sys/uio.h>
85 #include <sys/pool.h>
86 #include <sys/pset.h>
87 #include <sys/mbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/signalvar.h>
91 #include <sys/ras.h>
92 #include <sys/sa.h>
93 #include <sys/savar.h>
94 #include <sys/filedesc.h>
95 #include "sys/syscall_stats.h"
96 #include <sys/kauth.h>
97 #include <sys/sleepq.h>
98 #include <sys/atomic.h>
99 #include <sys/kmem.h>
100 #include <sys/dtrace_bsd.h>
101 #include <sys/sysctl.h>
102 #include <sys/exec.h>
103 #include <sys/cpu.h>
104
105 #include <uvm/uvm_extern.h>
106 #include <uvm/uvm_extern.h>
107
108 #ifdef COMPAT_NETBSD32
109 #include <compat/netbsd32/netbsd32.h>
110 #endif
111
112 /*
113 * Process lists.
114 */
115
116 struct proclist allproc __cacheline_aligned;
117 struct proclist zombproc __cacheline_aligned;
118
119 kmutex_t * proc_lock __cacheline_aligned;
120
121 /*
122 * pid to proc lookup is done by indexing the pid_table array.
123 * Since pid numbers are only allocated when an empty slot
124 * has been found, there is no need to search any lists ever.
125 * (an orphaned pgrp will lock the slot, a session will lock
126 * the pgrp with the same number.)
127 * If the table is too small it is reallocated with twice the
128 * previous size and the entries 'unzipped' into the two halves.
129 * A linked list of free entries is passed through the pt_proc
130 * field of 'free' items - set odd to be an invalid ptr.
131 */
132
133 struct pid_table {
134 struct proc *pt_proc;
135 struct pgrp *pt_pgrp;
136 pid_t pt_pid;
137 };
138 #if 1 /* strongly typed cast - should be a noop */
139 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
140 #else
141 #define p2u(p) ((uint)p)
142 #endif
143 #define P_VALID(p) (!(p2u(p) & 1))
144 #define P_NEXT(p) (p2u(p) >> 1)
145 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
146
147 /*
148 * Table of process IDs (PIDs).
149 */
150 static struct pid_table *pid_table __read_mostly;
151
152 #define INITIAL_PID_TABLE_SIZE (1 << 5)
153
154 /* Table mask, threshold for growing and number of allocated PIDs. */
155 static u_int pid_tbl_mask __read_mostly;
156 static u_int pid_alloc_lim __read_mostly;
157 static u_int pid_alloc_cnt __cacheline_aligned;
158
159 /* Next free, last free and maximum PIDs. */
160 static u_int next_free_pt __cacheline_aligned;
161 static u_int last_free_pt __cacheline_aligned;
162 static pid_t pid_max __read_mostly;
163
164 /* Components of the first process -- never freed. */
165
166 extern struct emul emul_netbsd; /* defined in kern_exec.c */
167
168 struct session session0 = {
169 .s_count = 1,
170 .s_sid = 0,
171 };
172 struct pgrp pgrp0 = {
173 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
174 .pg_session = &session0,
175 };
176 filedesc_t filedesc0;
177 struct cwdinfo cwdi0 = {
178 .cwdi_cmask = CMASK, /* see cmask below */
179 .cwdi_refcnt = 1,
180 };
181 struct plimit limit0;
182 struct pstats pstat0;
183 struct vmspace vmspace0;
184 struct sigacts sigacts0;
185 struct proc proc0 = {
186 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
187 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
188 .p_nlwps = 1,
189 .p_nrlwps = 1,
190 .p_nlwpid = 1, /* must match lwp0.l_lid */
191 .p_pgrp = &pgrp0,
192 .p_comm = "system",
193 /*
194 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
195 * when they exit. init(8) can easily wait them out for us.
196 */
197 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
198 .p_stat = SACTIVE,
199 .p_nice = NZERO,
200 .p_emul = &emul_netbsd,
201 .p_cwdi = &cwdi0,
202 .p_limit = &limit0,
203 .p_fd = &filedesc0,
204 .p_vmspace = &vmspace0,
205 .p_stats = &pstat0,
206 .p_sigacts = &sigacts0,
207 };
208 kauth_cred_t cred0;
209
210 static const int nofile = NOFILE;
211 static const int maxuprc = MAXUPRC;
212 static const int cmask = CMASK;
213
214 static int sysctl_doeproc(SYSCTLFN_PROTO);
215 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
216 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
217
218 /*
219 * The process list descriptors, used during pid allocation and
220 * by sysctl. No locking on this data structure is needed since
221 * it is completely static.
222 */
223 const struct proclist_desc proclists[] = {
224 { &allproc },
225 { &zombproc },
226 { NULL },
227 };
228
229 static struct pgrp * pg_remove(pid_t);
230 static void pg_delete(pid_t);
231 static void orphanpg(struct pgrp *);
232
233 static specificdata_domain_t proc_specificdata_domain;
234
235 static pool_cache_t proc_cache;
236
237 static kauth_listener_t proc_listener;
238
239 static int
240 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
241 void *arg0, void *arg1, void *arg2, void *arg3)
242 {
243 struct proc *p;
244 int result;
245
246 result = KAUTH_RESULT_DEFER;
247 p = arg0;
248
249 switch (action) {
250 case KAUTH_PROCESS_CANSEE: {
251 enum kauth_process_req req;
252
253 req = (enum kauth_process_req)arg1;
254
255 switch (req) {
256 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
257 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
258 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
259 result = KAUTH_RESULT_ALLOW;
260
261 break;
262
263 case KAUTH_REQ_PROCESS_CANSEE_ENV:
264 if (kauth_cred_getuid(cred) !=
265 kauth_cred_getuid(p->p_cred) ||
266 kauth_cred_getuid(cred) !=
267 kauth_cred_getsvuid(p->p_cred))
268 break;
269
270 result = KAUTH_RESULT_ALLOW;
271
272 break;
273
274 default:
275 break;
276 }
277
278 break;
279 }
280
281 case KAUTH_PROCESS_FORK: {
282 int lnprocs = (int)(unsigned long)arg2;
283
284 /*
285 * Don't allow a nonprivileged user to use the last few
286 * processes. The variable lnprocs is the current number of
287 * processes, maxproc is the limit.
288 */
289 if (__predict_false((lnprocs >= maxproc - 5)))
290 break;
291
292 result = KAUTH_RESULT_ALLOW;
293
294 break;
295 }
296
297 case KAUTH_PROCESS_CORENAME:
298 case KAUTH_PROCESS_STOPFLAG:
299 if (proc_uidmatch(cred, p->p_cred) == 0)
300 result = KAUTH_RESULT_ALLOW;
301
302 break;
303
304 default:
305 break;
306 }
307
308 return result;
309 }
310
311 /*
312 * Initialize global process hashing structures.
313 */
314 void
315 procinit(void)
316 {
317 const struct proclist_desc *pd;
318 u_int i;
319 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
320
321 for (pd = proclists; pd->pd_list != NULL; pd++)
322 LIST_INIT(pd->pd_list);
323
324 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
325 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
326 * sizeof(struct pid_table), KM_SLEEP);
327 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
328 pid_max = PID_MAX;
329
330 /* Set free list running through table...
331 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
332 for (i = 0; i <= pid_tbl_mask; i++) {
333 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
334 pid_table[i].pt_pgrp = 0;
335 pid_table[i].pt_pid = 0;
336 }
337 /* slot 0 is just grabbed */
338 next_free_pt = 1;
339 /* Need to fix last entry. */
340 last_free_pt = pid_tbl_mask;
341 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
342 /* point at which we grow table - to avoid reusing pids too often */
343 pid_alloc_lim = pid_tbl_mask - 1;
344 #undef LINK_EMPTY
345
346 proc_specificdata_domain = specificdata_domain_create();
347 KASSERT(proc_specificdata_domain != NULL);
348
349 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
350 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
351
352 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
353 proc_listener_cb, NULL);
354 }
355
356 void
357 procinit_sysctl(void)
358 {
359 static struct sysctllog *clog;
360
361 sysctl_createv(&clog, 0, NULL, NULL,
362 CTLFLAG_PERMANENT,
363 CTLTYPE_NODE, "kern", NULL,
364 NULL, 0, NULL, 0,
365 CTL_KERN, CTL_EOL);
366
367 sysctl_createv(&clog, 0, NULL, NULL,
368 CTLFLAG_PERMANENT,
369 CTLTYPE_NODE, "proc",
370 SYSCTL_DESCR("System-wide process information"),
371 sysctl_doeproc, 0, NULL, 0,
372 CTL_KERN, KERN_PROC, CTL_EOL);
373 sysctl_createv(&clog, 0, NULL, NULL,
374 CTLFLAG_PERMANENT,
375 CTLTYPE_NODE, "proc2",
376 SYSCTL_DESCR("Machine-independent process information"),
377 sysctl_doeproc, 0, NULL, 0,
378 CTL_KERN, KERN_PROC2, CTL_EOL);
379 sysctl_createv(&clog, 0, NULL, NULL,
380 CTLFLAG_PERMANENT,
381 CTLTYPE_NODE, "proc_args",
382 SYSCTL_DESCR("Process argument information"),
383 sysctl_kern_proc_args, 0, NULL, 0,
384 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
385
386 /*
387 "nodes" under these:
388
389 KERN_PROC_ALL
390 KERN_PROC_PID pid
391 KERN_PROC_PGRP pgrp
392 KERN_PROC_SESSION sess
393 KERN_PROC_TTY tty
394 KERN_PROC_UID uid
395 KERN_PROC_RUID uid
396 KERN_PROC_GID gid
397 KERN_PROC_RGID gid
398
399 all in all, probably not worth the effort...
