Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.180.8.3
      1 /*	$NetBSD: kern_proc.c,v 1.180.8.3 2012/04/29 23:05:04 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.180.8.3 2012/04/29 23:05:04 mrg Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/kernel.h>
     77 #include <sys/proc.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/buf.h>
     80 #include <sys/acct.h>
     81 #include <sys/wait.h>
     82 #include <sys/file.h>
     83 #include <ufs/ufs/quota.h>
     84 #include <sys/uio.h>
     85 #include <sys/pool.h>
     86 #include <sys/pset.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/ras.h>
     92 #include <sys/filedesc.h>
     93 #include "sys/syscall_stats.h"
     94 #include <sys/kauth.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/atomic.h>
     97 #include <sys/kmem.h>
     98 #include <sys/dtrace_bsd.h>
     99 #include <sys/sysctl.h>
    100 #include <sys/exec.h>
    101 #include <sys/cpu.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 #include <uvm/uvm_extern.h>
    105 
    106 #ifdef COMPAT_NETBSD32
    107 #include <compat/netbsd32/netbsd32.h>
    108 #endif
    109 
    110 /*
    111  * Process lists.
    112  */
    113 
    114 struct proclist		allproc		__cacheline_aligned;
    115 struct proclist		zombproc	__cacheline_aligned;
    116 
    117 kmutex_t *		proc_lock	__cacheline_aligned;
    118 
    119 /*
    120  * pid to proc lookup is done by indexing the pid_table array.
    121  * Since pid numbers are only allocated when an empty slot
    122  * has been found, there is no need to search any lists ever.
    123  * (an orphaned pgrp will lock the slot, a session will lock
    124  * the pgrp with the same number.)
    125  * If the table is too small it is reallocated with twice the
    126  * previous size and the entries 'unzipped' into the two halves.
    127  * A linked list of free entries is passed through the pt_proc
    128  * field of 'free' items - set odd to be an invalid ptr.
    129  */
    130 
    131 struct pid_table {
    132 	struct proc	*pt_proc;
    133 	struct pgrp	*pt_pgrp;
    134 	pid_t		pt_pid;
    135 };
    136 #if 1	/* strongly typed cast - should be a noop */
    137 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    138 #else
    139 #define p2u(p) ((uint)p)
    140 #endif
    141 #define P_VALID(p) (!(p2u(p) & 1))
    142 #define P_NEXT(p) (p2u(p) >> 1)
    143 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    144 
    145 /*
    146  * Table of process IDs (PIDs).
    147  */
    148 static struct pid_table *pid_table	__read_mostly;
    149 
    150 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    151 
    152 /* Table mask, threshold for growing and number of allocated PIDs. */
    153 static u_int		pid_tbl_mask	__read_mostly;
    154 static u_int		pid_alloc_lim	__read_mostly;
    155 static u_int		pid_alloc_cnt	__cacheline_aligned;
    156 
    157 /* Next free, last free and maximum PIDs. */
    158 static u_int		next_free_pt	__cacheline_aligned;
    159 static u_int		last_free_pt	__cacheline_aligned;
    160 static pid_t		pid_max		__read_mostly;
    161 
    162 /* Components of the first process -- never freed. */
    163 
    164 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    165 
    166 struct session session0 = {
    167 	.s_count = 1,
    168 	.s_sid = 0,
    169 };
    170 struct pgrp pgrp0 = {
    171 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    172 	.pg_session = &session0,
    173 };
    174 filedesc_t filedesc0;
    175 struct cwdinfo cwdi0 = {
    176 	.cwdi_cmask = CMASK,		/* see cmask below */
    177 	.cwdi_refcnt = 1,
    178 };
    179 struct plimit limit0;
    180 struct pstats pstat0;
    181 struct vmspace vmspace0;
    182 struct sigacts sigacts0;
    183 struct proc proc0 = {
    184 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    185 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    186 	.p_nlwps = 1,
    187 	.p_nrlwps = 1,
    188 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    189 	.p_pgrp = &pgrp0,
    190 	.p_comm = "system",
    191 	/*
    192 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    193 	 * when they exit.  init(8) can easily wait them out for us.
    194 	 */
    195 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    196 	.p_stat = SACTIVE,
    197 	.p_nice = NZERO,
    198 	.p_emul = &emul_netbsd,
    199 	.p_cwdi = &cwdi0,
    200 	.p_limit = &limit0,
    201 	.p_fd = &filedesc0,
    202 	.p_vmspace = &vmspace0,
    203 	.p_stats = &pstat0,
    204 	.p_sigacts = &sigacts0,
    205 };
    206 kauth_cred_t cred0;
    207 
    208 static const int	nofile	= NOFILE;
    209 static const int	maxuprc	= MAXUPRC;
    210 static const int	cmask	= CMASK;
    211 
    212 static int sysctl_doeproc(SYSCTLFN_PROTO);
    213 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    214 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
    215 
    216 /*
    217  * The process list descriptors, used during pid allocation and
    218  * by sysctl.  No locking on this data structure is needed since
    219  * it is completely static.
    220  */
    221 const struct proclist_desc proclists[] = {
    222 	{ &allproc	},
    223 	{ &zombproc	},
    224 	{ NULL		},
    225 };
    226 
    227 static struct pgrp *	pg_remove(pid_t);
    228 static void		pg_delete(pid_t);
    229 static void		orphanpg(struct pgrp *);
    230 
    231 static specificdata_domain_t proc_specificdata_domain;
    232 
    233 static pool_cache_t proc_cache;
    234 
    235 static kauth_listener_t proc_listener;
    236 
    237 static int
    238 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    239     void *arg0, void *arg1, void *arg2, void *arg3)
    240 {
    241 	struct proc *p;
    242 	int result;
    243 
    244 	result = KAUTH_RESULT_DEFER;
    245 	p = arg0;
    246 
    247 	switch (action) {
    248 	case KAUTH_PROCESS_CANSEE: {
    249 		enum kauth_process_req req;
    250 
    251 		req = (enum kauth_process_req)arg1;
    252 
    253 		switch (req) {
    254 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    255 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    256 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    257 			result = KAUTH_RESULT_ALLOW;
    258 
    259 			break;
    260 
    261 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    262 			if (kauth_cred_getuid(cred) !=
    263 			    kauth_cred_getuid(p->p_cred) ||
    264 			    kauth_cred_getuid(cred) !=
    265 			    kauth_cred_getsvuid(p->p_cred))
    266 				break;
    267 
    268 			result = KAUTH_RESULT_ALLOW;
    269 
    270 			break;
    271 
    272 		default:
    273 			break;
    274 		}
    275 
    276 		break;
    277 		}
    278 
    279 	case KAUTH_PROCESS_FORK: {
    280 		int lnprocs = (int)(unsigned long)arg2;
    281 
    282 		/*
    283 		 * Don't allow a nonprivileged user to use the last few
    284 		 * processes. The variable lnprocs is the current number of
    285 		 * processes, maxproc is the limit.
    286 		 */
    287 		if (__predict_false((lnprocs >= maxproc - 5)))
    288 			break;
    289 
    290 		result = KAUTH_RESULT_ALLOW;
    291 
    292 		break;
    293 		}
    294 
    295 	case KAUTH_PROCESS_CORENAME:
    296 	case KAUTH_PROCESS_STOPFLAG:
    297 		if (proc_uidmatch(cred, p->p_cred) == 0)
    298 			result = KAUTH_RESULT_ALLOW;
    299 
    300 		break;
    301 
    302 	default:
    303 		break;
    304 	}
    305 
    306 	return result;
    307 }
    308 
    309 /*
    310  * Initialize global process hashing structures.
    311  */
    312 void
    313 procinit(void)
    314 {
    315 	const struct proclist_desc *pd;
    316 	u_int i;
    317 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    318 
    319 	for (pd = proclists; pd->pd_list != NULL; pd++)
    320 		LIST_INIT(pd->pd_list);
    321 
    322 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    323 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    324 	    * sizeof(struct pid_table), KM_SLEEP);
    325 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    326 	pid_max = PID_MAX;
    327 
    328 	/* Set free list running through table...
