kern_proc.c revision 1.186 1 /* $NetBSD: kern_proc.c,v 1.186 2012/06/09 02:31:14 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.186 2012/06/09 02:31:14 christos Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/resourcevar.h>
79 #include <sys/buf.h>
80 #include <sys/acct.h>
81 #include <sys/wait.h>
82 #include <sys/file.h>
83 #include <ufs/ufs/quota.h>
84 #include <sys/uio.h>
85 #include <sys/pool.h>
86 #include <sys/pset.h>
87 #include <sys/mbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/signalvar.h>
91 #include <sys/ras.h>
92 #include <sys/filedesc.h>
93 #include <sys/syscall_stats.h>
94 #include <sys/kauth.h>
95 #include <sys/sleepq.h>
96 #include <sys/atomic.h>
97 #include <sys/kmem.h>
98 #include <sys/dtrace_bsd.h>
99 #include <sys/sysctl.h>
100 #include <sys/exec.h>
101 #include <sys/cpu.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #ifdef COMPAT_NETBSD32
106 #include <compat/netbsd32/netbsd32.h>
107 #endif
108
109 /*
110 * Process lists.
111 */
112
113 struct proclist allproc __cacheline_aligned;
114 struct proclist zombproc __cacheline_aligned;
115
116 kmutex_t * proc_lock __cacheline_aligned;
117
118 /*
119 * pid to proc lookup is done by indexing the pid_table array.
120 * Since pid numbers are only allocated when an empty slot
121 * has been found, there is no need to search any lists ever.
122 * (an orphaned pgrp will lock the slot, a session will lock
123 * the pgrp with the same number.)
124 * If the table is too small it is reallocated with twice the
125 * previous size and the entries 'unzipped' into the two halves.
126 * A linked list of free entries is passed through the pt_proc
127 * field of 'free' items - set odd to be an invalid ptr.
128 */
129
130 struct pid_table {
131 struct proc *pt_proc;
132 struct pgrp *pt_pgrp;
133 pid_t pt_pid;
134 };
135 #if 1 /* strongly typed cast - should be a noop */
136 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
137 #else
138 #define p2u(p) ((uint)p)
139 #endif
140 #define P_VALID(p) (!(p2u(p) & 1))
141 #define P_NEXT(p) (p2u(p) >> 1)
142 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
143
144 /*
145 * Table of process IDs (PIDs).
146 */
147 static struct pid_table *pid_table __read_mostly;
148
149 #define INITIAL_PID_TABLE_SIZE (1 << 5)
150
151 /* Table mask, threshold for growing and number of allocated PIDs. */
152 static u_int pid_tbl_mask __read_mostly;
153 static u_int pid_alloc_lim __read_mostly;
154 static u_int pid_alloc_cnt __cacheline_aligned;
155
156 /* Next free, last free and maximum PIDs. */
157 static u_int next_free_pt __cacheline_aligned;
158 static u_int last_free_pt __cacheline_aligned;
159 static pid_t pid_max __read_mostly;
160
161 /* Components of the first process -- never freed. */
162
163 extern struct emul emul_netbsd; /* defined in kern_exec.c */
164
165 struct session session0 = {
166 .s_count = 1,
167 .s_sid = 0,
168 };
169 struct pgrp pgrp0 = {
170 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
171 .pg_session = &session0,
172 };
173 filedesc_t filedesc0;
174 struct cwdinfo cwdi0 = {
175 .cwdi_cmask = CMASK, /* see cmask below */
176 .cwdi_refcnt = 1,
177 };
178 struct plimit limit0;
179 struct pstats pstat0;
180 struct vmspace vmspace0;
181 struct sigacts sigacts0;
182 struct proc proc0 = {
183 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
184 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
185 .p_nlwps = 1,
186 .p_nrlwps = 1,
187 .p_nlwpid = 1, /* must match lwp0.l_lid */
188 .p_pgrp = &pgrp0,
189 .p_comm = "system",
190 /*
191 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
192 * when they exit. init(8) can easily wait them out for us.
193 */
194 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
195 .p_stat = SACTIVE,
196 .p_nice = NZERO,
197 .p_emul = &emul_netbsd,
198 .p_cwdi = &cwdi0,
199 .p_limit = &limit0,
200 .p_fd = &filedesc0,
201 .p_vmspace = &vmspace0,
202 .p_stats = &pstat0,
203 .p_sigacts = &sigacts0,
204 };
205 kauth_cred_t cred0;
206
207 static const int nofile = NOFILE;
208 static const int maxuprc = MAXUPRC;
209 static const int cmask = CMASK;
210
211 static int sysctl_doeproc(SYSCTLFN_PROTO);
212 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
213 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
214
215 /*
216 * The process list descriptors, used during pid allocation and
217 * by sysctl. No locking on this data structure is needed since
218 * it is completely static.
219 */
220 const struct proclist_desc proclists[] = {
221 { &allproc },
222 { &zombproc },
223 { NULL },
224 };
225
226 static struct pgrp * pg_remove(pid_t);
227 static void pg_delete(pid_t);
228 static void orphanpg(struct pgrp *);
229
230 static specificdata_domain_t proc_specificdata_domain;
231
232 static pool_cache_t proc_cache;
233
234 static kauth_listener_t proc_listener;
235
236 static int
237 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
238 void *arg0, void *arg1, void *arg2, void *arg3)
239 {
240 struct proc *p;
241 int result;
242
243 result = KAUTH_RESULT_DEFER;
244 p = arg0;
245
246 switch (action) {
247 case KAUTH_PROCESS_CANSEE: {
248 enum kauth_process_req req;
249
250 req = (enum kauth_process_req)arg1;
251
252 switch (req) {
253 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
254 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
255 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
256 result = KAUTH_RESULT_ALLOW;
257
258 break;
259
260 case KAUTH_REQ_PROCESS_CANSEE_ENV:
261 if (kauth_cred_getuid(cred) !=
262 kauth_cred_getuid(p->p_cred) ||
263 kauth_cred_getuid(cred) !=
264 kauth_cred_getsvuid(p->p_cred))
265 break;
266
267 result = KAUTH_RESULT_ALLOW;
268
269 break;
270
271 default:
272 break;
273 }
274
275 break;
276 }
277
278 case KAUTH_PROCESS_FORK: {
279 int lnprocs = (int)(unsigned long)arg2;
280
281 /*
282 * Don't allow a nonprivileged user to use the last few
283 * processes. The variable lnprocs is the current number of
284 * processes, maxproc is the limit.
285 */
286 if (__predict_false((lnprocs >= maxproc - 5)))
287 break;
288
289 result = KAUTH_RESULT_ALLOW;
290
291 break;
292 }
293
294 case KAUTH_PROCESS_CORENAME:
295 case KAUTH_PROCESS_STOPFLAG:
296 if (proc_uidmatch(cred, p->p_cred) == 0)
297 result = KAUTH_RESULT_ALLOW;
298
299 break;
300
301 default:
302 break;
303 }
304
305 return result;
306 }
307
308 /*
309 * Initialize global process hashing structures.
310 */
311 void
312 procinit(void)
313 {
314 const struct proclist_desc *pd;
315 u_int i;
316 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
317
318 for (pd = proclists; pd->pd_list != NULL; pd++)
319 LIST_INIT(pd->pd_list);
320
321 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
322 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
323 * sizeof(struct pid_table), KM_SLEEP);
324 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
325 pid_max = PID_MAX;
326
327 /* Set free list running through table...
328 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
329 for (i = 0; i <= pid_tbl_mask; i++) {
330 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
331 pid_table[i].pt_pgrp = 0;
332 pid_table[i].pt_pid = 0;
333 }
334 /* slot 0 is just grabbed */
335 next_free_pt = 1;
336 /* Need to fix last entry. */
337 last_free_pt = pid_tbl_mask;
338 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
339 /* point at which we grow table - to avoid reusing pids too often */
340 pid_alloc_lim = pid_tbl_mask - 1;
341 #undef LINK_EMPTY
342
343 proc_specificdata_domain = specificdata_domain_create();
344 KASSERT(proc_specificdata_domain != NULL);
345
346 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
347 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
348
349 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
350 proc_listener_cb, NULL);
351 }
352
353 void
354 procinit_sysctl(void)
355 {
356 static struct sysctllog *clog;
357
358 sysctl_createv(&clog, 0, NULL, NULL,
359 CTLFLAG_PERMANENT,
360 CTLTYPE_NODE, "kern", NULL,
361 NULL, 0, NULL, 0,
362 CTL_KERN, CTL_EOL);
363
364 sysctl_createv(&clog, 0, NULL, NULL,
365 CTLFLAG_PERMANENT,
366 CTLTYPE_NODE, "proc",
367 SYSCTL_DESCR("System-wide process information"),
368 sysctl_doeproc, 0, NULL, 0,
369 CTL_KERN, KERN_PROC, CTL_EOL);
370 sysctl_createv(&clog, 0, NULL, NULL,
371 CTLFLAG_PERMANENT,
372 CTLTYPE_NODE, "proc2",
373 SYSCTL_DESCR("Machine-independent process information"),
374 sysctl_doeproc, 0, NULL, 0,
375 CTL_KERN, KERN_PROC2, CTL_EOL);
376 sysctl_createv(&clog, 0, NULL, NULL,
377 CTLFLAG_PERMANENT,
378 CTLTYPE_NODE, "proc_args",
379 SYSCTL_DESCR("Process argument information"),
380 sysctl_kern_proc_args, 0, NULL, 0,
381 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
382
383 /*
384 "nodes" under these:
385
386 KERN_PROC_ALL
387 KERN_PROC_PID pid
388 KERN_PROC_PGRP pgrp
389 KERN_PROC_SESSION sess
390 KERN_PROC_TTY tty
391 KERN_PROC_UID uid
392 KERN_PROC_RUID uid
393 KERN_PROC_GID gid
394 KERN_PROC_RGID gid
395
396 all in all, probably not worth the effort...