400 */
401 }
402
403 /*
404 * Initialize process 0.
405 */
406 void
407 proc0_init(void)
408 {
409 struct proc *p;
410 struct pgrp *pg;
411 struct rlimit *rlim;
412 rlim_t lim;
413 int i;
414
415 p = &proc0;
416 pg = &pgrp0;
417
418 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
419 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
420 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
421
422 rw_init(&p->p_reflock);
423 cv_init(&p->p_waitcv, "wait");
424 cv_init(&p->p_lwpcv, "lwpwait");
425
426 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
427
428 pid_table[0].pt_proc = p;
429 LIST_INSERT_HEAD(&allproc, p, p_list);
430
431 pid_table[0].pt_pgrp = pg;
432 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
433
434 #ifdef __HAVE_SYSCALL_INTERN
435 (*p->p_emul->e_syscall_intern)(p);
436 #endif
437
438 /* Create credentials. */
439 cred0 = kauth_cred_alloc();
440 p->p_cred = cred0;
441
442 /* Create the CWD info. */
443 rw_init(&cwdi0.cwdi_lock);
444
445 /* Create the limits structures. */
446 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
447
448 rlim = limit0.pl_rlimit;
449 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
450 rlim[i].rlim_cur = RLIM_INFINITY;
451 rlim[i].rlim_max = RLIM_INFINITY;
452 }
453
454 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
455 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
456
457 rlim[RLIMIT_NPROC].rlim_max = maxproc;
458 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
459
460 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
461 rlim[RLIMIT_RSS].rlim_max = lim;
462 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
463 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
464
465 /* Note that default core name has zero length. */
466 limit0.pl_corename = defcorename;
467 limit0.pl_cnlen = 0;
468 limit0.pl_refcnt = 1;
469 limit0.pl_writeable = false;
470 limit0.pl_sv_limit = NULL;
471
472 /* Configure virtual memory system, set vm rlimits. */
473 uvm_init_limits(p);
474
475 /* Initialize file descriptor table for proc0. */
476 fd_init(&filedesc0);
477
478 /*
479 * Initialize proc0's vmspace, which uses the kernel pmap.
480 * All kernel processes (which never have user space mappings)
481 * share proc0's vmspace, and thus, the kernel pmap.
482 */
483 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
484 trunc_page(VM_MAX_ADDRESS));
485
486 /* Initialize signal state for proc0. XXX IPL_SCHED */
487 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
488 siginit(p);
489
490 proc_initspecific(p);
491 kdtrace_proc_ctor(NULL, p);
492 }
493
494 /*
495 * Session reference counting.
496 */
497
498 void
499 proc_sesshold(struct session *ss)
500 {
501
502 KASSERT(mutex_owned(proc_lock));
503 ss->s_count++;
504 }
505
506 void
507 proc_sessrele(struct session *ss)
508 {
509
510 KASSERT(mutex_owned(proc_lock));
511 /*
512 * We keep the pgrp with the same id as the session in order to
513 * stop a process being given the same pid. Since the pgrp holds
514 * a reference to the session, it must be a 'zombie' pgrp by now.
515 */
516 if (--ss->s_count == 0) {
517 struct pgrp *pg;
518
519 pg = pg_remove(ss->s_sid);
520 mutex_exit(proc_lock);
521
522 kmem_free(pg, sizeof(struct pgrp));
523 kmem_free(ss, sizeof(struct session));
524 } else {
525 mutex_exit(proc_lock);
526 }
527 }
528
529 /*
530 * Check that the specified process group is in the session of the
531 * specified process.
532 * Treats -ve ids as process ids.
533 * Used to validate TIOCSPGRP requests.
534 */
535 int
536 pgid_in_session(struct proc *p, pid_t pg_id)
537 {
538 struct pgrp *pgrp;
539 struct session *session;
540 int error;
541
542 mutex_enter(proc_lock);
543 if (pg_id < 0) {
544 struct proc *p1 = proc_find(-pg_id);
545 if (p1 == NULL) {
546 error = EINVAL;
547 goto fail;
548 }
549 pgrp = p1->p_pgrp;
550 } else {
551 pgrp = pgrp_find(pg_id);
552 if (pgrp == NULL) {
553 error = EINVAL;
554 goto fail;
555 }
556 }
557 session = pgrp->pg_session;
558 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
559 fail:
560 mutex_exit(proc_lock);
561 return error;
562 }
563
564 /*
565 * p_inferior: is p an inferior of q?
566 */
567 static inline bool
568 p_inferior(struct proc *p, struct proc *q)
569 {
570
571 KASSERT(mutex_owned(proc_lock));
572
573 for (; p != q; p = p->p_pptr)
574 if (p->p_pid == 0)
575 return false;
576 return true;
577 }
578
579 /*
580 * proc_find: locate a process by the ID.
581 *
582 * => Must be called with proc_lock held.
583 */
584 proc_t *
585 proc_find_raw(pid_t pid)
586 {
587 struct pid_table *pt;
588 proc_t *p;
589
590 KASSERT(mutex_owned(proc_lock));
591 pt = &pid_table[pid & pid_tbl_mask];
592 p = pt->pt_proc;
593 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
594 return NULL;
595 }
596 return p;
597 }
598
599 proc_t *
600 proc_find(pid_t pid)
601 {
602 proc_t *p;
603
604 p = proc_find_raw(pid);
605 if (__predict_false(p == NULL)) {
606 return NULL;
607 }
608
609 /*
610 * Only allow live processes to be found by PID.
611 * XXX: p_stat might change, since unlocked.
612 */
613 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
614 return p;
615 }
616 return NULL;
617 }
618
619 /*
620 * pgrp_find: locate a process group by the ID.
621 *
622 * => Must be called with proc_lock held.
623 */
624 struct pgrp *
625 pgrp_find(pid_t pgid)
626 {
627 struct pgrp *pg;
628
629 KASSERT(mutex_owned(proc_lock));
630
631 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
632
633 /*
634 * Cannot look up a process group that only exists because the
635 * session has not died yet (traditional).
636 */
637 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
638 return NULL;
639 }
640 return pg;
641 }
642
643 static void
644 expand_pid_table(void)
645 {
646 size_t pt_size, tsz;
647 struct pid_table *n_pt, *new_pt;
648 struct proc *proc;
649 struct pgrp *pgrp;
650 pid_t pid, rpid;
651 u_int i;
652 uint new_pt_mask;
653
654 pt_size = pid_tbl_mask + 1;
655 tsz = pt_size * 2 * sizeof(struct pid_table);
656 new_pt = kmem_alloc(tsz, KM_SLEEP);
657 new_pt_mask = pt_size * 2 - 1;
658
659 mutex_enter(proc_lock);
660 if (pt_size != pid_tbl_mask + 1) {
661 /* Another process beat us to it... */
662 mutex_exit(proc_lock);
663 kmem_free(new_pt, tsz);
664 return;
665 }
666
667 /*
668 * Copy entries from old table into new one.
669 * If 'pid' is 'odd' we need to place in the upper half,
670 * even pid's to the lower half.
671 * Free items stay in the low half so we don't have to
672 * fixup the reference to them.
673 * We stuff free items on the front of the freelist
674 * because we can't write to unmodified entries.
675 * Processing the table backwards maintains a semblance
676 * of issuing pid numbers that increase with time.
