kern_proc.c revision 1.180.8.3 1 /* $NetBSD: kern_proc.c,v 1.180.8.3 2012/04/29 23:05:04 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.180.8.3 2012/04/29 23:05:04 mrg Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/resourcevar.h>
79 #include <sys/buf.h>
80 #include <sys/acct.h>
81 #include <sys/wait.h>
82 #include <sys/file.h>
83 #include <ufs/ufs/quota.h>
84 #include <sys/uio.h>
85 #include <sys/pool.h>
86 #include <sys/pset.h>
87 #include <sys/mbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/signalvar.h>
91 #include <sys/ras.h>
92 #include <sys/filedesc.h>
93 #include "sys/syscall_stats.h"
94 #include <sys/kauth.h>
95 #include <sys/sleepq.h>
96 #include <sys/atomic.h>
97 #include <sys/kmem.h>
98 #include <sys/dtrace_bsd.h>
99 #include <sys/sysctl.h>
100 #include <sys/exec.h>
101 #include <sys/cpu.h>
102
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_extern.h>
105
106 #ifdef COMPAT_NETBSD32
107 #include <compat/netbsd32/netbsd32.h>
108 #endif
109
110 /*
111 * Process lists.
112 */
113
114 struct proclist allproc __cacheline_aligned;
115 struct proclist zombproc __cacheline_aligned;
116
117 kmutex_t * proc_lock __cacheline_aligned;
118
119 /*
120 * pid to proc lookup is done by indexing the pid_table array.
121 * Since pid numbers are only allocated when an empty slot
122 * has been found, there is no need to search any lists ever.
123 * (an orphaned pgrp will lock the slot, a session will lock
124 * the pgrp with the same number.)
125 * If the table is too small it is reallocated with twice the
126 * previous size and the entries 'unzipped' into the two halves.
127 * A linked list of free entries is passed through the pt_proc
128 * field of 'free' items - set odd to be an invalid ptr.
129 */
130
131 struct pid_table {
132 struct proc *pt_proc;
133 struct pgrp *pt_pgrp;
134 pid_t pt_pid;
135 };
136 #if 1 /* strongly typed cast - should be a noop */
137 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
138 #else
139 #define p2u(p) ((uint)p)
140 #endif
141 #define P_VALID(p) (!(p2u(p) & 1))
142 #define P_NEXT(p) (p2u(p) >> 1)
143 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
144
145 /*
146 * Table of process IDs (PIDs).
147 */
148 static struct pid_table *pid_table __read_mostly;
149
150 #define INITIAL_PID_TABLE_SIZE (1 << 5)
151
152 /* Table mask, threshold for growing and number of allocated PIDs. */
153 static u_int pid_tbl_mask __read_mostly;
154 static u_int pid_alloc_lim __read_mostly;
155 static u_int pid_alloc_cnt __cacheline_aligned;
156
157 /* Next free, last free and maximum PIDs. */
158 static u_int next_free_pt __cacheline_aligned;
159 static u_int last_free_pt __cacheline_aligned;
160 static pid_t pid_max __read_mostly;
161
162 /* Components of the first process -- never freed. */
163
164 extern struct emul emul_netbsd; /* defined in kern_exec.c */
165
166 struct session session0 = {
167 .s_count = 1,
168 .s_sid = 0,
169 };
170 struct pgrp pgrp0 = {
171 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
172 .pg_session = &session0,
173 };
174 filedesc_t filedesc0;
175 struct cwdinfo cwdi0 = {
176 .cwdi_cmask = CMASK, /* see cmask below */
177 .cwdi_refcnt = 1,
178 };
179 struct plimit limit0;
180 struct pstats pstat0;
181 struct vmspace vmspace0;
182 struct sigacts sigacts0;
183 struct proc proc0 = {
184 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
185 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
186 .p_nlwps = 1,
187 .p_nrlwps = 1,
188 .p_nlwpid = 1, /* must match lwp0.l_lid */
189 .p_pgrp = &pgrp0,
190 .p_comm = "system",
191 /*
192 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
193 * when they exit. init(8) can easily wait them out for us.
194 */
195 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
196 .p_stat = SACTIVE,
197 .p_nice = NZERO,
198 .p_emul = &emul_netbsd,
199 .p_cwdi = &cwdi0,
200 .p_limit = &limit0,
201 .p_fd = &filedesc0,
202 .p_vmspace = &vmspace0,
203 .p_stats = &pstat0,
204 .p_sigacts = &sigacts0,
205 };
206 kauth_cred_t cred0;
207
208 static const int nofile = NOFILE;
209 static const int maxuprc = MAXUPRC;
210 static const int cmask = CMASK;
211
212 static int sysctl_doeproc(SYSCTLFN_PROTO);
213 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
214 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
215
216 /*
217 * The process list descriptors, used during pid allocation and
218 * by sysctl. No locking on this data structure is needed since
219 * it is completely static.
220 */
221 const struct proclist_desc proclists[] = {
222 { &allproc },
223 { &zombproc },
224 { NULL },
225 };
226
227 static struct pgrp * pg_remove(pid_t);
228 static void pg_delete(pid_t);
229 static void orphanpg(struct pgrp *);
230
231 static specificdata_domain_t proc_specificdata_domain;
232
233 static pool_cache_t proc_cache;
234
235 static kauth_listener_t proc_listener;
236
237 static int
238 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
239 void *arg0, void *arg1, void *arg2, void *arg3)
240 {
241 struct proc *p;
242 int result;
243
244 result = KAUTH_RESULT_DEFER;
245 p = arg0;
246
247 switch (action) {
248 case KAUTH_PROCESS_CANSEE: {
249 enum kauth_process_req req;
250
251 req = (enum kauth_process_req)arg1;
252
253 switch (req) {
254 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
255 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
256 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
257 result = KAUTH_RESULT_ALLOW;
258
259 break;
260
261 case KAUTH_REQ_PROCESS_CANSEE_ENV:
262 if (kauth_cred_getuid(cred) !=
263 kauth_cred_getuid(p->p_cred) ||
264 kauth_cred_getuid(cred) !=
265 kauth_cred_getsvuid(p->p_cred))
266 break;
267
268 result = KAUTH_RESULT_ALLOW;
269
270 break;
271
272 default:
273 break;
274 }
275
276 break;
277 }
278
279 case KAUTH_PROCESS_FORK: {
280 int lnprocs = (int)(unsigned long)arg2;
281
282 /*
283 * Don't allow a nonprivileged user to use the last few
284 * processes. The variable lnprocs is the current number of
285 * processes, maxproc is the limit.
286 */
287 if (__predict_false((lnprocs >= maxproc - 5)))
288 break;
289
290 result = KAUTH_RESULT_ALLOW;
291
292 break;
293 }
294
295 case KAUTH_PROCESS_CORENAME:
296 case KAUTH_PROCESS_STOPFLAG:
297 if (proc_uidmatch(cred, p->p_cred) == 0)
298 result = KAUTH_RESULT_ALLOW;
299
300 break;
301
302 default:
303 break;
304 }
305
306 return result;
307 }
308
309 /*
310 * Initialize global process hashing structures.
311 */
312 void
313 procinit(void)
314 {
315 const struct proclist_desc *pd;
316 u_int i;
317 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
318
319 for (pd = proclists; pd->pd_list != NULL; pd++)
320 LIST_INIT(pd->pd_list);
321
322 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
323 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
324 * sizeof(struct pid_table), KM_SLEEP);
325 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
326 pid_max = PID_MAX;
327
328 /* Set free list running through table...