397 */
398 }
399
400 /*
401 * Initialize process 0.
402 */
403 void
404 proc0_init(void)
405 {
406 struct proc *p;
407 struct pgrp *pg;
408 struct rlimit *rlim;
409 rlim_t lim;
410 int i;
411
412 p = &proc0;
413 pg = &pgrp0;
414
415 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
416 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
417 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
418
419 rw_init(&p->p_reflock);
420 cv_init(&p->p_waitcv, "wait");
421 cv_init(&p->p_lwpcv, "lwpwait");
422
423 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
424
425 pid_table[0].pt_proc = p;
426 LIST_INSERT_HEAD(&allproc, p, p_list);
427
428 pid_table[0].pt_pgrp = pg;
429 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
430
431 #ifdef __HAVE_SYSCALL_INTERN
432 (*p->p_emul->e_syscall_intern)(p);
433 #endif
434
435 /* Create credentials. */
436 cred0 = kauth_cred_alloc();
437 p->p_cred = cred0;
438
439 /* Create the CWD info. */
440 rw_init(&cwdi0.cwdi_lock);
441
442 /* Create the limits structures. */
443 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
444
445 rlim = limit0.pl_rlimit;
446 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
447 rlim[i].rlim_cur = RLIM_INFINITY;
448 rlim[i].rlim_max = RLIM_INFINITY;
449 }
450
451 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
452 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
453
454 rlim[RLIMIT_NPROC].rlim_max = maxproc;
455 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
456
457 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
458 rlim[RLIMIT_RSS].rlim_max = lim;
459 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
460 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
461
462 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
463 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
464
465 /* Note that default core name has zero length. */
466 limit0.pl_corename = defcorename;
467 limit0.pl_cnlen = 0;
468 limit0.pl_refcnt = 1;
469 limit0.pl_writeable = false;
470 limit0.pl_sv_limit = NULL;
471
472 /* Configure virtual memory system, set vm rlimits. */
473 uvm_init_limits(p);
474
475 /* Initialize file descriptor table for proc0. */
476 fd_init(&filedesc0);
477
478 /*
479 * Initialize proc0's vmspace, which uses the kernel pmap.
480 * All kernel processes (which never have user space mappings)
481 * share proc0's vmspace, and thus, the kernel pmap.
482 */
483 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
484 trunc_page(VM_MAX_ADDRESS));
485
486 /* Initialize signal state for proc0. XXX IPL_SCHED */
487 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
488 siginit(p);
489
490 proc_initspecific(p);
491 kdtrace_proc_ctor(NULL, p);
492 }
493
494 /*
495 * Session reference counting.
496 */
497
498 void
499 proc_sesshold(struct session *ss)
500 {
501
502 KASSERT(mutex_owned(proc_lock));
503 ss->s_count++;
504 }
505
506 void
507 proc_sessrele(struct session *ss)
508 {
509
510 KASSERT(mutex_owned(proc_lock));
511 /*
512 * We keep the pgrp with the same id as the session in order to
513 * stop a process being given the same pid. Since the pgrp holds
514 * a reference to the session, it must be a 'zombie' pgrp by now.
515 */
516 if (--ss->s_count == 0) {
517 struct pgrp *pg;
518
519 pg = pg_remove(ss->s_sid);
520 mutex_exit(proc_lock);
521
522 kmem_free(pg, sizeof(struct pgrp));
523 kmem_free(ss, sizeof(struct session));
524 } else {
525 mutex_exit(proc_lock);
526 }
527 }
528
529 /*
530 * Check that the specified process group is in the session of the
531 * specified process.
532 * Treats -ve ids as process ids.
533 * Used to validate TIOCSPGRP requests.
534 */
535 int
536 pgid_in_session(struct proc *p, pid_t pg_id)
537 {
538 struct pgrp *pgrp;
539 struct session *session;
540 int error;
541
542 mutex_enter(proc_lock);
543 if (pg_id < 0) {
544 struct proc *p1 = proc_find(-pg_id);
545 if (p1 == NULL) {
546 error = EINVAL;
547 goto fail;
548 }
549 pgrp = p1->p_pgrp;
550 } else {
551 pgrp = pgrp_find(pg_id);
552 if (pgrp == NULL) {
553 error = EINVAL;
554 goto fail;
555 }
556 }
557 session = pgrp->pg_session;
558 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
559 fail:
560 mutex_exit(proc_lock);
561 return error;
562 }
563
564 /*
565 * p_inferior: is p an inferior of q?
566 */
567 static inline bool
568 p_inferior(struct proc *p, struct proc *q)
569 {
570
571 KASSERT(mutex_owned(proc_lock));
572
573 for (; p != q; p = p->p_pptr)
574 if (p->p_pid == 0)
575 return false;
576 return true;
577 }
578
579 /*
580 * proc_find: locate a process by the ID.
581 *
582 * => Must be called with proc_lock held.
583 */
584 proc_t *
585 proc_find_raw(pid_t pid)
586 {
587 struct pid_table *pt;
588 proc_t *p;
589
590 KASSERT(mutex_owned(proc_lock));
591 pt = &pid_table[pid & pid_tbl_mask];
592 p = pt->pt_proc;
593 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
594 return NULL;
595 }
596 return p;
597 }
598
599 proc_t *
600 proc_find(pid_t pid)
601 {
602 proc_t *p;
603
604 p = proc_find_raw(pid);
605 if (__predict_false(p == NULL)) {
606 return NULL;
607 }
608
609 /*
610 * Only allow live processes to be found by PID.
611 * XXX: p_stat might change, since unlocked.
612 */
613 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
614 return p;
615 }
616 return NULL;
617 }
618
619 /*
620 * pgrp_find: locate a process group by the ID.
621 *
622 * => Must be called with proc_lock held.
623 */
624 struct pgrp *
625 pgrp_find(pid_t pgid)
626 {
627 struct pgrp *pg;
628
629 KASSERT(mutex_owned(proc_lock));
630
631 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
632
633 /*
634 * Cannot look up a process group that only exists because the
635 * session has not died yet (traditional).
636 */
637 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
638 return NULL;
639 }
640 return pg;
641 }
642
643 static void
644 expand_pid_table(void)
645 {
646 size_t pt_size, tsz;
647 struct pid_table *n_pt, *new_pt;
648 struct proc *proc;
649 struct pgrp *pgrp;
650 pid_t pid, rpid;
651 u_int i;
652 uint new_pt_mask;
653
654 pt_size = pid_tbl_mask + 1;
655 tsz = pt_size * 2 * sizeof(struct pid_table);
656 new_pt = kmem_alloc(tsz, KM_SLEEP);
657 new_pt_mask = pt_size * 2 - 1;
658
659 mutex_enter(proc_lock);
660 if (pt_size != pid_tbl_mask + 1) {
661 /* Another process beat us to it... */
662 mutex_exit(proc_lock);
663 kmem_free(new_pt, tsz);
664 return;
665 }
666
667 /*
668 * Copy entries from old table into new one.
669 * If 'pid' is 'odd' we need to place in the upper half,
670 * even pid's to the lower half.
671 * Free items stay in the low half so we don't have to
672 * fixup the reference to them.
673 * We stuff free items on the front of the freelist
674 * because we can't write to unmodified entries.
675 * Processing the table backwards maintains a semblance
676 * of issuing pid numbers that increase with time.
