Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.182
      1 /*	$NetBSD: kern_proc.c,v 1.182 2012/02/19 21:06:52 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.182 2012/02/19 21:06:52 rmind Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/kernel.h>
     77 #include <sys/proc.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/buf.h>
     80 #include <sys/acct.h>
     81 #include <sys/wait.h>
     82 #include <sys/file.h>
     83 #include <ufs/ufs/quota.h>
     84 #include <sys/uio.h>
     85 #include <sys/pool.h>
     86 #include <sys/pset.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/ras.h>
     92 #include <sys/filedesc.h>
     93 #include "sys/syscall_stats.h"
     94 #include <sys/kauth.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/atomic.h>
     97 #include <sys/kmem.h>
     98 #include <sys/dtrace_bsd.h>
     99 #include <sys/sysctl.h>
    100 #include <sys/exec.h>
    101 #include <sys/cpu.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 #include <uvm/uvm_extern.h>
    105 
    106 #ifdef COMPAT_NETBSD32
    107 #include <compat/netbsd32/netbsd32.h>
    108 #endif
    109 
    110 /*
    111  * Process lists.
    112  */
    113 
    114 struct proclist		allproc		__cacheline_aligned;
    115 struct proclist		zombproc	__cacheline_aligned;
    116 
    117 kmutex_t *		proc_lock	__cacheline_aligned;
    118 
    119 /*
    120  * pid to proc lookup is done by indexing the pid_table array.
    121  * Since pid numbers are only allocated when an empty slot
    122  * has been found, there is no need to search any lists ever.
    123  * (an orphaned pgrp will lock the slot, a session will lock
    124  * the pgrp with the same number.)
    125  * If the table is too small it is reallocated with twice the
    126  * previous size and the entries 'unzipped' into the two halves.
    127  * A linked list of free entries is passed through the pt_proc
    128  * field of 'free' items - set odd to be an invalid ptr.
    129  */
    130 
    131 struct pid_table {
    132 	struct proc	*pt_proc;
    133 	struct pgrp	*pt_pgrp;
    134 	pid_t		pt_pid;
    135 };
    136 #if 1	/* strongly typed cast - should be a noop */
    137 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    138 #else
    139 #define p2u(p) ((uint)p)
    140 #endif
    141 #define P_VALID(p) (!(p2u(p) & 1))
    142 #define P_NEXT(p) (p2u(p) >> 1)
    143 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    144 
    145 /*
    146  * Table of process IDs (PIDs).
    147  */
    148 static struct pid_table *pid_table	__read_mostly;
    149 
    150 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    151 
    152 /* Table mask, threshold for growing and number of allocated PIDs. */
    153 static u_int		pid_tbl_mask	__read_mostly;
    154 static u_int		pid_alloc_lim	__read_mostly;
    155 static u_int		pid_alloc_cnt	__cacheline_aligned;
    156 
    157 /* Next free, last free and maximum PIDs. */
    158 static u_int		next_free_pt	__cacheline_aligned;
    159 static u_int		last_free_pt	__cacheline_aligned;
    160 static pid_t		pid_max		__read_mostly;
    161 
    162 /* Components of the first process -- never freed. */
    163 
    164 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    165 
    166 struct session session0 = {
    167 	.s_count = 1,
    168 	.s_sid = 0,
    169 };
    170 struct pgrp pgrp0 = {
    171 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    172 	.pg_session = &session0,
    173 };
    174 filedesc_t filedesc0;
    175 struct cwdinfo cwdi0 = {
    176 	.cwdi_cmask = CMASK,		/* see cmask below */
    177 	.cwdi_refcnt = 1,
    178 };
    179 struct plimit limit0;
    180 struct pstats pstat0;
    181 struct vmspace vmspace0;
    182 struct sigacts sigacts0;
    183 struct proc proc0 = {
    184 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    185 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    186 	.p_nlwps = 1,
    187 	.p_nrlwps = 1,
    188 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    189 	.p_pgrp = &pgrp0,
    190 	.p_comm = "system",
    191 	/*
    192 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    193 	 * when they exit.  init(8) can easily wait them out for us.
    194 	 */
    195 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    196 	.p_stat = SACTIVE,
    197 	.p_nice = NZERO,
    198 	.p_emul = &emul_netbsd,
    199 	.p_cwdi = &cwdi0,
    200 	.p_limit = &limit0,
    201 	.p_fd = &filedesc0,
    202 	.p_vmspace = &vmspace0,
    203 	.p_stats = &pstat0,
    204 	.p_sigacts = &sigacts0,
    205 };
    206 kauth_cred_t cred0;
    207 
    208 static const int	nofile	= NOFILE;
    209 static const int	maxuprc	= MAXUPRC;
    210 static const int	cmask	= CMASK;
    211 
    212 static int sysctl_doeproc(SYSCTLFN_PROTO);
    213 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    214 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
    215 
    216 /*
    217  * The process list descriptors, used during pid allocation and
    218  * by sysctl.  No locking on this data structure is needed since
    219  * it is completely static.
    220  */
    221 const struct proclist_desc proclists[] = {
    222 	{ &allproc	},
    223 	{ &zombproc	},
    224 	{ NULL		},
    225 };
    226 
    227 static struct pgrp *	pg_remove(pid_t);
    228 static void		pg_delete(pid_t);
    229 static void		orphanpg(struct pgrp *);
    230 
    231 static specificdata_domain_t proc_specificdata_domain;
    232 
    233 static pool_cache_t proc_cache;
    234 
    235 static kauth_listener_t proc_listener;
    236 
    237 static int
    238 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    239     void *arg0, void *arg1, void *arg2, void *arg3)
    240 {
    241 	struct proc *p;
    242 	int result;
    243 
    244 	result = KAUTH_RESULT_DEFER;
    245 	p = arg0;
    246 
    247 	switch (action) {
    248 	case KAUTH_PROCESS_CANSEE: {
    249 		enum kauth_process_req req;
    250 
    251 		req = (enum kauth_process_req)arg1;
    252 
    253 		switch (req) {
    254 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    255 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    256 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    257 			result = KAUTH_RESULT_ALLOW;
    258 
    259 			break;
    260 
    261 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    262 			if (kauth_cred_getuid(cred) !=
    263 			    kauth_cred_getuid(p->p_cred) ||
    264 			    kauth_cred_getuid(cred) !=
    265 			    kauth_cred_getsvuid(p->p_cred))
    266 				break;
    267 
    268 			result = KAUTH_RESULT_ALLOW;
    269 
    270 			break;
    271 
    272 		default:
    273 			break;
    274 		}
    275 
    276 		break;
    277 		}
    278 
    279 	case KAUTH_PROCESS_FORK: {
    280 		int lnprocs = (int)(unsigned long)arg2;
    281 
    282 		/*
    283 		 * Don't allow a nonprivileged user to use the last few
    284 		 * processes. The variable lnprocs is the current number of
    285 		 * processes, maxproc is the limit.
    286 		 */
    287 		if (__predict_false((lnprocs >= maxproc - 5)))
    288 			break;
    289 
    290 		result = KAUTH_RESULT_ALLOW;
    291 
    292 		break;
    293 		}
    294 
    295 	case KAUTH_PROCESS_CORENAME:
    296 	case KAUTH_PROCESS_STOPFLAG:
    297 		if (proc_uidmatch(cred, p->p_cred) == 0)
    298 			result = KAUTH_RESULT_ALLOW;
    299 
    300 		break;
    301 
    302 	default:
    303 		break;
    304 	}
    305 
    306 	return result;
    307 }
    308 
    309 /*
    310  * Initialize global process hashing structures.
    311  */
    312 void
    313 procinit(void)
    314 {
    315 	const struct proclist_desc *pd;
    316 	u_int i;
    317 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    318 
    319 	for (pd = proclists; pd->pd_list != NULL; pd++)
    320 		LIST_INIT(pd->pd_list);
    321 
    322 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    323 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    324 	    * sizeof(struct pid_table), KM_SLEEP);
    325 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    326 	pid_max = PID_MAX;
    327 
    328 	/* Set free list running through table...