329 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
330 for (i = 0; i <= pid_tbl_mask; i++) {
331 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
332 pid_table[i].pt_pgrp = 0;
333 pid_table[i].pt_pid = 0;
334 }
335 /* slot 0 is just grabbed */
336 next_free_pt = 1;
337 /* Need to fix last entry. */
338 last_free_pt = pid_tbl_mask;
339 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
340 /* point at which we grow table - to avoid reusing pids too often */
341 pid_alloc_lim = pid_tbl_mask - 1;
342 #undef LINK_EMPTY
343
344 proc_specificdata_domain = specificdata_domain_create();
345 KASSERT(proc_specificdata_domain != NULL);
346
347 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
348 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
349
350 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
351 proc_listener_cb, NULL);
352 }
353
354 void
355 procinit_sysctl(void)
356 {
357 static struct sysctllog *clog;
358
359 sysctl_createv(&clog, 0, NULL, NULL,
360 CTLFLAG_PERMANENT,
361 CTLTYPE_NODE, "kern", NULL,
362 NULL, 0, NULL, 0,
363 CTL_KERN, CTL_EOL);
364
365 sysctl_createv(&clog, 0, NULL, NULL,
366 CTLFLAG_PERMANENT,
367 CTLTYPE_NODE, "proc",
368 SYSCTL_DESCR("System-wide process information"),
369 sysctl_doeproc, 0, NULL, 0,
370 CTL_KERN, KERN_PROC, CTL_EOL);
371 sysctl_createv(&clog, 0, NULL, NULL,
372 CTLFLAG_PERMANENT,
373 CTLTYPE_NODE, "proc2",
374 SYSCTL_DESCR("Machine-independent process information"),
375 sysctl_doeproc, 0, NULL, 0,
376 CTL_KERN, KERN_PROC2, CTL_EOL);
377 sysctl_createv(&clog, 0, NULL, NULL,
378 CTLFLAG_PERMANENT,
379 CTLTYPE_NODE, "proc_args",
380 SYSCTL_DESCR("Process argument information"),
381 sysctl_kern_proc_args, 0, NULL, 0,
382 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
383
384 /*
385 "nodes" under these:
386
387 KERN_PROC_ALL
388 KERN_PROC_PID pid
389 KERN_PROC_PGRP pgrp
390 KERN_PROC_SESSION sess
391 KERN_PROC_TTY tty
392 KERN_PROC_UID uid
393 KERN_PROC_RUID uid
394 KERN_PROC_GID gid
395 KERN_PROC_RGID gid
396
397 all in all, probably not worth the effort...
398 */
399 }
400
401 /*
402 * Initialize process 0.
403 */
404 void
405 proc0_init(void)
406 {
407 struct proc *p;
408 struct pgrp *pg;
409 struct rlimit *rlim;
410 rlim_t lim;
411 int i;
412
413 p = &proc0;
414 pg = &pgrp0;
415
416 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
417 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
418 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
419
420 rw_init(&p->p_reflock);
421 cv_init(&p->p_waitcv, "wait");
422 cv_init(&p->p_lwpcv, "lwpwait");
423
424 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
425
426 pid_table[0].pt_proc = p;
427 LIST_INSERT_HEAD(&allproc, p, p_list);
428
429 pid_table[0].pt_pgrp = pg;
430 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
431
432 #ifdef __HAVE_SYSCALL_INTERN
433 (*p->p_emul->e_syscall_intern)(p);
434 #endif
435
436 /* Create credentials. */
437 cred0 = kauth_cred_alloc();
438 p->p_cred = cred0;
439
440 /* Create the CWD info. */
441 rw_init(&cwdi0.cwdi_lock);
442
443 /* Create the limits structures. */
444 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
445
446 rlim = limit0.pl_rlimit;
447 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
448 rlim[i].rlim_cur = RLIM_INFINITY;
449 rlim[i].rlim_max = RLIM_INFINITY;
450 }
451
452 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
453 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
454
455 rlim[RLIMIT_NPROC].rlim_max = maxproc;
456 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
457
458 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
459 rlim[RLIMIT_RSS].rlim_max = lim;
460 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
461 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
462
463 /* Note that default core name has zero length. */
464 limit0.pl_corename = defcorename;
465 limit0.pl_cnlen = 0;
466 limit0.pl_refcnt = 1;
467 limit0.pl_writeable = false;
468 limit0.pl_sv_limit = NULL;
469
470 /* Configure virtual memory system, set vm rlimits. */
471 uvm_init_limits(p);
472
473 /* Initialize file descriptor table for proc0. */
474 fd_init(&filedesc0);
475
476 /*
477 * Initialize proc0's vmspace, which uses the kernel pmap.
478 * All kernel processes (which never have user space mappings)
479 * share proc0's vmspace, and thus, the kernel pmap.
480 */
481 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
482 trunc_page(VM_MAX_ADDRESS));
483
484 /* Initialize signal state for proc0. XXX IPL_SCHED */
485 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
486 siginit(p);
487
488 proc_initspecific(p);
489 kdtrace_proc_ctor(NULL, p);
490 }
491
492 /*
493 * Session reference counting.
494 */
495
496 void
497 proc_sesshold(struct session *ss)
498 {
499
500 KASSERT(mutex_owned(proc_lock));
501 ss->s_count++;
502 }
503
504 void
505 proc_sessrele(struct session *ss)
506 {
507
508 KASSERT(mutex_owned(proc_lock));
509 /*
510 * We keep the pgrp with the same id as the session in order to
511 * stop a process being given the same pid. Since the pgrp holds
512 * a reference to the session, it must be a 'zombie' pgrp by now.
513 */
514 if (--ss->s_count == 0) {
515 struct pgrp *pg;
516
517 pg = pg_remove(ss->s_sid);
518 mutex_exit(proc_lock);
519
520 kmem_free(pg, sizeof(struct pgrp));
521 kmem_free(ss, sizeof(struct session));
522 } else {
523 mutex_exit(proc_lock);
524 }
525 }
526
527 /*
528 * Check that the specified process group is in the session of the
529 * specified process.
530 * Treats -ve ids as process ids.
531 * Used to validate TIOCSPGRP requests.
532 */
533 int
534 pgid_in_session(struct proc *p, pid_t pg_id)
535 {
536 struct pgrp *pgrp;
537 struct session *session;
538 int error;
539
540 mutex_enter(proc_lock);
541 if (pg_id < 0) {
542 struct proc *p1 = proc_find(-pg_id);
543 if (p1 == NULL) {
544 error = EINVAL;
545 goto fail;
546 }
547 pgrp = p1->p_pgrp;
548 } else {
549 pgrp = pgrp_find(pg_id);
550 if (pgrp == NULL) {
551 error = EINVAL;
552 goto fail;
553 }
554 }
555 session = pgrp->pg_session;
556 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
557 fail:
558 mutex_exit(proc_lock);
559 return error;
560 }
561
562 /*
563 * p_inferior: is p an inferior of q?
564 */
565 static inline bool
566 p_inferior(struct proc *p, struct proc *q)
567 {
568
569 KASSERT(mutex_owned(proc_lock));
570
571 for (; p != q; p = p->p_pptr)
572 if (p->p_pid == 0)
573 return false;
574 return true;
575 }
576
577 /*
578 * proc_find: locate a process by the ID.
579 *
580 * => Must be called with proc_lock held.
581 */
582 proc_t *
583 proc_find_raw(pid_t pid)
584 {
585 struct pid_table *pt;
586 proc_t *p;
587
588 KASSERT(mutex_owned(proc_lock));
589 pt = &pid_table[pid & pid_tbl_mask];
590 p = pt->pt_proc;
591 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
592 return NULL;
593 }
594 return p;
595 }
596
597 proc_t *
598 proc_find(pid_t pid)
599 {
600 proc_t *p;
601
602 p = proc_find_raw(pid);
603 if (__predict_false(p == NULL)) {
604 return NULL;
605 }
606
607 /*
608 * Only allow live processes to be found by PID.
609 * XXX: p_stat might change, since unlocked.
610 */
611 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
612 return p;
613 }
614 return NULL;
615 }
616
617 /*
618 * pgrp_find: locate a process group by the ID.
619 *
620 * => Must be called with proc_lock held.
621 */
622 struct pgrp *
623 pgrp_find(pid_t pgid)
624 {
625 struct pgrp *pg;
626
627 KASSERT(mutex_owned(proc_lock));
628
629 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
630
631 /*
632 * Cannot look up a process group that only exists because the
633 * session has not died yet (traditional).
634 */
635 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
636 return NULL;
637 }
638 return pg;
639 }
640
641 static void
642 expand_pid_table(void)
643 {
644 size_t pt_size, tsz;
645 struct pid_table *n_pt, *new_pt;
646 struct proc *proc;
647 struct pgrp *pgrp;
648 pid_t pid, rpid;
649 u_int i;
650 uint new_pt_mask;
651
652 pt_size = pid_tbl_mask + 1;
653 tsz = pt_size * 2 * sizeof(struct pid_table);
654 new_pt = kmem_alloc(tsz, KM_SLEEP);
655 new_pt_mask = pt_size * 2 - 1;
656
657 mutex_enter(proc_lock);
658 if (pt_size != pid_tbl_mask + 1) {
659 /* Another process beat us to it... */
660 mutex_exit(proc_lock);
661 kmem_free(new_pt, tsz);
662 return;
663 }
664
665 /*
666 * Copy entries from old table into new one.
667 * If 'pid' is 'odd' we need to place in the upper half,
668 * even pid's to the lower half.
669 * Free items stay in the low half so we don't have to
670 * fixup the reference to them.
671 * We stuff free items on the front of the freelist
672 * because we can't write to unmodified entries.
673 * Processing the table backwards maintains a semblance
674 * of issuing pid numbers that increase with time.