677 */
678 i = pt_size - 1;
679 n_pt = new_pt + i;
680 for (; ; i--, n_pt--) {
681 proc = pid_table[i].pt_proc;
682 pgrp = pid_table[i].pt_pgrp;
683 if (!P_VALID(proc)) {
684 /* Up 'use count' so that link is valid */
685 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
686 rpid = 0;
687 proc = P_FREE(pid);
688 if (pgrp)
689 pid = pgrp->pg_id;
690 } else {
691 pid = pid_table[i].pt_pid;
692 rpid = pid;
693 }
694
695 /* Save entry in appropriate half of table */
696 n_pt[pid & pt_size].pt_proc = proc;
697 n_pt[pid & pt_size].pt_pgrp = pgrp;
698 n_pt[pid & pt_size].pt_pid = rpid;
699
700 /* Put other piece on start of free list */
701 pid = (pid ^ pt_size) & ~pid_tbl_mask;
702 n_pt[pid & pt_size].pt_proc =
703 P_FREE((pid & ~pt_size) | next_free_pt);
704 n_pt[pid & pt_size].pt_pgrp = 0;
705 n_pt[pid & pt_size].pt_pid = 0;
706
707 next_free_pt = i | (pid & pt_size);
708 if (i == 0)
709 break;
710 }
711
712 /* Save old table size and switch tables */
713 tsz = pt_size * sizeof(struct pid_table);
714 n_pt = pid_table;
715 pid_table = new_pt;
716 pid_tbl_mask = new_pt_mask;
717
718 /*
719 * pid_max starts as PID_MAX (= 30000), once we have 16384
720 * allocated pids we need it to be larger!
721 */
722 if (pid_tbl_mask > PID_MAX) {
723 pid_max = pid_tbl_mask * 2 + 1;
724 pid_alloc_lim |= pid_alloc_lim << 1;
725 } else
726 pid_alloc_lim <<= 1; /* doubles number of free slots... */
727
728 mutex_exit(proc_lock);
729 kmem_free(n_pt, tsz);
730 }
731
732 struct proc *
733 proc_alloc(void)
734 {
735 struct proc *p;
736
737 p = pool_cache_get(proc_cache, PR_WAITOK);
738 p->p_stat = SIDL; /* protect against others */
739 proc_initspecific(p);
740 kdtrace_proc_ctor(NULL, p);
741 p->p_pid = -1;
742 proc_alloc_pid(p);
743 return p;
744 }
745
746 /*
747 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
748 * proc_find_raw() can find it by the PID.
749 */
750
751 pid_t
752 proc_alloc_pid(struct proc *p)
753 {
754 struct pid_table *pt;
755 pid_t pid;
756 int nxt;
757
758 for (;;expand_pid_table()) {
759 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
760 /* ensure pids cycle through 2000+ values */
761 continue;
762 mutex_enter(proc_lock);
763 pt = &pid_table[next_free_pt];
764 #ifdef DIAGNOSTIC
765 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
766 panic("proc_alloc: slot busy");
767 #endif
768 nxt = P_NEXT(pt->pt_proc);
769 if (nxt & pid_tbl_mask)
770 break;
771 /* Table full - expand (NB last entry not used....) */
772 mutex_exit(proc_lock);
773 }
774
775 /* pid is 'saved use count' + 'size' + entry */
776 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
777 if ((uint)pid > (uint)pid_max)
778 pid &= pid_tbl_mask;
779 next_free_pt = nxt & pid_tbl_mask;
780
781 /* Grab table slot */
782 pt->pt_proc = p;
783
784 KASSERT(pt->pt_pid == 0);
785 pt->pt_pid = pid;
786 if (p->p_pid == -1) {
787 p->p_pid = pid;
788 }
789 pid_alloc_cnt++;
790 mutex_exit(proc_lock);
791
792 return pid;
793 }
794
795 /*
796 * Free a process id - called from proc_free (in kern_exit.c)
797 *
798 * Called with the proc_lock held.
799 */
800 void
801 proc_free_pid(pid_t pid)
802 {
803 struct pid_table *pt;
804
805 KASSERT(mutex_owned(proc_lock));
806
807 pt = &pid_table[pid & pid_tbl_mask];
808
809 /* save pid use count in slot */
810 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
811 KASSERT(pt->pt_pid == pid);
812 pt->pt_pid = 0;
813
814 if (pt->pt_pgrp == NULL) {
815 /* link last freed entry onto ours */
816 pid &= pid_tbl_mask;
817 pt = &pid_table[last_free_pt];
818 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
819 pt->pt_pid = 0;
820 last_free_pt = pid;
821 pid_alloc_cnt--;
822 }
823
824 atomic_dec_uint(&nprocs);
825 }
826
827 void
828 proc_free_mem(struct proc *p)
829 {
830
831 kdtrace_proc_dtor(NULL, p);
832 pool_cache_put(proc_cache, p);
833 }
834
835 /*
836 * proc_enterpgrp: move p to a new or existing process group (and session).
837 *
838 * If we are creating a new pgrp, the pgid should equal
839 * the calling process' pid.
840 * If is only valid to enter a process group that is in the session
841 * of the process.
842 * Also mksess should only be set if we are creating a process group
843 *
844 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
845 */
846 int
847 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
848 {
849 struct pgrp *new_pgrp, *pgrp;
850 struct session *sess;
851 struct proc *p;
852 int rval;
853 pid_t pg_id = NO_PGID;
854
855 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
856
857 /* Allocate data areas we might need before doing any validity checks */
858 mutex_enter(proc_lock); /* Because pid_table might change */
859 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
860 mutex_exit(proc_lock);
861 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
862 mutex_enter(proc_lock);
863 } else
864 new_pgrp = NULL;
865 rval = EPERM; /* most common error (to save typing) */
866
867 /* Check pgrp exists or can be created */
868 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
869 if (pgrp != NULL && pgrp->pg_id != pgid)
870 goto done;
871
872 /* Can only set another process under restricted circumstances. */
873 if (pid != curp->p_pid) {
874 /* Must exist and be one of our children... */
875 p = proc_find(pid);
876 if (p == NULL || !p_inferior(p, curp)) {
877 rval = ESRCH;
878 goto done;
879 }
880 /* ... in the same session... */
881 if (sess != NULL || p->p_session != curp->p_session)
882 goto done;
883 /* ... existing pgid must be in same session ... */
884 if (pgrp != NULL && pgrp->pg_session != p->p_session)
885 goto done;
886 /* ... and not done an exec. */
887 if (p->p_flag & PK_EXEC) {
888 rval = EACCES;
889 goto done;
890 }
891 } else {
892 /* ... setsid() cannot re-enter a pgrp */
893 if (mksess && (curp->p_pgid == curp->p_pid ||
894 pgrp_find(curp->p_pid)))
895 goto done;
896 p = curp;
897 }
898
899 /* Changing the process group/session of a session
900 leader is definitely off limits. */
901 if (SESS_LEADER(p)) {
902 if (sess == NULL && p->p_pgrp == pgrp)
903 /* unless it's a definite noop */
904 rval = 0;
905 goto done;
906 }
907
908 /* Can only create a process group with id of process */
909 if (pgrp == NULL && pgid != pid)
910 goto done;
911
912 /* Can only create a session if creating pgrp */
913 if (sess != NULL && pgrp != NULL)
914 goto done;
915
916 /* Check we allocated memory for a pgrp... */
917 if (pgrp == NULL && new_pgrp == NULL)
918 goto done;
919
920 /* Don't attach to 'zombie' pgrp */
921 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
922 goto done;
923
924 /* Expect to succeed now */
925 rval = 0;
926
927 if (pgrp == p->p_pgrp)
928 /* nothing to do */
929 goto done;
930
931 /* Ok all setup, link up required structures */
932
933 if (pgrp == NULL) {
934 pgrp = new_pgrp;
935 new_pgrp = NULL;
936 if (sess != NULL) {
937 sess->s_sid = p->p_pid;
938 sess->s_leader = p;
939 sess->s_count = 1;
940 sess->s_ttyvp = NULL;
941 sess->s_ttyp = NULL;
942 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
943 memcpy(sess->s_login, p->p_session->s_login,
944 sizeof(sess->s_login));
945 p->p_lflag &= ~PL_CONTROLT;
946 } else {
947 sess = p->p_pgrp->pg_session;
948 proc_sesshold(sess);
949 }
950 pgrp->pg_session = sess;
951 sess = NULL;
952
953 pgrp->pg_id = pgid;
954 LIST_INIT(&pgrp->pg_members);
955 #ifdef DIAGNOSTIC
956 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
957 panic("enterpgrp: pgrp table slot in use");
958 if (__predict_false(mksess && p != curp))
959 panic("enterpgrp: mksession and p != curproc");
960 #endif
961 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
962 pgrp->pg_jobc = 0;
963 }
964
965 /*
966 * Adjust eligibility of affected pgrps to participate in job control.