    329 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    330 	for (i = 0; i <= pid_tbl_mask; i++) {
    331 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    332 		pid_table[i].pt_pgrp = 0;
    333 		pid_table[i].pt_pid = 0;
    334 	}
    335 	/* slot 0 is just grabbed */
    336 	next_free_pt = 1;
    337 	/* Need to fix last entry. */
    338 	last_free_pt = pid_tbl_mask;
    339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    340 	/* point at which we grow table - to avoid reusing pids too often */
    341 	pid_alloc_lim = pid_tbl_mask - 1;
    342 #undef LINK_EMPTY
    343 
    344 	proc_specificdata_domain = specificdata_domain_create();
    345 	KASSERT(proc_specificdata_domain != NULL);
    346 
    347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    349 
    350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    351 	    proc_listener_cb, NULL);
    352 }
    353 
    354 void
    355 procinit_sysctl(void)
    356 {
    357 	static struct sysctllog *clog;
    358 
    359 	sysctl_createv(&clog, 0, NULL, NULL,
    360 		       CTLFLAG_PERMANENT,
    361 		       CTLTYPE_NODE, "kern", NULL,
    362 		       NULL, 0, NULL, 0,
    363 		       CTL_KERN, CTL_EOL);
    364 
    365 	sysctl_createv(&clog, 0, NULL, NULL,
    366 		       CTLFLAG_PERMANENT,
    367 		       CTLTYPE_NODE, "proc",
    368 		       SYSCTL_DESCR("System-wide process information"),
    369 		       sysctl_doeproc, 0, NULL, 0,
    370 		       CTL_KERN, KERN_PROC, CTL_EOL);
    371 	sysctl_createv(&clog, 0, NULL, NULL,
    372 		       CTLFLAG_PERMANENT,
    373 		       CTLTYPE_NODE, "proc2",
    374 		       SYSCTL_DESCR("Machine-independent process information"),
    375 		       sysctl_doeproc, 0, NULL, 0,
    376 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    377 	sysctl_createv(&clog, 0, NULL, NULL,
    378 		       CTLFLAG_PERMANENT,
    379 		       CTLTYPE_NODE, "proc_args",
    380 		       SYSCTL_DESCR("Process argument information"),
    381 		       sysctl_kern_proc_args, 0, NULL, 0,
    382 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    383 
    384 	/*
    385 	  "nodes" under these:
    386 
    387 	  KERN_PROC_ALL
    388 	  KERN_PROC_PID pid
    389 	  KERN_PROC_PGRP pgrp
    390 	  KERN_PROC_SESSION sess
    391 	  KERN_PROC_TTY tty
    392 	  KERN_PROC_UID uid
    393 	  KERN_PROC_RUID uid
    394 	  KERN_PROC_GID gid
    395 	  KERN_PROC_RGID gid
    396 
    397 	  all in all, probably not worth the effort...
    398 	*/
    399 }
    400 
    401 /*
    402  * Initialize process 0.
    403  */
    404 void
    405 proc0_init(void)
    406 {
    407 	struct proc *p;
    408 	struct pgrp *pg;
    409 	struct rlimit *rlim;
    410 	rlim_t lim;
    411 	int i;
    412 
    413 	p = &proc0;
    414 	pg = &pgrp0;
    415 
    416 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    417 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    418 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    419 
    420 	rw_init(&p->p_reflock);
    421 	cv_init(&p->p_waitcv, "wait");
    422 	cv_init(&p->p_lwpcv, "lwpwait");
    423 
    424 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    425 
    426 	pid_table[0].pt_proc = p;
    427 	LIST_INSERT_HEAD(&allproc, p, p_list);
    428 
    429 	pid_table[0].pt_pgrp = pg;
    430 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    431 
    432 #ifdef __HAVE_SYSCALL_INTERN
    433 	(*p->p_emul->e_syscall_intern)(p);
    434 #endif
    435 
    436 	/* Create credentials. */
    437 	cred0 = kauth_cred_alloc();
    438 	p->p_cred = cred0;
    439 
    440 	/* Create the CWD info. */
    441 	rw_init(&cwdi0.cwdi_lock);
    442 
    443 	/* Create the limits structures. */
    444 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    445 
    446 	rlim = limit0.pl_rlimit;
    447 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    448 		rlim[i].rlim_cur = RLIM_INFINITY;
    449 		rlim[i].rlim_max = RLIM_INFINITY;
    450 	}
    451 
    452 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    453 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    454 
    455 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    456 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    457 
    458 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    459 	rlim[RLIMIT_RSS].rlim_max = lim;
    460 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    461 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    462 
    463 	/* Note that default core name has zero length. */
    464 	limit0.pl_corename = defcorename;
    465 	limit0.pl_cnlen = 0;
    466 	limit0.pl_refcnt = 1;
    467 	limit0.pl_writeable = false;
    468 	limit0.pl_sv_limit = NULL;
    469 
    470 	/* Configure virtual memory system, set vm rlimits. */
    471 	uvm_init_limits(p);
    472 
    473 	/* Initialize file descriptor table for proc0. */
    474 	fd_init(&filedesc0);
    475 
    476 	/*
    477 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    478 	 * All kernel processes (which never have user space mappings)
    479 	 * share proc0's vmspace, and thus, the kernel pmap.
    480 	 */
    481 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    482 	    trunc_page(VM_MAX_ADDRESS));
    483 
    484 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    485 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    486 	siginit(p);
    487 
    488 	proc_initspecific(p);
    489 	kdtrace_proc_ctor(NULL, p);
    490 }
    491 
    492 /*
    493  * Session reference counting.
    494  */
    495 
    496 void
    497 proc_sesshold(struct session *ss)
    498 {
    499 
    500 	KASSERT(mutex_owned(proc_lock));
    501 	ss->s_count++;
    502 }
    503 
    504 void
    505 proc_sessrele(struct session *ss)
    506 {
    507 
    508 	KASSERT(mutex_owned(proc_lock));
    509 	/*
    510 	 * We keep the pgrp with the same id as the session in order to
    511 	 * stop a process being given the same pid.  Since the pgrp holds
    512 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    513 	 */
    514 	if (--ss->s_count == 0) {
    515 		struct pgrp *pg;
    516 
    517 		pg = pg_remove(ss->s_sid);
    518 		mutex_exit(proc_lock);
    519 
    520 		kmem_free(pg, sizeof(struct pgrp));
    521 		kmem_free(ss, sizeof(struct session));
    522 	} else {
    523 		mutex_exit(proc_lock);
    524 	}
    525 }
    526 
    527 /*
    528  * Check that the specified process group is in the session of the
    529  * specified process.
    530  * Treats -ve ids as process ids.
    531  * Used to validate TIOCSPGRP requests.
    532  */
    533 int
    534 pgid_in_session(struct proc *p, pid_t pg_id)
    535 {
    536 	struct pgrp *pgrp;
    537 	struct session *session;
    538 	int error;
    539 
    540 	mutex_enter(proc_lock);
    541 	if (pg_id < 0) {
    542 		struct proc *p1 = proc_find(-pg_id);
    543 		if (p1 == NULL) {
    544 			error = EINVAL;
    545 			goto fail;
    546 		}
    547 		pgrp = p1->p_pgrp;
    548 	} else {
    549 		pgrp = pgrp_find(pg_id);
    550 		if (pgrp == NULL) {
    551 			error = EINVAL;
    552 			goto fail;
    553 		}
    554 	}
    555 	session = pgrp->pg_session;
    556 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    557 fail:
    558 	mutex_exit(proc_lock);
    559 	return error;
    560 }
    561 
    562 /*
    563  * p_inferior: is p an inferior of q?
    564  */
    565 static inline bool
    566 p_inferior(struct proc *p, struct proc *q)
    567 {
    568 
    569 	KASSERT(mutex_owned(proc_lock));
    570 
    571 	for (; p != q; p = p->p_pptr)
    572 		if (p->p_pid == 0)
    573 			return false;
    574 	return true;
    575 }
    576 
    577 /*
    578  * proc_find: locate a process by the ID.
    579  *
    580  * => Must be called with proc_lock held.
    581  */
    582 proc_t *
    583 proc_find_raw(pid_t pid)
    584 {
    585 	struct pid_table *pt;
    586 	proc_t *p;
    587 
    588 	KASSERT(mutex_owned(proc_lock));
    589 	pt = &pid_table[pid & pid_tbl_mask];
    590 	p = pt->pt_proc;
    591 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    592 		return NULL;
    593 	}
    594 	return p;
    595 }
    596 
    597 proc_t *
    598 proc_find(pid_t pid)
    599 {
    600 	proc_t *p;
    601 
    602 	p = proc_find_raw(pid);
    603 	if (__predict_false(p == NULL)) {
    604 		return NULL;
    605 	}
    606 
    607 	/*
    608 	 * Only allow live processes to be found by PID.
    609 	 * XXX: p_stat might change, since unlocked.
    610 	 */
    611 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    612 		return p;
    613 	}
    614 	return NULL;
    615 }
    616 
    617 /*
    618  * pgrp_find: locate a process group by the ID.
    619  *
    620  * => Must be called with proc_lock held.
    621  */
    622 struct pgrp *
    623 pgrp_find(pid_t pgid)
    624 {
    625 	struct pgrp *pg;
    626 
    627 	KASSERT(mutex_owned(proc_lock));
    628 
    629 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    630 
    631 	/*
    632 	 * Cannot look up a process group that only exists because the
    633 	 * session has not died yet (traditional).
    634 	 */
    635 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    636 		return NULL;
    637 	}
    638 	return pg;
    639 }
    640 
    641 static void
    642 expand_pid_table(void)
    643 {
    644 	size_t pt_size, tsz;
    645 	struct pid_table *n_pt, *new_pt;
    646 	struct proc *proc;
    647 	struct pgrp *pgrp;
    648 	pid_t pid, rpid;
    649 	u_int i;
    650 	uint new_pt_mask;
    651 
    652 	pt_size = pid_tbl_mask + 1;
    653 	tsz = pt_size * 2 * sizeof(struct pid_table);
    654 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    655 	new_pt_mask = pt_size * 2 - 1;
    656 
    657 	mutex_enter(proc_lock);
    658 	if (pt_size != pid_tbl_mask + 1) {
    659 		/* Another process beat us to it... */
    660 		mutex_exit(proc_lock);
    661 		kmem_free(new_pt, tsz);
    662 		return;
    663 	}
    664 
    665 	/*
    666 	 * Copy entries from old table into new one.
    667 	 * If 'pid' is 'odd' we need to place in the upper half,
    668 	 * even pid's to the lower half.
    669 	 * Free items stay in the low half so we don't have to
    670 	 * fixup the reference to them.
    671 	 * We stuff free items on the front of the freelist
    672 	 * because we can't write to unmodified entries.