675 */
676 i = pt_size - 1;
677 n_pt = new_pt + i;
678 for (; ; i--, n_pt--) {
679 proc = pid_table[i].pt_proc;
680 pgrp = pid_table[i].pt_pgrp;
681 if (!P_VALID(proc)) {
682 /* Up 'use count' so that link is valid */
683 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
684 rpid = 0;
685 proc = P_FREE(pid);
686 if (pgrp)
687 pid = pgrp->pg_id;
688 } else {
689 pid = pid_table[i].pt_pid;
690 rpid = pid;
691 }
692
693 /* Save entry in appropriate half of table */
694 n_pt[pid & pt_size].pt_proc = proc;
695 n_pt[pid & pt_size].pt_pgrp = pgrp;
696 n_pt[pid & pt_size].pt_pid = rpid;
697
698 /* Put other piece on start of free list */
699 pid = (pid ^ pt_size) & ~pid_tbl_mask;
700 n_pt[pid & pt_size].pt_proc =
701 P_FREE((pid & ~pt_size) | next_free_pt);
702 n_pt[pid & pt_size].pt_pgrp = 0;
703 n_pt[pid & pt_size].pt_pid = 0;
704
705 next_free_pt = i | (pid & pt_size);
706 if (i == 0)
707 break;
708 }
709
710 /* Save old table size and switch tables */
711 tsz = pt_size * sizeof(struct pid_table);
712 n_pt = pid_table;
713 pid_table = new_pt;
714 pid_tbl_mask = new_pt_mask;
715
716 /*
717 * pid_max starts as PID_MAX (= 30000), once we have 16384
718 * allocated pids we need it to be larger!
719 */
720 if (pid_tbl_mask > PID_MAX) {
721 pid_max = pid_tbl_mask * 2 + 1;
722 pid_alloc_lim |= pid_alloc_lim << 1;
723 } else
724 pid_alloc_lim <<= 1; /* doubles number of free slots... */
725
726 mutex_exit(proc_lock);
727 kmem_free(n_pt, tsz);
728 }
729
730 struct proc *
731 proc_alloc(void)
732 {
733 struct proc *p;
734
735 p = pool_cache_get(proc_cache, PR_WAITOK);
736 p->p_stat = SIDL; /* protect against others */
737 proc_initspecific(p);
738 kdtrace_proc_ctor(NULL, p);
739 p->p_pid = -1;
740 proc_alloc_pid(p);
741 return p;
742 }
743
744 /*
745 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
746 * proc_find_raw() can find it by the PID.
747 */
748
749 pid_t
750 proc_alloc_pid(struct proc *p)
751 {
752 struct pid_table *pt;
753 pid_t pid;
754 int nxt;
755
756 for (;;expand_pid_table()) {
757 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
758 /* ensure pids cycle through 2000+ values */
759 continue;
760 mutex_enter(proc_lock);
761 pt = &pid_table[next_free_pt];
762 #ifdef DIAGNOSTIC
763 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
764 panic("proc_alloc: slot busy");
765 #endif
766 nxt = P_NEXT(pt->pt_proc);
767 if (nxt & pid_tbl_mask)
768 break;
769 /* Table full - expand (NB last entry not used....) */
770 mutex_exit(proc_lock);
771 }
772
773 /* pid is 'saved use count' + 'size' + entry */
774 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
775 if ((uint)pid > (uint)pid_max)
776 pid &= pid_tbl_mask;
777 next_free_pt = nxt & pid_tbl_mask;
778
779 /* Grab table slot */
780 pt->pt_proc = p;
781
782 KASSERT(pt->pt_pid == 0);
783 pt->pt_pid = pid;
784 if (p->p_pid == -1) {
785 p->p_pid = pid;
786 }
787 pid_alloc_cnt++;
788 mutex_exit(proc_lock);
789
790 return pid;
791 }
792
793 /*
794 * Free a process id - called from proc_free (in kern_exit.c)
795 *
796 * Called with the proc_lock held.
797 */
798 void
799 proc_free_pid(pid_t pid)
800 {
801 struct pid_table *pt;
802
803 KASSERT(mutex_owned(proc_lock));
804
805 pt = &pid_table[pid & pid_tbl_mask];
806
807 /* save pid use count in slot */
808 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
809 KASSERT(pt->pt_pid == pid);
810 pt->pt_pid = 0;
811
812 if (pt->pt_pgrp == NULL) {
813 /* link last freed entry onto ours */
814 pid &= pid_tbl_mask;
815 pt = &pid_table[last_free_pt];
816 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
817 pt->pt_pid = 0;
818 last_free_pt = pid;
819 pid_alloc_cnt--;
820 }
821
822 atomic_dec_uint(&nprocs);
823 }
824
825 void
826 proc_free_mem(struct proc *p)
827 {
828
829 kdtrace_proc_dtor(NULL, p);
830 pool_cache_put(proc_cache, p);
831 }
832
833 /*
834 * proc_enterpgrp: move p to a new or existing process group (and session).
835 *
836 * If we are creating a new pgrp, the pgid should equal
837 * the calling process' pid.
838 * If is only valid to enter a process group that is in the session
839 * of the process.
840 * Also mksess should only be set if we are creating a process group
841 *
842 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
843 */
844 int
845 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
846 {
847 struct pgrp *new_pgrp, *pgrp;
848 struct session *sess;
849 struct proc *p;
850 int rval;
851 pid_t pg_id = NO_PGID;
852
853 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
854
855 /* Allocate data areas we might need before doing any validity checks */
856 mutex_enter(proc_lock); /* Because pid_table might change */
857 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
858 mutex_exit(proc_lock);
859 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
860 mutex_enter(proc_lock);
861 } else
862 new_pgrp = NULL;
863 rval = EPERM; /* most common error (to save typing) */
864
865 /* Check pgrp exists or can be created */
866 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
867 if (pgrp != NULL && pgrp->pg_id != pgid)
868 goto done;
869
870 /* Can only set another process under restricted circumstances. */
871 if (pid != curp->p_pid) {
872 /* Must exist and be one of our children... */
873 p = proc_find(pid);
874 if (p == NULL || !p_inferior(p, curp)) {
875 rval = ESRCH;
876 goto done;
877 }
878 /* ... in the same session... */
879 if (sess != NULL || p->p_session != curp->p_session)
880 goto done;
881 /* ... existing pgid must be in same session ... */
882 if (pgrp != NULL && pgrp->pg_session != p->p_session)
883 goto done;
884 /* ... and not done an exec. */
885 if (p->p_flag & PK_EXEC) {
886 rval = EACCES;
887 goto done;
888 }
889 } else {
890 /* ... setsid() cannot re-enter a pgrp */
891 if (mksess && (curp->p_pgid == curp->p_pid ||
892 pgrp_find(curp->p_pid)))
893 goto done;
894 p = curp;
895 }
896
897 /* Changing the process group/session of a session
898 leader is definitely off limits. */
899 if (SESS_LEADER(p)) {
900 if (sess == NULL && p->p_pgrp == pgrp)
901 /* unless it's a definite noop */
902 rval = 0;
903 goto done;
904 }
905
906 /* Can only create a process group with id of process */
907 if (pgrp == NULL && pgid != pid)
908 goto done;
909
910 /* Can only create a session if creating pgrp */
911 if (sess != NULL && pgrp != NULL)
912 goto done;
913
914 /* Check we allocated memory for a pgrp... */
915 if (pgrp == NULL && new_pgrp == NULL)
916 goto done;
917
918 /* Don't attach to 'zombie' pgrp */
919 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
920 goto done;
921
922 /* Expect to succeed now */
923 rval = 0;
924
925 if (pgrp == p->p_pgrp)
926 /* nothing to do */
927 goto done;
928
929 /* Ok all setup, link up required structures */
930
931 if (pgrp == NULL) {
932 pgrp = new_pgrp;
933 new_pgrp = NULL;
934 if (sess != NULL) {
935 sess->s_sid = p->p_pid;
936 sess->s_leader = p;
937 sess->s_count = 1;
938 sess->s_ttyvp = NULL;
939 sess->s_ttyp = NULL;
940 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
941 memcpy(sess->s_login, p->p_session->s_login,
942 sizeof(sess->s_login));
943 p->p_lflag &= ~PL_CONTROLT;
944 } else {
945 sess = p->p_pgrp->pg_session;
946 proc_sesshold(sess);
947 }
948 pgrp->pg_session = sess;
949 sess = NULL;
950
951 pgrp->pg_id = pgid;
952 LIST_INIT(&pgrp->pg_members);
953 #ifdef DIAGNOSTIC
954 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
955 panic("enterpgrp: pgrp table slot in use");
956 if (__predict_false(mksess && p != curp))
957 panic("enterpgrp: mksession and p != curproc");
958 #endif
959 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
960 pgrp->pg_jobc = 0;
961 }
962
963 /*
964 * Adjust eligibility of affected pgrps to participate in job control.