677 */
678 i = pt_size - 1;
679 n_pt = new_pt + i;
680 for (; ; i--, n_pt--) {
681 proc = pid_table[i].pt_proc;
682 pgrp = pid_table[i].pt_pgrp;
683 if (!P_VALID(proc)) {
684 /* Up 'use count' so that link is valid */
685 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
686 rpid = 0;
687 proc = P_FREE(pid);
688 if (pgrp)
689 pid = pgrp->pg_id;
690 } else {
691 pid = pid_table[i].pt_pid;
692 rpid = pid;
693 }
694
695 /* Save entry in appropriate half of table */
696 n_pt[pid & pt_size].pt_proc = proc;
697 n_pt[pid & pt_size].pt_pgrp = pgrp;
698 n_pt[pid & pt_size].pt_pid = rpid;
699
700 /* Put other piece on start of free list */
701 pid = (pid ^ pt_size) & ~pid_tbl_mask;
702 n_pt[pid & pt_size].pt_proc =
703 P_FREE((pid & ~pt_size) | next_free_pt);
704 n_pt[pid & pt_size].pt_pgrp = 0;
705 n_pt[pid & pt_size].pt_pid = 0;
706
707 next_free_pt = i | (pid & pt_size);
708 if (i == 0)
709 break;
710 }
711
712 /* Save old table size and switch tables */
713 tsz = pt_size * sizeof(struct pid_table);
714 n_pt = pid_table;
715 pid_table = new_pt;
716 pid_tbl_mask = new_pt_mask;
717
718 /*
719 * pid_max starts as PID_MAX (= 30000), once we have 16384
720 * allocated pids we need it to be larger!
721 */
722 if (pid_tbl_mask > PID_MAX) {
723 pid_max = pid_tbl_mask * 2 + 1;
724 pid_alloc_lim |= pid_alloc_lim << 1;
725 } else
726 pid_alloc_lim <<= 1; /* doubles number of free slots... */
727
728 mutex_exit(proc_lock);
729 kmem_free(n_pt, tsz);
730 }
731
732 struct proc *
733 proc_alloc(void)
734 {
735 struct proc *p;
736
737 p = pool_cache_get(proc_cache, PR_WAITOK);
738 p->p_stat = SIDL; /* protect against others */
739 proc_initspecific(p);
740 kdtrace_proc_ctor(NULL, p);
741 p->p_pid = -1;
742 proc_alloc_pid(p);
743 return p;
744 }
745
746 pid_t
747 proc_alloc_pid(struct proc *p)
748 {
749 struct pid_table *pt;
750 pid_t pid;
751 int nxt;
752
753 for (;;expand_pid_table()) {
754 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
755 /* ensure pids cycle through 2000+ values */
756 continue;
757 mutex_enter(proc_lock);
758 pt = &pid_table[next_free_pt];
759 #ifdef DIAGNOSTIC
760 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
761 panic("proc_alloc: slot busy");
762 #endif
763 nxt = P_NEXT(pt->pt_proc);
764 if (nxt & pid_tbl_mask)
765 break;
766 /* Table full - expand (NB last entry not used....) */
767 mutex_exit(proc_lock);
768 }
769
770 /* pid is 'saved use count' + 'size' + entry */
771 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
772 if ((uint)pid > (uint)pid_max)
773 pid &= pid_tbl_mask;
774 next_free_pt = nxt & pid_tbl_mask;
775
776 /* Grab table slot */
777 pt->pt_proc = p;
778
779 KASSERT(pt->pt_pid == 0);
780 pt->pt_pid = pid;
781 if (p->p_pid == -1) {
782 p->p_pid = pid;
783 }
784 pid_alloc_cnt++;
785 mutex_exit(proc_lock);
786
787 return pid;
788 }
789
790 /*
791 * Free a process id - called from proc_free (in kern_exit.c)
792 *
793 * Called with the proc_lock held.
794 */
795 void
796 proc_free_pid(pid_t pid)
797 {
798 struct pid_table *pt;
799
800 KASSERT(mutex_owned(proc_lock));
801
802 pt = &pid_table[pid & pid_tbl_mask];
803
804 /* save pid use count in slot */
805 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
806 KASSERT(pt->pt_pid == pid);
807 pt->pt_pid = 0;
808
809 if (pt->pt_pgrp == NULL) {
810 /* link last freed entry onto ours */
811 pid &= pid_tbl_mask;
812 pt = &pid_table[last_free_pt];
813 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
814 pt->pt_pid = 0;
815 last_free_pt = pid;
816 pid_alloc_cnt--;
817 }
818
819 atomic_dec_uint(&nprocs);
820 }
821
822 void
823 proc_free_mem(struct proc *p)
824 {
825
826 kdtrace_proc_dtor(NULL, p);
827 pool_cache_put(proc_cache, p);
828 }
829
830 /*
831 * proc_enterpgrp: move p to a new or existing process group (and session).
832 *
833 * If we are creating a new pgrp, the pgid should equal
834 * the calling process' pid.
835 * If is only valid to enter a process group that is in the session
836 * of the process.
837 * Also mksess should only be set if we are creating a process group
838 *
839 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
840 */
841 int
842 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
843 {
844 struct pgrp *new_pgrp, *pgrp;
845 struct session *sess;
846 struct proc *p;
847 int rval;
848 pid_t pg_id = NO_PGID;
849
850 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
851
852 /* Allocate data areas we might need before doing any validity checks */
853 mutex_enter(proc_lock); /* Because pid_table might change */
854 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
855 mutex_exit(proc_lock);
856 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
857 mutex_enter(proc_lock);
858 } else
859 new_pgrp = NULL;
860 rval = EPERM; /* most common error (to save typing) */
861
862 /* Check pgrp exists or can be created */
863 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
864 if (pgrp != NULL && pgrp->pg_id != pgid)
865 goto done;
866
867 /* Can only set another process under restricted circumstances. */
868 if (pid != curp->p_pid) {
869 /* Must exist and be one of our children... */
870 p = proc_find(pid);
871 if (p == NULL || !p_inferior(p, curp)) {
872 rval = ESRCH;
873 goto done;
874 }
875 /* ... in the same session... */
876 if (sess != NULL || p->p_session != curp->p_session)
877 goto done;
878 /* ... existing pgid must be in same session ... */
879 if (pgrp != NULL && pgrp->pg_session != p->p_session)
880 goto done;
881 /* ... and not done an exec. */
882 if (p->p_flag & PK_EXEC) {
883 rval = EACCES;
884 goto done;
885 }
886 } else {
887 /* ... setsid() cannot re-enter a pgrp */
888 if (mksess && (curp->p_pgid == curp->p_pid ||
889 pgrp_find(curp->p_pid)))
890 goto done;
891 p = curp;
892 }
893
894 /* Changing the process group/session of a session
895 leader is definitely off limits. */
896 if (SESS_LEADER(p)) {
897 if (sess == NULL && p->p_pgrp == pgrp)
898 /* unless it's a definite noop */
899 rval = 0;
900 goto done;
901 }
902
903 /* Can only create a process group with id of process */
904 if (pgrp == NULL && pgid != pid)
905 goto done;
906
907 /* Can only create a session if creating pgrp */
908 if (sess != NULL && pgrp != NULL)
909 goto done;
910
911 /* Check we allocated memory for a pgrp... */
912 if (pgrp == NULL && new_pgrp == NULL)
913 goto done;
914
915 /* Don't attach to 'zombie' pgrp */
916 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
917 goto done;
918
919 /* Expect to succeed now */
920 rval = 0;
921
922 if (pgrp == p->p_pgrp)
923 /* nothing to do */
924 goto done;
925
926 /* Ok all setup, link up required structures */
927
928 if (pgrp == NULL) {
929 pgrp = new_pgrp;
930 new_pgrp = NULL;
931 if (sess != NULL) {
932 sess->s_sid = p->p_pid;
933 sess->s_leader = p;
934 sess->s_count = 1;
935 sess->s_ttyvp = NULL;
936 sess->s_ttyp = NULL;
937 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
938 memcpy(sess->s_login, p->p_session->s_login,
939 sizeof(sess->s_login));
940 p->p_lflag &= ~PL_CONTROLT;
941 } else {
942 sess = p->p_pgrp->pg_session;
943 proc_sesshold(sess);
944 }
945 pgrp->pg_session = sess;
946 sess = NULL;
947
948 pgrp->pg_id = pgid;
949 LIST_INIT(&pgrp->pg_members);
950 #ifdef DIAGNOSTIC
951 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
952 panic("enterpgrp: pgrp table slot in use");
953 if (__predict_false(mksess && p != curp))
954 panic("enterpgrp: mksession and p != curproc");
955 #endif
956 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
957 pgrp->pg_jobc = 0;
958 }
959
960 /*
961 * Adjust eligibility of affected pgrps to participate in job control.
962 * Increment eligibility counts before decrementing, otherwise we
963 * could reach 0 spuriously during the first call.