    673 	 * Processing the table backwards maintains a semblance
    674 	 * of issuing pid numbers that increase with time.
    675 	 */
    676 	i = pt_size - 1;
    677 	n_pt = new_pt + i;
    678 	for (; ; i--, n_pt--) {
    679 		proc = pid_table[i].pt_proc;
    680 		pgrp = pid_table[i].pt_pgrp;
    681 		if (!P_VALID(proc)) {
    682 			/* Up 'use count' so that link is valid */
    683 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    684 			rpid = 0;
    685 			proc = P_FREE(pid);
    686 			if (pgrp)
    687 				pid = pgrp->pg_id;
    688 		} else {
    689 			pid = pid_table[i].pt_pid;
    690 			rpid = pid;
    691 		}
    692 
    693 		/* Save entry in appropriate half of table */
    694 		n_pt[pid & pt_size].pt_proc = proc;
    695 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    696 		n_pt[pid & pt_size].pt_pid = rpid;
    697 
    698 		/* Put other piece on start of free list */
    699 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    700 		n_pt[pid & pt_size].pt_proc =
    701 			P_FREE((pid & ~pt_size) | next_free_pt);
    702 		n_pt[pid & pt_size].pt_pgrp = 0;
    703 		n_pt[pid & pt_size].pt_pid = 0;
    704 
    705 		next_free_pt = i | (pid & pt_size);
    706 		if (i == 0)
    707 			break;
    708 	}
    709 
    710 	/* Save old table size and switch tables */
    711 	tsz = pt_size * sizeof(struct pid_table);
    712 	n_pt = pid_table;
    713 	pid_table = new_pt;
    714 	pid_tbl_mask = new_pt_mask;
    715 
    716 	/*
    717 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    718 	 * allocated pids we need it to be larger!
    719 	 */
    720 	if (pid_tbl_mask > PID_MAX) {
    721 		pid_max = pid_tbl_mask * 2 + 1;
    722 		pid_alloc_lim |= pid_alloc_lim << 1;
    723 	} else
    724 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    725 
    726 	mutex_exit(proc_lock);
    727 	kmem_free(n_pt, tsz);
    728 }
    729 
    730 struct proc *
    731 proc_alloc(void)
    732 {
    733 	struct proc *p;
    734 
    735 	p = pool_cache_get(proc_cache, PR_WAITOK);
    736 	p->p_stat = SIDL;			/* protect against others */
    737 	proc_initspecific(p);
    738 	kdtrace_proc_ctor(NULL, p);
    739 	p->p_pid = -1;
    740 	proc_alloc_pid(p);
    741 	return p;
    742 }
    743 
    744 /*
    745  * proc_alloc_pid: allocate PID and record the given proc 'p' so that
    746  * proc_find_raw() can find it by the PID.
    747  */
    748 
    749 pid_t
    750 proc_alloc_pid(struct proc *p)
    751 {
    752 	struct pid_table *pt;
    753 	pid_t pid;
    754 	int nxt;
    755 
    756 	for (;;expand_pid_table()) {
    757 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    758 			/* ensure pids cycle through 2000+ values */
    759 			continue;
    760 		mutex_enter(proc_lock);
    761 		pt = &pid_table[next_free_pt];
    762 #ifdef DIAGNOSTIC
    763 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    764 			panic("proc_alloc: slot busy");
    765 #endif
    766 		nxt = P_NEXT(pt->pt_proc);
    767 		if (nxt & pid_tbl_mask)
    768 			break;
    769 		/* Table full - expand (NB last entry not used....) */
    770 		mutex_exit(proc_lock);
    771 	}
    772 
    773 	/* pid is 'saved use count' + 'size' + entry */
    774 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    775 	if ((uint)pid > (uint)pid_max)
    776 		pid &= pid_tbl_mask;
    777 	next_free_pt = nxt & pid_tbl_mask;
    778 
    779 	/* Grab table slot */
    780 	pt->pt_proc = p;
    781 
    782 	KASSERT(pt->pt_pid == 0);
    783 	pt->pt_pid = pid;
    784 	if (p->p_pid == -1) {
    785 		p->p_pid = pid;
    786 	}
    787 	pid_alloc_cnt++;
    788 	mutex_exit(proc_lock);
    789 
    790 	return pid;
    791 }
    792 
    793 /*
    794  * Free a process id - called from proc_free (in kern_exit.c)
    795  *
    796  * Called with the proc_lock held.
    797  */
    798 void
    799 proc_free_pid(pid_t pid)
    800 {
    801 	struct pid_table *pt;
    802 
    803 	KASSERT(mutex_owned(proc_lock));
    804 
    805 	pt = &pid_table[pid & pid_tbl_mask];
    806 
    807 	/* save pid use count in slot */
    808 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    809 	KASSERT(pt->pt_pid == pid);
    810 	pt->pt_pid = 0;
    811 
    812 	if (pt->pt_pgrp == NULL) {
    813 		/* link last freed entry onto ours */
    814 		pid &= pid_tbl_mask;
    815 		pt = &pid_table[last_free_pt];
    816 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    817 		pt->pt_pid = 0;
    818 		last_free_pt = pid;
    819 		pid_alloc_cnt--;
    820 	}
    821 
    822 	atomic_dec_uint(&nprocs);
    823 }
    824 
    825 void
    826 proc_free_mem(struct proc *p)
    827 {
    828 
    829 	kdtrace_proc_dtor(NULL, p);
    830 	pool_cache_put(proc_cache, p);
    831 }
    832 
    833 /*
    834  * proc_enterpgrp: move p to a new or existing process group (and session).
    835  *
    836  * If we are creating a new pgrp, the pgid should equal
    837  * the calling process' pid.
    838  * If is only valid to enter a process group that is in the session
    839  * of the process.
    840  * Also mksess should only be set if we are creating a process group
    841  *
    842  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    843  */
    844 int
    845 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    846 {
    847 	struct pgrp *new_pgrp, *pgrp;
    848 	struct session *sess;
    849 	struct proc *p;
    850 	int rval;
    851 	pid_t pg_id = NO_PGID;
    852 
    853 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    854 
    855 	/* Allocate data areas we might need before doing any validity checks */
    856 	mutex_enter(proc_lock);		/* Because pid_table might change */
    857 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    858 		mutex_exit(proc_lock);
    859 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    860 		mutex_enter(proc_lock);
    861 	} else
    862 		new_pgrp = NULL;
    863 	rval = EPERM;	/* most common error (to save typing) */
    864 
    865 	/* Check pgrp exists or can be created */
    866 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    867 	if (pgrp != NULL && pgrp->pg_id != pgid)
    868 		goto done;
    869 
    870 	/* Can only set another process under restricted circumstances. */
    871 	if (pid != curp->p_pid) {
    872 		/* Must exist and be one of our children... */
    873 		p = proc_find(pid);
    874 		if (p == NULL || !p_inferior(p, curp)) {
    875 			rval = ESRCH;
    876 			goto done;
    877 		}
    878 		/* ... in the same session... */
    879 		if (sess != NULL || p->p_session != curp->p_session)
    880 			goto done;
    881 		/* ... existing pgid must be in same session ... */
    882 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    883 			goto done;
    884 		/* ... and not done an exec. */
    885 		if (p->p_flag & PK_EXEC) {
    886 			rval = EACCES;
    887 			goto done;
    888 		}
    889 	} else {
    890 		/* ... setsid() cannot re-enter a pgrp */
    891 		if (mksess && (curp->p_pgid == curp->p_pid ||
    892 		    pgrp_find(curp->p_pid)))
    893 			goto done;
    894 		p = curp;
    895 	}
    896 
    897 	/* Changing the process group/session of a session
    898 	   leader is definitely off limits. */
    899 	if (SESS_LEADER(p)) {
    900 		if (sess == NULL && p->p_pgrp == pgrp)
    901 			/* unless it's a definite noop */
    902 			rval = 0;
    903 		goto done;
    904 	}
    905 
    906 	/* Can only create a process group with id of process */
    907 	if (pgrp == NULL && pgid != pid)
    908 		goto done;
    909 
    910 	/* Can only create a session if creating pgrp */
    911 	if (sess != NULL && pgrp != NULL)
    912 		goto done;
    913 
    914 	/* Check we allocated memory for a pgrp... */
    915 	if (pgrp == NULL && new_pgrp == NULL)
    916 		goto done;
    917 
    918 	/* Don't attach to 'zombie' pgrp */
    919 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    920 		goto done;
    921 
    922 	/* Expect to succeed now */
    923 	rval = 0;
    924 
    925 	if (pgrp == p->p_pgrp)
    926 		/* nothing to do */
    927 		goto done;
    928 
    929 	/* Ok all setup, link up required structures */
    930 
    931 	if (pgrp == NULL) {
    932 		pgrp = new_pgrp;
    933 		new_pgrp = NULL;
    934 		if (sess != NULL) {
    935 			sess->s_sid = p->p_pid;
    936 			sess->s_leader = p;
    937 			sess->s_count = 1;
    938 			sess->s_ttyvp = NULL;
    939 			sess->s_ttyp = NULL;
    940 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    941 			memcpy(sess->s_login, p->p_session->s_login,
    942 			    sizeof(sess->s_login));
    943 			p->p_lflag &= ~PL_CONTROLT;
    944 		} else {
    945 			sess = p->p_pgrp->pg_session;
    946 			proc_sesshold(sess);
    947 		}
    948 		pgrp->pg_session = sess;
    949 		sess = NULL;
    950 
    951 		pgrp->pg_id = pgid;
    952 		LIST_INIT(&pgrp->pg_members);
    953 #ifdef DIAGNOSTIC
    954 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    955 			panic("enterpgrp: pgrp table slot in use");
    956 		if (__predict_false(mksess && p != curp))
    957 			panic("enterpgrp: mksession and p != curproc");
    958 #endif
    959 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    960 		pgrp->pg_jobc = 0;
    961 	}
    962 
    963 	/*
    964 	 * Adjust eligibility of affected pgrps to participate in job control.