967 * Increment eligibility counts before decrementing, otherwise we
968 * could reach 0 spuriously during the first call.
969 */
970 fixjobc(p, pgrp, 1);
971 fixjobc(p, p->p_pgrp, 0);
972
973 /* Interlock with ttread(). */
974 mutex_spin_enter(&tty_lock);
975
976 /* Move process to requested group. */
977 LIST_REMOVE(p, p_pglist);
978 if (LIST_EMPTY(&p->p_pgrp->pg_members))
979 /* defer delete until we've dumped the lock */
980 pg_id = p->p_pgrp->pg_id;
981 p->p_pgrp = pgrp;
982 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
983
984 /* Done with the swap; we can release the tty mutex. */
985 mutex_spin_exit(&tty_lock);
986
987 done:
988 if (pg_id != NO_PGID) {
989 /* Releases proc_lock. */
990 pg_delete(pg_id);
991 } else {
992 mutex_exit(proc_lock);
993 }
994 if (sess != NULL)
995 kmem_free(sess, sizeof(*sess));
996 if (new_pgrp != NULL)
997 kmem_free(new_pgrp, sizeof(*new_pgrp));
998 #ifdef DEBUG_PGRP
999 if (__predict_false(rval))
1000 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1001 pid, pgid, mksess, curp->p_pid, rval);
1002 #endif
1003 return rval;
1004 }
1005
1006 /*
1007 * proc_leavepgrp: remove a process from its process group.
1008 * => must be called with the proc_lock held, which will be released;
1009 */
1010 void
1011 proc_leavepgrp(struct proc *p)
1012 {
1013 struct pgrp *pgrp;
1014
1015 KASSERT(mutex_owned(proc_lock));
1016
1017 /* Interlock with ttread() */
1018 mutex_spin_enter(&tty_lock);
1019 pgrp = p->p_pgrp;
1020 LIST_REMOVE(p, p_pglist);
1021 p->p_pgrp = NULL;
1022 mutex_spin_exit(&tty_lock);
1023
1024 if (LIST_EMPTY(&pgrp->pg_members)) {
1025 /* Releases proc_lock. */
1026 pg_delete(pgrp->pg_id);
1027 } else {
1028 mutex_exit(proc_lock);
1029 }
1030 }
1031
1032 /*
1033 * pg_remove: remove a process group from the table.
1034 * => must be called with the proc_lock held;
1035 * => returns process group to free;
1036 */
1037 static struct pgrp *
1038 pg_remove(pid_t pg_id)
1039 {
1040 struct pgrp *pgrp;
1041 struct pid_table *pt;
1042
1043 KASSERT(mutex_owned(proc_lock));
1044
1045 pt = &pid_table[pg_id & pid_tbl_mask];
1046 pgrp = pt->pt_pgrp;
1047
1048 KASSERT(pgrp != NULL);
1049 KASSERT(pgrp->pg_id == pg_id);
1050 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1051
1052 pt->pt_pgrp = NULL;
1053
1054 if (!P_VALID(pt->pt_proc)) {
1055 /* Orphaned pgrp, put slot onto free list. */
1056 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1057 pg_id &= pid_tbl_mask;
1058 pt = &pid_table[last_free_pt];
1059 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1060 KASSERT(pt->pt_pid == 0);
1061 last_free_pt = pg_id;
1062 pid_alloc_cnt--;
1063 }
1064 return pgrp;
1065 }
1066
1067 /*
1068 * pg_delete: delete and free a process group.
1069 * => must be called with the proc_lock held, which will be released.
1070 */
1071 static void
1072 pg_delete(pid_t pg_id)
1073 {
1074 struct pgrp *pg;
1075 struct tty *ttyp;
1076 struct session *ss;
1077
1078 KASSERT(mutex_owned(proc_lock));
1079
1080 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1081 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1082 mutex_exit(proc_lock);
1083 return;
1084 }
1085
1086 ss = pg->pg_session;
1087
1088 /* Remove reference (if any) from tty to this process group */
1089 mutex_spin_enter(&tty_lock);
1090 ttyp = ss->s_ttyp;
1091 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1092 ttyp->t_pgrp = NULL;
1093 KASSERT(ttyp->t_session == ss);
1094 }
1095 mutex_spin_exit(&tty_lock);
1096
1097 /*
1098 * The leading process group in a session is freed by proc_sessrele(),
1099 * if last reference. Note: proc_sessrele() releases proc_lock.
1100 */
1101 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1102 proc_sessrele(ss);
1103
1104 if (pg != NULL) {
1105 /* Free it, if was not done by proc_sessrele(). */
1106 kmem_free(pg, sizeof(struct pgrp));
1107 }
1108 }
1109
1110 /*
1111 * Adjust pgrp jobc counters when specified process changes process group.
1112 * We count the number of processes in each process group that "qualify"
1113 * the group for terminal job control (those with a parent in a different
1114 * process group of the same session). If that count reaches zero, the
1115 * process group becomes orphaned. Check both the specified process'
1116 * process group and that of its children.
1117 * entering == 0 => p is leaving specified group.
1118 * entering == 1 => p is entering specified group.
1119 *
1120 * Call with proc_lock held.
1121 */
1122 void
1123 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1124 {
1125 struct pgrp *hispgrp;
1126 struct session *mysession = pgrp->pg_session;
1127 struct proc *child;
1128
1129 KASSERT(mutex_owned(proc_lock));
1130
1131 /*
1132 * Check p's parent to see whether p qualifies its own process
1133 * group; if so, adjust count for p's process group.
1134 */
1135 hispgrp = p->p_pptr->p_pgrp;
1136 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1137 if (entering) {
1138 pgrp->pg_jobc++;
1139 p->p_lflag &= ~PL_ORPHANPG;
1140 } else if (--pgrp->pg_jobc == 0)
1141 orphanpg(pgrp);
1142 }
1143
1144 /*
1145 * Check this process' children to see whether they qualify
1146 * their process groups; if so, adjust counts for children's
1147 * process groups.
1148 */
1149 LIST_FOREACH(child, &p->p_children, p_sibling) {
1150 hispgrp = child->p_pgrp;
1151 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1152 !P_ZOMBIE(child)) {
1153 if (entering) {
1154 child->p_lflag &= ~PL_ORPHANPG;
1155 hispgrp->pg_jobc++;
1156 } else if (--hispgrp->pg_jobc == 0)
1157 orphanpg(hispgrp);
1158 }
1159 }
1160 }
1161
1162 /*
1163 * A process group has become orphaned;
1164 * if there are any stopped processes in the group,
1165 * hang-up all process in that group.
1166 *
1167 * Call with proc_lock held.
1168 */
1169 static void
1170 orphanpg(struct pgrp *pg)
1171 {
1172 struct proc *p;
1173
1174 KASSERT(mutex_owned(proc_lock));
1175
1176 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1177 if (p->p_stat == SSTOP) {
1178 p->p_lflag |= PL_ORPHANPG;
1179 psignal(p, SIGHUP);
1180 psignal(p, SIGCONT);
1181 }
1182 }
1183 }
1184
1185 #ifdef DDB
1186 #include <ddb/db_output.h>
1187 void pidtbl_dump(void);
1188 void
1189 pidtbl_dump(void)
1190 {
1191 struct pid_table *pt;
1192 struct proc *p;
1193 struct pgrp *pgrp;
1194 int id;
1195
1196 db_printf("pid table %p size %x, next %x, last %x\n",
1197 pid_table, pid_tbl_mask+1,
1198 next_free_pt, last_free_pt);
1199 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1200 p = pt->pt_proc;
1201 if (!P_VALID(p) && !pt->pt_pgrp)
1202 continue;
1203 db_printf(" id %x: ", id);
1204 if (P_VALID(p))
1205 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1206 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1207 else
1208 db_printf("next %x use %x\n",
1209 P_NEXT(p) & pid_tbl_mask,
1210 P_NEXT(p) & ~pid_tbl_mask);
1211 if ((pgrp = pt->pt_pgrp)) {
1212 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1213 pgrp->pg_session, pgrp->pg_session->s_sid,
1214 pgrp->pg_session->s_count,
1215 pgrp->pg_session->s_login);
1216 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1217 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1218 LIST_FIRST(&pgrp->pg_members));
1219 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1220 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1221 p->p_pid, p, p->p_pgrp, p->p_comm);
1222 }
1223 }
1224 }
1225 }
1226 #endif /* DDB */
1227
1228 #ifdef KSTACK_CHECK_MAGIC
1229
1230 #define KSTACK_MAGIC 0xdeadbeaf
1231
1232 /* XXX should be per process basis? */
1233 static int kstackleftmin = KSTACK_SIZE;
1234 static int kstackleftthres = KSTACK_SIZE / 8;
1235
1236 void
1237 kstack_setup_magic(const struct lwp *l)
1238 {
1239 uint32_t *ip;
1240 uint32_t const *end;
1241
1242 KASSERT(l != NULL);
1243 KASSERT(l != &lwp0);
1244
1245 /*
1246 * fill all the stack with magic number
1247 * so that later modification on it can be detected.