964 */
965 fixjobc(p, pgrp, 1);
966 fixjobc(p, p->p_pgrp, 0);
967
968 /* Interlock with ttread(). */
969 mutex_spin_enter(&tty_lock);
970
971 /* Move process to requested group. */
972 LIST_REMOVE(p, p_pglist);
973 if (LIST_EMPTY(&p->p_pgrp->pg_members))
974 /* defer delete until we've dumped the lock */
975 pg_id = p->p_pgrp->pg_id;
976 p->p_pgrp = pgrp;
977 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
978
979 /* Done with the swap; we can release the tty mutex. */
980 mutex_spin_exit(&tty_lock);
981
982 done:
983 if (pg_id != NO_PGID) {
984 /* Releases proc_lock. */
985 pg_delete(pg_id);
986 } else {
987 mutex_exit(proc_lock);
988 }
989 if (sess != NULL)
990 kmem_free(sess, sizeof(*sess));
991 if (new_pgrp != NULL)
992 kmem_free(new_pgrp, sizeof(*new_pgrp));
993 #ifdef DEBUG_PGRP
994 if (__predict_false(rval))
995 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
996 pid, pgid, mksess, curp->p_pid, rval);
997 #endif
998 return rval;
999 }
1000
1001 /*
1002 * proc_leavepgrp: remove a process from its process group.
1003 * => must be called with the proc_lock held, which will be released;
1004 */
1005 void
1006 proc_leavepgrp(struct proc *p)
1007 {
1008 struct pgrp *pgrp;
1009
1010 KASSERT(mutex_owned(proc_lock));
1011
1012 /* Interlock with ttread() */
1013 mutex_spin_enter(&tty_lock);
1014 pgrp = p->p_pgrp;
1015 LIST_REMOVE(p, p_pglist);
1016 p->p_pgrp = NULL;
1017 mutex_spin_exit(&tty_lock);
1018
1019 if (LIST_EMPTY(&pgrp->pg_members)) {
1020 /* Releases proc_lock. */
1021 pg_delete(pgrp->pg_id);
1022 } else {
1023 mutex_exit(proc_lock);
1024 }
1025 }
1026
1027 /*
1028 * pg_remove: remove a process group from the table.
1029 * => must be called with the proc_lock held;
1030 * => returns process group to free;
1031 */
1032 static struct pgrp *
1033 pg_remove(pid_t pg_id)
1034 {
1035 struct pgrp *pgrp;
1036 struct pid_table *pt;
1037
1038 KASSERT(mutex_owned(proc_lock));
1039
1040 pt = &pid_table[pg_id & pid_tbl_mask];
1041 pgrp = pt->pt_pgrp;
1042
1043 KASSERT(pgrp != NULL);
1044 KASSERT(pgrp->pg_id == pg_id);
1045 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1046
1047 pt->pt_pgrp = NULL;
1048
1049 if (!P_VALID(pt->pt_proc)) {
1050 /* Orphaned pgrp, put slot onto free list. */
1051 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1052 pg_id &= pid_tbl_mask;
1053 pt = &pid_table[last_free_pt];
1054 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1055 KASSERT(pt->pt_pid == 0);
1056 last_free_pt = pg_id;
1057 pid_alloc_cnt--;
1058 }
1059 return pgrp;
1060 }
1061
1062 /*
1063 * pg_delete: delete and free a process group.
1064 * => must be called with the proc_lock held, which will be released.
1065 */
1066 static void
1067 pg_delete(pid_t pg_id)
1068 {
1069 struct pgrp *pg;
1070 struct tty *ttyp;
1071 struct session *ss;
1072
1073 KASSERT(mutex_owned(proc_lock));
1074
1075 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1076 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1077 mutex_exit(proc_lock);
1078 return;
1079 }
1080
1081 ss = pg->pg_session;
1082
1083 /* Remove reference (if any) from tty to this process group */
1084 mutex_spin_enter(&tty_lock);
1085 ttyp = ss->s_ttyp;
1086 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1087 ttyp->t_pgrp = NULL;
1088 KASSERT(ttyp->t_session == ss);
1089 }
1090 mutex_spin_exit(&tty_lock);
1091
1092 /*
1093 * The leading process group in a session is freed by proc_sessrele(),
1094 * if last reference. Note: proc_sessrele() releases proc_lock.
1095 */
1096 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1097 proc_sessrele(ss);
1098
1099 if (pg != NULL) {
1100 /* Free it, if was not done by proc_sessrele(). */
1101 kmem_free(pg, sizeof(struct pgrp));
1102 }
1103 }
1104
1105 /*
1106 * Adjust pgrp jobc counters when specified process changes process group.
1107 * We count the number of processes in each process group that "qualify"
1108 * the group for terminal job control (those with a parent in a different
1109 * process group of the same session). If that count reaches zero, the
1110 * process group becomes orphaned. Check both the specified process'
1111 * process group and that of its children.
1112 * entering == 0 => p is leaving specified group.
1113 * entering == 1 => p is entering specified group.
1114 *
1115 * Call with proc_lock held.
1116 */
1117 void
1118 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1119 {
1120 struct pgrp *hispgrp;
1121 struct session *mysession = pgrp->pg_session;
1122 struct proc *child;
1123
1124 KASSERT(mutex_owned(proc_lock));
1125
1126 /*
1127 * Check p's parent to see whether p qualifies its own process
1128 * group; if so, adjust count for p's process group.
1129 */
1130 hispgrp = p->p_pptr->p_pgrp;
1131 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1132 if (entering) {
1133 pgrp->pg_jobc++;
1134 p->p_lflag &= ~PL_ORPHANPG;
1135 } else if (--pgrp->pg_jobc == 0)
1136 orphanpg(pgrp);
1137 }
1138
1139 /*
1140 * Check this process' children to see whether they qualify
1141 * their process groups; if so, adjust counts for children's
1142 * process groups.
1143 */
1144 LIST_FOREACH(child, &p->p_children, p_sibling) {
1145 hispgrp = child->p_pgrp;
1146 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1147 !P_ZOMBIE(child)) {
1148 if (entering) {
1149 child->p_lflag &= ~PL_ORPHANPG;
1150 hispgrp->pg_jobc++;
1151 } else if (--hispgrp->pg_jobc == 0)
1152 orphanpg(hispgrp);
1153 }
1154 }
1155 }
1156
1157 /*
1158 * A process group has become orphaned;
1159 * if there are any stopped processes in the group,
1160 * hang-up all process in that group.
1161 *
1162 * Call with proc_lock held.
1163 */
1164 static void
1165 orphanpg(struct pgrp *pg)
1166 {
1167 struct proc *p;
1168
1169 KASSERT(mutex_owned(proc_lock));
1170
1171 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1172 if (p->p_stat == SSTOP) {
1173 p->p_lflag |= PL_ORPHANPG;
1174 psignal(p, SIGHUP);
1175 psignal(p, SIGCONT);
1176 }
1177 }
1178 }
1179
1180 #ifdef DDB
1181 #include <ddb/db_output.h>
1182 void pidtbl_dump(void);
1183 void
1184 pidtbl_dump(void)
1185 {
1186 struct pid_table *pt;
1187 struct proc *p;
1188 struct pgrp *pgrp;
1189 int id;
1190
1191 db_printf("pid table %p size %x, next %x, last %x\n",
1192 pid_table, pid_tbl_mask+1,
1193 next_free_pt, last_free_pt);
1194 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1195 p = pt->pt_proc;
1196 if (!P_VALID(p) && !pt->pt_pgrp)
1197 continue;
1198 db_printf(" id %x: ", id);
1199 if (P_VALID(p))
1200 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1201 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1202 else
1203 db_printf("next %x use %x\n",
1204 P_NEXT(p) & pid_tbl_mask,
1205 P_NEXT(p) & ~pid_tbl_mask);
1206 if ((pgrp = pt->pt_pgrp)) {
1207 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1208 pgrp->pg_session, pgrp->pg_session->s_sid,
1209 pgrp->pg_session->s_count,
1210 pgrp->pg_session->s_login);
1211 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1212 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1213 LIST_FIRST(&pgrp->pg_members));
1214 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1215 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1216 p->p_pid, p, p->p_pgrp, p->p_comm);
1217 }
1218 }
1219 }
1220 }
1221 #endif /* DDB */
1222
1223 #ifdef KSTACK_CHECK_MAGIC
1224
1225 #define KSTACK_MAGIC 0xdeadbeaf
1226
1227 /* XXX should be per process basis? */
1228 static int kstackleftmin = KSTACK_SIZE;
1229 static int kstackleftthres = KSTACK_SIZE / 8;
1230
1231 void
1232 kstack_setup_magic(const struct lwp *l)
1233 {
1234 uint32_t *ip;
1235 uint32_t const *end;
1236
1237 KASSERT(l != NULL);
1238 KASSERT(l != &lwp0);
1239
1240 /*
1241 * fill all the stack with magic number
1242 * so that later modification on it can be detected.