965 * Increment eligibility counts before decrementing, otherwise we
966 * could reach 0 spuriously during the first call.
967 */
968 fixjobc(p, pgrp, 1);
969 fixjobc(p, p->p_pgrp, 0);
970
971 /* Interlock with ttread(). */
972 mutex_spin_enter(&tty_lock);
973
974 /* Move process to requested group. */
975 LIST_REMOVE(p, p_pglist);
976 if (LIST_EMPTY(&p->p_pgrp->pg_members))
977 /* defer delete until we've dumped the lock */
978 pg_id = p->p_pgrp->pg_id;
979 p->p_pgrp = pgrp;
980 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
981
982 /* Done with the swap; we can release the tty mutex. */
983 mutex_spin_exit(&tty_lock);
984
985 done:
986 if (pg_id != NO_PGID) {
987 /* Releases proc_lock. */
988 pg_delete(pg_id);
989 } else {
990 mutex_exit(proc_lock);
991 }
992 if (sess != NULL)
993 kmem_free(sess, sizeof(*sess));
994 if (new_pgrp != NULL)
995 kmem_free(new_pgrp, sizeof(*new_pgrp));
996 #ifdef DEBUG_PGRP
997 if (__predict_false(rval))
998 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
999 pid, pgid, mksess, curp->p_pid, rval);
1000 #endif
1001 return rval;
1002 }
1003
1004 /*
1005 * proc_leavepgrp: remove a process from its process group.
1006 * => must be called with the proc_lock held, which will be released;
1007 */
1008 void
1009 proc_leavepgrp(struct proc *p)
1010 {
1011 struct pgrp *pgrp;
1012
1013 KASSERT(mutex_owned(proc_lock));
1014
1015 /* Interlock with ttread() */
1016 mutex_spin_enter(&tty_lock);
1017 pgrp = p->p_pgrp;
1018 LIST_REMOVE(p, p_pglist);
1019 p->p_pgrp = NULL;
1020 mutex_spin_exit(&tty_lock);
1021
1022 if (LIST_EMPTY(&pgrp->pg_members)) {
1023 /* Releases proc_lock. */
1024 pg_delete(pgrp->pg_id);
1025 } else {
1026 mutex_exit(proc_lock);
1027 }
1028 }
1029
1030 /*
1031 * pg_remove: remove a process group from the table.
1032 * => must be called with the proc_lock held;
1033 * => returns process group to free;
1034 */
1035 static struct pgrp *
1036 pg_remove(pid_t pg_id)
1037 {
1038 struct pgrp *pgrp;
1039 struct pid_table *pt;
1040
1041 KASSERT(mutex_owned(proc_lock));
1042
1043 pt = &pid_table[pg_id & pid_tbl_mask];
1044 pgrp = pt->pt_pgrp;
1045
1046 KASSERT(pgrp != NULL);
1047 KASSERT(pgrp->pg_id == pg_id);
1048 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1049
1050 pt->pt_pgrp = NULL;
1051
1052 if (!P_VALID(pt->pt_proc)) {
1053 /* Orphaned pgrp, put slot onto free list. */
1054 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1055 pg_id &= pid_tbl_mask;
1056 pt = &pid_table[last_free_pt];
1057 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1058 KASSERT(pt->pt_pid == 0);
1059 last_free_pt = pg_id;
1060 pid_alloc_cnt--;
1061 }
1062 return pgrp;
1063 }
1064
1065 /*
1066 * pg_delete: delete and free a process group.
1067 * => must be called with the proc_lock held, which will be released.
1068 */
1069 static void
1070 pg_delete(pid_t pg_id)
1071 {
1072 struct pgrp *pg;
1073 struct tty *ttyp;
1074 struct session *ss;
1075
1076 KASSERT(mutex_owned(proc_lock));
1077
1078 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1079 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1080 mutex_exit(proc_lock);
1081 return;
1082 }
1083
1084 ss = pg->pg_session;
1085
1086 /* Remove reference (if any) from tty to this process group */
1087 mutex_spin_enter(&tty_lock);
1088 ttyp = ss->s_ttyp;
1089 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1090 ttyp->t_pgrp = NULL;
1091 KASSERT(ttyp->t_session == ss);
1092 }
1093 mutex_spin_exit(&tty_lock);
1094
1095 /*
1096 * The leading process group in a session is freed by proc_sessrele(),
1097 * if last reference. Note: proc_sessrele() releases proc_lock.
1098 */
1099 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1100 proc_sessrele(ss);
1101
1102 if (pg != NULL) {
1103 /* Free it, if was not done by proc_sessrele(). */
1104 kmem_free(pg, sizeof(struct pgrp));
1105 }
1106 }
1107
1108 /*
1109 * Adjust pgrp jobc counters when specified process changes process group.
1110 * We count the number of processes in each process group that "qualify"
1111 * the group for terminal job control (those with a parent in a different
1112 * process group of the same session). If that count reaches zero, the
1113 * process group becomes orphaned. Check both the specified process'
1114 * process group and that of its children.
1115 * entering == 0 => p is leaving specified group.
1116 * entering == 1 => p is entering specified group.
1117 *
1118 * Call with proc_lock held.
1119 */
1120 void
1121 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1122 {
1123 struct pgrp *hispgrp;
1124 struct session *mysession = pgrp->pg_session;
1125 struct proc *child;
1126
1127 KASSERT(mutex_owned(proc_lock));
1128
1129 /*
1130 * Check p's parent to see whether p qualifies its own process
1131 * group; if so, adjust count for p's process group.
1132 */
1133 hispgrp = p->p_pptr->p_pgrp;
1134 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1135 if (entering) {
1136 pgrp->pg_jobc++;
1137 p->p_lflag &= ~PL_ORPHANPG;
1138 } else if (--pgrp->pg_jobc == 0)
1139 orphanpg(pgrp);
1140 }
1141
1142 /*
1143 * Check this process' children to see whether they qualify
1144 * their process groups; if so, adjust counts for children's
1145 * process groups.
1146 */
1147 LIST_FOREACH(child, &p->p_children, p_sibling) {
1148 hispgrp = child->p_pgrp;
1149 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1150 !P_ZOMBIE(child)) {
1151 if (entering) {
1152 child->p_lflag &= ~PL_ORPHANPG;
1153 hispgrp->pg_jobc++;
1154 } else if (--hispgrp->pg_jobc == 0)
1155 orphanpg(hispgrp);
1156 }
1157 }
1158 }
1159
1160 /*
1161 * A process group has become orphaned;
1162 * if there are any stopped processes in the group,
1163 * hang-up all process in that group.
1164 *
1165 * Call with proc_lock held.
1166 */
1167 static void
1168 orphanpg(struct pgrp *pg)
1169 {
1170 struct proc *p;
1171
1172 KASSERT(mutex_owned(proc_lock));
1173
1174 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1175 if (p->p_stat == SSTOP) {
1176 p->p_lflag |= PL_ORPHANPG;
1177 psignal(p, SIGHUP);
1178 psignal(p, SIGCONT);
1179 }
1180 }
1181 }
1182
1183 #ifdef DDB
1184 #include <ddb/db_output.h>
1185 void pidtbl_dump(void);
1186 void
1187 pidtbl_dump(void)
1188 {
1189 struct pid_table *pt;
1190 struct proc *p;
1191 struct pgrp *pgrp;
1192 int id;
1193
1194 db_printf("pid table %p size %x, next %x, last %x\n",
1195 pid_table, pid_tbl_mask+1,
1196 next_free_pt, last_free_pt);
1197 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1198 p = pt->pt_proc;
1199 if (!P_VALID(p) && !pt->pt_pgrp)
1200 continue;
1201 db_printf(" id %x: ", id);
1202 if (P_VALID(p))
1203 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1204 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1205 else
1206 db_printf("next %x use %x\n",
1207 P_NEXT(p) & pid_tbl_mask,
1208 P_NEXT(p) & ~pid_tbl_mask);
1209 if ((pgrp = pt->pt_pgrp)) {
1210 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1211 pgrp->pg_session, pgrp->pg_session->s_sid,
1212 pgrp->pg_session->s_count,
1213 pgrp->pg_session->s_login);
1214 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1215 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1216 LIST_FIRST(&pgrp->pg_members));
1217 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1218 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1219 p->p_pid, p, p->p_pgrp, p->p_comm);
1220 }
1221 }
1222 }
1223 }
1224 #endif /* DDB */
1225
1226 #ifdef KSTACK_CHECK_MAGIC
1227
1228 #define KSTACK_MAGIC 0xdeadbeaf
1229
1230 /* XXX should be per process basis? */
1231 static int kstackleftmin = KSTACK_SIZE;
1232 static int kstackleftthres = KSTACK_SIZE / 8;
1233
1234 void
1235 kstack_setup_magic(const struct lwp *l)
1236 {
1237 uint32_t *ip;
1238 uint32_t const *end;
1239
1240 KASSERT(l != NULL);
1241 KASSERT(l != &lwp0);
1242
1243 /*
1244 * fill all the stack with magic number
1245 * so that later modification on it can be detected.