1248 */
1249 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1250 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1251 for (; ip < end; ip++) {
1252 *ip = KSTACK_MAGIC;
1253 }
1254 }
1255
1256 void
1257 kstack_check_magic(const struct lwp *l)
1258 {
1259 uint32_t const *ip, *end;
1260 int stackleft;
1261
1262 KASSERT(l != NULL);
1263
1264 /* don't check proc0 */ /*XXX*/
1265 if (l == &lwp0)
1266 return;
1267
1268 #ifdef __MACHINE_STACK_GROWS_UP
1269 /* stack grows upwards (eg. hppa) */
1270 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1271 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1272 for (ip--; ip >= end; ip--)
1273 if (*ip != KSTACK_MAGIC)
1274 break;
1275
1276 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1277 #else /* __MACHINE_STACK_GROWS_UP */
1278 /* stack grows downwards (eg. i386) */
1279 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1280 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1281 for (; ip < end; ip++)
1282 if (*ip != KSTACK_MAGIC)
1283 break;
1284
1285 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1286 #endif /* __MACHINE_STACK_GROWS_UP */
1287
1288 if (kstackleftmin > stackleft) {
1289 kstackleftmin = stackleft;
1290 if (stackleft < kstackleftthres)
1291 printf("warning: kernel stack left %d bytes"
1292 "(pid %u:lid %u)\n", stackleft,
1293 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1294 }
1295
1296 if (stackleft <= 0) {
1297 panic("magic on the top of kernel stack changed for "
1298 "pid %u, lid %u: maybe kernel stack overflow",
1299 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1300 }
1301 }
1302 #endif /* KSTACK_CHECK_MAGIC */
1303
1304 int
1305 proclist_foreach_call(struct proclist *list,
1306 int (*callback)(struct proc *, void *arg), void *arg)
1307 {
1308 struct proc marker;
1309 struct proc *p;
1310 int ret = 0;
1311
1312 marker.p_flag = PK_MARKER;
1313 mutex_enter(proc_lock);
1314 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1315 if (p->p_flag & PK_MARKER) {
1316 p = LIST_NEXT(p, p_list);
1317 continue;
1318 }
1319 LIST_INSERT_AFTER(p, &marker, p_list);
1320 ret = (*callback)(p, arg);
1321 KASSERT(mutex_owned(proc_lock));
1322 p = LIST_NEXT(&marker, p_list);
1323 LIST_REMOVE(&marker, p_list);
1324 }
1325 mutex_exit(proc_lock);
1326
1327 return ret;
1328 }
1329
1330 int
1331 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1332 {
1333
1334 /* XXXCDC: how should locking work here? */
1335
1336 /* curproc exception is for coredump. */
1337
1338 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1339 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1340 return EFAULT;
1341 }
1342
1343 uvmspace_addref(p->p_vmspace);
1344 *vm = p->p_vmspace;
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * Acquire a write lock on the process credential.
1351 */
1352 void
1353 proc_crmod_enter(void)
1354 {
1355 struct lwp *l = curlwp;
1356 struct proc *p = l->l_proc;
1357 kauth_cred_t oc;
1358
1359 /* Reset what needs to be reset in plimit. */
1360 if (p->p_limit->pl_corename != defcorename) {
1361 lim_setcorename(p, defcorename, 0);
1362 }
1363
1364 mutex_enter(p->p_lock);
1365
1366 /* Ensure the LWP cached credentials are up to date. */
1367 if ((oc = l->l_cred) != p->p_cred) {
1368 kauth_cred_hold(p->p_cred);
1369 l->l_cred = p->p_cred;
1370 kauth_cred_free(oc);
1371 }
1372 }
1373
1374 /*
1375 * Set in a new process credential, and drop the write lock. The credential
1376 * must have a reference already. Optionally, free a no-longer required
1377 * credential. The scheduler also needs to inspect p_cred, so we also
1378 * briefly acquire the sched state mutex.
1379 */
1380 void
1381 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1382 {
1383 struct lwp *l = curlwp, *l2;
1384 struct proc *p = l->l_proc;
1385 kauth_cred_t oc;
1386
1387 KASSERT(mutex_owned(p->p_lock));
1388
1389 /* Is there a new credential to set in? */
1390 if (scred != NULL) {
1391 p->p_cred = scred;
1392 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1393 if (l2 != l)
1394 l2->l_prflag |= LPR_CRMOD;
1395 }
1396
1397 /* Ensure the LWP cached credentials are up to date. */
1398 if ((oc = l->l_cred) != scred) {
1399 kauth_cred_hold(scred);
1400 l->l_cred = scred;
1401 }
1402 } else
1403 oc = NULL; /* XXXgcc */
1404
1405 if (sugid) {
1406 /*
1407 * Mark process as having changed credentials, stops
1408 * tracing etc.
1409 */
1410 p->p_flag |= PK_SUGID;
1411 }
1412
1413 mutex_exit(p->p_lock);
1414
1415 /* If there is a credential to be released, free it now. */
1416 if (fcred != NULL) {
1417 KASSERT(scred != NULL);
1418 kauth_cred_free(fcred);
1419 if (oc != scred)
1420 kauth_cred_free(oc);
1421 }
1422 }
1423
1424 /*
1425 * proc_specific_key_create --
1426 * Create a key for subsystem proc-specific data.
1427 */
1428 int
1429 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1430 {
1431
1432 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1433 }
1434
1435 /*
1436 * proc_specific_key_delete --
1437 * Delete a key for subsystem proc-specific data.
1438 */
1439 void
1440 proc_specific_key_delete(specificdata_key_t key)
1441 {
1442
1443 specificdata_key_delete(proc_specificdata_domain, key);
1444 }
1445
1446 /*
1447 * proc_initspecific --
1448 * Initialize a proc's specificdata container.
1449 */
1450 void
1451 proc_initspecific(struct proc *p)
1452 {
1453 int error;
1454
1455 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1456 KASSERT(error == 0);
1457 }
1458
1459 /*
1460 * proc_finispecific --
1461 * Finalize a proc's specificdata container.
1462 */
1463 void
1464 proc_finispecific(struct proc *p)
1465 {
1466
1467 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1468 }
1469
1470 /*
1471 * proc_getspecific --
1472 * Return proc-specific data corresponding to the specified key.
1473 */
1474 void *
1475 proc_getspecific(struct proc *p, specificdata_key_t key)
1476 {
1477
1478 return (specificdata_getspecific(proc_specificdata_domain,
1479 &p->p_specdataref, key));
1480 }
1481
1482 /*
1483 * proc_setspecific --
1484 * Set proc-specific data corresponding to the specified key.