    965 	 * Increment eligibility counts before decrementing, otherwise we
    966 	 * could reach 0 spuriously during the first call.
    967 	 */
    968 	fixjobc(p, pgrp, 1);
    969 	fixjobc(p, p->p_pgrp, 0);
    970 
    971 	/* Interlock with ttread(). */
    972 	mutex_spin_enter(&tty_lock);
    973 
    974 	/* Move process to requested group. */
    975 	LIST_REMOVE(p, p_pglist);
    976 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    977 		/* defer delete until we've dumped the lock */
    978 		pg_id = p->p_pgrp->pg_id;
    979 	p->p_pgrp = pgrp;
    980 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    981 
    982 	/* Done with the swap; we can release the tty mutex. */
    983 	mutex_spin_exit(&tty_lock);
    984 
    985     done:
    986 	if (pg_id != NO_PGID) {
    987 		/* Releases proc_lock. */
    988 		pg_delete(pg_id);
    989 	} else {
    990 		mutex_exit(proc_lock);
    991 	}
    992 	if (sess != NULL)
    993 		kmem_free(sess, sizeof(*sess));
    994 	if (new_pgrp != NULL)
    995 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    996 #ifdef DEBUG_PGRP
    997 	if (__predict_false(rval))
    998 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    999 			pid, pgid, mksess, curp->p_pid, rval);
   1000 #endif
   1001 	return rval;
   1002 }
   1003 
   1004 /*
   1005  * proc_leavepgrp: remove a process from its process group.
   1006  *  => must be called with the proc_lock held, which will be released;
   1007  */
   1008 void
   1009 proc_leavepgrp(struct proc *p)
   1010 {
   1011 	struct pgrp *pgrp;
   1012 
   1013 	KASSERT(mutex_owned(proc_lock));
   1014 
   1015 	/* Interlock with ttread() */
   1016 	mutex_spin_enter(&tty_lock);
   1017 	pgrp = p->p_pgrp;
   1018 	LIST_REMOVE(p, p_pglist);
   1019 	p->p_pgrp = NULL;
   1020 	mutex_spin_exit(&tty_lock);
   1021 
   1022 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1023 		/* Releases proc_lock. */
   1024 		pg_delete(pgrp->pg_id);
   1025 	} else {
   1026 		mutex_exit(proc_lock);
   1027 	}
   1028 }
   1029 
   1030 /*
   1031  * pg_remove: remove a process group from the table.
   1032  *  => must be called with the proc_lock held;
   1033  *  => returns process group to free;
   1034  */
   1035 static struct pgrp *
   1036 pg_remove(pid_t pg_id)
   1037 {
   1038 	struct pgrp *pgrp;
   1039 	struct pid_table *pt;
   1040 
   1041 	KASSERT(mutex_owned(proc_lock));
   1042 
   1043 	pt = &pid_table[pg_id & pid_tbl_mask];
   1044 	pgrp = pt->pt_pgrp;
   1045 
   1046 	KASSERT(pgrp != NULL);
   1047 	KASSERT(pgrp->pg_id == pg_id);
   1048 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1049 
   1050 	pt->pt_pgrp = NULL;
   1051 
   1052 	if (!P_VALID(pt->pt_proc)) {
   1053 		/* Orphaned pgrp, put slot onto free list. */
   1054 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1055 		pg_id &= pid_tbl_mask;
   1056 		pt = &pid_table[last_free_pt];
   1057 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1058 		KASSERT(pt->pt_pid == 0);
   1059 		last_free_pt = pg_id;
   1060 		pid_alloc_cnt--;
   1061 	}
   1062 	return pgrp;
   1063 }
   1064 
   1065 /*
   1066  * pg_delete: delete and free a process group.
   1067  *  => must be called with the proc_lock held, which will be released.
   1068  */
   1069 static void
   1070 pg_delete(pid_t pg_id)
   1071 {
   1072 	struct pgrp *pg;
   1073 	struct tty *ttyp;
   1074 	struct session *ss;
   1075 
   1076 	KASSERT(mutex_owned(proc_lock));
   1077 
   1078 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1079 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1080 		mutex_exit(proc_lock);
   1081 		return;
   1082 	}
   1083 
   1084 	ss = pg->pg_session;
   1085 
   1086 	/* Remove reference (if any) from tty to this process group */
   1087 	mutex_spin_enter(&tty_lock);
   1088 	ttyp = ss->s_ttyp;
   1089 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1090 		ttyp->t_pgrp = NULL;
   1091 		KASSERT(ttyp->t_session == ss);
   1092 	}
   1093 	mutex_spin_exit(&tty_lock);
   1094 
   1095 	/*
   1096 	 * The leading process group in a session is freed by proc_sessrele(),
   1097 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1098 	 */
   1099 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1100 	proc_sessrele(ss);
   1101 
   1102 	if (pg != NULL) {
   1103 		/* Free it, if was not done by proc_sessrele(). */
   1104 		kmem_free(pg, sizeof(struct pgrp));
   1105 	}
   1106 }
   1107 
   1108 /*
   1109  * Adjust pgrp jobc counters when specified process changes process group.
   1110  * We count the number of processes in each process group that "qualify"
   1111  * the group for terminal job control (those with a parent in a different
   1112  * process group of the same session).  If that count reaches zero, the
   1113  * process group becomes orphaned.  Check both the specified process'
   1114  * process group and that of its children.
   1115  * entering == 0 => p is leaving specified group.
   1116  * entering == 1 => p is entering specified group.
   1117  *
   1118  * Call with proc_lock held.
   1119  */
   1120 void
   1121 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1122 {
   1123 	struct pgrp *hispgrp;
   1124 	struct session *mysession = pgrp->pg_session;
   1125 	struct proc *child;
   1126 
   1127 	KASSERT(mutex_owned(proc_lock));
   1128 
   1129 	/*
   1130 	 * Check p's parent to see whether p qualifies its own process
   1131 	 * group; if so, adjust count for p's process group.
   1132 	 */
   1133 	hispgrp = p->p_pptr->p_pgrp;
   1134 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1135 		if (entering) {
   1136 			pgrp->pg_jobc++;
   1137 			p->p_lflag &= ~PL_ORPHANPG;
   1138 		} else if (--pgrp->pg_jobc == 0)
   1139 			orphanpg(pgrp);
   1140 	}
   1141 
   1142 	/*
   1143 	 * Check this process' children to see whether they qualify
   1144 	 * their process groups; if so, adjust counts for children's
   1145 	 * process groups.
   1146 	 */
   1147 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1148 		hispgrp = child->p_pgrp;
   1149 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1150 		    !P_ZOMBIE(child)) {
   1151 			if (entering) {
   1152 				child->p_lflag &= ~PL_ORPHANPG;
   1153 				hispgrp->pg_jobc++;
   1154 			} else if (--hispgrp->pg_jobc == 0)
   1155 				orphanpg(hispgrp);
   1156 		}
   1157 	}
   1158 }
   1159 
   1160 /*
   1161  * A process group has become orphaned;
   1162  * if there are any stopped processes in the group,
   1163  * hang-up all process in that group.
   1164  *
   1165  * Call with proc_lock held.
   1166  */
   1167 static void
   1168 orphanpg(struct pgrp *pg)
   1169 {
   1170 	struct proc *p;
   1171 
   1172 	KASSERT(mutex_owned(proc_lock));
   1173 
   1174 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1175 		if (p->p_stat == SSTOP) {
   1176 			p->p_lflag |= PL_ORPHANPG;
   1177 			psignal(p, SIGHUP);
   1178 			psignal(p, SIGCONT);
   1179 		}
   1180 	}
   1181 }
   1182 
   1183 #ifdef DDB
   1184 #include <ddb/db_output.h>
   1185 void pidtbl_dump(void);
   1186 void
   1187 pidtbl_dump(void)
   1188 {
   1189 	struct pid_table *pt;
   1190 	struct proc *p;
   1191 	struct pgrp *pgrp;
   1192 	int id;
   1193 
   1194 	db_printf("pid table %p size %x, next %x, last %x\n",
   1195 		pid_table, pid_tbl_mask+1,
   1196 		next_free_pt, last_free_pt);
   1197 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1198 		p = pt->pt_proc;
   1199 		if (!P_VALID(p) && !pt->pt_pgrp)
   1200 			continue;
   1201 		db_printf("  id %x: ", id);
   1202 		if (P_VALID(p))
   1203 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1204 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1205 		else
   1206 			db_printf("next %x use %x\n",
   1207 				P_NEXT(p) & pid_tbl_mask,
   1208 				P_NEXT(p) & ~pid_tbl_mask);
   1209 		if ((pgrp = pt->pt_pgrp)) {
   1210 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1211 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1212 			    pgrp->pg_session->s_count,
   1213 			    pgrp->pg_session->s_login);
   1214 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1215 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1216 			    LIST_FIRST(&pgrp->pg_members));
   1217 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1218 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1219 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1220 			}
   1221 		}
   1222 	}
   1223 }
   1224 #endif /* DDB */
   1225 
   1226 #ifdef KSTACK_CHECK_MAGIC
   1227 
   1228 #define	KSTACK_MAGIC	0xdeadbeaf
   1229 
   1230 /* XXX should be per process basis? */
   1231 static int	kstackleftmin = KSTACK_SIZE;
   1232 static int	kstackleftthres = KSTACK_SIZE / 8;
   1233 
   1234 void
   1235 kstack_setup_magic(const struct lwp *l)
   1236 {
   1237 	uint32_t *ip;
   1238 	uint32_t const *end;
   1239 
   1240 	KASSERT(l != NULL);
   1241 	KASSERT(l != &lwp0);
   1242 
   1243 	/*
   1244 	 * fill all the stack with magic number
   1245 	 * so that later modification on it can be detected.