1246 */
1247 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1248 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1249 for (; ip < end; ip++) {
1250 *ip = KSTACK_MAGIC;
1251 }
1252 }
1253
1254 void
1255 kstack_check_magic(const struct lwp *l)
1256 {
1257 uint32_t const *ip, *end;
1258 int stackleft;
1259
1260 KASSERT(l != NULL);
1261
1262 /* don't check proc0 */ /*XXX*/
1263 if (l == &lwp0)
1264 return;
1265
1266 #ifdef __MACHINE_STACK_GROWS_UP
1267 /* stack grows upwards (eg. hppa) */
1268 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1269 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1270 for (ip--; ip >= end; ip--)
1271 if (*ip != KSTACK_MAGIC)
1272 break;
1273
1274 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1275 #else /* __MACHINE_STACK_GROWS_UP */
1276 /* stack grows downwards (eg. i386) */
1277 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1278 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1279 for (; ip < end; ip++)
1280 if (*ip != KSTACK_MAGIC)
1281 break;
1282
1283 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1284 #endif /* __MACHINE_STACK_GROWS_UP */
1285
1286 if (kstackleftmin > stackleft) {
1287 kstackleftmin = stackleft;
1288 if (stackleft < kstackleftthres)
1289 printf("warning: kernel stack left %d bytes"
1290 "(pid %u:lid %u)\n", stackleft,
1291 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1292 }
1293
1294 if (stackleft <= 0) {
1295 panic("magic on the top of kernel stack changed for "
1296 "pid %u, lid %u: maybe kernel stack overflow",
1297 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1298 }
1299 }
1300 #endif /* KSTACK_CHECK_MAGIC */
1301
1302 int
1303 proclist_foreach_call(struct proclist *list,
1304 int (*callback)(struct proc *, void *arg), void *arg)
1305 {
1306 struct proc marker;
1307 struct proc *p;
1308 int ret = 0;
1309
1310 marker.p_flag = PK_MARKER;
1311 mutex_enter(proc_lock);
1312 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1313 if (p->p_flag & PK_MARKER) {
1314 p = LIST_NEXT(p, p_list);
1315 continue;
1316 }
1317 LIST_INSERT_AFTER(p, &marker, p_list);
1318 ret = (*callback)(p, arg);
1319 KASSERT(mutex_owned(proc_lock));
1320 p = LIST_NEXT(&marker, p_list);
1321 LIST_REMOVE(&marker, p_list);
1322 }
1323 mutex_exit(proc_lock);
1324
1325 return ret;
1326 }
1327
1328 int
1329 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1330 {
1331
1332 /* XXXCDC: how should locking work here? */
1333
1334 /* curproc exception is for coredump. */
1335
1336 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1337 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1338 return EFAULT;
1339 }
1340
1341 uvmspace_addref(p->p_vmspace);
1342 *vm = p->p_vmspace;
1343
1344 return 0;
1345 }
1346
1347 /*
1348 * Acquire a write lock on the process credential.
1349 */
1350 void
1351 proc_crmod_enter(void)
1352 {
1353 struct lwp *l = curlwp;
1354 struct proc *p = l->l_proc;
1355 kauth_cred_t oc;
1356
1357 /* Reset what needs to be reset in plimit. */
1358 if (p->p_limit->pl_corename != defcorename) {
1359 lim_setcorename(p, defcorename, 0);
1360 }
1361
1362 mutex_enter(p->p_lock);
1363
1364 /* Ensure the LWP cached credentials are up to date. */
1365 if ((oc = l->l_cred) != p->p_cred) {
1366 kauth_cred_hold(p->p_cred);
1367 l->l_cred = p->p_cred;
1368 kauth_cred_free(oc);
1369 }
1370 }
1371
1372 /*
1373 * Set in a new process credential, and drop the write lock. The credential
1374 * must have a reference already. Optionally, free a no-longer required
1375 * credential. The scheduler also needs to inspect p_cred, so we also
1376 * briefly acquire the sched state mutex.
1377 */
1378 void
1379 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1380 {
1381 struct lwp *l = curlwp, *l2;
1382 struct proc *p = l->l_proc;
1383 kauth_cred_t oc;
1384
1385 KASSERT(mutex_owned(p->p_lock));
1386
1387 /* Is there a new credential to set in? */
1388 if (scred != NULL) {
1389 p->p_cred = scred;
1390 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1391 if (l2 != l)
1392 l2->l_prflag |= LPR_CRMOD;
1393 }
1394
1395 /* Ensure the LWP cached credentials are up to date. */
1396 if ((oc = l->l_cred) != scred) {
1397 kauth_cred_hold(scred);
1398 l->l_cred = scred;
1399 }
1400 } else
1401 oc = NULL; /* XXXgcc */
1402
1403 if (sugid) {
1404 /*
1405 * Mark process as having changed credentials, stops
1406 * tracing etc.
1407 */
1408 p->p_flag |= PK_SUGID;
1409 }
1410
1411 mutex_exit(p->p_lock);
1412
1413 /* If there is a credential to be released, free it now. */
1414 if (fcred != NULL) {
1415 KASSERT(scred != NULL);
1416 kauth_cred_free(fcred);
1417 if (oc != scred)
1418 kauth_cred_free(oc);
1419 }
1420 }
1421
1422 /*
1423 * proc_specific_key_create --
1424 * Create a key for subsystem proc-specific data.
1425 */
1426 int
1427 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1428 {
1429
1430 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1431 }
1432
1433 /*
1434 * proc_specific_key_delete --
1435 * Delete a key for subsystem proc-specific data.
1436 */
1437 void
1438 proc_specific_key_delete(specificdata_key_t key)
1439 {
1440
1441 specificdata_key_delete(proc_specificdata_domain, key);
1442 }
1443
1444 /*
1445 * proc_initspecific --
1446 * Initialize a proc's specificdata container.
1447 */
1448 void
1449 proc_initspecific(struct proc *p)
1450 {
1451 int error;
1452
1453 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1454 KASSERT(error == 0);
1455 }
1456
1457 /*
1458 * proc_finispecific --
1459 * Finalize a proc's specificdata container.
1460 */
1461 void
1462 proc_finispecific(struct proc *p)
1463 {
1464
1465 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1466 }
1467
1468 /*
1469 * proc_getspecific --
1470 * Return proc-specific data corresponding to the specified key.
1471 */
1472 void *
1473 proc_getspecific(struct proc *p, specificdata_key_t key)
1474 {
1475
1476 return (specificdata_getspecific(proc_specificdata_domain,
1477 &p->p_specdataref, key));
1478 }
1479
1480 /*
1481 * proc_setspecific --
1482 * Set proc-specific data corresponding to the specified key.