1485 */
1486 void
1487 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1488 {
1489
1490 specificdata_setspecific(proc_specificdata_domain,
1491 &p->p_specdataref, key, data);
1492 }
1493
1494 int
1495 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1496 {
1497 int r = 0;
1498
1499 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1500 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1501 /*
1502 * suid proc of ours or proc not ours
1503 */
1504 r = EPERM;
1505 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1506 /*
1507 * sgid proc has sgid back to us temporarily
1508 */
1509 r = EPERM;
1510 } else {
1511 /*
1512 * our rgid must be in target's group list (ie,
1513 * sub-processes started by a sgid process)
1514 */
1515 int ismember = 0;
1516
1517 if (kauth_cred_ismember_gid(cred,
1518 kauth_cred_getgid(target), &ismember) != 0 ||
1519 !ismember)
1520 r = EPERM;
1521 }
1522
1523 return (r);
1524 }
1525
1526 /*
1527 * sysctl stuff
1528 */
1529
1530 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1531
1532 static const u_int sysctl_flagmap[] = {
1533 PK_ADVLOCK, P_ADVLOCK,
1534 PK_EXEC, P_EXEC,
1535 PK_NOCLDWAIT, P_NOCLDWAIT,
1536 PK_32, P_32,
1537 PK_CLDSIGIGN, P_CLDSIGIGN,
1538 PK_SUGID, P_SUGID,
1539 0
1540 };
1541
1542 static const u_int sysctl_sflagmap[] = {
1543 PS_NOCLDSTOP, P_NOCLDSTOP,
1544 PS_WEXIT, P_WEXIT,
1545 PS_STOPFORK, P_STOPFORK,
1546 PS_STOPEXEC, P_STOPEXEC,
1547 PS_STOPEXIT, P_STOPEXIT,
1548 0
1549 };
1550
1551 static const u_int sysctl_slflagmap[] = {
1552 PSL_TRACED, P_TRACED,
1553 PSL_FSTRACE, P_FSTRACE,
1554 PSL_CHTRACED, P_CHTRACED,
1555 PSL_SYSCALL, P_SYSCALL,
1556 0
1557 };
1558
1559 static const u_int sysctl_lflagmap[] = {
1560 PL_CONTROLT, P_CONTROLT,
1561 PL_PPWAIT, P_PPWAIT,
1562 0
1563 };
1564
1565 static const u_int sysctl_stflagmap[] = {
1566 PST_PROFIL, P_PROFIL,
1567 0
1568
1569 };
1570
1571 /* used by kern_lwp also */
1572 const u_int sysctl_lwpflagmap[] = {
1573 LW_SINTR, L_SINTR,
1574 LW_SYSTEM, L_SYSTEM,
1575 0
1576 };
1577
1578 /*
1579 * Find the most ``active'' lwp of a process and return it for ps display
1580 * purposes
1581 */
1582 static struct lwp *
1583 proc_active_lwp(struct proc *p)
1584 {
1585 static const int ostat[] = {
1586 0,
1587 2, /* LSIDL */
1588 6, /* LSRUN */
1589 5, /* LSSLEEP */
1590 4, /* LSSTOP */
1591 0, /* LSZOMB */
1592 1, /* LSDEAD */
1593 7, /* LSONPROC */
1594 3 /* LSSUSPENDED */
1595 };
1596
1597 struct lwp *l, *lp = NULL;
1598 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1599 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1600 if (lp == NULL ||
1601 ostat[l->l_stat] > ostat[lp->l_stat] ||
1602 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1603 l->l_cpticks > lp->l_cpticks)) {
1604 lp = l;
1605 continue;
1606 }
1607 }
1608 return lp;
1609 }
1610
1611 static int
1612 sysctl_doeproc(SYSCTLFN_ARGS)
1613 {
1614 union {
1615 struct kinfo_proc kproc;
1616 struct kinfo_proc2 kproc2;
1617 } *kbuf;
1618 struct proc *p, *next, *marker;
1619 char *where, *dp;
1620 int type, op, arg, error;
1621 u_int elem_size, kelem_size, elem_count;
1622 size_t buflen, needed;
1623 bool match, zombie, mmmbrains;
1624
1625 if (namelen == 1 && name[0] == CTL_QUERY)
1626 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1627
1628 dp = where = oldp;
1629 buflen = where != NULL ? *oldlenp : 0;
1630 error = 0;
1631 needed = 0;
1632 type = rnode->sysctl_num;
1633
1634 if (type == KERN_PROC) {
1635 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1636 return (EINVAL);
1637 op = name[0];
1638 if (op != KERN_PROC_ALL)
1639 arg = name[1];
1640 else
1641 arg = 0; /* Quell compiler warning */
1642 elem_count = 0; /* Ditto */
1643 kelem_size = elem_size = sizeof(kbuf->kproc);
1644 } else {
1645 if (namelen != 4)
1646 return (EINVAL);
1647 op = name[0];
1648 arg = name[1];
1649 elem_size = name[2];
1650 elem_count = name[3];
1651 kelem_size = sizeof(kbuf->kproc2);
1652 }
1653
1654 sysctl_unlock();
1655
1656 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1657 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1658 marker->p_flag = PK_MARKER;
1659
1660 mutex_enter(proc_lock);
1661 mmmbrains = false;
1662 for (p = LIST_FIRST(&allproc);; p = next) {
1663 if (p == NULL) {
1664 if (!mmmbrains) {
1665 p = LIST_FIRST(&zombproc);
1666 mmmbrains = true;
1667 }
1668 if (p == NULL)
1669 break;
1670 }
1671 next = LIST_NEXT(p, p_list);
1672 if ((p->p_flag & PK_MARKER) != 0)
1673 continue;
1674
1675 /*
1676 * Skip embryonic processes.
1677 */
1678 if (p->p_stat == SIDL)
1679 continue;
1680
1681 mutex_enter(p->p_lock);
1682 error = kauth_authorize_process(l->l_cred,
1683 KAUTH_PROCESS_CANSEE, p,
1684 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1685 if (error != 0) {
1686 mutex_exit(p->p_lock);
1687 continue;
1688 }
1689
1690 /*
1691 * TODO - make more efficient (see notes below).
1692 * do by session.
1693 */
1694 switch (op) {
1695 case KERN_PROC_PID:
1696 /* could do this with just a lookup */
1697 match = (p->p_pid == (pid_t)arg);
1698 break;
1699
1700 case KERN_PROC_PGRP:
1701 /* could do this by traversing pgrp */
1702 match = (p->p_pgrp->pg_id == (pid_t)arg);
1703 break;
1704
1705 case KERN_PROC_SESSION:
1706 match = (p->p_session->s_sid == (pid_t)arg);
1707 break;
1708
1709 case KERN_PROC_TTY:
1710 match = true;
1711 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1712 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1713 p->p_session->s_ttyp == NULL ||
1714 p->p_session->s_ttyvp != NULL) {
1715 match = false;
1716 }
1717 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1718 p->p_session->s_ttyp == NULL) {
1719 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1720 match = false;
1721 }
1722 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1723 match = false;
1724 }
1725 break;
1726
1727 case KERN_PROC_UID:
1728 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1729 break;
1730
1731 case KERN_PROC_RUID:
1732 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1733 break;
1734
1735 case KERN_PROC_GID:
1736 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1737 break;
1738
1739 case KERN_PROC_RGID:
1740 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1741 break;
1742
1743 case KERN_PROC_ALL:
1744 match = true;
1745 /* allow everything */
1746 break;
1747
1748 default:
1749 error = EINVAL;
1750 mutex_exit(p->p_lock);
1751 goto cleanup;
1752 }
1753 if (!match) {
1754 mutex_exit(p->p_lock);
1755 continue;
1756 }
1757
1758 /*
1759 * Grab a hold on the process.
1760 */
1761 if (mmmbrains) {
1762 zombie = true;
1763 } else {
1764 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1765 }
1766 if (zombie) {
1767 LIST_INSERT_AFTER(p, marker, p_list);
1768 }
1769
1770 if (buflen >= elem_size &&
1771 (type == KERN_PROC || elem_count > 0)) {
1772 if (type == KERN_PROC) {
1773 kbuf->kproc.kp_proc = *p;
1774 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1775 } else {
1776 fill_kproc2(p, &kbuf->kproc2, zombie);
1777 elem_count--;
1778 }
1779 mutex_exit(p->p_lock);
1780 mutex_exit(proc_lock);
1781 /*
1782 * Copy out elem_size, but not larger than kelem_size
1783 */
1784 error = sysctl_copyout(l, kbuf, dp,
1785 min(kelem_size, elem_size));
1786 mutex_enter(proc_lock);
1787 if (error) {
1788 goto bah;
1789 }
1790 dp += elem_size;
1791 buflen -= elem_size;
1792 } else {
1793 mutex_exit(p->p_lock);
1794 }
1795 needed += elem_size;
1796
1797 /*
1798 * Release reference to process.
1799 */
1800 if (zombie) {
1801 next = LIST_NEXT(marker, p_list);
1802 LIST_REMOVE(marker, p_list);
1803 } else {
1804 rw_exit(&p->p_reflock);
1805 next = LIST_NEXT(p, p_list);
1806 }
1807 }
1808 mutex_exit(proc_lock);
1809
1810 if (where != NULL) {
1811 *oldlenp = dp - where;
1812 if (needed > *oldlenp) {
1813 error = ENOMEM;
1814 goto out;
1815 }
1816 } else {
1817 needed += KERN_PROCSLOP;
1818 *oldlenp = needed;
1819 }
1820 if (kbuf)
1821 kmem_free(kbuf, sizeof(*kbuf));
1822 if (marker)
1823 kmem_free(marker, sizeof(*marker));
1824 sysctl_relock();
1825 return 0;
1826 bah:
1827 if (zombie)
1828 LIST_REMOVE(marker, p_list);
1829 else
1830 rw_exit(&p->p_reflock);
1831 cleanup:
1832 mutex_exit(proc_lock);
1833 out:
1834 if (kbuf)
1835 kmem_free(kbuf, sizeof(*kbuf));
1836 if (marker)
1837 kmem_free(marker, sizeof(*marker));
1838 sysctl_relock();
1839 return error;
1840 }
1841
1842 int
1843 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1844 {
1845
1846 #ifdef COMPAT_NETBSD32
1847 if (p->p_flag & PK_32) {
1848 struct ps_strings32 arginfo32;
1849
1850 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1851 sizeof(arginfo32));
1852 if (error)
1853 return error;
1854 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1855 arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1856 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1857 arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1858 return 0;
1859 }
1860 #endif
1861 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1862 }
1863
1864 static int
1865 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1866 {
1867 void **cookie = cookie_;
1868 struct lwp *l = cookie[0];
1869 char *dst = cookie[1];
1870
1871 return sysctl_copyout(l, src, dst + off, len);
1872 }
1873
1874 /*
1875 * sysctl helper routine for kern.proc_args pseudo-subtree.