   1246 	 */
   1247 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1248 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1249 	for (; ip < end; ip++) {
   1250 		*ip = KSTACK_MAGIC;
   1251 	}
   1252 }
   1253 
   1254 void
   1255 kstack_check_magic(const struct lwp *l)
   1256 {
   1257 	uint32_t const *ip, *end;
   1258 	int stackleft;
   1259 
   1260 	KASSERT(l != NULL);
   1261 
   1262 	/* don't check proc0 */ /*XXX*/
   1263 	if (l == &lwp0)
   1264 		return;
   1265 
   1266 #ifdef __MACHINE_STACK_GROWS_UP
   1267 	/* stack grows upwards (eg. hppa) */
   1268 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1269 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1270 	for (ip--; ip >= end; ip--)
   1271 		if (*ip != KSTACK_MAGIC)
   1272 			break;
   1273 
   1274 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1275 #else /* __MACHINE_STACK_GROWS_UP */
   1276 	/* stack grows downwards (eg. i386) */
   1277 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1278 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1279 	for (; ip < end; ip++)
   1280 		if (*ip != KSTACK_MAGIC)
   1281 			break;
   1282 
   1283 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1284 #endif /* __MACHINE_STACK_GROWS_UP */
   1285 
   1286 	if (kstackleftmin > stackleft) {
   1287 		kstackleftmin = stackleft;
   1288 		if (stackleft < kstackleftthres)
   1289 			printf("warning: kernel stack left %d bytes"
   1290 			    "(pid %u:lid %u)\n", stackleft,
   1291 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1292 	}
   1293 
   1294 	if (stackleft <= 0) {
   1295 		panic("magic on the top of kernel stack changed for "
   1296 		    "pid %u, lid %u: maybe kernel stack overflow",
   1297 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1298 	}
   1299 }
   1300 #endif /* KSTACK_CHECK_MAGIC */
   1301 
   1302 int
   1303 proclist_foreach_call(struct proclist *list,
   1304     int (*callback)(struct proc *, void *arg), void *arg)
   1305 {
   1306 	struct proc marker;
   1307 	struct proc *p;
   1308 	int ret = 0;
   1309 
   1310 	marker.p_flag = PK_MARKER;
   1311 	mutex_enter(proc_lock);
   1312 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1313 		if (p->p_flag & PK_MARKER) {
   1314 			p = LIST_NEXT(p, p_list);
   1315 			continue;
   1316 		}
   1317 		LIST_INSERT_AFTER(p, &marker, p_list);
   1318 		ret = (*callback)(p, arg);
   1319 		KASSERT(mutex_owned(proc_lock));
   1320 		p = LIST_NEXT(&marker, p_list);
   1321 		LIST_REMOVE(&marker, p_list);
   1322 	}
   1323 	mutex_exit(proc_lock);
   1324 
   1325 	return ret;
   1326 }
   1327 
   1328 int
   1329 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1330 {
   1331 
   1332 	/* XXXCDC: how should locking work here? */
   1333 
   1334 	/* curproc exception is for coredump. */
   1335 
   1336 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1337 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1338 		return EFAULT;
   1339 	}
   1340 
   1341 	uvmspace_addref(p->p_vmspace);
   1342 	*vm = p->p_vmspace;
   1343 
   1344 	return 0;
   1345 }
   1346 
   1347 /*
   1348  * Acquire a write lock on the process credential.
   1349  */
   1350 void
   1351 proc_crmod_enter(void)
   1352 {
   1353 	struct lwp *l = curlwp;
   1354 	struct proc *p = l->l_proc;
   1355 	kauth_cred_t oc;
   1356 
   1357 	/* Reset what needs to be reset in plimit. */
   1358 	if (p->p_limit->pl_corename != defcorename) {
   1359 		lim_setcorename(p, defcorename, 0);
   1360 	}
   1361 
   1362 	mutex_enter(p->p_lock);
   1363 
   1364 	/* Ensure the LWP cached credentials are up to date. */
   1365 	if ((oc = l->l_cred) != p->p_cred) {
   1366 		kauth_cred_hold(p->p_cred);
   1367 		l->l_cred = p->p_cred;
   1368 		kauth_cred_free(oc);
   1369 	}
   1370 }
   1371 
   1372 /*
   1373  * Set in a new process credential, and drop the write lock.  The credential
   1374  * must have a reference already.  Optionally, free a no-longer required
   1375  * credential.  The scheduler also needs to inspect p_cred, so we also
   1376  * briefly acquire the sched state mutex.
   1377  */
   1378 void
   1379 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1380 {
   1381 	struct lwp *l = curlwp, *l2;
   1382 	struct proc *p = l->l_proc;
   1383 	kauth_cred_t oc;
   1384 
   1385 	KASSERT(mutex_owned(p->p_lock));
   1386 
   1387 	/* Is there a new credential to set in? */
   1388 	if (scred != NULL) {
   1389 		p->p_cred = scred;
   1390 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1391 			if (l2 != l)
   1392 				l2->l_prflag |= LPR_CRMOD;
   1393 		}
   1394 
   1395 		/* Ensure the LWP cached credentials are up to date. */
   1396 		if ((oc = l->l_cred) != scred) {
   1397 			kauth_cred_hold(scred);
   1398 			l->l_cred = scred;
   1399 		}
   1400 	} else
   1401 		oc = NULL;	/* XXXgcc */
   1402 
   1403 	if (sugid) {
   1404 		/*
   1405 		 * Mark process as having changed credentials, stops
   1406 		 * tracing etc.
   1407 		 */
   1408 		p->p_flag |= PK_SUGID;
   1409 	}
   1410 
   1411 	mutex_exit(p->p_lock);
   1412 
   1413 	/* If there is a credential to be released, free it now. */
   1414 	if (fcred != NULL) {
   1415 		KASSERT(scred != NULL);
   1416 		kauth_cred_free(fcred);
   1417 		if (oc != scred)
   1418 			kauth_cred_free(oc);
   1419 	}
   1420 }
   1421 
   1422 /*
   1423  * proc_specific_key_create --
   1424  *	Create a key for subsystem proc-specific data.
   1425  */
   1426 int
   1427 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1428 {
   1429 
   1430 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1431 }
   1432 
   1433 /*
   1434  * proc_specific_key_delete --
   1435  *	Delete a key for subsystem proc-specific data.
   1436  */
   1437 void
   1438 proc_specific_key_delete(specificdata_key_t key)
   1439 {
   1440 
   1441 	specificdata_key_delete(proc_specificdata_domain, key);
   1442 }
   1443 
   1444 /*
   1445  * proc_initspecific --
   1446  *	Initialize a proc's specificdata container.
   1447  */
   1448 void
   1449 proc_initspecific(struct proc *p)
   1450 {
   1451 	int error;
   1452 
   1453 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1454 	KASSERT(error == 0);
   1455 }
   1456 
   1457 /*
   1458  * proc_finispecific --
   1459  *	Finalize a proc's specificdata container.
   1460  */
   1461 void
   1462 proc_finispecific(struct proc *p)
   1463 {
   1464 
   1465 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1466 }
   1467 
   1468 /*
   1469  * proc_getspecific --
   1470  *	Return proc-specific data corresponding to the specified key.
   1471  */
   1472 void *
   1473 proc_getspecific(struct proc *p, specificdata_key_t key)
   1474 {
   1475 
   1476 	return (specificdata_getspecific(proc_specificdata_domain,
   1477 					 &p->p_specdataref, key));
   1478 }
   1479 
   1480 /*
   1481  * proc_setspecific --
   1482  *	Set proc-specific data corresponding to the specified key.