1483 */
1484 void
1485 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1486 {
1487
1488 specificdata_setspecific(proc_specificdata_domain,
1489 &p->p_specdataref, key, data);
1490 }
1491
1492 int
1493 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1494 {
1495 int r = 0;
1496
1497 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1498 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1499 /*
1500 * suid proc of ours or proc not ours
1501 */
1502 r = EPERM;
1503 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1504 /*
1505 * sgid proc has sgid back to us temporarily
1506 */
1507 r = EPERM;
1508 } else {
1509 /*
1510 * our rgid must be in target's group list (ie,
1511 * sub-processes started by a sgid process)
1512 */
1513 int ismember = 0;
1514
1515 if (kauth_cred_ismember_gid(cred,
1516 kauth_cred_getgid(target), &ismember) != 0 ||
1517 !ismember)
1518 r = EPERM;
1519 }
1520
1521 return (r);
1522 }
1523
1524 /*
1525 * sysctl stuff
1526 */
1527
1528 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1529
1530 static const u_int sysctl_flagmap[] = {
1531 PK_ADVLOCK, P_ADVLOCK,
1532 PK_EXEC, P_EXEC,
1533 PK_NOCLDWAIT, P_NOCLDWAIT,
1534 PK_32, P_32,
1535 PK_CLDSIGIGN, P_CLDSIGIGN,
1536 PK_SUGID, P_SUGID,
1537 0
1538 };
1539
1540 static const u_int sysctl_sflagmap[] = {
1541 PS_NOCLDSTOP, P_NOCLDSTOP,
1542 PS_WEXIT, P_WEXIT,
1543 PS_STOPFORK, P_STOPFORK,
1544 PS_STOPEXEC, P_STOPEXEC,
1545 PS_STOPEXIT, P_STOPEXIT,
1546 0
1547 };
1548
1549 static const u_int sysctl_slflagmap[] = {
1550 PSL_TRACED, P_TRACED,
1551 PSL_FSTRACE, P_FSTRACE,
1552 PSL_CHTRACED, P_CHTRACED,
1553 PSL_SYSCALL, P_SYSCALL,
1554 0
1555 };
1556
1557 static const u_int sysctl_lflagmap[] = {
1558 PL_CONTROLT, P_CONTROLT,
1559 PL_PPWAIT, P_PPWAIT,
1560 0
1561 };
1562
1563 static const u_int sysctl_stflagmap[] = {
1564 PST_PROFIL, P_PROFIL,
1565 0
1566
1567 };
1568
1569 /* used by kern_lwp also */
1570 const u_int sysctl_lwpflagmap[] = {
1571 LW_SINTR, L_SINTR,
1572 LW_SYSTEM, L_SYSTEM,
1573 0
1574 };
1575
1576 /*
1577 * Find the most ``active'' lwp of a process and return it for ps display
1578 * purposes
1579 */
1580 static struct lwp *
1581 proc_active_lwp(struct proc *p)
1582 {
1583 static const int ostat[] = {
1584 0,
1585 2, /* LSIDL */
1586 6, /* LSRUN */
1587 5, /* LSSLEEP */
1588 4, /* LSSTOP */
1589 0, /* LSZOMB */
1590 1, /* LSDEAD */
1591 7, /* LSONPROC */
1592 3 /* LSSUSPENDED */
1593 };
1594
1595 struct lwp *l, *lp = NULL;
1596 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1597 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1598 if (lp == NULL ||
1599 ostat[l->l_stat] > ostat[lp->l_stat] ||
1600 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1601 l->l_cpticks > lp->l_cpticks)) {
1602 lp = l;
1603 continue;
1604 }
1605 }
1606 return lp;
1607 }
1608
1609 static int
1610 sysctl_doeproc(SYSCTLFN_ARGS)
1611 {
1612 union {
1613 struct kinfo_proc kproc;
1614 struct kinfo_proc2 kproc2;
1615 } *kbuf;
1616 struct proc *p, *next, *marker;
1617 char *where, *dp;
1618 int type, op, arg, error;
1619 u_int elem_size, kelem_size, elem_count;
1620 size_t buflen, needed;
1621 bool match, zombie, mmmbrains;
1622
1623 if (namelen == 1 && name[0] == CTL_QUERY)
1624 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1625
1626 dp = where = oldp;
1627 buflen = where != NULL ? *oldlenp : 0;
1628 error = 0;
1629 needed = 0;
1630 type = rnode->sysctl_num;
1631
1632 if (type == KERN_PROC) {
1633 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1634 return (EINVAL);
1635 op = name[0];
1636 if (op != KERN_PROC_ALL)
1637 arg = name[1];
1638 else
1639 arg = 0; /* Quell compiler warning */
1640 elem_count = 0; /* Ditto */
1641 kelem_size = elem_size = sizeof(kbuf->kproc);
1642 } else {
1643 if (namelen != 4)
1644 return (EINVAL);
1645 op = name[0];
1646 arg = name[1];
1647 elem_size = name[2];
1648 elem_count = name[3];
1649 kelem_size = sizeof(kbuf->kproc2);
1650 }
1651
1652 sysctl_unlock();
1653
1654 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1655 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1656 marker->p_flag = PK_MARKER;
1657
1658 mutex_enter(proc_lock);
1659 mmmbrains = false;
1660 for (p = LIST_FIRST(&allproc);; p = next) {
1661 if (p == NULL) {
1662 if (!mmmbrains) {
1663 p = LIST_FIRST(&zombproc);
1664 mmmbrains = true;
1665 }
1666 if (p == NULL)
1667 break;
1668 }
1669 next = LIST_NEXT(p, p_list);
1670 if ((p->p_flag & PK_MARKER) != 0)
1671 continue;
1672
1673 /*
1674 * Skip embryonic processes.
1675 */
1676 if (p->p_stat == SIDL)
1677 continue;
1678
1679 mutex_enter(p->p_lock);
1680 error = kauth_authorize_process(l->l_cred,
1681 KAUTH_PROCESS_CANSEE, p,
1682 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1683 if (error != 0) {
1684 mutex_exit(p->p_lock);
1685 continue;
1686 }
1687
1688 /*
1689 * TODO - make more efficient (see notes below).
1690 * do by session.
1691 */
1692 switch (op) {
1693 case KERN_PROC_PID:
1694 /* could do this with just a lookup */
1695 match = (p->p_pid == (pid_t)arg);
1696 break;
1697
1698 case KERN_PROC_PGRP:
1699 /* could do this by traversing pgrp */
1700 match = (p->p_pgrp->pg_id == (pid_t)arg);
1701 break;
1702
1703 case KERN_PROC_SESSION:
1704 match = (p->p_session->s_sid == (pid_t)arg);
1705 break;
1706
1707 case KERN_PROC_TTY:
1708 match = true;
1709 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1710 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1711 p->p_session->s_ttyp == NULL ||
1712 p->p_session->s_ttyvp != NULL) {
1713 match = false;
1714 }
1715 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1716 p->p_session->s_ttyp == NULL) {
1717 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1718 match = false;
1719 }
1720 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1721 match = false;
1722 }
1723 break;
1724
1725 case KERN_PROC_UID:
1726 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1727 break;
1728
1729 case KERN_PROC_RUID:
1730 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1731 break;
1732
1733 case KERN_PROC_GID:
1734 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1735 break;
1736
1737 case KERN_PROC_RGID:
1738 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1739 break;
1740
1741 case KERN_PROC_ALL:
1742 match = true;
1743 /* allow everything */
1744 break;
1745
1746 default:
1747 error = EINVAL;
1748 mutex_exit(p->p_lock);
1749 goto cleanup;
1750 }
1751 if (!match) {
1752 mutex_exit(p->p_lock);
1753 continue;
1754 }
1755
1756 /*
1757 * Grab a hold on the process.
1758 */
1759 if (mmmbrains) {
1760 zombie = true;
1761 } else {
1762 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1763 }
1764 if (zombie) {
1765 LIST_INSERT_AFTER(p, marker, p_list);
1766 }
1767
1768 if (buflen >= elem_size &&
1769 (type == KERN_PROC || elem_count > 0)) {
1770 if (type == KERN_PROC) {
1771 kbuf->kproc.kp_proc = *p;
1772 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1773 } else {
1774 fill_kproc2(p, &kbuf->kproc2, zombie);
1775 elem_count--;
1776 }
1777 mutex_exit(p->p_lock);
1778 mutex_exit(proc_lock);
1779 /*
1780 * Copy out elem_size, but not larger than kelem_size
1781 */
1782 error = sysctl_copyout(l, kbuf, dp,
1783 min(kelem_size, elem_size));
1784 mutex_enter(proc_lock);
1785 if (error) {
1786 goto bah;
1787 }
1788 dp += elem_size;
1789 buflen -= elem_size;
1790 } else {
1791 mutex_exit(p->p_lock);
1792 }
1793 needed += elem_size;
1794
1795 /*
1796 * Release reference to process.
1797 */
1798 if (zombie) {
1799 next = LIST_NEXT(marker, p_list);
1800 LIST_REMOVE(marker, p_list);
1801 } else {
1802 rw_exit(&p->p_reflock);
1803 next = LIST_NEXT(p, p_list);
1804 }
1805 }
1806 mutex_exit(proc_lock);
1807
1808 if (where != NULL) {
1809 *oldlenp = dp - where;
1810 if (needed > *oldlenp) {
1811 error = ENOMEM;
1812 goto out;
1813 }
1814 } else {
1815 needed += KERN_PROCSLOP;
1816 *oldlenp = needed;
1817 }
1818 if (kbuf)
1819 kmem_free(kbuf, sizeof(*kbuf));
1820 if (marker)
1821 kmem_free(marker, sizeof(*marker));
1822 sysctl_relock();
1823 return 0;
1824 bah:
1825 if (zombie)
1826 LIST_REMOVE(marker, p_list);
1827 else
1828 rw_exit(&p->p_reflock);
1829 cleanup:
1830 mutex_exit(proc_lock);
1831 out:
1832 if (kbuf)
1833 kmem_free(kbuf, sizeof(*kbuf));
1834 if (marker)
1835 kmem_free(marker, sizeof(*marker));
1836 sysctl_relock();
1837 return error;
1838 }
1839
1840 int
1841 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1842 {
1843
1844 #ifdef COMPAT_NETBSD32
1845 if (p->p_flag & PK_32) {
1846 struct ps_strings32 arginfo32;
1847
1848 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1849 sizeof(arginfo32));
1850 if (error)
1851 return error;
1852 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1853 arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1854 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1855 arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1856 return 0;
1857 }
1858 #endif
1859 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1860 }
1861
1862 static int
1863 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1864 {
1865 void **cookie = cookie_;
1866 struct lwp *l = cookie[0];
1867 char *dst = cookie[1];
1868
1869 return sysctl_copyout(l, src, dst + off, len);
1870 }
1871
1872 /*
1873 * sysctl helper routine for kern.proc_args pseudo-subtree.