    329 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    330 	for (i = 0; i <= pid_tbl_mask; i++) {
    331 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    332 		pid_table[i].pt_pgrp = 0;
    333 		pid_table[i].pt_pid = 0;
    334 	}
    335 	/* slot 0 is just grabbed */
    336 	next_free_pt = 1;
    337 	/* Need to fix last entry. */
    338 	last_free_pt = pid_tbl_mask;
    339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    340 	/* point at which we grow table - to avoid reusing pids too often */
    341 	pid_alloc_lim = pid_tbl_mask - 1;
    342 #undef LINK_EMPTY
    343 
    344 	proc_specificdata_domain = specificdata_domain_create();
    345 	KASSERT(proc_specificdata_domain != NULL);
    346 
    347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    349 
    350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    351 	    proc_listener_cb, NULL);
    352 }
    353 
    354 void
    355 procinit_sysctl(void)
    356 {
    357 	static struct sysctllog *clog;
    358 
    359 	sysctl_createv(&clog, 0, NULL, NULL,
    360 		       CTLFLAG_PERMANENT,
    361 		       CTLTYPE_NODE, "kern", NULL,
    362 		       NULL, 0, NULL, 0,
    363 		       CTL_KERN, CTL_EOL);
    364 
    365 	sysctl_createv(&clog, 0, NULL, NULL,
    366 		       CTLFLAG_PERMANENT,
    367 		       CTLTYPE_NODE, "proc",
    368 		       SYSCTL_DESCR("System-wide process information"),
    369 		       sysctl_doeproc, 0, NULL, 0,
    370 		       CTL_KERN, KERN_PROC, CTL_EOL);
    371 	sysctl_createv(&clog, 0, NULL, NULL,
    372 		       CTLFLAG_PERMANENT,
    373 		       CTLTYPE_NODE, "proc2",
    374 		       SYSCTL_DESCR("Machine-independent process information"),
    375 		       sysctl_doeproc, 0, NULL, 0,
    376 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    377 	sysctl_createv(&clog, 0, NULL, NULL,
    378 		       CTLFLAG_PERMANENT,
    379 		       CTLTYPE_NODE, "proc_args",
    380 		       SYSCTL_DESCR("Process argument information"),
    381 		       sysctl_kern_proc_args, 0, NULL, 0,
    382 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    383 
    384 	/*
    385 	  "nodes" under these:
    386 
    387 	  KERN_PROC_ALL
    388 	  KERN_PROC_PID pid
    389 	  KERN_PROC_PGRP pgrp
    390 	  KERN_PROC_SESSION sess
    391 	  KERN_PROC_TTY tty
    392 	  KERN_PROC_UID uid
    393 	  KERN_PROC_RUID uid
    394 	  KERN_PROC_GID gid
    395 	  KERN_PROC_RGID gid
    396 
    397 	  all in all, probably not worth the effort...
    398 	*/
    399 }
    400 
    401 /*
    402  * Initialize process 0.
    403  */
    404 void
    405 proc0_init(void)
    406 {
    407 	struct proc *p;
    408 	struct pgrp *pg;
    409 	struct rlimit *rlim;
    410 	rlim_t lim;
    411 	int i;
    412 
    413 	p = &proc0;
    414 	pg = &pgrp0;
    415 
    416 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    417 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    418 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    419 
    420 	rw_init(&p->p_reflock);
    421 	cv_init(&p->p_waitcv, "wait");
    422 	cv_init(&p->p_lwpcv, "lwpwait");
    423 
    424 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    425 
    426 	pid_table[0].pt_proc = p;
    427 	LIST_INSERT_HEAD(&allproc, p, p_list);
    428 
    429 	pid_table[0].pt_pgrp = pg;
    430 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    431 
    432 #ifdef __HAVE_SYSCALL_INTERN
    433 	(*p->p_emul->e_syscall_intern)(p);
    434 #endif
    435 
    436 	/* Create credentials. */
    437 	cred0 = kauth_cred_alloc();
    438 	p->p_cred = cred0;
    439 
    440 	/* Create the CWD info. */
    441 	rw_init(&cwdi0.cwdi_lock);
    442 
    443 	/* Create the limits structures. */
    444 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    445 
    446 	rlim = limit0.pl_rlimit;
    447 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    448 		rlim[i].rlim_cur = RLIM_INFINITY;
    449 		rlim[i].rlim_max = RLIM_INFINITY;
    450 	}
    451 
    452 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    453 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    454 
    455 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    456 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    457 
    458 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    459 	rlim[RLIMIT_RSS].rlim_max = lim;
    460 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    461 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    462 
    463 	/* Note that default core name has zero length. */
    464 	limit0.pl_corename = defcorename;
    465 	limit0.pl_cnlen = 0;
    466 	limit0.pl_refcnt = 1;
    467 	limit0.pl_writeable = false;
    468 	limit0.pl_sv_limit = NULL;
    469 
    470 	/* Configure virtual memory system, set vm rlimits. */
    471 	uvm_init_limits(p);
    472 
    473 	/* Initialize file descriptor table for proc0. */
    474 	fd_init(&filedesc0);
    475 
    476 	/*
    477 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    478 	 * All kernel processes (which never have user space mappings)
    479 	 * share proc0's vmspace, and thus, the kernel pmap.
    480 	 */
    481 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    482 	    trunc_page(VM_MAX_ADDRESS));
    483 
    484 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    485 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    486 	siginit(p);
    487 
    488 	proc_initspecific(p);
    489 	kdtrace_proc_ctor(NULL, p);
    490 }
    491 
    492 /*
    493  * Session reference counting.
    494  */
    495 
    496 void
    497 proc_sesshold(struct session *ss)
    498 {
    499 
    500 	KASSERT(mutex_owned(proc_lock));
    501 	ss->s_count++;
    502 }
    503 
    504 void
    505 proc_sessrele(struct session *ss)
    506 {
    507 
    508 	KASSERT(mutex_owned(proc_lock));
    509 	/*
    510 	 * We keep the pgrp with the same id as the session in order to
    511 	 * stop a process being given the same pid.  Since the pgrp holds
    512 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    513 	 */
    514 	if (--ss->s_count == 0) {
    515 		struct pgrp *pg;
    516 
    517 		pg = pg_remove(ss->s_sid);
    518 		mutex_exit(proc_lock);
    519 
    520 		kmem_free(pg, sizeof(struct pgrp));
    521 		kmem_free(ss, sizeof(struct session));
    522 	} else {
    523 		mutex_exit(proc_lock);
    524 	}
    525 }
    526 
    527 /*
    528  * Check that the specified process group is in the session of the
    529  * specified process.
    530  * Treats -ve ids as process ids.
    531  * Used to validate TIOCSPGRP requests.
    532  */
    533 int
    534 pgid_in_session(struct proc *p, pid_t pg_id)
    535 {
    536 	struct pgrp *pgrp;
    537 	struct session *session;
    538 	int error;
    539 
    540 	mutex_enter(proc_lock);
    541 	if (pg_id < 0) {
    542 		struct proc *p1 = proc_find(-pg_id);
    543 		if (p1 == NULL) {
    544 			error = EINVAL;
    545 			goto fail;
    546 		}
    547 		pgrp = p1->p_pgrp;
    548 	} else {
    549 		pgrp = pgrp_find(pg_id);
    550 		if (pgrp == NULL) {
    551 			error = EINVAL;
    552 			goto fail;
    553 		}
    554 	}
    555 	session = pgrp->pg_session;
    556 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    557 fail:
    558 	mutex_exit(proc_lock);
    559 	return error;
    560 }
    561 
    562 /*
    563  * p_inferior: is p an inferior of q?
    564  */
    565 static inline bool
    566 p_inferior(struct proc *p, struct proc *q)
    567 {
    568 
    569 	KASSERT(mutex_owned(proc_lock));
    570 
    571 	for (; p != q; p = p->p_pptr)
    572 		if (p->p_pid == 0)
    573 			return false;
    574 	return true;
    575 }
    576 
    577 /*
    578  * proc_find: locate a process by the ID.
    579  *
    580  * => Must be called with proc_lock held.
    581  */
    582 proc_t *
    583 proc_find_raw(pid_t pid)
    584 {
    585 	struct pid_table *pt;
    586 	proc_t *p;
    587 
    588 	KASSERT(mutex_owned(proc_lock));
    589 	pt = &pid_table[pid & pid_tbl_mask];
    590 	p = pt->pt_proc;
    591 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    592 		return NULL;
    593 	}
    594 	return p;
    595 }
    596 
    597 proc_t *
    598 proc_find(pid_t pid)
    599 {
    600 	proc_t *p;
    601 
    602 	p = proc_find_raw(pid);
    603 	if (__predict_false(p == NULL)) {
    604 		return NULL;
    605 	}
    606 
    607 	/*
    608 	 * Only allow live processes to be found by PID.
    609 	 * XXX: p_stat might change, since unlocked.
    610 	 */
    611 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    612 		return p;
    613 	}
    614 	return NULL;
    615 }
    616 
    617 /*
    618  * pgrp_find: locate a process group by the ID.
    619  *
    620  * => Must be called with proc_lock held.
    621  */
    622 struct pgrp *
    623 pgrp_find(pid_t pgid)
    624 {
    625 	struct pgrp *pg;
    626 
    627 	KASSERT(mutex_owned(proc_lock));
    628 
    629 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    630 
    631 	/*
    632 	 * Cannot look up a process group that only exists because the
    633 	 * session has not died yet (traditional).
    634 	 */
    635 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    636 		return NULL;
    637 	}
    638 	return pg;
    639 }
    640 
    641 static void
    642 expand_pid_table(void)
    643 {
    644 	size_t pt_size, tsz;
    645 	struct pid_table *n_pt, *new_pt;
    646 	struct proc *proc;
    647 	struct pgrp *pgrp;
    648 	pid_t pid, rpid;
    649 	u_int i;
    650 	uint new_pt_mask;
    651 
    652 	pt_size = pid_tbl_mask + 1;
    653 	tsz = pt_size * 2 * sizeof(struct pid_table);
    654 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    655 	new_pt_mask = pt_size * 2 - 1;
    656 
    657 	mutex_enter(proc_lock);
    658 	if (pt_size != pid_tbl_mask + 1) {
    659 		/* Another process beat us to it... */
    660 		mutex_exit(proc_lock);
    661 		kmem_free(new_pt, tsz);
    662 		return;
    663 	}
    664 
    665 	/*
    666 	 * Copy entries from old table into new one.
    667 	 * If 'pid' is 'odd' we need to place in the upper half,
    668 	 * even pid's to the lower half.
    669 	 * Free items stay in the low half so we don't have to
    670 	 * fixup the reference to them.
    671 	 * We stuff free items on the front of the freelist
    672 	 * because we can't write to unmodified entries.