1876 */
1877 static int
1878 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1879 {
1880 struct ps_strings pss;
1881 struct proc *p;
1882 pid_t pid;
1883 int type, error;
1884 void *cookie[2];
1885
1886 if (namelen == 1 && name[0] == CTL_QUERY)
1887 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1888
1889 if (newp != NULL || namelen != 2)
1890 return (EINVAL);
1891 pid = name[0];
1892 type = name[1];
1893
1894 switch (type) {
1895 case KERN_PROC_ARGV:
1896 case KERN_PROC_NARGV:
1897 case KERN_PROC_ENV:
1898 case KERN_PROC_NENV:
1899 /* ok */
1900 break;
1901 default:
1902 return (EINVAL);
1903 }
1904
1905 sysctl_unlock();
1906
1907 /* check pid */
1908 mutex_enter(proc_lock);
1909 if ((p = proc_find(pid)) == NULL) {
1910 error = EINVAL;
1911 goto out_locked;
1912 }
1913 mutex_enter(p->p_lock);
1914
1915 /* Check permission. */
1916 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1917 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1918 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1919 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1920 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1921 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1922 else
1923 error = EINVAL; /* XXXGCC */
1924 if (error) {
1925 mutex_exit(p->p_lock);
1926 goto out_locked;
1927 }
1928
1929 if (oldp == NULL) {
1930 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1931 *oldlenp = sizeof (int);
1932 else
1933 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1934 error = 0;
1935 mutex_exit(p->p_lock);
1936 goto out_locked;
1937 }
1938
1939 /*
1940 * Zombies don't have a stack, so we can't read their psstrings.
1941 * System processes also don't have a user stack.
1942 */
1943 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1944 error = EINVAL;
1945 mutex_exit(p->p_lock);
1946 goto out_locked;
1947 }
1948
1949 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1950 mutex_exit(p->p_lock);
1951 if (error) {
1952 goto out_locked;
1953 }
1954 mutex_exit(proc_lock);
1955
1956 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1957 int value;
1958 if ((error = copyin_psstrings(p, &pss)) == 0) {
1959 if (type == KERN_PROC_NARGV)
1960 value = pss.ps_nargvstr;
1961 else
1962 value = pss.ps_nenvstr;
1963 error = sysctl_copyout(l, &value, oldp, sizeof(value));
1964 *oldlenp = sizeof(value);
1965 }
1966 } else {
1967 cookie[0] = l;
1968 cookie[1] = oldp;
1969 error = copy_procargs(p, type, oldlenp,
1970 copy_procargs_sysctl_cb, cookie);
1971 }
1972 rw_exit(&p->p_reflock);
1973 sysctl_relock();
1974 return error;
1975
1976 out_locked:
1977 mutex_exit(proc_lock);
1978 sysctl_relock();
1979 return error;
1980 }
1981
1982 int
1983 copy_procargs(struct proc *p, int oid, size_t *limit,
1984 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
1985 {
1986 struct ps_strings pss;
1987 size_t len, i, loaded, entry_len;
1988 struct uio auio;
1989 struct iovec aiov;
1990 int error, argvlen;
1991 char *arg;
1992 char **argv;
1993 vaddr_t user_argv;
1994 struct vmspace *vmspace;
1995
1996 /*
1997 * Allocate a temporary buffer to hold the argument vector and
1998 * the arguments themselve.
1999 */
2000 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2001 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2002
2003 /*
2004 * Lock the process down in memory.
2005 */
2006 vmspace = p->p_vmspace;
2007 uvmspace_addref(vmspace);
2008
2009 /*
2010 * Read in the ps_strings structure.
2011 */
2012 if ((error = copyin_psstrings(p, &pss)) != 0)
2013 goto done;
2014
2015 /*
2016 * Now read the address of the argument vector.
2017 */
2018 switch (oid) {
2019 case KERN_PROC_ARGV:
2020 user_argv = (uintptr_t)pss.ps_argvstr;
2021 argvlen = pss.ps_nargvstr;
2022 break;
2023 case KERN_PROC_ENV:
2024 user_argv = (uintptr_t)pss.ps_envstr;
2025 argvlen = pss.ps_nenvstr;
2026 break;
2027 default:
2028 error = EINVAL;
2029 goto done;
2030 }
2031
2032 if (argvlen < 0) {
2033 error = EIO;
2034 goto done;
2035 }
2036
2037 #ifdef COMPAT_NETBSD32
2038 if (p->p_flag & PK_32)
2039 entry_len = sizeof(netbsd32_charp);
2040 else
2041 #endif
2042 entry_len = sizeof(char *);
2043
2044 /*
2045 * Now copy each string.
2046 */
2047 len = 0; /* bytes written to user buffer */
2048 loaded = 0; /* bytes from argv already processed */
2049 i = 0; /* To make compiler happy */
2050
2051 for (; argvlen; --argvlen) {
2052 int finished = 0;
2053 vaddr_t base;
2054 size_t xlen;
2055 int j;
2056
2057 if (loaded == 0) {
2058 size_t rem = entry_len * argvlen;
2059 loaded = MIN(rem, PAGE_SIZE);
2060 error = copyin_vmspace(vmspace,
2061 (const void *)user_argv, argv, loaded);
2062 if (error)
2063 break;
2064 user_argv += loaded;
2065 i = 0;
2066 }
2067
2068 #ifdef COMPAT_NETBSD32
2069 if (p->p_flag & PK_32) {
2070 netbsd32_charp *argv32;
2071
2072 argv32 = (netbsd32_charp *)argv;
2073 base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2074 } else
2075 #endif
2076 base = (vaddr_t)argv[i++];
2077 loaded -= entry_len;
2078
2079 /*
2080 * The program has messed around with its arguments,
2081 * possibly deleting some, and replacing them with
2082 * NULL's. Treat this as the last argument and not
2083 * a failure.
2084 */
2085 if (base == 0)
2086 break;
2087
2088 while (!finished) {
2089 xlen = PAGE_SIZE - (base & PAGE_MASK);
2090
2091 aiov.iov_base = arg;
2092 aiov.iov_len = PAGE_SIZE;
2093 auio.uio_iov = &aiov;
2094 auio.uio_iovcnt = 1;
2095 auio.uio_offset = base;
2096 auio.uio_resid = xlen;
2097 auio.uio_rw = UIO_READ;
2098 UIO_SETUP_SYSSPACE(&auio);
2099 error = uvm_io(&vmspace->vm_map, &auio);
2100 if (error)
2101 goto done;
2102
2103 /* Look for the end of the string */
2104 for (j = 0; j < xlen; j++) {
2105 if (arg[j] == '\0') {
2106 xlen = j + 1;
2107 finished = 1;
2108 break;
2109 }
2110 }
2111
2112 /* Check for user buffer overflow */
2113 if (len + xlen > *limit) {
2114 finished = 1;
2115 if (len > *limit)
2116 xlen = 0;
2117 else
2118 xlen = *limit - len;
2119 }
2120
2121 /* Copyout the page */
2122 error = (*cb)(cookie, arg, len, xlen);
2123 if (error)
2124 goto done;
2125
2126 len += xlen;
2127 base += xlen;
2128 }
2129 }
2130 *limit = len;
2131
2132 done:
2133 kmem_free(argv, PAGE_SIZE);
2134 kmem_free(arg, PAGE_SIZE);
2135 uvmspace_free(vmspace);
2136 return error;
2137 }
2138
2139 /*
2140 * Fill in an eproc structure for the specified process.