1874 */
1875 static int
1876 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1877 {
1878 struct ps_strings pss;
1879 struct proc *p;
1880 pid_t pid;
1881 int type, error;
1882 void *cookie[2];
1883
1884 if (namelen == 1 && name[0] == CTL_QUERY)
1885 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1886
1887 if (newp != NULL || namelen != 2)
1888 return (EINVAL);
1889 pid = name[0];
1890 type = name[1];
1891
1892 switch (type) {
1893 case KERN_PROC_ARGV:
1894 case KERN_PROC_NARGV:
1895 case KERN_PROC_ENV:
1896 case KERN_PROC_NENV:
1897 /* ok */
1898 break;
1899 default:
1900 return (EINVAL);
1901 }
1902
1903 sysctl_unlock();
1904
1905 /* check pid */
1906 mutex_enter(proc_lock);
1907 if ((p = proc_find(pid)) == NULL) {
1908 error = EINVAL;
1909 goto out_locked;
1910 }
1911 mutex_enter(p->p_lock);
1912
1913 /* Check permission. */
1914 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1915 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1916 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1917 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1918 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1919 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1920 else
1921 error = EINVAL; /* XXXGCC */
1922 if (error) {
1923 mutex_exit(p->p_lock);
1924 goto out_locked;
1925 }
1926
1927 if (oldp == NULL) {
1928 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1929 *oldlenp = sizeof (int);
1930 else
1931 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1932 error = 0;
1933 mutex_exit(p->p_lock);
1934 goto out_locked;
1935 }
1936
1937 /*
1938 * Zombies don't have a stack, so we can't read their psstrings.
1939 * System processes also don't have a user stack.
1940 */
1941 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1942 error = EINVAL;
1943 mutex_exit(p->p_lock);
1944 goto out_locked;
1945 }
1946
1947 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1948 mutex_exit(p->p_lock);
1949 if (error) {
1950 goto out_locked;
1951 }
1952 mutex_exit(proc_lock);
1953
1954 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1955 int value;
1956 if ((error = copyin_psstrings(p, &pss)) == 0) {
1957 if (type == KERN_PROC_NARGV)
1958 value = pss.ps_nargvstr;
1959 else
1960 value = pss.ps_nenvstr;
1961 error = sysctl_copyout(l, &value, oldp, sizeof(value));
1962 *oldlenp = sizeof(value);
1963 }
1964 } else {
1965 cookie[0] = l;
1966 cookie[1] = oldp;
1967 error = copy_procargs(p, type, oldlenp,
1968 copy_procargs_sysctl_cb, cookie);
1969 }
1970 rw_exit(&p->p_reflock);
1971 sysctl_relock();
1972 return error;
1973
1974 out_locked:
1975 mutex_exit(proc_lock);
1976 sysctl_relock();
1977 return error;
1978 }
1979
1980 int
1981 copy_procargs(struct proc *p, int oid, size_t *limit,
1982 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
1983 {
1984 struct ps_strings pss;
1985 size_t len, i, loaded, entry_len;
1986 struct uio auio;
1987 struct iovec aiov;
1988 int error, argvlen;
1989 char *arg;
1990 char **argv;
1991 vaddr_t user_argv;
1992 struct vmspace *vmspace;
1993
1994 /*
1995 * Allocate a temporary buffer to hold the argument vector and
1996 * the arguments themselve.
1997 */
1998 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
1999 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2000
2001 /*
2002 * Lock the process down in memory.
2003 */
2004 vmspace = p->p_vmspace;
2005 uvmspace_addref(vmspace);
2006
2007 /*
2008 * Read in the ps_strings structure.
2009 */
2010 if ((error = copyin_psstrings(p, &pss)) != 0)
2011 goto done;
2012
2013 /*
2014 * Now read the address of the argument vector.
2015 */
2016 switch (oid) {
2017 case KERN_PROC_ARGV:
2018 user_argv = (uintptr_t)pss.ps_argvstr;
2019 argvlen = pss.ps_nargvstr;
2020 break;
2021 case KERN_PROC_ENV:
2022 user_argv = (uintptr_t)pss.ps_envstr;
2023 argvlen = pss.ps_nenvstr;
2024 break;
2025 default:
2026 error = EINVAL;
2027 goto done;
2028 }
2029
2030 if (argvlen < 0) {
2031 error = EIO;
2032 goto done;
2033 }
2034
2035 #ifdef COMPAT_NETBSD32
2036 if (p->p_flag & PK_32)
2037 entry_len = sizeof(netbsd32_charp);
2038 else
2039 #endif
2040 entry_len = sizeof(char *);
2041
2042 /*
2043 * Now copy each string.
2044 */
2045 len = 0; /* bytes written to user buffer */
2046 loaded = 0; /* bytes from argv already processed */
2047 i = 0; /* To make compiler happy */
2048
2049 for (; argvlen; --argvlen) {
2050 int finished = 0;
2051 vaddr_t base;
2052 size_t xlen;
2053 int j;
2054
2055 if (loaded == 0) {
2056 size_t rem = entry_len * argvlen;
2057 loaded = MIN(rem, PAGE_SIZE);
2058 error = copyin_vmspace(vmspace,
2059 (const void *)user_argv, argv, loaded);
2060 if (error)
2061 break;
2062 user_argv += loaded;
2063 i = 0;
2064 }
2065
2066 #ifdef COMPAT_NETBSD32
2067 if (p->p_flag & PK_32) {
2068 netbsd32_charp *argv32;
2069
2070 argv32 = (netbsd32_charp *)argv;
2071 base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2072 } else
2073 #endif
2074 base = (vaddr_t)argv[i++];
2075 loaded -= entry_len;
2076
2077 /*
2078 * The program has messed around with its arguments,
2079 * possibly deleting some, and replacing them with
2080 * NULL's. Treat this as the last argument and not
2081 * a failure.
2082 */
2083 if (base == 0)
2084 break;
2085
2086 while (!finished) {
2087 xlen = PAGE_SIZE - (base & PAGE_MASK);
2088
2089 aiov.iov_base = arg;
2090 aiov.iov_len = PAGE_SIZE;
2091 auio.uio_iov = &aiov;
2092 auio.uio_iovcnt = 1;
2093 auio.uio_offset = base;
2094 auio.uio_resid = xlen;
2095 auio.uio_rw = UIO_READ;
2096 UIO_SETUP_SYSSPACE(&auio);
2097 error = uvm_io(&vmspace->vm_map, &auio);
2098 if (error)
2099 goto done;
2100
2101 /* Look for the end of the string */
2102 for (j = 0; j < xlen; j++) {
2103 if (arg[j] == '\0') {
2104 xlen = j + 1;
2105 finished = 1;
2106 break;
2107 }
2108 }
2109
2110 /* Check for user buffer overflow */
2111 if (len + xlen > *limit) {
2112 finished = 1;
2113 if (len > *limit)
2114 xlen = 0;
2115 else
2116 xlen = *limit - len;
2117 }
2118
2119 /* Copyout the page */
2120 error = (*cb)(cookie, arg, len, xlen);
2121 if (error)
2122 goto done;
2123
2124 len += xlen;
2125 base += xlen;
2126 }
2127 }
2128 *limit = len;
2129
2130 done:
2131 kmem_free(argv, PAGE_SIZE);
2132 kmem_free(arg, PAGE_SIZE);
2133 uvmspace_free(vmspace);
2134 return error;
2135 }
2136
2137 /*
2138 * Fill in an eproc structure for the specified process.