    673 	 * Processing the table backwards maintains a semblance
    674 	 * of issuing pid numbers that increase with time.
    675 	 */
    676 	i = pt_size - 1;
    677 	n_pt = new_pt + i;
    678 	for (; ; i--, n_pt--) {
    679 		proc = pid_table[i].pt_proc;
    680 		pgrp = pid_table[i].pt_pgrp;
    681 		if (!P_VALID(proc)) {
    682 			/* Up 'use count' so that link is valid */
    683 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    684 			rpid = 0;
    685 			proc = P_FREE(pid);
    686 			if (pgrp)
    687 				pid = pgrp->pg_id;
    688 		} else {
    689 			pid = pid_table[i].pt_pid;
    690 			rpid = pid;
    691 		}
    692 
    693 		/* Save entry in appropriate half of table */
    694 		n_pt[pid & pt_size].pt_proc = proc;
    695 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    696 		n_pt[pid & pt_size].pt_pid = rpid;
    697 
    698 		/* Put other piece on start of free list */
    699 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    700 		n_pt[pid & pt_size].pt_proc =
    701 			P_FREE((pid & ~pt_size) | next_free_pt);
    702 		n_pt[pid & pt_size].pt_pgrp = 0;
    703 		n_pt[pid & pt_size].pt_pid = 0;
    704 
    705 		next_free_pt = i | (pid & pt_size);
    706 		if (i == 0)
    707 			break;
    708 	}
    709 
    710 	/* Save old table size and switch tables */
    711 	tsz = pt_size * sizeof(struct pid_table);
    712 	n_pt = pid_table;
    713 	pid_table = new_pt;
    714 	pid_tbl_mask = new_pt_mask;
    715 
    716 	/*
    717 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    718 	 * allocated pids we need it to be larger!
    719 	 */
    720 	if (pid_tbl_mask > PID_MAX) {
    721 		pid_max = pid_tbl_mask * 2 + 1;
    722 		pid_alloc_lim |= pid_alloc_lim << 1;
    723 	} else
    724 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    725 
    726 	mutex_exit(proc_lock);
    727 	kmem_free(n_pt, tsz);
    728 }
    729 
    730 struct proc *
    731 proc_alloc(void)
    732 {
    733 	struct proc *p;
    734 
    735 	p = pool_cache_get(proc_cache, PR_WAITOK);
    736 	p->p_stat = SIDL;			/* protect against others */
    737 	proc_initspecific(p);
    738 	kdtrace_proc_ctor(NULL, p);
    739 	p->p_pid = -1;
    740 	proc_alloc_pid(p);
    741 	return p;
    742 }
    743 
    744 pid_t
    745 proc_alloc_pid(struct proc *p)
    746 {
    747 	struct pid_table *pt;
    748 	pid_t pid;
    749 	int nxt;
    750 
    751 	for (;;expand_pid_table()) {
    752 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    753 			/* ensure pids cycle through 2000+ values */
    754 			continue;
    755 		mutex_enter(proc_lock);
    756 		pt = &pid_table[next_free_pt];
    757 #ifdef DIAGNOSTIC
    758 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    759 			panic("proc_alloc: slot busy");
    760 #endif
    761 		nxt = P_NEXT(pt->pt_proc);
    762 		if (nxt & pid_tbl_mask)
    763 			break;
    764 		/* Table full - expand (NB last entry not used....) */
    765 		mutex_exit(proc_lock);
    766 	}
    767 
    768 	/* pid is 'saved use count' + 'size' + entry */
    769 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    770 	if ((uint)pid > (uint)pid_max)
    771 		pid &= pid_tbl_mask;
    772 	next_free_pt = nxt & pid_tbl_mask;
    773 
    774 	/* Grab table slot */
    775 	pt->pt_proc = p;
    776 
    777 	KASSERT(pt->pt_pid == 0);
    778 	pt->pt_pid = pid;
    779 	if (p->p_pid == -1) {
    780 		p->p_pid = pid;
    781 	}
    782 	pid_alloc_cnt++;
    783 	mutex_exit(proc_lock);
    784 
    785 	return pid;
    786 }
    787 
    788 /*
    789  * Free a process id - called from proc_free (in kern_exit.c)
    790  *
    791  * Called with the proc_lock held.
    792  */
    793 void
    794 proc_free_pid(pid_t pid)
    795 {
    796 	struct pid_table *pt;
    797 
    798 	KASSERT(mutex_owned(proc_lock));
    799 
    800 	pt = &pid_table[pid & pid_tbl_mask];
    801 
    802 	/* save pid use count in slot */
    803 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    804 	KASSERT(pt->pt_pid == pid);
    805 	pt->pt_pid = 0;
    806 
    807 	if (pt->pt_pgrp == NULL) {
    808 		/* link last freed entry onto ours */
    809 		pid &= pid_tbl_mask;
    810 		pt = &pid_table[last_free_pt];
    811 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    812 		pt->pt_pid = 0;
    813 		last_free_pt = pid;
    814 		pid_alloc_cnt--;
    815 	}
    816 
    817 	atomic_dec_uint(&nprocs);
    818 }
    819 
    820 void
    821 proc_free_mem(struct proc *p)
    822 {
    823 
    824 	kdtrace_proc_dtor(NULL, p);
    825 	pool_cache_put(proc_cache, p);
    826 }
    827 
    828 /*
    829  * proc_enterpgrp: move p to a new or existing process group (and session).
    830  *
    831  * If we are creating a new pgrp, the pgid should equal
    832  * the calling process' pid.
    833  * If is only valid to enter a process group that is in the session
    834  * of the process.
    835  * Also mksess should only be set if we are creating a process group
    836  *
    837  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    838  */
    839 int
    840 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    841 {
    842 	struct pgrp *new_pgrp, *pgrp;
    843 	struct session *sess;
    844 	struct proc *p;
    845 	int rval;
    846 	pid_t pg_id = NO_PGID;
    847 
    848 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    849 
    850 	/* Allocate data areas we might need before doing any validity checks */
    851 	mutex_enter(proc_lock);		/* Because pid_table might change */
    852 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    853 		mutex_exit(proc_lock);
    854 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    855 		mutex_enter(proc_lock);
    856 	} else
    857 		new_pgrp = NULL;
    858 	rval = EPERM;	/* most common error (to save typing) */
    859 
    860 	/* Check pgrp exists or can be created */
    861 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    862 	if (pgrp != NULL && pgrp->pg_id != pgid)
    863 		goto done;
    864 
    865 	/* Can only set another process under restricted circumstances. */
    866 	if (pid != curp->p_pid) {
    867 		/* Must exist and be one of our children... */
    868 		p = proc_find(pid);
    869 		if (p == NULL || !p_inferior(p, curp)) {
    870 			rval = ESRCH;
    871 			goto done;
    872 		}
    873 		/* ... in the same session... */
    874 		if (sess != NULL || p->p_session != curp->p_session)
    875 			goto done;
    876 		/* ... existing pgid must be in same session ... */
    877 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    878 			goto done;
    879 		/* ... and not done an exec. */
    880 		if (p->p_flag & PK_EXEC) {
    881 			rval = EACCES;
    882 			goto done;
    883 		}
    884 	} else {
    885 		/* ... setsid() cannot re-enter a pgrp */
    886 		if (mksess && (curp->p_pgid == curp->p_pid ||
    887 		    pgrp_find(curp->p_pid)))
    888 			goto done;
    889 		p = curp;
    890 	}
    891 
    892 	/* Changing the process group/session of a session
    893 	   leader is definitely off limits. */
    894 	if (SESS_LEADER(p)) {
    895 		if (sess == NULL && p->p_pgrp == pgrp)
    896 			/* unless it's a definite noop */
    897 			rval = 0;
    898 		goto done;
    899 	}
    900 
    901 	/* Can only create a process group with id of process */
    902 	if (pgrp == NULL && pgid != pid)
    903 		goto done;
    904 
    905 	/* Can only create a session if creating pgrp */
    906 	if (sess != NULL && pgrp != NULL)
    907 		goto done;
    908 
    909 	/* Check we allocated memory for a pgrp... */
    910 	if (pgrp == NULL && new_pgrp == NULL)
    911 		goto done;
    912 
    913 	/* Don't attach to 'zombie' pgrp */
    914 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    915 		goto done;
    916 
    917 	/* Expect to succeed now */
    918 	rval = 0;
    919 
    920 	if (pgrp == p->p_pgrp)
    921 		/* nothing to do */
    922 		goto done;
    923 
    924 	/* Ok all setup, link up required structures */
    925 
    926 	if (pgrp == NULL) {
    927 		pgrp = new_pgrp;
    928 		new_pgrp = NULL;
    929 		if (sess != NULL) {
    930 			sess->s_sid = p->p_pid;
    931 			sess->s_leader = p;
    932 			sess->s_count = 1;
    933 			sess->s_ttyvp = NULL;
    934 			sess->s_ttyp = NULL;
    935 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    936 			memcpy(sess->s_login, p->p_session->s_login,
    937 			    sizeof(sess->s_login));
    938 			p->p_lflag &= ~PL_CONTROLT;
    939 		} else {
    940 			sess = p->p_pgrp->pg_session;
    941 			proc_sesshold(sess);
    942 		}
    943 		pgrp->pg_session = sess;
    944 		sess = NULL;
    945 
    946 		pgrp->pg_id = pgid;
    947 		LIST_INIT(&pgrp->pg_members);
    948 #ifdef DIAGNOSTIC
    949 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    950 			panic("enterpgrp: pgrp table slot in use");
    951 		if (__predict_false(mksess && p != curp))
    952 			panic("enterpgrp: mksession and p != curproc");
    953 #endif
    954 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    955 		pgrp->pg_jobc = 0;
    956 	}
    957 
    958 	/*
    959 	 * Adjust eligibility of affected pgrps to participate in job control.