   1483  */
   1484 void
   1485 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1486 {
   1487 
   1488 	specificdata_setspecific(proc_specificdata_domain,
   1489 				 &p->p_specdataref, key, data);
   1490 }
   1491 
   1492 int
   1493 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1494 {
   1495 	int r = 0;
   1496 
   1497 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1498 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1499 		/*
   1500 		 * suid proc of ours or proc not ours
   1501 		 */
   1502 		r = EPERM;
   1503 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1504 		/*
   1505 		 * sgid proc has sgid back to us temporarily
   1506 		 */
   1507 		r = EPERM;
   1508 	} else {
   1509 		/*
   1510 		 * our rgid must be in target's group list (ie,
   1511 		 * sub-processes started by a sgid process)
   1512 		 */
   1513 		int ismember = 0;
   1514 
   1515 		if (kauth_cred_ismember_gid(cred,
   1516 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1517 		    !ismember)
   1518 			r = EPERM;
   1519 	}
   1520 
   1521 	return (r);
   1522 }
   1523 
   1524 /*
   1525  * sysctl stuff
   1526  */
   1527 
   1528 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1529 
   1530 static const u_int sysctl_flagmap[] = {
   1531 	PK_ADVLOCK, P_ADVLOCK,
   1532 	PK_EXEC, P_EXEC,
   1533 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1534 	PK_32, P_32,
   1535 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1536 	PK_SUGID, P_SUGID,
   1537 	0
   1538 };
   1539 
   1540 static const u_int sysctl_sflagmap[] = {
   1541 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1542 	PS_WEXIT, P_WEXIT,
   1543 	PS_STOPFORK, P_STOPFORK,
   1544 	PS_STOPEXEC, P_STOPEXEC,
   1545 	PS_STOPEXIT, P_STOPEXIT,
   1546 	0
   1547 };
   1548 
   1549 static const u_int sysctl_slflagmap[] = {
   1550 	PSL_TRACED, P_TRACED,
   1551 	PSL_FSTRACE, P_FSTRACE,
   1552 	PSL_CHTRACED, P_CHTRACED,
   1553 	PSL_SYSCALL, P_SYSCALL,
   1554 	0
   1555 };
   1556 
   1557 static const u_int sysctl_lflagmap[] = {
   1558 	PL_CONTROLT, P_CONTROLT,
   1559 	PL_PPWAIT, P_PPWAIT,
   1560 	0
   1561 };
   1562 
   1563 static const u_int sysctl_stflagmap[] = {
   1564 	PST_PROFIL, P_PROFIL,
   1565 	0
   1566 
   1567 };
   1568 
   1569 /* used by kern_lwp also */
   1570 const u_int sysctl_lwpflagmap[] = {
   1571 	LW_SINTR, L_SINTR,
   1572 	LW_SYSTEM, L_SYSTEM,
   1573 	0
   1574 };
   1575 
   1576 /*
   1577  * Find the most ``active'' lwp of a process and return it for ps display
   1578  * purposes
   1579  */
   1580 static struct lwp *
   1581 proc_active_lwp(struct proc *p)
   1582 {
   1583 	static const int ostat[] = {
   1584 		0,
   1585 		2,	/* LSIDL */
   1586 		6,	/* LSRUN */
   1587 		5,	/* LSSLEEP */
   1588 		4,	/* LSSTOP */
   1589 		0,	/* LSZOMB */
   1590 		1,	/* LSDEAD */
   1591 		7,	/* LSONPROC */
   1592 		3	/* LSSUSPENDED */
   1593 	};
   1594 
   1595 	struct lwp *l, *lp = NULL;
   1596 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1597 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1598 		if (lp == NULL ||
   1599 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1600 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1601 		    l->l_cpticks > lp->l_cpticks)) {
   1602 			lp = l;
   1603 			continue;
   1604 		}
   1605 	}
   1606 	return lp;
   1607 }
   1608 
   1609 static int
   1610 sysctl_doeproc(SYSCTLFN_ARGS)
   1611 {
   1612 	union {
   1613 		struct kinfo_proc kproc;
   1614 		struct kinfo_proc2 kproc2;
   1615 	} *kbuf;
   1616 	struct proc *p, *next, *marker;
   1617 	char *where, *dp;
   1618 	int type, op, arg, error;
   1619 	u_int elem_size, kelem_size, elem_count;
   1620 	size_t buflen, needed;
   1621 	bool match, zombie, mmmbrains;
   1622 
   1623 	if (namelen == 1 && name[0] == CTL_QUERY)
   1624 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1625 
   1626 	dp = where = oldp;
   1627 	buflen = where != NULL ? *oldlenp : 0;
   1628 	error = 0;
   1629 	needed = 0;
   1630 	type = rnode->sysctl_num;
   1631 
   1632 	if (type == KERN_PROC) {
   1633 		if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
   1634 			return (EINVAL);
   1635 		op = name[0];
   1636 		if (op != KERN_PROC_ALL)
   1637 			arg = name[1];
   1638 		else
   1639 			arg = 0;		/* Quell compiler warning */
   1640 		elem_count = 0;	/* Ditto */
   1641 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1642 	} else {
   1643 		if (namelen != 4)
   1644 			return (EINVAL);
   1645 		op = name[0];
   1646 		arg = name[1];
   1647 		elem_size = name[2];
   1648 		elem_count = name[3];
   1649 		kelem_size = sizeof(kbuf->kproc2);
   1650 	}
   1651 
   1652 	sysctl_unlock();
   1653 
   1654 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1655 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1656 	marker->p_flag = PK_MARKER;
   1657 
   1658 	mutex_enter(proc_lock);
   1659 	mmmbrains = false;
   1660 	for (p = LIST_FIRST(&allproc);; p = next) {
   1661 		if (p == NULL) {
   1662 			if (!mmmbrains) {
   1663 				p = LIST_FIRST(&zombproc);
   1664 				mmmbrains = true;
   1665 			}
   1666 			if (p == NULL)
   1667 				break;
   1668 		}
   1669 		next = LIST_NEXT(p, p_list);
   1670 		if ((p->p_flag & PK_MARKER) != 0)
   1671 			continue;
   1672 
   1673 		/*
   1674 		 * Skip embryonic processes.
   1675 		 */
   1676 		if (p->p_stat == SIDL)
   1677 			continue;
   1678 
   1679 		mutex_enter(p->p_lock);
   1680 		error = kauth_authorize_process(l->l_cred,
   1681 		    KAUTH_PROCESS_CANSEE, p,
   1682 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1683 		if (error != 0) {
   1684 			mutex_exit(p->p_lock);
   1685 			continue;
   1686 		}
   1687 
   1688 		/*
   1689 		 * TODO - make more efficient (see notes below).
   1690 		 * do by session.
   1691 		 */
   1692 		switch (op) {
   1693 		case KERN_PROC_PID:
   1694 			/* could do this with just a lookup */
   1695 			match = (p->p_pid == (pid_t)arg);
   1696 			break;
   1697 
   1698 		case KERN_PROC_PGRP:
   1699 			/* could do this by traversing pgrp */
   1700 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1701 			break;
   1702 
   1703 		case KERN_PROC_SESSION:
   1704 			match = (p->p_session->s_sid == (pid_t)arg);
   1705 			break;
   1706 
   1707 		case KERN_PROC_TTY:
   1708 			match = true;
   1709 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1710 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1711 				    p->p_session->s_ttyp == NULL ||
   1712 				    p->p_session->s_ttyvp != NULL) {
   1713 				    	match = false;
   1714 				}
   1715 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1716 			    p->p_session->s_ttyp == NULL) {
   1717 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1718 					match = false;
   1719 				}
   1720 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1721 				match = false;
   1722 			}
   1723 			break;
   1724 
   1725 		case KERN_PROC_UID:
   1726 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1727 			break;
   1728 
   1729 		case KERN_PROC_RUID:
   1730 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1731 			break;
   1732 
   1733 		case KERN_PROC_GID:
   1734 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1735 			break;
   1736 
   1737 		case KERN_PROC_RGID:
   1738 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1739 			break;
   1740 
   1741 		case KERN_PROC_ALL:
   1742 			match = true;
   1743 			/* allow everything */
   1744 			break;
   1745 
   1746 		default:
   1747 			error = EINVAL;
   1748 			mutex_exit(p->p_lock);
   1749 			goto cleanup;
   1750 		}
   1751 		if (!match) {
   1752 			mutex_exit(p->p_lock);
   1753 			continue;
   1754 		}
   1755 
   1756 		/*
   1757 		 * Grab a hold on the process.
   1758 		 */
   1759 		if (mmmbrains) {
   1760 			zombie = true;
   1761 		} else {
   1762 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1763 		}
   1764 		if (zombie) {
   1765 			LIST_INSERT_AFTER(p, marker, p_list);
   1766 		}
   1767 
   1768 		if (buflen >= elem_size &&
   1769 		    (type == KERN_PROC || elem_count > 0)) {
   1770 			if (type == KERN_PROC) {
   1771 				kbuf->kproc.kp_proc = *p;
   1772 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1773 			} else {
   1774 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1775 				elem_count--;
   1776 			}
   1777 			mutex_exit(p->p_lock);
   1778 			mutex_exit(proc_lock);
   1779 			/*
   1780 			 * Copy out elem_size, but not larger than kelem_size
   1781 			 */
   1782 			error = sysctl_copyout(l, kbuf, dp,
   1783 			    min(kelem_size, elem_size));
   1784 			mutex_enter(proc_lock);
   1785 			if (error) {
   1786 				goto bah;
   1787 			}
   1788 			dp += elem_size;
   1789 			buflen -= elem_size;
   1790 		} else {
   1791 			mutex_exit(p->p_lock);
   1792 		}
   1793 		needed += elem_size;
   1794 
   1795 		/*
   1796 		 * Release reference to process.