1243 */
1244 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1245 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1246 for (; ip < end; ip++) {
1247 *ip = KSTACK_MAGIC;
1248 }
1249 }
1250
1251 void
1252 kstack_check_magic(const struct lwp *l)
1253 {
1254 uint32_t const *ip, *end;
1255 int stackleft;
1256
1257 KASSERT(l != NULL);
1258
1259 /* don't check proc0 */ /*XXX*/
1260 if (l == &lwp0)
1261 return;
1262
1263 #ifdef __MACHINE_STACK_GROWS_UP
1264 /* stack grows upwards (eg. hppa) */
1265 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1266 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1267 for (ip--; ip >= end; ip--)
1268 if (*ip != KSTACK_MAGIC)
1269 break;
1270
1271 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1272 #else /* __MACHINE_STACK_GROWS_UP */
1273 /* stack grows downwards (eg. i386) */
1274 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1275 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1276 for (; ip < end; ip++)
1277 if (*ip != KSTACK_MAGIC)
1278 break;
1279
1280 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1281 #endif /* __MACHINE_STACK_GROWS_UP */
1282
1283 if (kstackleftmin > stackleft) {
1284 kstackleftmin = stackleft;
1285 if (stackleft < kstackleftthres)
1286 printf("warning: kernel stack left %d bytes"
1287 "(pid %u:lid %u)\n", stackleft,
1288 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1289 }
1290
1291 if (stackleft <= 0) {
1292 panic("magic on the top of kernel stack changed for "
1293 "pid %u, lid %u: maybe kernel stack overflow",
1294 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1295 }
1296 }
1297 #endif /* KSTACK_CHECK_MAGIC */
1298
1299 int
1300 proclist_foreach_call(struct proclist *list,
1301 int (*callback)(struct proc *, void *arg), void *arg)
1302 {
1303 struct proc marker;
1304 struct proc *p;
1305 int ret = 0;
1306
1307 marker.p_flag = PK_MARKER;
1308 mutex_enter(proc_lock);
1309 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1310 if (p->p_flag & PK_MARKER) {
1311 p = LIST_NEXT(p, p_list);
1312 continue;
1313 }
1314 LIST_INSERT_AFTER(p, &marker, p_list);
1315 ret = (*callback)(p, arg);
1316 KASSERT(mutex_owned(proc_lock));
1317 p = LIST_NEXT(&marker, p_list);
1318 LIST_REMOVE(&marker, p_list);
1319 }
1320 mutex_exit(proc_lock);
1321
1322 return ret;
1323 }
1324
1325 int
1326 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1327 {
1328
1329 /* XXXCDC: how should locking work here? */
1330
1331 /* curproc exception is for coredump. */
1332
1333 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1334 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1335 return EFAULT;
1336 }
1337
1338 uvmspace_addref(p->p_vmspace);
1339 *vm = p->p_vmspace;
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * Acquire a write lock on the process credential.
1346 */
1347 void
1348 proc_crmod_enter(void)
1349 {
1350 struct lwp *l = curlwp;
1351 struct proc *p = l->l_proc;
1352 kauth_cred_t oc;
1353
1354 /* Reset what needs to be reset in plimit. */
1355 if (p->p_limit->pl_corename != defcorename) {
1356 lim_setcorename(p, defcorename, 0);
1357 }
1358
1359 mutex_enter(p->p_lock);
1360
1361 /* Ensure the LWP cached credentials are up to date. */
1362 if ((oc = l->l_cred) != p->p_cred) {
1363 kauth_cred_hold(p->p_cred);
1364 l->l_cred = p->p_cred;
1365 kauth_cred_free(oc);
1366 }
1367 }
1368
1369 /*
1370 * Set in a new process credential, and drop the write lock. The credential
1371 * must have a reference already. Optionally, free a no-longer required
1372 * credential. The scheduler also needs to inspect p_cred, so we also
1373 * briefly acquire the sched state mutex.
1374 */
1375 void
1376 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1377 {
1378 struct lwp *l = curlwp, *l2;
1379 struct proc *p = l->l_proc;
1380 kauth_cred_t oc;
1381
1382 KASSERT(mutex_owned(p->p_lock));
1383
1384 /* Is there a new credential to set in? */
1385 if (scred != NULL) {
1386 p->p_cred = scred;
1387 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1388 if (l2 != l)
1389 l2->l_prflag |= LPR_CRMOD;
1390 }
1391
1392 /* Ensure the LWP cached credentials are up to date. */
1393 if ((oc = l->l_cred) != scred) {
1394 kauth_cred_hold(scred);
1395 l->l_cred = scred;
1396 }
1397 } else
1398 oc = NULL; /* XXXgcc */
1399
1400 if (sugid) {
1401 /*
1402 * Mark process as having changed credentials, stops
1403 * tracing etc.
1404 */
1405 p->p_flag |= PK_SUGID;
1406 }
1407
1408 mutex_exit(p->p_lock);
1409
1410 /* If there is a credential to be released, free it now. */
1411 if (fcred != NULL) {
1412 KASSERT(scred != NULL);
1413 kauth_cred_free(fcred);
1414 if (oc != scred)
1415 kauth_cred_free(oc);
1416 }
1417 }
1418
1419 /*
1420 * proc_specific_key_create --
1421 * Create a key for subsystem proc-specific data.
1422 */
1423 int
1424 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1425 {
1426
1427 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1428 }
1429
1430 /*
1431 * proc_specific_key_delete --
1432 * Delete a key for subsystem proc-specific data.
1433 */
1434 void
1435 proc_specific_key_delete(specificdata_key_t key)
1436 {
1437
1438 specificdata_key_delete(proc_specificdata_domain, key);
1439 }
1440
1441 /*
1442 * proc_initspecific --
1443 * Initialize a proc's specificdata container.
1444 */
1445 void
1446 proc_initspecific(struct proc *p)
1447 {
1448 int error;
1449
1450 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1451 KASSERT(error == 0);
1452 }
1453
1454 /*
1455 * proc_finispecific --
1456 * Finalize a proc's specificdata container.
1457 */
1458 void
1459 proc_finispecific(struct proc *p)
1460 {
1461
1462 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1463 }
1464
1465 /*
1466 * proc_getspecific --
1467 * Return proc-specific data corresponding to the specified key.
1468 */
1469 void *
1470 proc_getspecific(struct proc *p, specificdata_key_t key)
1471 {
1472
1473 return (specificdata_getspecific(proc_specificdata_domain,
1474 &p->p_specdataref, key));
1475 }
1476
1477 /*
1478 * proc_setspecific --
1479 * Set proc-specific data corresponding to the specified key.