    960 	 * Increment eligibility counts before decrementing, otherwise we
    961 	 * could reach 0 spuriously during the first call.
    962 	 */
    963 	fixjobc(p, pgrp, 1);
    964 	fixjobc(p, p->p_pgrp, 0);
    965 
    966 	/* Interlock with ttread(). */
    967 	mutex_spin_enter(&tty_lock);
    968 
    969 	/* Move process to requested group. */
    970 	LIST_REMOVE(p, p_pglist);
    971 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    972 		/* defer delete until we've dumped the lock */
    973 		pg_id = p->p_pgrp->pg_id;
    974 	p->p_pgrp = pgrp;
    975 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    976 
    977 	/* Done with the swap; we can release the tty mutex. */
    978 	mutex_spin_exit(&tty_lock);
    979 
    980     done:
    981 	if (pg_id != NO_PGID) {
    982 		/* Releases proc_lock. */
    983 		pg_delete(pg_id);
    984 	} else {
    985 		mutex_exit(proc_lock);
    986 	}
    987 	if (sess != NULL)
    988 		kmem_free(sess, sizeof(*sess));
    989 	if (new_pgrp != NULL)
    990 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    991 #ifdef DEBUG_PGRP
    992 	if (__predict_false(rval))
    993 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    994 			pid, pgid, mksess, curp->p_pid, rval);
    995 #endif
    996 	return rval;
    997 }
    998 
    999 /*
   1000  * proc_leavepgrp: remove a process from its process group.
   1001  *  => must be called with the proc_lock held, which will be released;
   1002  */
   1003 void
   1004 proc_leavepgrp(struct proc *p)
   1005 {
   1006 	struct pgrp *pgrp;
   1007 
   1008 	KASSERT(mutex_owned(proc_lock));
   1009 
   1010 	/* Interlock with ttread() */
   1011 	mutex_spin_enter(&tty_lock);
   1012 	pgrp = p->p_pgrp;
   1013 	LIST_REMOVE(p, p_pglist);
   1014 	p->p_pgrp = NULL;
   1015 	mutex_spin_exit(&tty_lock);
   1016 
   1017 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1018 		/* Releases proc_lock. */
   1019 		pg_delete(pgrp->pg_id);
   1020 	} else {
   1021 		mutex_exit(proc_lock);
   1022 	}
   1023 }
   1024 
   1025 /*
   1026  * pg_remove: remove a process group from the table.
   1027  *  => must be called with the proc_lock held;
   1028  *  => returns process group to free;
   1029  */
   1030 static struct pgrp *
   1031 pg_remove(pid_t pg_id)
   1032 {
   1033 	struct pgrp *pgrp;
   1034 	struct pid_table *pt;
   1035 
   1036 	KASSERT(mutex_owned(proc_lock));
   1037 
   1038 	pt = &pid_table[pg_id & pid_tbl_mask];
   1039 	pgrp = pt->pt_pgrp;
   1040 
   1041 	KASSERT(pgrp != NULL);
   1042 	KASSERT(pgrp->pg_id == pg_id);
   1043 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1044 
   1045 	pt->pt_pgrp = NULL;
   1046 
   1047 	if (!P_VALID(pt->pt_proc)) {
   1048 		/* Orphaned pgrp, put slot onto free list. */
   1049 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1050 		pg_id &= pid_tbl_mask;
   1051 		pt = &pid_table[last_free_pt];
   1052 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1053 		KASSERT(pt->pt_pid == 0);
   1054 		last_free_pt = pg_id;
   1055 		pid_alloc_cnt--;
   1056 	}
   1057 	return pgrp;
   1058 }
   1059 
   1060 /*
   1061  * pg_delete: delete and free a process group.
   1062  *  => must be called with the proc_lock held, which will be released.
   1063  */
   1064 static void
   1065 pg_delete(pid_t pg_id)
   1066 {
   1067 	struct pgrp *pg;
   1068 	struct tty *ttyp;
   1069 	struct session *ss;
   1070 
   1071 	KASSERT(mutex_owned(proc_lock));
   1072 
   1073 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1074 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1075 		mutex_exit(proc_lock);
   1076 		return;
   1077 	}
   1078 
   1079 	ss = pg->pg_session;
   1080 
   1081 	/* Remove reference (if any) from tty to this process group */
   1082 	mutex_spin_enter(&tty_lock);
   1083 	ttyp = ss->s_ttyp;
   1084 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1085 		ttyp->t_pgrp = NULL;
   1086 		KASSERT(ttyp->t_session == ss);
   1087 	}
   1088 	mutex_spin_exit(&tty_lock);
   1089 
   1090 	/*
   1091 	 * The leading process group in a session is freed by proc_sessrele(),
   1092 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1093 	 */
   1094 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1095 	proc_sessrele(ss);
   1096 
   1097 	if (pg != NULL) {
   1098 		/* Free it, if was not done by proc_sessrele(). */
   1099 		kmem_free(pg, sizeof(struct pgrp));
   1100 	}
   1101 }
   1102 
   1103 /*
   1104  * Adjust pgrp jobc counters when specified process changes process group.
   1105  * We count the number of processes in each process group that "qualify"
   1106  * the group for terminal job control (those with a parent in a different
   1107  * process group of the same session).  If that count reaches zero, the
   1108  * process group becomes orphaned.  Check both the specified process'
   1109  * process group and that of its children.
   1110  * entering == 0 => p is leaving specified group.
   1111  * entering == 1 => p is entering specified group.
   1112  *
   1113  * Call with proc_lock held.
   1114  */
   1115 void
   1116 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1117 {
   1118 	struct pgrp *hispgrp;
   1119 	struct session *mysession = pgrp->pg_session;
   1120 	struct proc *child;
   1121 
   1122 	KASSERT(mutex_owned(proc_lock));
   1123 
   1124 	/*
   1125 	 * Check p's parent to see whether p qualifies its own process
   1126 	 * group; if so, adjust count for p's process group.
   1127 	 */
   1128 	hispgrp = p->p_pptr->p_pgrp;
   1129 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1130 		if (entering) {
   1131 			pgrp->pg_jobc++;
   1132 			p->p_lflag &= ~PL_ORPHANPG;
   1133 		} else if (--pgrp->pg_jobc == 0)
   1134 			orphanpg(pgrp);
   1135 	}
   1136 
   1137 	/*
   1138 	 * Check this process' children to see whether they qualify
   1139 	 * their process groups; if so, adjust counts for children's
   1140 	 * process groups.
   1141 	 */
   1142 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1143 		hispgrp = child->p_pgrp;
   1144 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1145 		    !P_ZOMBIE(child)) {
   1146 			if (entering) {
   1147 				child->p_lflag &= ~PL_ORPHANPG;
   1148 				hispgrp->pg_jobc++;
   1149 			} else if (--hispgrp->pg_jobc == 0)
   1150 				orphanpg(hispgrp);
   1151 		}
   1152 	}
   1153 }
   1154 
   1155 /*
   1156  * A process group has become orphaned;
   1157  * if there are any stopped processes in the group,
   1158  * hang-up all process in that group.
   1159  *
   1160  * Call with proc_lock held.
   1161  */
   1162 static void
   1163 orphanpg(struct pgrp *pg)
   1164 {
   1165 	struct proc *p;
   1166 
   1167 	KASSERT(mutex_owned(proc_lock));
   1168 
   1169 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1170 		if (p->p_stat == SSTOP) {
   1171 			p->p_lflag |= PL_ORPHANPG;
   1172 			psignal(p, SIGHUP);
   1173 			psignal(p, SIGCONT);
   1174 		}
   1175 	}
   1176 }
   1177 
   1178 #ifdef DDB
   1179 #include <ddb/db_output.h>
   1180 void pidtbl_dump(void);
   1181 void
   1182 pidtbl_dump(void)
   1183 {
   1184 	struct pid_table *pt;
   1185 	struct proc *p;
   1186 	struct pgrp *pgrp;
   1187 	int id;
   1188 
   1189 	db_printf("pid table %p size %x, next %x, last %x\n",
   1190 		pid_table, pid_tbl_mask+1,
   1191 		next_free_pt, last_free_pt);
   1192 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1193 		p = pt->pt_proc;
   1194 		if (!P_VALID(p) && !pt->pt_pgrp)
   1195 			continue;
   1196 		db_printf("  id %x: ", id);
   1197 		if (P_VALID(p))
   1198 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1199 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1200 		else
   1201 			db_printf("next %x use %x\n",
   1202 				P_NEXT(p) & pid_tbl_mask,
   1203 				P_NEXT(p) & ~pid_tbl_mask);
   1204 		if ((pgrp = pt->pt_pgrp)) {
   1205 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1206 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1207 			    pgrp->pg_session->s_count,
   1208 			    pgrp->pg_session->s_login);
   1209 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1210 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1211 			    LIST_FIRST(&pgrp->pg_members));
   1212 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1213 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1214 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1215 			}
   1216 		}
   1217 	}
   1218 }
   1219 #endif /* DDB */
   1220 
   1221 #ifdef KSTACK_CHECK_MAGIC
   1222 
   1223 #define	KSTACK_MAGIC	0xdeadbeaf
   1224 
   1225 /* XXX should be per process basis? */
   1226 static int	kstackleftmin = KSTACK_SIZE;
   1227 static int	kstackleftthres = KSTACK_SIZE / 8;
   1228 
   1229 void
   1230 kstack_setup_magic(const struct lwp *l)
   1231 {
   1232 	uint32_t *ip;
   1233 	uint32_t const *end;
   1234 
   1235 	KASSERT(l != NULL);
   1236 	KASSERT(l != &lwp0);
   1237 
   1238 	/*
   1239 	 * fill all the stack with magic number
   1240 	 * so that later modification on it can be detected.