   1797 		 */
   1798 	 	if (zombie) {
   1799 			next = LIST_NEXT(marker, p_list);
   1800  			LIST_REMOVE(marker, p_list);
   1801 		} else {
   1802 			rw_exit(&p->p_reflock);
   1803 			next = LIST_NEXT(p, p_list);
   1804 		}
   1805 	}
   1806 	mutex_exit(proc_lock);
   1807 
   1808 	if (where != NULL) {
   1809 		*oldlenp = dp - where;
   1810 		if (needed > *oldlenp) {
   1811 			error = ENOMEM;
   1812 			goto out;
   1813 		}
   1814 	} else {
   1815 		needed += KERN_PROCSLOP;
   1816 		*oldlenp = needed;
   1817 	}
   1818 	if (kbuf)
   1819 		kmem_free(kbuf, sizeof(*kbuf));
   1820 	if (marker)
   1821 		kmem_free(marker, sizeof(*marker));
   1822 	sysctl_relock();
   1823 	return 0;
   1824  bah:
   1825  	if (zombie)
   1826  		LIST_REMOVE(marker, p_list);
   1827 	else
   1828 		rw_exit(&p->p_reflock);
   1829  cleanup:
   1830 	mutex_exit(proc_lock);
   1831  out:
   1832 	if (kbuf)
   1833 		kmem_free(kbuf, sizeof(*kbuf));
   1834 	if (marker)
   1835 		kmem_free(marker, sizeof(*marker));
   1836 	sysctl_relock();
   1837 	return error;
   1838 }
   1839 
   1840 int
   1841 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1842 {
   1843 
   1844 #ifdef COMPAT_NETBSD32
   1845 	if (p->p_flag & PK_32) {
   1846 		struct ps_strings32 arginfo32;
   1847 
   1848 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1849 		    sizeof(arginfo32));
   1850 		if (error)
   1851 			return error;
   1852 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1853 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1854 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1855 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1856 		return 0;
   1857 	}
   1858 #endif
   1859 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1860 }
   1861 
   1862 static int
   1863 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1864 {
   1865 	void **cookie = cookie_;
   1866 	struct lwp *l = cookie[0];
   1867 	char *dst = cookie[1];
   1868 
   1869 	return sysctl_copyout(l, src, dst + off, len);
   1870 }
   1871 
   1872 /*
   1873  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1874  */
   1875 static int
   1876 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1877 {
   1878 	struct ps_strings pss;
   1879 	struct proc *p;
   1880 	pid_t pid;
   1881 	int type, error;
   1882 	void *cookie[2];
   1883 
   1884 	if (namelen == 1 && name[0] == CTL_QUERY)
   1885 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1886 
   1887 	if (newp != NULL || namelen != 2)
   1888 		return (EINVAL);
   1889 	pid = name[0];
   1890 	type = name[1];
   1891 
   1892 	switch (type) {
   1893 	case KERN_PROC_ARGV:
   1894 	case KERN_PROC_NARGV:
   1895 	case KERN_PROC_ENV:
   1896 	case KERN_PROC_NENV:
   1897 		/* ok */
   1898 		break;
   1899 	default:
   1900 		return (EINVAL);
   1901 	}
   1902 
   1903 	sysctl_unlock();
   1904 
   1905 	/* check pid */
   1906 	mutex_enter(proc_lock);
   1907 	if ((p = proc_find(pid)) == NULL) {
   1908 		error = EINVAL;
   1909 		goto out_locked;
   1910 	}
   1911 	mutex_enter(p->p_lock);
   1912 
   1913 	/* Check permission. */
   1914 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1915 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1916 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1917 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1918 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1919 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1920 	else
   1921 		error = EINVAL; /* XXXGCC */
   1922 	if (error) {
   1923 		mutex_exit(p->p_lock);
   1924 		goto out_locked;
   1925 	}
   1926 
   1927 	if (oldp == NULL) {
   1928 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1929 			*oldlenp = sizeof (int);
   1930 		else
   1931 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1932 		error = 0;
   1933 		mutex_exit(p->p_lock);
   1934 		goto out_locked;
   1935 	}
   1936 
   1937 	/*
   1938 	 * Zombies don't have a stack, so we can't read their psstrings.
   1939 	 * System processes also don't have a user stack.
   1940 	 */
   1941 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1942 		error = EINVAL;
   1943 		mutex_exit(p->p_lock);
   1944 		goto out_locked;
   1945 	}
   1946 
   1947 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1948 	mutex_exit(p->p_lock);
   1949 	if (error) {
   1950 		goto out_locked;
   1951 	}
   1952 	mutex_exit(proc_lock);
   1953 
   1954 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1955 		int value;
   1956 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1957 			if (type == KERN_PROC_NARGV)
   1958 				value = pss.ps_nargvstr;
   1959 			else
   1960 				value = pss.ps_nenvstr;
   1961 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1962 			*oldlenp = sizeof(value);
   1963 		}
   1964 	} else {
   1965 		cookie[0] = l;
   1966 		cookie[1] = oldp;
   1967 		error = copy_procargs(p, type, oldlenp,
   1968 		    copy_procargs_sysctl_cb, cookie);
   1969 	}
   1970 	rw_exit(&p->p_reflock);
   1971 	sysctl_relock();
   1972 	return error;
   1973 
   1974 out_locked:
   1975 	mutex_exit(proc_lock);
   1976 	sysctl_relock();
   1977 	return error;
   1978 }
   1979 
   1980 int
   1981 copy_procargs(struct proc *p, int oid, size_t *limit,
   1982     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   1983 {
   1984 	struct ps_strings pss;
   1985 	size_t len, i, loaded, entry_len;
   1986 	struct uio auio;
   1987 	struct iovec aiov;
   1988 	int error, argvlen;
   1989 	char *arg;
   1990 	char **argv;
   1991 	vaddr_t user_argv;
   1992 	struct vmspace *vmspace;
   1993 
   1994 	/*
   1995 	 * Allocate a temporary buffer to hold the argument vector and
   1996 	 * the arguments themselve.
   1997 	 */
   1998 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   1999 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2000 
   2001 	/*
   2002 	 * Lock the process down in memory.
   2003 	 */
   2004 	vmspace = p->p_vmspace;
   2005 	uvmspace_addref(vmspace);
   2006 
   2007 	/*
   2008 	 * Read in the ps_strings structure.
   2009 	 */
   2010 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2011 		goto done;
   2012 
   2013 	/*
   2014 	 * Now read the address of the argument vector.
   2015 	 */
   2016 	switch (oid) {
   2017 	case KERN_PROC_ARGV:
   2018 		user_argv = (uintptr_t)pss.ps_argvstr;
   2019 		argvlen = pss.ps_nargvstr;
   2020 		break;
   2021 	case KERN_PROC_ENV:
   2022 		user_argv = (uintptr_t)pss.ps_envstr;
   2023 		argvlen = pss.ps_nenvstr;
   2024 		break;
   2025 	default:
   2026 		error = EINVAL;
   2027 		goto done;
   2028 	}
   2029 
   2030 	if (argvlen < 0) {
   2031 		error = EIO;
   2032 		goto done;
   2033 	}
   2034 
   2035 #ifdef COMPAT_NETBSD32
   2036 	if (p->p_flag & PK_32)
   2037 		entry_len = sizeof(netbsd32_charp);
   2038 	else
   2039 #endif
   2040 		entry_len = sizeof(char *);
   2041 
   2042 	/*
   2043 	 * Now copy each string.
   2044 	 */
   2045 	len = 0; /* bytes written to user buffer */
   2046 	loaded = 0; /* bytes from argv already processed */
   2047 	i = 0; /* To make compiler happy */
   2048 
   2049 	for (; argvlen; --argvlen) {
   2050 		int finished = 0;
   2051 		vaddr_t base;
   2052 		size_t xlen;
   2053 		int j;
   2054 
   2055 		if (loaded == 0) {
   2056 			size_t rem = entry_len * argvlen;
   2057 			loaded = MIN(rem, PAGE_SIZE);
   2058 			error = copyin_vmspace(vmspace,
   2059 			    (const void *)user_argv, argv, loaded);
   2060 			if (error)
   2061 				break;
   2062 			user_argv += loaded;
   2063 			i = 0;
   2064 		}
   2065 
   2066 #ifdef COMPAT_NETBSD32
   2067 		if (p->p_flag & PK_32) {
   2068 			netbsd32_charp *argv32;
   2069 
   2070 			argv32 = (netbsd32_charp *)argv;
   2071 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2072 		} else
   2073 #endif
   2074 			base = (vaddr_t)argv[i++];
   2075 		loaded -= entry_len;
   2076 
   2077 		/*
   2078 		 * The program has messed around with its arguments,
   2079 		 * possibly deleting some, and replacing them with
   2080 		 * NULL's. Treat this as the last argument and not
   2081 		 * a failure.
   2082 		 */
   2083 		if (base == 0)
   2084 			break;
   2085 
   2086 		while (!finished) {
   2087 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2088 
   2089 			aiov.iov_base = arg;
   2090 			aiov.iov_len = PAGE_SIZE;
   2091 			auio.uio_iov = &aiov;
   2092 			auio.uio_iovcnt = 1;
   2093 			auio.uio_offset = base;
   2094 			auio.uio_resid = xlen;
   2095 			auio.uio_rw = UIO_READ;
   2096 			UIO_SETUP_SYSSPACE(&auio);
   2097 			error = uvm_io(&vmspace->vm_map, &auio);
   2098 			if (error)
   2099 				goto done;
   2100 
   2101 			/* Look for the end of the string */
   2102 			for (j = 0; j < xlen; j++) {
   2103 				if (arg[j] == '\0') {
   2104 					xlen = j + 1;
   2105 					finished = 1;
   2106 					break;
   2107 				}
   2108 			}
   2109 
   2110 			/* Check for user buffer overflow */
   2111 			if (len + xlen > *limit) {
   2112 				finished = 1;
   2113 				if (len > *limit)
   2114 					xlen = 0;
   2115 				else
   2116 					xlen = *limit - len;
   2117 			}
   2118 
   2119 			/* Copyout the page */
   2120 			error = (*cb)(cookie, arg, len, xlen);
   2121 			if (error)
   2122 				goto done;
   2123 
   2124 			len += xlen;
   2125 			base += xlen;
   2126 		}
   2127 	}
   2128 	*limit = len;
   2129 
   2130 done:
   2131 	kmem_free(argv, PAGE_SIZE);
   2132 	kmem_free(arg, PAGE_SIZE);
   2133 	uvmspace_free(vmspace);
   2134 	return error;
   2135 }
   2136 
   2137 /*
   2138  * Fill in an eproc structure for the specified process.