1480 */
1481 void
1482 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1483 {
1484
1485 specificdata_setspecific(proc_specificdata_domain,
1486 &p->p_specdataref, key, data);
1487 }
1488
1489 int
1490 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1491 {
1492 int r = 0;
1493
1494 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1495 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1496 /*
1497 * suid proc of ours or proc not ours
1498 */
1499 r = EPERM;
1500 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1501 /*
1502 * sgid proc has sgid back to us temporarily
1503 */
1504 r = EPERM;
1505 } else {
1506 /*
1507 * our rgid must be in target's group list (ie,
1508 * sub-processes started by a sgid process)
1509 */
1510 int ismember = 0;
1511
1512 if (kauth_cred_ismember_gid(cred,
1513 kauth_cred_getgid(target), &ismember) != 0 ||
1514 !ismember)
1515 r = EPERM;
1516 }
1517
1518 return (r);
1519 }
1520
1521 /*
1522 * sysctl stuff
1523 */
1524
1525 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1526
1527 static const u_int sysctl_flagmap[] = {
1528 PK_ADVLOCK, P_ADVLOCK,
1529 PK_EXEC, P_EXEC,
1530 PK_NOCLDWAIT, P_NOCLDWAIT,
1531 PK_32, P_32,
1532 PK_CLDSIGIGN, P_CLDSIGIGN,
1533 PK_SUGID, P_SUGID,
1534 0
1535 };
1536
1537 static const u_int sysctl_sflagmap[] = {
1538 PS_NOCLDSTOP, P_NOCLDSTOP,
1539 PS_WEXIT, P_WEXIT,
1540 PS_STOPFORK, P_STOPFORK,
1541 PS_STOPEXEC, P_STOPEXEC,
1542 PS_STOPEXIT, P_STOPEXIT,
1543 0
1544 };
1545
1546 static const u_int sysctl_slflagmap[] = {
1547 PSL_TRACED, P_TRACED,
1548 PSL_FSTRACE, P_FSTRACE,
1549 PSL_CHTRACED, P_CHTRACED,
1550 PSL_SYSCALL, P_SYSCALL,
1551 0
1552 };
1553
1554 static const u_int sysctl_lflagmap[] = {
1555 PL_CONTROLT, P_CONTROLT,
1556 PL_PPWAIT, P_PPWAIT,
1557 0
1558 };
1559
1560 static const u_int sysctl_stflagmap[] = {
1561 PST_PROFIL, P_PROFIL,
1562 0
1563
1564 };
1565
1566 /* used by kern_lwp also */
1567 const u_int sysctl_lwpflagmap[] = {
1568 LW_SINTR, L_SINTR,
1569 LW_SYSTEM, L_SYSTEM,
1570 LW_SA, L_SA, /* WRS ??? */
1571 0
1572 };
1573
1574 /*
1575 * Find the most ``active'' lwp of a process and return it for ps display
1576 * purposes
1577 */
1578 static struct lwp *
1579 proc_active_lwp(struct proc *p)
1580 {
1581 static const int ostat[] = {
1582 0,
1583 2, /* LSIDL */
1584 6, /* LSRUN */
1585 5, /* LSSLEEP */
1586 4, /* LSSTOP */
1587 0, /* LSZOMB */
1588 1, /* LSDEAD */
1589 7, /* LSONPROC */
1590 3 /* LSSUSPENDED */
1591 };
1592
1593 struct lwp *l, *lp = NULL;
1594 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1595 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1596 if (lp == NULL ||
1597 ostat[l->l_stat] > ostat[lp->l_stat] ||
1598 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1599 l->l_cpticks > lp->l_cpticks)) {
1600 lp = l;
1601 continue;
1602 }
1603 }
1604 return lp;
1605 }
1606
1607 static int
1608 sysctl_doeproc(SYSCTLFN_ARGS)
1609 {
1610 union {
1611 struct kinfo_proc kproc;
1612 struct kinfo_proc2 kproc2;
1613 } *kbuf;
1614 struct proc *p, *next, *marker;
1615 char *where, *dp;
1616 int type, op, arg, error;
1617 u_int elem_size, kelem_size, elem_count;
1618 size_t buflen, needed;
1619 bool match, zombie, mmmbrains;
1620
1621 if (namelen == 1 && name[0] == CTL_QUERY)
1622 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1623
1624 dp = where = oldp;
1625 buflen = where != NULL ? *oldlenp : 0;
1626 error = 0;
1627 needed = 0;
1628 type = rnode->sysctl_num;
1629
1630 if (type == KERN_PROC) {
1631 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1632 return (EINVAL);
1633 op = name[0];
1634 if (op != KERN_PROC_ALL)
1635 arg = name[1];
1636 else
1637 arg = 0; /* Quell compiler warning */
1638 elem_count = 0; /* Ditto */
1639 kelem_size = elem_size = sizeof(kbuf->kproc);
1640 } else {
1641 if (namelen != 4)
1642 return (EINVAL);
1643 op = name[0];
1644 arg = name[1];
1645 elem_size = name[2];
1646 elem_count = name[3];
1647 kelem_size = sizeof(kbuf->kproc2);
1648 }
1649
1650 sysctl_unlock();
1651
1652 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1653 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1654 marker->p_flag = PK_MARKER;
1655
1656 mutex_enter(proc_lock);
1657 mmmbrains = false;
1658 for (p = LIST_FIRST(&allproc);; p = next) {
1659 if (p == NULL) {
1660 if (!mmmbrains) {
1661 p = LIST_FIRST(&zombproc);
1662 mmmbrains = true;
1663 }
1664 if (p == NULL)
1665 break;
1666 }
1667 next = LIST_NEXT(p, p_list);
1668 if ((p->p_flag & PK_MARKER) != 0)
1669 continue;
1670
1671 /*
1672 * Skip embryonic processes.
1673 */
1674 if (p->p_stat == SIDL)
1675 continue;
1676
1677 mutex_enter(p->p_lock);
1678 error = kauth_authorize_process(l->l_cred,
1679 KAUTH_PROCESS_CANSEE, p,
1680 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1681 if (error != 0) {
1682 mutex_exit(p->p_lock);
1683 continue;
1684 }
1685
1686 /*
1687 * TODO - make more efficient (see notes below).
1688 * do by session.
1689 */
1690 switch (op) {
1691 case KERN_PROC_PID:
1692 /* could do this with just a lookup */
1693 match = (p->p_pid == (pid_t)arg);
1694 break;
1695
1696 case KERN_PROC_PGRP:
1697 /* could do this by traversing pgrp */
1698 match = (p->p_pgrp->pg_id == (pid_t)arg);
1699 break;
1700
1701 case KERN_PROC_SESSION:
1702 match = (p->p_session->s_sid == (pid_t)arg);
1703 break;
1704
1705 case KERN_PROC_TTY:
1706 match = true;
1707 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1708 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1709 p->p_session->s_ttyp == NULL ||
1710 p->p_session->s_ttyvp != NULL) {
1711 match = false;
1712 }
1713 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1714 p->p_session->s_ttyp == NULL) {
1715 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1716 match = false;
1717 }
1718 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1719 match = false;
1720 }
1721 break;
1722
1723 case KERN_PROC_UID:
1724 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1725 break;
1726
1727 case KERN_PROC_RUID:
1728 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1729 break;
1730
1731 case KERN_PROC_GID:
1732 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1733 break;
1734
1735 case KERN_PROC_RGID:
1736 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1737 break;
1738
1739 case KERN_PROC_ALL:
1740 match = true;
1741 /* allow everything */
1742 break;
1743
1744 default:
1745 error = EINVAL;
1746 mutex_exit(p->p_lock);
1747 goto cleanup;
1748 }
1749 if (!match) {
1750 mutex_exit(p->p_lock);
1751 continue;
1752 }
1753
1754 /*
1755 * Grab a hold on the process.
1756 */
1757 if (mmmbrains) {
1758 zombie = true;
1759 } else {
1760 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1761 }
1762 if (zombie) {
1763 LIST_INSERT_AFTER(p, marker, p_list);
1764 }
1765
1766 if (buflen >= elem_size &&
1767 (type == KERN_PROC || elem_count > 0)) {
1768 if (type == KERN_PROC) {
1769 kbuf->kproc.kp_proc = *p;
1770 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1771 } else {
1772 fill_kproc2(p, &kbuf->kproc2, zombie);
1773 elem_count--;
1774 }
1775 mutex_exit(p->p_lock);
1776 mutex_exit(proc_lock);
1777 /*
1778 * Copy out elem_size, but not larger than kelem_size
1779 */
1780 error = sysctl_copyout(l, kbuf, dp,
1781 min(kelem_size, elem_size));
1782 mutex_enter(proc_lock);
1783 if (error) {
1784 goto bah;
1785 }
1786 dp += elem_size;
1787 buflen -= elem_size;
1788 } else {
1789 mutex_exit(p->p_lock);
1790 }
1791 needed += elem_size;
1792
1793 /*
1794 * Release reference to process.
1795 */
1796 if (zombie) {
1797 next = LIST_NEXT(marker, p_list);
1798 LIST_REMOVE(marker, p_list);
1799 } else {
1800 rw_exit(&p->p_reflock);
1801 next = LIST_NEXT(p, p_list);
1802 }
1803 }
1804 mutex_exit(proc_lock);
1805
1806 if (where != NULL) {
1807 *oldlenp = dp - where;
1808 if (needed > *oldlenp) {
1809 error = ENOMEM;
1810 goto out;
1811 }
1812 } else {
1813 needed += KERN_PROCSLOP;
1814 *oldlenp = needed;
1815 }
1816 if (kbuf)
1817 kmem_free(kbuf, sizeof(*kbuf));
1818 if (marker)
1819 kmem_free(marker, sizeof(*marker));
1820 sysctl_relock();
1821 return 0;
1822 bah:
1823 if (zombie)
1824 LIST_REMOVE(marker, p_list);
1825 else
1826 rw_exit(&p->p_reflock);
1827 cleanup:
1828 mutex_exit(proc_lock);
1829 out:
1830 if (kbuf)
1831 kmem_free(kbuf, sizeof(*kbuf));
1832 if (marker)
1833 kmem_free(marker, sizeof(*marker));
1834 sysctl_relock();
1835 return error;
1836 }
1837
1838 int
1839 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1840 {
1841
1842 #ifdef COMPAT_NETBSD32
1843 if (p->p_flag & PK_32) {
1844 struct ps_strings32 arginfo32;
1845
1846 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1847 sizeof(arginfo32));
1848 if (error)
1849 return error;
1850 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1851 arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1852 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1853 arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1854 return 0;
1855 }
1856 #endif
1857 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1858 }
1859
1860 static int
1861 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1862 {
1863 void **cookie = cookie_;
1864 struct lwp *l = cookie[0];
1865 char *dst = cookie[1];
1866
1867 return sysctl_copyout(l, src, dst + off, len);
1868 }
1869
1870 /*
1871 * sysctl helper routine for kern.proc_args pseudo-subtree.