   1241 	 */
   1242 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1243 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1244 	for (; ip < end; ip++) {
   1245 		*ip = KSTACK_MAGIC;
   1246 	}
   1247 }
   1248 
   1249 void
   1250 kstack_check_magic(const struct lwp *l)
   1251 {
   1252 	uint32_t const *ip, *end;
   1253 	int stackleft;
   1254 
   1255 	KASSERT(l != NULL);
   1256 
   1257 	/* don't check proc0 */ /*XXX*/
   1258 	if (l == &lwp0)
   1259 		return;
   1260 
   1261 #ifdef __MACHINE_STACK_GROWS_UP
   1262 	/* stack grows upwards (eg. hppa) */
   1263 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1264 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1265 	for (ip--; ip >= end; ip--)
   1266 		if (*ip != KSTACK_MAGIC)
   1267 			break;
   1268 
   1269 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1270 #else /* __MACHINE_STACK_GROWS_UP */
   1271 	/* stack grows downwards (eg. i386) */
   1272 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1273 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1274 	for (; ip < end; ip++)
   1275 		if (*ip != KSTACK_MAGIC)
   1276 			break;
   1277 
   1278 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1279 #endif /* __MACHINE_STACK_GROWS_UP */
   1280 
   1281 	if (kstackleftmin > stackleft) {
   1282 		kstackleftmin = stackleft;
   1283 		if (stackleft < kstackleftthres)
   1284 			printf("warning: kernel stack left %d bytes"
   1285 			    "(pid %u:lid %u)\n", stackleft,
   1286 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1287 	}
   1288 
   1289 	if (stackleft <= 0) {
   1290 		panic("magic on the top of kernel stack changed for "
   1291 		    "pid %u, lid %u: maybe kernel stack overflow",
   1292 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1293 	}
   1294 }
   1295 #endif /* KSTACK_CHECK_MAGIC */
   1296 
   1297 int
   1298 proclist_foreach_call(struct proclist *list,
   1299     int (*callback)(struct proc *, void *arg), void *arg)
   1300 {
   1301 	struct proc marker;
   1302 	struct proc *p;
   1303 	int ret = 0;
   1304 
   1305 	marker.p_flag = PK_MARKER;
   1306 	mutex_enter(proc_lock);
   1307 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1308 		if (p->p_flag & PK_MARKER) {
   1309 			p = LIST_NEXT(p, p_list);
   1310 			continue;
   1311 		}
   1312 		LIST_INSERT_AFTER(p, &marker, p_list);
   1313 		ret = (*callback)(p, arg);
   1314 		KASSERT(mutex_owned(proc_lock));
   1315 		p = LIST_NEXT(&marker, p_list);
   1316 		LIST_REMOVE(&marker, p_list);
   1317 	}
   1318 	mutex_exit(proc_lock);
   1319 
   1320 	return ret;
   1321 }
   1322 
   1323 int
   1324 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1325 {
   1326 
   1327 	/* XXXCDC: how should locking work here? */
   1328 
   1329 	/* curproc exception is for coredump. */
   1330 
   1331 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1332 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1333 		return EFAULT;
   1334 	}
   1335 
   1336 	uvmspace_addref(p->p_vmspace);
   1337 	*vm = p->p_vmspace;
   1338 
   1339 	return 0;
   1340 }
   1341 
   1342 /*
   1343  * Acquire a write lock on the process credential.
   1344  */
   1345 void
   1346 proc_crmod_enter(void)
   1347 {
   1348 	struct lwp *l = curlwp;
   1349 	struct proc *p = l->l_proc;
   1350 	kauth_cred_t oc;
   1351 
   1352 	/* Reset what needs to be reset in plimit. */
   1353 	if (p->p_limit->pl_corename != defcorename) {
   1354 		lim_setcorename(p, defcorename, 0);
   1355 	}
   1356 
   1357 	mutex_enter(p->p_lock);
   1358 
   1359 	/* Ensure the LWP cached credentials are up to date. */
   1360 	if ((oc = l->l_cred) != p->p_cred) {
   1361 		kauth_cred_hold(p->p_cred);
   1362 		l->l_cred = p->p_cred;
   1363 		kauth_cred_free(oc);
   1364 	}
   1365 }
   1366 
   1367 /*
   1368  * Set in a new process credential, and drop the write lock.  The credential
   1369  * must have a reference already.  Optionally, free a no-longer required
   1370  * credential.  The scheduler also needs to inspect p_cred, so we also
   1371  * briefly acquire the sched state mutex.
   1372  */
   1373 void
   1374 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1375 {
   1376 	struct lwp *l = curlwp, *l2;
   1377 	struct proc *p = l->l_proc;
   1378 	kauth_cred_t oc;
   1379 
   1380 	KASSERT(mutex_owned(p->p_lock));
   1381 
   1382 	/* Is there a new credential to set in? */
   1383 	if (scred != NULL) {
   1384 		p->p_cred = scred;
   1385 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1386 			if (l2 != l)
   1387 				l2->l_prflag |= LPR_CRMOD;
   1388 		}
   1389 
   1390 		/* Ensure the LWP cached credentials are up to date. */
   1391 		if ((oc = l->l_cred) != scred) {
   1392 			kauth_cred_hold(scred);
   1393 			l->l_cred = scred;
   1394 		}
   1395 	} else
   1396 		oc = NULL;	/* XXXgcc */
   1397 
   1398 	if (sugid) {
   1399 		/*
   1400 		 * Mark process as having changed credentials, stops
   1401 		 * tracing etc.
   1402 		 */
   1403 		p->p_flag |= PK_SUGID;
   1404 	}
   1405 
   1406 	mutex_exit(p->p_lock);
   1407 
   1408 	/* If there is a credential to be released, free it now. */
   1409 	if (fcred != NULL) {
   1410 		KASSERT(scred != NULL);
   1411 		kauth_cred_free(fcred);
   1412 		if (oc != scred)
   1413 			kauth_cred_free(oc);
   1414 	}
   1415 }
   1416 
   1417 /*
   1418  * proc_specific_key_create --
   1419  *	Create a key for subsystem proc-specific data.
   1420  */
   1421 int
   1422 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1423 {
   1424 
   1425 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1426 }
   1427 
   1428 /*
   1429  * proc_specific_key_delete --
   1430  *	Delete a key for subsystem proc-specific data.
   1431  */
   1432 void
   1433 proc_specific_key_delete(specificdata_key_t key)
   1434 {
   1435 
   1436 	specificdata_key_delete(proc_specificdata_domain, key);
   1437 }
   1438 
   1439 /*
   1440  * proc_initspecific --
   1441  *	Initialize a proc's specificdata container.
   1442  */
   1443 void
   1444 proc_initspecific(struct proc *p)
   1445 {
   1446 	int error;
   1447 
   1448 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1449 	KASSERT(error == 0);
   1450 }
   1451 
   1452 /*
   1453  * proc_finispecific --
   1454  *	Finalize a proc's specificdata container.
   1455  */
   1456 void
   1457 proc_finispecific(struct proc *p)
   1458 {
   1459 
   1460 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1461 }
   1462 
   1463 /*
   1464  * proc_getspecific --
   1465  *	Return proc-specific data corresponding to the specified key.
   1466  */
   1467 void *
   1468 proc_getspecific(struct proc *p, specificdata_key_t key)
   1469 {
   1470 
   1471 	return (specificdata_getspecific(proc_specificdata_domain,
   1472 					 &p->p_specdataref, key));
   1473 }
   1474 
   1475 /*
   1476  * proc_setspecific --
   1477  *	Set proc-specific data corresponding to the specified key.