   2139  */
   2140 void
   2141 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2142 {
   2143 	struct tty *tp;
   2144 	struct lwp *l;
   2145 
   2146 	KASSERT(mutex_owned(proc_lock));
   2147 	KASSERT(mutex_owned(p->p_lock));
   2148 
   2149 	memset(ep, 0, sizeof(*ep));
   2150 
   2151 	ep->e_paddr = p;
   2152 	ep->e_sess = p->p_session;
   2153 	if (p->p_cred) {
   2154 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2155 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2156 	}
   2157 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2158 		struct vmspace *vm = p->p_vmspace;
   2159 
   2160 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2161 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2162 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2163 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2164 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2165 
   2166 		/* Pick the primary (first) LWP */
   2167 		l = proc_active_lwp(p);
   2168 		KASSERT(l != NULL);
   2169 		lwp_lock(l);
   2170 		if (l->l_wchan)
   2171 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2172 		lwp_unlock(l);
   2173 	}
   2174 	if (p->p_pptr)
   2175 		ep->e_ppid = p->p_pptr->p_pid;
   2176 	if (p->p_pgrp && p->p_session) {
   2177 		ep->e_pgid = p->p_pgrp->pg_id;
   2178 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2179 		ep->e_sid = p->p_session->s_sid;
   2180 		if ((p->p_lflag & PL_CONTROLT) &&
   2181 		    (tp = ep->e_sess->s_ttyp)) {
   2182 			ep->e_tdev = tp->t_dev;
   2183 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2184 			ep->e_tsess = tp->t_session;
   2185 		} else
   2186 			ep->e_tdev = (uint32_t)NODEV;
   2187 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2188 		if (SESS_LEADER(p))
   2189 			ep->e_flag |= EPROC_SLEADER;
   2190 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2191 	}
   2192 	ep->e_xsize = ep->e_xrssize = 0;
   2193 	ep->e_xccount = ep->e_xswrss = 0;
   2194 }
   2195 
   2196 /*
   2197  * Fill in a kinfo_proc2 structure for the specified process.
   2198  */
   2199 static void
   2200 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2201 {
   2202 	struct tty *tp;
   2203 	struct lwp *l, *l2;
   2204 	struct timeval ut, st, rt;
   2205 	sigset_t ss1, ss2;
   2206 	struct rusage ru;
   2207 	struct vmspace *vm;
   2208 
   2209 	KASSERT(mutex_owned(proc_lock));
   2210 	KASSERT(mutex_owned(p->p_lock));
   2211 
   2212 	sigemptyset(&ss1);
   2213 	sigemptyset(&ss2);
   2214 	memset(ki, 0, sizeof(*ki));
   2215 
   2216 	ki->p_paddr = PTRTOUINT64(p);
   2217 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2218 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2219 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2220 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2221 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2222 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2223 	ki->p_sess = PTRTOUINT64(p->p_session);
   2224 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2225 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2226 	ki->p_eflag = 0;
   2227 	ki->p_exitsig = p->p_exitsig;
   2228 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2229 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2230 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2231 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2232 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2233 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2234 	ki->p_pid = p->p_pid;
   2235 	if (p->p_pptr)
   2236 		ki->p_ppid = p->p_pptr->p_pid;
   2237 	else
   2238 		ki->p_ppid = 0;
   2239 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2240 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2241 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2242 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2243 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2244 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2245 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2246 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2247 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2248 	    UIO_SYSSPACE);
   2249 
   2250 	ki->p_uticks = p->p_uticks;
   2251 	ki->p_sticks = p->p_sticks;
   2252 	ki->p_iticks = p->p_iticks;
   2253 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2254 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2255 	ki->p_traceflag = p->p_traceflag;
   2256 
   2257 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2258 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2259 
   2260 	ki->p_cpticks = 0;
   2261 	ki->p_pctcpu = p->p_pctcpu;
   2262 	ki->p_estcpu = 0;
   2263 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2264 	ki->p_realstat = p->p_stat;
   2265 	ki->p_nice = p->p_nice;
   2266 	ki->p_xstat = p->p_xstat;
   2267 	ki->p_acflag = p->p_acflag;
   2268 
   2269 	strncpy(ki->p_comm, p->p_comm,
   2270 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2271 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2272 
   2273 	ki->p_nlwps = p->p_nlwps;
   2274 	ki->p_realflag = ki->p_flag;
   2275 
   2276 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2277 		vm = p->p_vmspace;
   2278 		ki->p_vm_rssize = vm_resident_count(vm);
   2279 		ki->p_vm_tsize = vm->vm_tsize;
   2280 		ki->p_vm_dsize = vm->vm_dsize;
   2281 		ki->p_vm_ssize = vm->vm_ssize;
   2282 		ki->p_vm_vsize = vm->vm_map.size;
   2283 		/*
   2284 		 * Since the stack is initially mapped mostly with
   2285 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2286 		 * to skip the unused stack portion.
   2287 		 */
   2288 		ki->p_vm_msize =
   2289 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2290 
   2291 		/* Pick the primary (first) LWP */
   2292 		l = proc_active_lwp(p);
   2293 		KASSERT(l != NULL);
   2294 		lwp_lock(l);
   2295 		ki->p_nrlwps = p->p_nrlwps;
   2296 		ki->p_forw = 0;
   2297 		ki->p_back = 0;
   2298 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2299 		ki->p_stat = l->l_stat;
   2300 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2301 		ki->p_swtime = l->l_swtime;
   2302 		ki->p_slptime = l->l_slptime;
   2303 		if (l->l_stat == LSONPROC)
   2304 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2305 		else
   2306 			ki->p_schedflags = 0;
   2307 		ki->p_priority = lwp_eprio(l);
   2308 		ki->p_usrpri = l->l_priority;
   2309 		if (l->l_wchan)
   2310 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2311 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2312 		ki->p_cpuid = cpu_index(l->l_cpu);
   2313 		lwp_unlock(l);
   2314 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2315 			/* This is hardly correct, but... */
   2316 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2317 			sigplusset(&l->l_sigmask, &ss2);
   2318 			ki->p_cpticks += l->l_cpticks;
   2319 			ki->p_pctcpu += l->l_pctcpu;
   2320 			ki->p_estcpu += l->l_estcpu;
   2321 		}
   2322 	}
   2323 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2324 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2325 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2326 
   2327 	if (p->p_session != NULL) {
   2328 		ki->p_sid = p->p_session->s_sid;
   2329 		ki->p__pgid = p->p_pgrp->pg_id;
   2330 		if (p->p_session->s_ttyvp)
   2331 			ki->p_eflag |= EPROC_CTTY;
   2332 		if (SESS_LEADER(p))
   2333 			ki->p_eflag |= EPROC_SLEADER;
   2334 		strncpy(ki->p_login, p->p_session->s_login,
   2335 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2336 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2337 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2338 			ki->p_tdev = tp->t_dev;
   2339 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2340 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2341 		} else {
   2342 			ki->p_tdev = (int32_t)NODEV;
   2343 		}
   2344 	}
   2345 
   2346 	if (!P_ZOMBIE(p) && !zombie) {
   2347 		ki->p_uvalid = 1;
   2348 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2349 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2350 
   2351 		calcru(p, &ut, &st, NULL, &rt);
   2352 		ki->p_rtime_sec = rt.tv_sec;
   2353 		ki->p_rtime_usec = rt.tv_usec;
   2354 		ki->p_uutime_sec = ut.tv_sec;
   2355 		ki->p_uutime_usec = ut.tv_usec;
   2356 		ki->p_ustime_sec = st.tv_sec;
   2357 		ki->p_ustime_usec = st.tv_usec;
   2358 
   2359 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2360 		ki->p_uru_nvcsw = 0;
   2361 		ki->p_uru_nivcsw = 0;
   2362 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2363 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2364 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2365 			ruadd(&ru, &l2->l_ru);
   2366 		}
   2367 		ki->p_uru_maxrss = ru.ru_maxrss;
   2368 		ki->p_uru_ixrss = ru.ru_ixrss;
   2369 		ki->p_uru_idrss = ru.ru_idrss;
   2370 		ki->p_uru_isrss = ru.ru_isrss;
   2371 		ki->p_uru_minflt = ru.ru_minflt;
   2372 		ki->p_uru_majflt = ru.ru_majflt;
   2373 		ki->p_uru_nswap = ru.ru_nswap;
   2374 		ki->p_uru_inblock = ru.ru_inblock;
   2375 		ki->p_uru_oublock = ru.ru_oublock;
   2376 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2377 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2378 		ki->p_uru_nsignals = ru.ru_nsignals;
   2379 
   2380 		timeradd(&p->p_stats->p_cru.ru_utime,
   2381 			 &p->p_stats->p_cru.ru_stime, &ut);
   2382 		ki->p_uctime_sec = ut.tv_sec;
   2383 		ki->p_uctime_usec = ut.tv_usec;
   2384 	}
   2385 }
   2386