1872 */
1873 static int
1874 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1875 {
1876 struct ps_strings pss;
1877 struct proc *p;
1878 pid_t pid;
1879 int type, error;
1880 void *cookie[2];
1881
1882 if (namelen == 1 && name[0] == CTL_QUERY)
1883 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1884
1885 if (newp != NULL || namelen != 2)
1886 return (EINVAL);
1887 pid = name[0];
1888 type = name[1];
1889
1890 switch (type) {
1891 case KERN_PROC_ARGV:
1892 case KERN_PROC_NARGV:
1893 case KERN_PROC_ENV:
1894 case KERN_PROC_NENV:
1895 /* ok */
1896 break;
1897 default:
1898 return (EINVAL);
1899 }
1900
1901 sysctl_unlock();
1902
1903 /* check pid */
1904 mutex_enter(proc_lock);
1905 if ((p = proc_find(pid)) == NULL) {
1906 error = EINVAL;
1907 goto out_locked;
1908 }
1909 mutex_enter(p->p_lock);
1910
1911 /* Check permission. */
1912 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1913 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1914 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1915 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1916 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1917 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1918 else
1919 error = EINVAL; /* XXXGCC */
1920 if (error) {
1921 mutex_exit(p->p_lock);
1922 goto out_locked;
1923 }
1924
1925 if (oldp == NULL) {
1926 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1927 *oldlenp = sizeof (int);
1928 else
1929 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1930 error = 0;
1931 mutex_exit(p->p_lock);
1932 goto out_locked;
1933 }
1934
1935 /*
1936 * Zombies don't have a stack, so we can't read their psstrings.
1937 * System processes also don't have a user stack.
1938 */
1939 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1940 error = EINVAL;
1941 mutex_exit(p->p_lock);
1942 goto out_locked;
1943 }
1944
1945 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1946 mutex_exit(p->p_lock);
1947 if (error) {
1948 goto out_locked;
1949 }
1950 mutex_exit(proc_lock);
1951
1952 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1953 int value;
1954 if ((error = copyin_psstrings(p, &pss)) == 0) {
1955 if (type == KERN_PROC_NARGV)
1956 value = pss.ps_nargvstr;
1957 else
1958 value = pss.ps_nenvstr;
1959 error = sysctl_copyout(l, &value, oldp, sizeof(value));
1960 *oldlenp = sizeof(value);
1961 }
1962 } else {
1963 cookie[0] = l;
1964 cookie[1] = oldp;
1965 error = copy_procargs(p, type, oldlenp,
1966 copy_procargs_sysctl_cb, cookie);
1967 }
1968 rw_exit(&p->p_reflock);
1969 sysctl_relock();
1970 return error;
1971
1972 out_locked:
1973 mutex_exit(proc_lock);
1974 sysctl_relock();
1975 return error;
1976 }
1977
1978 int
1979 copy_procargs(struct proc *p, int oid, size_t *limit,
1980 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
1981 {
1982 struct ps_strings pss;
1983 size_t len, i, loaded, entry_len;
1984 struct uio auio;
1985 struct iovec aiov;
1986 int error, argvlen;
1987 char *arg;
1988 char **argv;
1989 vaddr_t user_argv;
1990 struct vmspace *vmspace;
1991
1992 /*
1993 * Allocate a temporary buffer to hold the argument vector and
1994 * the arguments themselve.
1995 */
1996 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
1997 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
1998
1999 /*
2000 * Lock the process down in memory.
2001 */
2002 vmspace = p->p_vmspace;
2003 uvmspace_addref(vmspace);
2004
2005 /*
2006 * Read in the ps_strings structure.
2007 */
2008 if ((error = copyin_psstrings(p, &pss)) != 0)
2009 goto done;
2010
2011 /*
2012 * Now read the address of the argument vector.
2013 */
2014 switch (oid) {
2015 case KERN_PROC_ARGV:
2016 user_argv = (uintptr_t)pss.ps_argvstr;
2017 argvlen = pss.ps_nargvstr;
2018 break;
2019 case KERN_PROC_ENV:
2020 user_argv = (uintptr_t)pss.ps_envstr;
2021 argvlen = pss.ps_nenvstr;
2022 break;
2023 default:
2024 error = EINVAL;
2025 goto done;
2026 }
2027
2028 if (argvlen < 0) {
2029 error = EIO;
2030 goto done;
2031 }
2032
2033 #ifdef COMPAT_NETBSD32
2034 if (p->p_flag & PK_32)
2035 entry_len = sizeof(netbsd32_charp);
2036 else
2037 #endif
2038 entry_len = sizeof(char *);
2039
2040 /*
2041 * Now copy each string.
2042 */
2043 len = 0; /* bytes written to user buffer */
2044 loaded = 0; /* bytes from argv already processed */
2045 i = 0; /* To make compiler happy */
2046
2047 for (; argvlen; --argvlen) {
2048 int finished = 0;
2049 vaddr_t base;
2050 size_t xlen;
2051 int j;
2052
2053 if (loaded == 0) {
2054 size_t rem = entry_len * argvlen;
2055 loaded = MIN(rem, PAGE_SIZE);
2056 error = copyin_vmspace(vmspace,
2057 (const void *)user_argv, argv, loaded);
2058 if (error)
2059 break;
2060 user_argv += loaded;
2061 i = 0;
2062 }
2063
2064 #ifdef COMPAT_NETBSD32
2065 if (p->p_flag & PK_32) {
2066 netbsd32_charp *argv32;
2067
2068 argv32 = (netbsd32_charp *)argv;
2069 base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2070 } else
2071 #endif
2072 base = (vaddr_t)argv[i++];
2073 loaded -= entry_len;
2074
2075 /*
2076 * The program has messed around with its arguments,
2077 * possibly deleting some, and replacing them with
2078 * NULL's. Treat this as the last argument and not
2079 * a failure.
2080 */
2081 if (base == 0)
2082 break;
2083
2084 while (!finished) {
2085 xlen = PAGE_SIZE - (base & PAGE_MASK);
2086
2087 aiov.iov_base = arg;
2088 aiov.iov_len = PAGE_SIZE;
2089 auio.uio_iov = &aiov;
2090 auio.uio_iovcnt = 1;
2091 auio.uio_offset = base;
2092 auio.uio_resid = xlen;
2093 auio.uio_rw = UIO_READ;
2094 UIO_SETUP_SYSSPACE(&auio);
2095 error = uvm_io(&vmspace->vm_map, &auio);
2096 if (error)
2097 goto done;
2098
2099 /* Look for the end of the string */
2100 for (j = 0; j < xlen; j++) {
2101 if (arg[j] == '\0') {
2102 xlen = j + 1;
2103 finished = 1;
2104 break;
2105 }
2106 }
2107
2108 /* Check for user buffer overflow */
2109 if (len + xlen > *limit) {
2110 finished = 1;
2111 if (len > *limit)
2112 xlen = 0;
2113 else
2114 xlen = *limit - len;
2115 }
2116
2117 /* Copyout the page */
2118 error = (*cb)(cookie, arg, len, xlen);
2119 if (error)
2120 goto done;
2121
2122 len += xlen;
2123 base += xlen;
2124 }
2125 }
2126 *limit = len;
2127
2128 done:
2129 kmem_free(argv, PAGE_SIZE);
2130 kmem_free(arg, PAGE_SIZE);
2131 uvmspace_free(vmspace);
2132 return error;
2133 }
2134
2135 /*
2136 * Fill in an eproc structure for the specified process.