   1478  */
   1479 void
   1480 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1481 {
   1482 
   1483 	specificdata_setspecific(proc_specificdata_domain,
   1484 				 &p->p_specdataref, key, data);
   1485 }
   1486 
   1487 int
   1488 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1489 {
   1490 	int r = 0;
   1491 
   1492 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1493 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1494 		/*
   1495 		 * suid proc of ours or proc not ours
   1496 		 */
   1497 		r = EPERM;
   1498 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1499 		/*
   1500 		 * sgid proc has sgid back to us temporarily
   1501 		 */
   1502 		r = EPERM;
   1503 	} else {
   1504 		/*
   1505 		 * our rgid must be in target's group list (ie,
   1506 		 * sub-processes started by a sgid process)
   1507 		 */
   1508 		int ismember = 0;
   1509 
   1510 		if (kauth_cred_ismember_gid(cred,
   1511 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1512 		    !ismember)
   1513 			r = EPERM;
   1514 	}
   1515 
   1516 	return (r);
   1517 }
   1518 
   1519 /*
   1520  * sysctl stuff
   1521  */
   1522 
   1523 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1524 
   1525 static const u_int sysctl_flagmap[] = {
   1526 	PK_ADVLOCK, P_ADVLOCK,
   1527 	PK_EXEC, P_EXEC,
   1528 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1529 	PK_32, P_32,
   1530 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1531 	PK_SUGID, P_SUGID,
   1532 	0
   1533 };
   1534 
   1535 static const u_int sysctl_sflagmap[] = {
   1536 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1537 	PS_WEXIT, P_WEXIT,
   1538 	PS_STOPFORK, P_STOPFORK,
   1539 	PS_STOPEXEC, P_STOPEXEC,
   1540 	PS_STOPEXIT, P_STOPEXIT,
   1541 	0
   1542 };
   1543 
   1544 static const u_int sysctl_slflagmap[] = {
   1545 	PSL_TRACED, P_TRACED,
   1546 	PSL_FSTRACE, P_FSTRACE,
   1547 	PSL_CHTRACED, P_CHTRACED,
   1548 	PSL_SYSCALL, P_SYSCALL,
   1549 	0
   1550 };
   1551 
   1552 static const u_int sysctl_lflagmap[] = {
   1553 	PL_CONTROLT, P_CONTROLT,
   1554 	PL_PPWAIT, P_PPWAIT,
   1555 	0
   1556 };
   1557 
   1558 static const u_int sysctl_stflagmap[] = {
   1559 	PST_PROFIL, P_PROFIL,
   1560 	0
   1561 
   1562 };
   1563 
   1564 /* used by kern_lwp also */
   1565 const u_int sysctl_lwpflagmap[] = {
   1566 	LW_SINTR, L_SINTR,
   1567 	LW_SYSTEM, L_SYSTEM,
   1568 	0
   1569 };
   1570 
   1571 /*
   1572  * Find the most ``active'' lwp of a process and return it for ps display
   1573  * purposes
   1574  */
   1575 static struct lwp *
   1576 proc_active_lwp(struct proc *p)
   1577 {
   1578 	static const int ostat[] = {
   1579 		0,
   1580 		2,	/* LSIDL */
   1581 		6,	/* LSRUN */
   1582 		5,	/* LSSLEEP */
   1583 		4,	/* LSSTOP */
   1584 		0,	/* LSZOMB */
   1585 		1,	/* LSDEAD */
   1586 		7,	/* LSONPROC */
   1587 		3	/* LSSUSPENDED */
   1588 	};
   1589 
   1590 	struct lwp *l, *lp = NULL;
   1591 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1592 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1593 		if (lp == NULL ||
   1594 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1595 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1596 		    l->l_cpticks > lp->l_cpticks)) {
   1597 			lp = l;
   1598 			continue;
   1599 		}
   1600 	}
   1601 	return lp;
   1602 }
   1603 
   1604 static int
   1605 sysctl_doeproc(SYSCTLFN_ARGS)
   1606 {
   1607 	union {
   1608 		struct kinfo_proc kproc;
   1609 		struct kinfo_proc2 kproc2;
   1610 	} *kbuf;
   1611 	struct proc *p, *next, *marker;
   1612 	char *where, *dp;
   1613 	int type, op, arg, error;
   1614 	u_int elem_size, kelem_size, elem_count;
   1615 	size_t buflen, needed;
   1616 	bool match, zombie, mmmbrains;
   1617 
   1618 	if (namelen == 1 && name[0] == CTL_QUERY)
   1619 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1620 
   1621 	dp = where = oldp;
   1622 	buflen = where != NULL ? *oldlenp : 0;
   1623 	error = 0;
   1624 	needed = 0;
   1625 	type = rnode->sysctl_num;
   1626 
   1627 	if (type == KERN_PROC) {
   1628 		if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
   1629 			return (EINVAL);
   1630 		op = name[0];
   1631 		if (op != KERN_PROC_ALL)
   1632 			arg = name[1];
   1633 		else
   1634 			arg = 0;		/* Quell compiler warning */
   1635 		elem_count = 0;	/* Ditto */
   1636 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1637 	} else {
   1638 		if (namelen != 4)
   1639 			return (EINVAL);
   1640 		op = name[0];
   1641 		arg = name[1];
   1642 		elem_size = name[2];
   1643 		elem_count = name[3];
   1644 		kelem_size = sizeof(kbuf->kproc2);
   1645 	}
   1646 
   1647 	sysctl_unlock();
   1648 
   1649 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1650 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1651 	marker->p_flag = PK_MARKER;
   1652 
   1653 	mutex_enter(proc_lock);
   1654 	mmmbrains = false;
   1655 	for (p = LIST_FIRST(&allproc);; p = next) {
   1656 		if (p == NULL) {
   1657 			if (!mmmbrains) {
   1658 				p = LIST_FIRST(&zombproc);
   1659 				mmmbrains = true;
   1660 			}
   1661 			if (p == NULL)
   1662 				break;
   1663 		}
   1664 		next = LIST_NEXT(p, p_list);
   1665 		if ((p->p_flag & PK_MARKER) != 0)
   1666 			continue;
   1667 
   1668 		/*
   1669 		 * Skip embryonic processes.
   1670 		 */
   1671 		if (p->p_stat == SIDL)
   1672 			continue;
   1673 
   1674 		mutex_enter(p->p_lock);
   1675 		error = kauth_authorize_process(l->l_cred,
   1676 		    KAUTH_PROCESS_CANSEE, p,
   1677 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1678 		if (error != 0) {
   1679 			mutex_exit(p->p_lock);
   1680 			continue;
   1681 		}
   1682 
   1683 		/*
   1684 		 * TODO - make more efficient (see notes below).
   1685 		 * do by session.
   1686 		 */
   1687 		switch (op) {
   1688 		case KERN_PROC_PID:
   1689 			/* could do this with just a lookup */
   1690 			match = (p->p_pid == (pid_t)arg);
   1691 			break;
   1692 
   1693 		case KERN_PROC_PGRP:
   1694 			/* could do this by traversing pgrp */
   1695 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1696 			break;
   1697 
   1698 		case KERN_PROC_SESSION:
   1699 			match = (p->p_session->s_sid == (pid_t)arg);
   1700 			break;
   1701 
   1702 		case KERN_PROC_TTY:
   1703 			match = true;
   1704 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1705 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1706 				    p->p_session->s_ttyp == NULL ||
   1707 				    p->p_session->s_ttyvp != NULL) {
   1708 				    	match = false;
   1709 				}
   1710 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1711 			    p->p_session->s_ttyp == NULL) {
   1712 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1713 					match = false;
   1714 				}
   1715 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1716 				match = false;
   1717 			}
   1718 			break;
   1719 
   1720 		case KERN_PROC_UID:
   1721 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1722 			break;
   1723 
   1724 		case KERN_PROC_RUID:
   1725 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1726 			break;
   1727 
   1728 		case KERN_PROC_GID:
   1729 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1730 			break;
   1731 
   1732 		case KERN_PROC_RGID:
   1733 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1734 			break;
   1735 
   1736 		case KERN_PROC_ALL:
   1737 			match = true;
   1738 			/* allow everything */
   1739 			break;
   1740 
   1741 		default:
   1742 			error = EINVAL;
   1743 			mutex_exit(p->p_lock);
   1744 			goto cleanup;
   1745 		}
   1746 		if (!match) {
   1747 			mutex_exit(p->p_lock);
   1748 			continue;
   1749 		}
   1750 
   1751 		/*
   1752 		 * Grab a hold on the process.
   1753 		 */
   1754 		if (mmmbrains) {
   1755 			zombie = true;
   1756 		} else {
   1757 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1758 		}
   1759 		if (zombie) {
   1760 			LIST_INSERT_AFTER(p, marker, p_list);
   1761 		}
   1762 
   1763 		if (buflen >= elem_size &&
   1764 		    (type == KERN_PROC || elem_count > 0)) {
   1765 			if (type == KERN_PROC) {
   1766 				kbuf->kproc.kp_proc = *p;
   1767 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1768 			} else {
   1769 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1770 				elem_count--;
   1771 			}
   1772 			mutex_exit(p->p_lock);
   1773 			mutex_exit(proc_lock);
   1774 			/*
   1775 			 * Copy out elem_size, but not larger than kelem_size
   1776 			 */
   1777 			error = sysctl_copyout(l, kbuf, dp,
   1778 			    min(kelem_size, elem_size));
   1779 			mutex_enter(proc_lock);
   1780 			if (error) {
   1781 				goto bah;
   1782 			}
   1783 			dp += elem_size;
   1784 			buflen -= elem_size;
   1785 		} else {
   1786 			mutex_exit(p->p_lock);
   1787 		}
   1788 		needed += elem_size;
   1789 
   1790 		/*
   1791 		 * Release reference to process.