2141 */
2142 void
2143 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2144 {
2145 struct tty *tp;
2146 struct lwp *l;
2147
2148 KASSERT(mutex_owned(proc_lock));
2149 KASSERT(mutex_owned(p->p_lock));
2150
2151 memset(ep, 0, sizeof(*ep));
2152
2153 ep->e_paddr = p;
2154 ep->e_sess = p->p_session;
2155 if (p->p_cred) {
2156 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2157 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2158 }
2159 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2160 struct vmspace *vm = p->p_vmspace;
2161
2162 ep->e_vm.vm_rssize = vm_resident_count(vm);
2163 ep->e_vm.vm_tsize = vm->vm_tsize;
2164 ep->e_vm.vm_dsize = vm->vm_dsize;
2165 ep->e_vm.vm_ssize = vm->vm_ssize;
2166 ep->e_vm.vm_map.size = vm->vm_map.size;
2167
2168 /* Pick the primary (first) LWP */
2169 l = proc_active_lwp(p);
2170 KASSERT(l != NULL);
2171 lwp_lock(l);
2172 if (l->l_wchan)
2173 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2174 lwp_unlock(l);
2175 }
2176 if (p->p_pptr)
2177 ep->e_ppid = p->p_pptr->p_pid;
2178 if (p->p_pgrp && p->p_session) {
2179 ep->e_pgid = p->p_pgrp->pg_id;
2180 ep->e_jobc = p->p_pgrp->pg_jobc;
2181 ep->e_sid = p->p_session->s_sid;
2182 if ((p->p_lflag & PL_CONTROLT) &&
2183 (tp = ep->e_sess->s_ttyp)) {
2184 ep->e_tdev = tp->t_dev;
2185 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2186 ep->e_tsess = tp->t_session;
2187 } else
2188 ep->e_tdev = (uint32_t)NODEV;
2189 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2190 if (SESS_LEADER(p))
2191 ep->e_flag |= EPROC_SLEADER;
2192 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2193 }
2194 ep->e_xsize = ep->e_xrssize = 0;
2195 ep->e_xccount = ep->e_xswrss = 0;
2196 }
2197
2198 /*
2199 * Fill in a kinfo_proc2 structure for the specified process.
2200 */
2201 static void
2202 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2203 {
2204 struct tty *tp;
2205 struct lwp *l, *l2;
2206 struct timeval ut, st, rt;
2207 sigset_t ss1, ss2;
2208 struct rusage ru;
2209 struct vmspace *vm;
2210
2211 KASSERT(mutex_owned(proc_lock));
2212 KASSERT(mutex_owned(p->p_lock));
2213
2214 sigemptyset(&ss1);
2215 sigemptyset(&ss2);
2216 memset(ki, 0, sizeof(*ki));
2217
2218 ki->p_paddr = PTRTOUINT64(p);
2219 ki->p_fd = PTRTOUINT64(p->p_fd);
2220 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2221 ki->p_stats = PTRTOUINT64(p->p_stats);
2222 ki->p_limit = PTRTOUINT64(p->p_limit);
2223 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2224 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2225 ki->p_sess = PTRTOUINT64(p->p_session);
2226 ki->p_tsess = 0; /* may be changed if controlling tty below */
2227 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2228 ki->p_eflag = 0;
2229 ki->p_exitsig = p->p_exitsig;
2230 ki->p_flag = L_INMEM; /* Process never swapped out */
2231 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2232 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2233 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2234 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2235 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2236 ki->p_pid = p->p_pid;
2237 if (p->p_pptr)
2238 ki->p_ppid = p->p_pptr->p_pid;
2239 else
2240 ki->p_ppid = 0;
2241 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2242 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2243 ki->p_gid = kauth_cred_getegid(p->p_cred);
2244 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2245 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2246 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2247 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2248 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2249 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2250 UIO_SYSSPACE);
2251
2252 ki->p_uticks = p->p_uticks;
2253 ki->p_sticks = p->p_sticks;
2254 ki->p_iticks = p->p_iticks;
2255 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2256 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2257 ki->p_traceflag = p->p_traceflag;
2258
2259 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2260 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2261
2262 ki->p_cpticks = 0;
2263 ki->p_pctcpu = p->p_pctcpu;
2264 ki->p_estcpu = 0;
2265 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2266 ki->p_realstat = p->p_stat;
2267 ki->p_nice = p->p_nice;
2268 ki->p_xstat = p->p_xstat;
2269 ki->p_acflag = p->p_acflag;
2270
2271 strncpy(ki->p_comm, p->p_comm,
2272 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2273 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2274
2275 ki->p_nlwps = p->p_nlwps;
2276 ki->p_realflag = ki->p_flag;
2277
2278 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2279 vm = p->p_vmspace;
2280 ki->p_vm_rssize = vm_resident_count(vm);
2281 ki->p_vm_tsize = vm->vm_tsize;
2282 ki->p_vm_dsize = vm->vm_dsize;
2283 ki->p_vm_ssize = vm->vm_ssize;
2284 ki->p_vm_vsize = atop(vm->vm_map.size);
2285 /*
2286 * Since the stack is initially mapped mostly with
2287 * PROT_NONE and grown as needed, adjust the "mapped size"
2288 * to skip the unused stack portion.
2289 */
2290 ki->p_vm_msize =
2291 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2292
2293 /* Pick the primary (first) LWP */
2294 l = proc_active_lwp(p);
2295 KASSERT(l != NULL);
2296 lwp_lock(l);
2297 ki->p_nrlwps = p->p_nrlwps;
2298 ki->p_forw = 0;
2299 ki->p_back = 0;
2300 ki->p_addr = PTRTOUINT64(l->l_addr);
2301 ki->p_stat = l->l_stat;
2302 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2303 ki->p_swtime = l->l_swtime;
2304 ki->p_slptime = l->l_slptime;
2305 if (l->l_stat == LSONPROC)
2306 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2307 else
2308 ki->p_schedflags = 0;
2309 ki->p_priority = lwp_eprio(l);
2310 ki->p_usrpri = l->l_priority;
2311 if (l->l_wchan)
2312 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2313 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2314 ki->p_cpuid = cpu_index(l->l_cpu);
2315 lwp_unlock(l);
2316 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2317 /* This is hardly correct, but... */
2318 sigplusset(&l->l_sigpend.sp_set, &ss1);
2319 sigplusset(&l->l_sigmask, &ss2);
2320 ki->p_cpticks += l->l_cpticks;
2321 ki->p_pctcpu += l->l_pctcpu;
2322 ki->p_estcpu += l->l_estcpu;
2323 }
2324 }
2325 sigplusset(&p->p_sigpend.sp_set, &ss2);
2326 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2327 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2328
2329 if (p->p_session != NULL) {
2330 ki->p_sid = p->p_session->s_sid;
2331 ki->p__pgid = p->p_pgrp->pg_id;
2332 if (p->p_session->s_ttyvp)
2333 ki->p_eflag |= EPROC_CTTY;
2334 if (SESS_LEADER(p))
2335 ki->p_eflag |= EPROC_SLEADER;
2336 strncpy(ki->p_login, p->p_session->s_login,
2337 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2338 ki->p_jobc = p->p_pgrp->pg_jobc;
2339 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2340 ki->p_tdev = tp->t_dev;
2341 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2342 ki->p_tsess = PTRTOUINT64(tp->t_session);
2343 } else {
2344 ki->p_tdev = (int32_t)NODEV;
2345 }
2346 }
2347
2348 if (!P_ZOMBIE(p) && !zombie) {
2349 ki->p_uvalid = 1;
2350 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2351 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2352
2353 calcru(p, &ut, &st, NULL, &rt);
2354 ki->p_rtime_sec = rt.tv_sec;
2355 ki->p_rtime_usec = rt.tv_usec;
2356 ki->p_uutime_sec = ut.tv_sec;
2357 ki->p_uutime_usec = ut.tv_usec;
2358 ki->p_ustime_sec = st.tv_sec;
2359 ki->p_ustime_usec = st.tv_usec;
2360
2361 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2362 ki->p_uru_nvcsw = 0;
2363 ki->p_uru_nivcsw = 0;
2364 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2365 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2366 ki->p_uru_nivcsw += l2->l_nivcsw;
2367 ruadd(&ru, &l2->l_ru);
2368 }
2369 ki->p_uru_maxrss = ru.ru_maxrss;
2370 ki->p_uru_ixrss = ru.ru_ixrss;
2371 ki->p_uru_idrss = ru.ru_idrss;
2372 ki->p_uru_isrss = ru.ru_isrss;
2373 ki->p_uru_minflt = ru.ru_minflt;
2374 ki->p_uru_majflt = ru.ru_majflt;
2375 ki->p_uru_nswap = ru.ru_nswap;
2376 ki->p_uru_inblock = ru.ru_inblock;
2377 ki->p_uru_oublock = ru.ru_oublock;
2378 ki->p_uru_msgsnd = ru.ru_msgsnd;
2379 ki->p_uru_msgrcv = ru.ru_msgrcv;
2380 ki->p_uru_nsignals = ru.ru_nsignals;
2381
2382 timeradd(&p->p_stats->p_cru.ru_utime,
2383 &p->p_stats->p_cru.ru_stime, &ut);
2384 ki->p_uctime_sec = ut.tv_sec;
2385 ki->p_uctime_usec = ut.tv_usec;
2386 }
2387 }
2388