2139 */
2140 void
2141 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2142 {
2143 struct tty *tp;
2144 struct lwp *l;
2145
2146 KASSERT(mutex_owned(proc_lock));
2147 KASSERT(mutex_owned(p->p_lock));
2148
2149 memset(ep, 0, sizeof(*ep));
2150
2151 ep->e_paddr = p;
2152 ep->e_sess = p->p_session;
2153 if (p->p_cred) {
2154 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2155 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2156 }
2157 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2158 struct vmspace *vm = p->p_vmspace;
2159
2160 ep->e_vm.vm_rssize = vm_resident_count(vm);
2161 ep->e_vm.vm_tsize = vm->vm_tsize;
2162 ep->e_vm.vm_dsize = vm->vm_dsize;
2163 ep->e_vm.vm_ssize = vm->vm_ssize;
2164 ep->e_vm.vm_map.size = vm->vm_map.size;
2165
2166 /* Pick the primary (first) LWP */
2167 l = proc_active_lwp(p);
2168 KASSERT(l != NULL);
2169 lwp_lock(l);
2170 if (l->l_wchan)
2171 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2172 lwp_unlock(l);
2173 }
2174 if (p->p_pptr)
2175 ep->e_ppid = p->p_pptr->p_pid;
2176 if (p->p_pgrp && p->p_session) {
2177 ep->e_pgid = p->p_pgrp->pg_id;
2178 ep->e_jobc = p->p_pgrp->pg_jobc;
2179 ep->e_sid = p->p_session->s_sid;
2180 if ((p->p_lflag & PL_CONTROLT) &&
2181 (tp = ep->e_sess->s_ttyp)) {
2182 ep->e_tdev = tp->t_dev;
2183 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2184 ep->e_tsess = tp->t_session;
2185 } else
2186 ep->e_tdev = (uint32_t)NODEV;
2187 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2188 if (SESS_LEADER(p))
2189 ep->e_flag |= EPROC_SLEADER;
2190 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2191 }
2192 ep->e_xsize = ep->e_xrssize = 0;
2193 ep->e_xccount = ep->e_xswrss = 0;
2194 }
2195
2196 /*
2197 * Fill in a kinfo_proc2 structure for the specified process.
2198 */
2199 static void
2200 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2201 {
2202 struct tty *tp;
2203 struct lwp *l, *l2;
2204 struct timeval ut, st, rt;
2205 sigset_t ss1, ss2;
2206 struct rusage ru;
2207 struct vmspace *vm;
2208
2209 KASSERT(mutex_owned(proc_lock));
2210 KASSERT(mutex_owned(p->p_lock));
2211
2212 sigemptyset(&ss1);
2213 sigemptyset(&ss2);
2214 memset(ki, 0, sizeof(*ki));
2215
2216 ki->p_paddr = PTRTOUINT64(p);
2217 ki->p_fd = PTRTOUINT64(p->p_fd);
2218 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2219 ki->p_stats = PTRTOUINT64(p->p_stats);
2220 ki->p_limit = PTRTOUINT64(p->p_limit);
2221 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2222 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2223 ki->p_sess = PTRTOUINT64(p->p_session);
2224 ki->p_tsess = 0; /* may be changed if controlling tty below */
2225 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2226 ki->p_eflag = 0;
2227 ki->p_exitsig = p->p_exitsig;
2228 ki->p_flag = L_INMEM; /* Process never swapped out */
2229 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2230 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2231 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2232 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2233 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2234 ki->p_pid = p->p_pid;
2235 if (p->p_pptr)
2236 ki->p_ppid = p->p_pptr->p_pid;
2237 else
2238 ki->p_ppid = 0;
2239 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2240 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2241 ki->p_gid = kauth_cred_getegid(p->p_cred);
2242 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2243 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2244 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2245 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2246 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2247 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2248 UIO_SYSSPACE);
2249
2250 ki->p_uticks = p->p_uticks;
2251 ki->p_sticks = p->p_sticks;
2252 ki->p_iticks = p->p_iticks;
2253 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2254 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2255 ki->p_traceflag = p->p_traceflag;
2256
2257 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2258 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2259
2260 ki->p_cpticks = 0;
2261 ki->p_pctcpu = p->p_pctcpu;
2262 ki->p_estcpu = 0;
2263 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2264 ki->p_realstat = p->p_stat;
2265 ki->p_nice = p->p_nice;
2266 ki->p_xstat = p->p_xstat;
2267 ki->p_acflag = p->p_acflag;
2268
2269 strncpy(ki->p_comm, p->p_comm,
2270 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2271 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2272
2273 ki->p_nlwps = p->p_nlwps;
2274 ki->p_realflag = ki->p_flag;
2275
2276 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2277 vm = p->p_vmspace;
2278 ki->p_vm_rssize = vm_resident_count(vm);
2279 ki->p_vm_tsize = vm->vm_tsize;
2280 ki->p_vm_dsize = vm->vm_dsize;
2281 ki->p_vm_ssize = vm->vm_ssize;
2282 ki->p_vm_vsize = vm->vm_map.size;
2283 /*
2284 * Since the stack is initially mapped mostly with
2285 * PROT_NONE and grown as needed, adjust the "mapped size"
2286 * to skip the unused stack portion.
2287 */
2288 ki->p_vm_msize =
2289 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2290
2291 /* Pick the primary (first) LWP */
2292 l = proc_active_lwp(p);
2293 KASSERT(l != NULL);
2294 lwp_lock(l);
2295 ki->p_nrlwps = p->p_nrlwps;
2296 ki->p_forw = 0;
2297 ki->p_back = 0;
2298 ki->p_addr = PTRTOUINT64(l->l_addr);
2299 ki->p_stat = l->l_stat;
2300 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2301 ki->p_swtime = l->l_swtime;
2302 ki->p_slptime = l->l_slptime;
2303 if (l->l_stat == LSONPROC)
2304 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2305 else
2306 ki->p_schedflags = 0;
2307 ki->p_priority = lwp_eprio(l);
2308 ki->p_usrpri = l->l_priority;
2309 if (l->l_wchan)
2310 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2311 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2312 ki->p_cpuid = cpu_index(l->l_cpu);
2313 lwp_unlock(l);
2314 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2315 /* This is hardly correct, but... */
2316 sigplusset(&l->l_sigpend.sp_set, &ss1);
2317 sigplusset(&l->l_sigmask, &ss2);
2318 ki->p_cpticks += l->l_cpticks;
2319 ki->p_pctcpu += l->l_pctcpu;
2320 ki->p_estcpu += l->l_estcpu;
2321 }
2322 }
2323 sigplusset(&p->p_sigpend.sp_set, &ss2);
2324 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2325 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2326
2327 if (p->p_session != NULL) {
2328 ki->p_sid = p->p_session->s_sid;
2329 ki->p__pgid = p->p_pgrp->pg_id;
2330 if (p->p_session->s_ttyvp)
2331 ki->p_eflag |= EPROC_CTTY;
2332 if (SESS_LEADER(p))
2333 ki->p_eflag |= EPROC_SLEADER;
2334 strncpy(ki->p_login, p->p_session->s_login,
2335 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2336 ki->p_jobc = p->p_pgrp->pg_jobc;
2337 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2338 ki->p_tdev = tp->t_dev;
2339 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2340 ki->p_tsess = PTRTOUINT64(tp->t_session);
2341 } else {
2342 ki->p_tdev = (int32_t)NODEV;
2343 }
2344 }
2345
2346 if (!P_ZOMBIE(p) && !zombie) {
2347 ki->p_uvalid = 1;
2348 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2349 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2350
2351 calcru(p, &ut, &st, NULL, &rt);
2352 ki->p_rtime_sec = rt.tv_sec;
2353 ki->p_rtime_usec = rt.tv_usec;
2354 ki->p_uutime_sec = ut.tv_sec;
2355 ki->p_uutime_usec = ut.tv_usec;
2356 ki->p_ustime_sec = st.tv_sec;
2357 ki->p_ustime_usec = st.tv_usec;
2358
2359 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2360 ki->p_uru_nvcsw = 0;
2361 ki->p_uru_nivcsw = 0;
2362 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2363 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2364 ki->p_uru_nivcsw += l2->l_nivcsw;
2365 ruadd(&ru, &l2->l_ru);
2366 }
2367 ki->p_uru_maxrss = ru.ru_maxrss;
2368 ki->p_uru_ixrss = ru.ru_ixrss;
2369 ki->p_uru_idrss = ru.ru_idrss;
2370 ki->p_uru_isrss = ru.ru_isrss;
2371 ki->p_uru_minflt = ru.ru_minflt;
2372 ki->p_uru_majflt = ru.ru_majflt;
2373 ki->p_uru_nswap = ru.ru_nswap;
2374 ki->p_uru_inblock = ru.ru_inblock;
2375 ki->p_uru_oublock = ru.ru_oublock;
2376 ki->p_uru_msgsnd = ru.ru_msgsnd;
2377 ki->p_uru_msgrcv = ru.ru_msgrcv;
2378 ki->p_uru_nsignals = ru.ru_nsignals;
2379
2380 timeradd(&p->p_stats->p_cru.ru_utime,
2381 &p->p_stats->p_cru.ru_stime, &ut);
2382 ki->p_uctime_sec = ut.tv_sec;
2383 ki->p_uctime_usec = ut.tv_usec;
2384 }
2385 }
2386