   1792 		 */
   1793 	 	if (zombie) {
   1794 			next = LIST_NEXT(marker, p_list);
   1795  			LIST_REMOVE(marker, p_list);
   1796 		} else {
   1797 			rw_exit(&p->p_reflock);
   1798 			next = LIST_NEXT(p, p_list);
   1799 		}
   1800 	}
   1801 	mutex_exit(proc_lock);
   1802 
   1803 	if (where != NULL) {
   1804 		*oldlenp = dp - where;
   1805 		if (needed > *oldlenp) {
   1806 			error = ENOMEM;
   1807 			goto out;
   1808 		}
   1809 	} else {
   1810 		needed += KERN_PROCSLOP;
   1811 		*oldlenp = needed;
   1812 	}
   1813 	if (kbuf)
   1814 		kmem_free(kbuf, sizeof(*kbuf));
   1815 	if (marker)
   1816 		kmem_free(marker, sizeof(*marker));
   1817 	sysctl_relock();
   1818 	return 0;
   1819  bah:
   1820  	if (zombie)
   1821  		LIST_REMOVE(marker, p_list);
   1822 	else
   1823 		rw_exit(&p->p_reflock);
   1824  cleanup:
   1825 	mutex_exit(proc_lock);
   1826  out:
   1827 	if (kbuf)
   1828 		kmem_free(kbuf, sizeof(*kbuf));
   1829 	if (marker)
   1830 		kmem_free(marker, sizeof(*marker));
   1831 	sysctl_relock();
   1832 	return error;
   1833 }
   1834 
   1835 int
   1836 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1837 {
   1838 
   1839 #ifdef COMPAT_NETBSD32
   1840 	if (p->p_flag & PK_32) {
   1841 		struct ps_strings32 arginfo32;
   1842 
   1843 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1844 		    sizeof(arginfo32));
   1845 		if (error)
   1846 			return error;
   1847 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1848 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1849 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1850 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1851 		return 0;
   1852 	}
   1853 #endif
   1854 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1855 }
   1856 
   1857 static int
   1858 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1859 {
   1860 	void **cookie = cookie_;
   1861 	struct lwp *l = cookie[0];
   1862 	char *dst = cookie[1];
   1863 
   1864 	return sysctl_copyout(l, src, dst + off, len);
   1865 }
   1866 
   1867 /*
   1868  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1869  */
   1870 static int
   1871 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1872 {
   1873 	struct ps_strings pss;
   1874 	struct proc *p;
   1875 	pid_t pid;
   1876 	int type, error;
   1877 	void *cookie[2];
   1878 
   1879 	if (namelen == 1 && name[0] == CTL_QUERY)
   1880 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1881 
   1882 	if (newp != NULL || namelen != 2)
   1883 		return (EINVAL);
   1884 	pid = name[0];
   1885 	type = name[1];
   1886 
   1887 	switch (type) {
   1888 	case KERN_PROC_ARGV:
   1889 	case KERN_PROC_NARGV:
   1890 	case KERN_PROC_ENV:
   1891 	case KERN_PROC_NENV:
   1892 		/* ok */
   1893 		break;
   1894 	default:
   1895 		return (EINVAL);
   1896 	}
   1897 
   1898 	sysctl_unlock();
   1899 
   1900 	/* check pid */
   1901 	mutex_enter(proc_lock);
   1902 	if ((p = proc_find(pid)) == NULL) {
   1903 		error = EINVAL;
   1904 		goto out_locked;
   1905 	}
   1906 	mutex_enter(p->p_lock);
   1907 
   1908 	/* Check permission. */
   1909 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1910 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1911 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1912 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1913 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1914 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1915 	else
   1916 		error = EINVAL; /* XXXGCC */
   1917 	if (error) {
   1918 		mutex_exit(p->p_lock);
   1919 		goto out_locked;
   1920 	}
   1921 
   1922 	if (oldp == NULL) {
   1923 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1924 			*oldlenp = sizeof (int);
   1925 		else
   1926 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1927 		error = 0;
   1928 		mutex_exit(p->p_lock);
   1929 		goto out_locked;
   1930 	}
   1931 
   1932 	/*
   1933 	 * Zombies don't have a stack, so we can't read their psstrings.
   1934 	 * System processes also don't have a user stack.
   1935 	 */
   1936 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1937 		error = EINVAL;
   1938 		mutex_exit(p->p_lock);
   1939 		goto out_locked;
   1940 	}
   1941 
   1942 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1943 	mutex_exit(p->p_lock);
   1944 	if (error) {
   1945 		goto out_locked;
   1946 	}
   1947 	mutex_exit(proc_lock);
   1948 
   1949 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1950 		int value;
   1951 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1952 			if (type == KERN_PROC_NARGV)
   1953 				value = pss.ps_nargvstr;
   1954 			else
   1955 				value = pss.ps_nenvstr;
   1956 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1957 			*oldlenp = sizeof(value);
   1958 		}
   1959 	} else {
   1960 		cookie[0] = l;
   1961 		cookie[1] = oldp;
   1962 		error = copy_procargs(p, type, oldlenp,
   1963 		    copy_procargs_sysctl_cb, cookie);
   1964 	}
   1965 	rw_exit(&p->p_reflock);
   1966 	sysctl_relock();
   1967 	return error;
   1968 
   1969 out_locked:
   1970 	mutex_exit(proc_lock);
   1971 	sysctl_relock();
   1972 	return error;
   1973 }
   1974 
   1975 int
   1976 copy_procargs(struct proc *p, int oid, size_t *limit,
   1977     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   1978 {
   1979 	struct ps_strings pss;
   1980 	size_t len, i, loaded, entry_len;
   1981 	struct uio auio;
   1982 	struct iovec aiov;
   1983 	int error, argvlen;
   1984 	char *arg;
   1985 	char **argv;
   1986 	vaddr_t user_argv;
   1987 	struct vmspace *vmspace;
   1988 
   1989 	/*
   1990 	 * Allocate a temporary buffer to hold the argument vector and
   1991 	 * the arguments themselve.
   1992 	 */
   1993 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   1994 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   1995 
   1996 	/*
   1997 	 * Lock the process down in memory.
   1998 	 */
   1999 	vmspace = p->p_vmspace;
   2000 	uvmspace_addref(vmspace);
   2001 
   2002 	/*
   2003 	 * Read in the ps_strings structure.
   2004 	 */
   2005 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2006 		goto done;
   2007 
   2008 	/*
   2009 	 * Now read the address of the argument vector.
   2010 	 */
   2011 	switch (oid) {
   2012 	case KERN_PROC_ARGV:
   2013 		user_argv = (uintptr_t)pss.ps_argvstr;
   2014 		argvlen = pss.ps_nargvstr;
   2015 		break;
   2016 	case KERN_PROC_ENV:
   2017 		user_argv = (uintptr_t)pss.ps_envstr;
   2018 		argvlen = pss.ps_nenvstr;
   2019 		break;
   2020 	default:
   2021 		error = EINVAL;
   2022 		goto done;
   2023 	}
   2024 
   2025 	if (argvlen < 0) {
   2026 		error = EIO;
   2027 		goto done;
   2028 	}
   2029 
   2030 #ifdef COMPAT_NETBSD32
   2031 	if (p->p_flag & PK_32)
   2032 		entry_len = sizeof(netbsd32_charp);
   2033 	else
   2034 #endif
   2035 		entry_len = sizeof(char *);
   2036 
   2037 	/*
   2038 	 * Now copy each string.
   2039 	 */
   2040 	len = 0; /* bytes written to user buffer */
   2041 	loaded = 0; /* bytes from argv already processed */
   2042 	i = 0; /* To make compiler happy */
   2043 
   2044 	for (; argvlen; --argvlen) {
   2045 		int finished = 0;
   2046 		vaddr_t base;
   2047 		size_t xlen;
   2048 		int j;
   2049 
   2050 		if (loaded == 0) {
   2051 			size_t rem = entry_len * argvlen;
   2052 			loaded = MIN(rem, PAGE_SIZE);
   2053 			error = copyin_vmspace(vmspace,
   2054 			    (const void *)user_argv, argv, loaded);
   2055 			if (error)
   2056 				break;
   2057 			user_argv += loaded;
   2058 			i = 0;
   2059 		}
   2060 
   2061 #ifdef COMPAT_NETBSD32
   2062 		if (p->p_flag & PK_32) {
   2063 			netbsd32_charp *argv32;
   2064 
   2065 			argv32 = (netbsd32_charp *)argv;
   2066 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2067 		} else
   2068 #endif
   2069 			base = (vaddr_t)argv[i++];
   2070 		loaded -= entry_len;
   2071 
   2072 		/*
   2073 		 * The program has messed around with its arguments,
   2074 		 * possibly deleting some, and replacing them with
   2075 		 * NULL's. Treat this as the last argument and not
   2076 		 * a failure.
   2077 		 */
   2078 		if (base == 0)
   2079 			break;
   2080 
   2081 		while (!finished) {
   2082 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2083 
   2084 			aiov.iov_base = arg;
   2085 			aiov.iov_len = PAGE_SIZE;
   2086 			auio.uio_iov = &aiov;
   2087 			auio.uio_iovcnt = 1;
   2088 			auio.uio_offset = base;
   2089 			auio.uio_resid = xlen;
   2090 			auio.uio_rw = UIO_READ;
   2091 			UIO_SETUP_SYSSPACE(&auio);
   2092 			error = uvm_io(&vmspace->vm_map, &auio);
   2093 			if (error)
   2094 				goto done;
   2095 
   2096 			/* Look for the end of the string */
   2097 			for (j = 0; j < xlen; j++) {
   2098 				if (arg[j] == '\0') {
   2099 					xlen = j + 1;
   2100 					finished = 1;
   2101 					break;
   2102 				}
   2103 			}
   2104 
   2105 			/* Check for user buffer overflow */
   2106 			if (len + xlen > *limit) {
   2107 				finished = 1;
   2108 				if (len > *limit)
   2109 					xlen = 0;
   2110 				else
   2111 					xlen = *limit - len;
   2112 			}
   2113 
   2114 			/* Copyout the page */
   2115 			error = (*cb)(cookie, arg, len, xlen);
   2116 			if (error)
   2117 				goto done;
   2118 
   2119 			len += xlen;
   2120 			base += xlen;
   2121 		}
   2122 	}
   2123 	*limit = len;
   2124 
   2125 done:
   2126 	kmem_free(argv, PAGE_SIZE);
   2127 	kmem_free(arg, PAGE_SIZE);
   2128 	uvmspace_free(vmspace);
   2129 	return error;
   2130 }
   2131 
   2132 /*
   2133  * Fill in an eproc structure for the specified process.