2137 */
2138 void
2139 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2140 {
2141 struct tty *tp;
2142 struct lwp *l;
2143
2144 KASSERT(mutex_owned(proc_lock));
2145 KASSERT(mutex_owned(p->p_lock));
2146
2147 memset(ep, 0, sizeof(*ep));
2148
2149 ep->e_paddr = p;
2150 ep->e_sess = p->p_session;
2151 if (p->p_cred) {
2152 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2153 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2154 }
2155 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2156 struct vmspace *vm = p->p_vmspace;
2157
2158 ep->e_vm.vm_rssize = vm_resident_count(vm);
2159 ep->e_vm.vm_tsize = vm->vm_tsize;
2160 ep->e_vm.vm_dsize = vm->vm_dsize;
2161 ep->e_vm.vm_ssize = vm->vm_ssize;
2162 ep->e_vm.vm_map.size = vm->vm_map.size;
2163
2164 /* Pick the primary (first) LWP */
2165 l = proc_active_lwp(p);
2166 KASSERT(l != NULL);
2167 lwp_lock(l);
2168 if (l->l_wchan)
2169 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2170 lwp_unlock(l);
2171 }
2172 if (p->p_pptr)
2173 ep->e_ppid = p->p_pptr->p_pid;
2174 if (p->p_pgrp && p->p_session) {
2175 ep->e_pgid = p->p_pgrp->pg_id;
2176 ep->e_jobc = p->p_pgrp->pg_jobc;
2177 ep->e_sid = p->p_session->s_sid;
2178 if ((p->p_lflag & PL_CONTROLT) &&
2179 (tp = ep->e_sess->s_ttyp)) {
2180 ep->e_tdev = tp->t_dev;
2181 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2182 ep->e_tsess = tp->t_session;
2183 } else
2184 ep->e_tdev = (uint32_t)NODEV;
2185 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2186 if (SESS_LEADER(p))
2187 ep->e_flag |= EPROC_SLEADER;
2188 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2189 }
2190 ep->e_xsize = ep->e_xrssize = 0;
2191 ep->e_xccount = ep->e_xswrss = 0;
2192 }
2193
2194 /*
2195 * Fill in a kinfo_proc2 structure for the specified process.
2196 */
2197 static void
2198 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2199 {
2200 struct tty *tp;
2201 struct lwp *l, *l2;
2202 struct timeval ut, st, rt;
2203 sigset_t ss1, ss2;
2204 struct rusage ru;
2205 struct vmspace *vm;
2206
2207 KASSERT(mutex_owned(proc_lock));
2208 KASSERT(mutex_owned(p->p_lock));
2209
2210 sigemptyset(&ss1);
2211 sigemptyset(&ss2);
2212 memset(ki, 0, sizeof(*ki));
2213
2214 ki->p_paddr = PTRTOUINT64(p);
2215 ki->p_fd = PTRTOUINT64(p->p_fd);
2216 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2217 ki->p_stats = PTRTOUINT64(p->p_stats);
2218 ki->p_limit = PTRTOUINT64(p->p_limit);
2219 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2220 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2221 ki->p_sess = PTRTOUINT64(p->p_session);
2222 ki->p_tsess = 0; /* may be changed if controlling tty below */
2223 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2224 ki->p_eflag = 0;
2225 ki->p_exitsig = p->p_exitsig;
2226 ki->p_flag = L_INMEM; /* Process never swapped out */
2227 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2228 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2229 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2230 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2231 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2232 ki->p_pid = p->p_pid;
2233 if (p->p_pptr)
2234 ki->p_ppid = p->p_pptr->p_pid;
2235 else
2236 ki->p_ppid = 0;
2237 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2238 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2239 ki->p_gid = kauth_cred_getegid(p->p_cred);
2240 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2241 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2242 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2243 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2244 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2245 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2246 UIO_SYSSPACE);
2247
2248 ki->p_uticks = p->p_uticks;
2249 ki->p_sticks = p->p_sticks;
2250 ki->p_iticks = p->p_iticks;
2251 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2252 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2253 ki->p_traceflag = p->p_traceflag;
2254
2255 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2256 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2257
2258 ki->p_cpticks = 0;
2259 ki->p_pctcpu = p->p_pctcpu;
2260 ki->p_estcpu = 0;
2261 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2262 ki->p_realstat = p->p_stat;
2263 ki->p_nice = p->p_nice;
2264 ki->p_xstat = p->p_xstat;
2265 ki->p_acflag = p->p_acflag;
2266
2267 strncpy(ki->p_comm, p->p_comm,
2268 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2269 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2270
2271 ki->p_nlwps = p->p_nlwps;
2272 ki->p_realflag = ki->p_flag;
2273
2274 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2275 vm = p->p_vmspace;
2276 ki->p_vm_rssize = vm_resident_count(vm);
2277 ki->p_vm_tsize = vm->vm_tsize;
2278 ki->p_vm_dsize = vm->vm_dsize;
2279 ki->p_vm_ssize = vm->vm_ssize;
2280 ki->p_vm_vsize = vm->vm_map.size;
2281 /*
2282 * Since the stack is initially mapped mostly with
2283 * PROT_NONE and grown as needed, adjust the "mapped size"
2284 * to skip the unused stack portion.
2285 */
2286 ki->p_vm_msize =
2287 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2288
2289 /* Pick the primary (first) LWP */
2290 l = proc_active_lwp(p);
2291 KASSERT(l != NULL);
2292 lwp_lock(l);
2293 ki->p_nrlwps = p->p_nrlwps;
2294 ki->p_forw = 0;
2295 ki->p_back = 0;
2296 ki->p_addr = PTRTOUINT64(l->l_addr);
2297 ki->p_stat = l->l_stat;
2298 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2299 ki->p_swtime = l->l_swtime;
2300 ki->p_slptime = l->l_slptime;
2301 if (l->l_stat == LSONPROC)
2302 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2303 else
2304 ki->p_schedflags = 0;
2305 ki->p_priority = lwp_eprio(l);
2306 ki->p_usrpri = l->l_priority;
2307 if (l->l_wchan)
2308 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2309 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2310 ki->p_cpuid = cpu_index(l->l_cpu);
2311 lwp_unlock(l);
2312 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2313 /* This is hardly correct, but... */
2314 sigplusset(&l->l_sigpend.sp_set, &ss1);
2315 sigplusset(&l->l_sigmask, &ss2);
2316 ki->p_cpticks += l->l_cpticks;
2317 ki->p_pctcpu += l->l_pctcpu;
2318 ki->p_estcpu += l->l_estcpu;
2319 }
2320 }
2321 sigplusset(&p->p_sigpend.sp_set, &ss2);
2322 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2323 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2324
2325 if (p->p_session != NULL) {
2326 ki->p_sid = p->p_session->s_sid;
2327 ki->p__pgid = p->p_pgrp->pg_id;
2328 if (p->p_session->s_ttyvp)
2329 ki->p_eflag |= EPROC_CTTY;
2330 if (SESS_LEADER(p))
2331 ki->p_eflag |= EPROC_SLEADER;
2332 strncpy(ki->p_login, p->p_session->s_login,
2333 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2334 ki->p_jobc = p->p_pgrp->pg_jobc;
2335 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2336 ki->p_tdev = tp->t_dev;
2337 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2338 ki->p_tsess = PTRTOUINT64(tp->t_session);
2339 } else {
2340 ki->p_tdev = (int32_t)NODEV;
2341 }
2342 }
2343
2344 if (!P_ZOMBIE(p) && !zombie) {
2345 ki->p_uvalid = 1;
2346 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2347 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2348
2349 calcru(p, &ut, &st, NULL, &rt);
2350 ki->p_rtime_sec = rt.tv_sec;
2351 ki->p_rtime_usec = rt.tv_usec;
2352 ki->p_uutime_sec = ut.tv_sec;
2353 ki->p_uutime_usec = ut.tv_usec;
2354 ki->p_ustime_sec = st.tv_sec;
2355 ki->p_ustime_usec = st.tv_usec;
2356
2357 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2358 ki->p_uru_nvcsw = 0;
2359 ki->p_uru_nivcsw = 0;
2360 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2361 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2362 ki->p_uru_nivcsw += l2->l_nivcsw;
2363 ruadd(&ru, &l2->l_ru);
2364 }
2365 ki->p_uru_maxrss = ru.ru_maxrss;
2366 ki->p_uru_ixrss = ru.ru_ixrss;
2367 ki->p_uru_idrss = ru.ru_idrss;
2368 ki->p_uru_isrss = ru.ru_isrss;
2369 ki->p_uru_minflt = ru.ru_minflt;
2370 ki->p_uru_majflt = ru.ru_majflt;
2371 ki->p_uru_nswap = ru.ru_nswap;
2372 ki->p_uru_inblock = ru.ru_inblock;
2373 ki->p_uru_oublock = ru.ru_oublock;
2374 ki->p_uru_msgsnd = ru.ru_msgsnd;
2375 ki->p_uru_msgrcv = ru.ru_msgrcv;
2376 ki->p_uru_nsignals = ru.ru_nsignals;
2377
2378 timeradd(&p->p_stats->p_cru.ru_utime,
2379 &p->p_stats->p_cru.ru_stime, &ut);
2380 ki->p_uctime_sec = ut.tv_sec;
2381 ki->p_uctime_usec = ut.tv_usec;
2382 }
2383 }
2384