   2134  */
   2135 void
   2136 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2137 {
   2138 	struct tty *tp;
   2139 	struct lwp *l;
   2140 
   2141 	KASSERT(mutex_owned(proc_lock));
   2142 	KASSERT(mutex_owned(p->p_lock));
   2143 
   2144 	memset(ep, 0, sizeof(*ep));
   2145 
   2146 	ep->e_paddr = p;
   2147 	ep->e_sess = p->p_session;
   2148 	if (p->p_cred) {
   2149 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2150 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2151 	}
   2152 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2153 		struct vmspace *vm = p->p_vmspace;
   2154 
   2155 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2156 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2157 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2158 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2159 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2160 
   2161 		/* Pick the primary (first) LWP */
   2162 		l = proc_active_lwp(p);
   2163 		KASSERT(l != NULL);
   2164 		lwp_lock(l);
   2165 		if (l->l_wchan)
   2166 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2167 		lwp_unlock(l);
   2168 	}
   2169 	if (p->p_pptr)
   2170 		ep->e_ppid = p->p_pptr->p_pid;
   2171 	if (p->p_pgrp && p->p_session) {
   2172 		ep->e_pgid = p->p_pgrp->pg_id;
   2173 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2174 		ep->e_sid = p->p_session->s_sid;
   2175 		if ((p->p_lflag & PL_CONTROLT) &&
   2176 		    (tp = ep->e_sess->s_ttyp)) {
   2177 			ep->e_tdev = tp->t_dev;
   2178 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2179 			ep->e_tsess = tp->t_session;
   2180 		} else
   2181 			ep->e_tdev = (uint32_t)NODEV;
   2182 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2183 		if (SESS_LEADER(p))
   2184 			ep->e_flag |= EPROC_SLEADER;
   2185 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2186 	}
   2187 	ep->e_xsize = ep->e_xrssize = 0;
   2188 	ep->e_xccount = ep->e_xswrss = 0;
   2189 }
   2190 
   2191 /*
   2192  * Fill in a kinfo_proc2 structure for the specified process.
   2193  */
   2194 static void
   2195 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2196 {
   2197 	struct tty *tp;
   2198 	struct lwp *l, *l2;
   2199 	struct timeval ut, st, rt;
   2200 	sigset_t ss1, ss2;
   2201 	struct rusage ru;
   2202 	struct vmspace *vm;
   2203 
   2204 	KASSERT(mutex_owned(proc_lock));
   2205 	KASSERT(mutex_owned(p->p_lock));
   2206 
   2207 	sigemptyset(&ss1);
   2208 	sigemptyset(&ss2);
   2209 	memset(ki, 0, sizeof(*ki));
   2210 
   2211 	ki->p_paddr = PTRTOUINT64(p);
   2212 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2213 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2214 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2215 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2216 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2217 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2218 	ki->p_sess = PTRTOUINT64(p->p_session);
   2219 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2220 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2221 	ki->p_eflag = 0;
   2222 	ki->p_exitsig = p->p_exitsig;
   2223 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2224 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2225 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2226 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2227 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2228 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2229 	ki->p_pid = p->p_pid;
   2230 	if (p->p_pptr)
   2231 		ki->p_ppid = p->p_pptr->p_pid;
   2232 	else
   2233 		ki->p_ppid = 0;
   2234 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2235 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2236 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2237 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2238 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2239 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2240 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2241 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2242 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2243 	    UIO_SYSSPACE);
   2244 
   2245 	ki->p_uticks = p->p_uticks;
   2246 	ki->p_sticks = p->p_sticks;
   2247 	ki->p_iticks = p->p_iticks;
   2248 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2249 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2250 	ki->p_traceflag = p->p_traceflag;
   2251 
   2252 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2253 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2254 
   2255 	ki->p_cpticks = 0;
   2256 	ki->p_pctcpu = p->p_pctcpu;
   2257 	ki->p_estcpu = 0;
   2258 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2259 	ki->p_realstat = p->p_stat;
   2260 	ki->p_nice = p->p_nice;
   2261 	ki->p_xstat = p->p_xstat;
   2262 	ki->p_acflag = p->p_acflag;
   2263 
   2264 	strncpy(ki->p_comm, p->p_comm,
   2265 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2266 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2267 
   2268 	ki->p_nlwps = p->p_nlwps;
   2269 	ki->p_realflag = ki->p_flag;
   2270 
   2271 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2272 		vm = p->p_vmspace;
   2273 		ki->p_vm_rssize = vm_resident_count(vm);
   2274 		ki->p_vm_tsize = vm->vm_tsize;
   2275 		ki->p_vm_dsize = vm->vm_dsize;
   2276 		ki->p_vm_ssize = vm->vm_ssize;
   2277 		ki->p_vm_vsize = vm->vm_map.size;
   2278 		/*
   2279 		 * Since the stack is initially mapped mostly with
   2280 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2281 		 * to skip the unused stack portion.
   2282 		 */
   2283 		ki->p_vm_msize =
   2284 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2285 
   2286 		/* Pick the primary (first) LWP */
   2287 		l = proc_active_lwp(p);
   2288 		KASSERT(l != NULL);
   2289 		lwp_lock(l);
   2290 		ki->p_nrlwps = p->p_nrlwps;
   2291 		ki->p_forw = 0;
   2292 		ki->p_back = 0;
   2293 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2294 		ki->p_stat = l->l_stat;
   2295 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2296 		ki->p_swtime = l->l_swtime;
   2297 		ki->p_slptime = l->l_slptime;
   2298 		if (l->l_stat == LSONPROC)
   2299 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2300 		else
   2301 			ki->p_schedflags = 0;
   2302 		ki->p_priority = lwp_eprio(l);
   2303 		ki->p_usrpri = l->l_priority;
   2304 		if (l->l_wchan)
   2305 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2306 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2307 		ki->p_cpuid = cpu_index(l->l_cpu);
   2308 		lwp_unlock(l);
   2309 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2310 			/* This is hardly correct, but... */
   2311 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2312 			sigplusset(&l->l_sigmask, &ss2);
   2313 			ki->p_cpticks += l->l_cpticks;
   2314 			ki->p_pctcpu += l->l_pctcpu;
   2315 			ki->p_estcpu += l->l_estcpu;
   2316 		}
   2317 	}
   2318 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2319 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2320 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2321 
   2322 	if (p->p_session != NULL) {
   2323 		ki->p_sid = p->p_session->s_sid;
   2324 		ki->p__pgid = p->p_pgrp->pg_id;
   2325 		if (p->p_session->s_ttyvp)
   2326 			ki->p_eflag |= EPROC_CTTY;
   2327 		if (SESS_LEADER(p))
   2328 			ki->p_eflag |= EPROC_SLEADER;
   2329 		strncpy(ki->p_login, p->p_session->s_login,
   2330 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2331 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2332 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2333 			ki->p_tdev = tp->t_dev;
   2334 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2335 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2336 		} else {
   2337 			ki->p_tdev = (int32_t)NODEV;
   2338 		}
   2339 	}
   2340 
   2341 	if (!P_ZOMBIE(p) && !zombie) {
   2342 		ki->p_uvalid = 1;
   2343 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2344 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2345 
   2346 		calcru(p, &ut, &st, NULL, &rt);
   2347 		ki->p_rtime_sec = rt.tv_sec;
   2348 		ki->p_rtime_usec = rt.tv_usec;
   2349 		ki->p_uutime_sec = ut.tv_sec;
   2350 		ki->p_uutime_usec = ut.tv_usec;
   2351 		ki->p_ustime_sec = st.tv_sec;
   2352 		ki->p_ustime_usec = st.tv_usec;
   2353 
   2354 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2355 		ki->p_uru_nvcsw = 0;
   2356 		ki->p_uru_nivcsw = 0;
   2357 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2358 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2359 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2360 			ruadd(&ru, &l2->l_ru);
   2361 		}
   2362 		ki->p_uru_maxrss = ru.ru_maxrss;
   2363 		ki->p_uru_ixrss = ru.ru_ixrss;
   2364 		ki->p_uru_idrss = ru.ru_idrss;
   2365 		ki->p_uru_isrss = ru.ru_isrss;
   2366 		ki->p_uru_minflt = ru.ru_minflt;
   2367 		ki->p_uru_majflt = ru.ru_majflt;
   2368 		ki->p_uru_nswap = ru.ru_nswap;
   2369 		ki->p_uru_inblock = ru.ru_inblock;
   2370 		ki->p_uru_oublock = ru.ru_oublock;
   2371 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2372 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2373 		ki->p_uru_nsignals = ru.ru_nsignals;
   2374 
   2375 		timeradd(&p->p_stats->p_cru.ru_utime,
   2376 			 &p->p_stats->p_cru.ru_stime, &ut);
   2377 		ki->p_uctime_sec = ut.tv_sec;
   2378 		ki->p_uctime_usec = ut.tv_usec;
   2379 	}
   2380 }
   2381