Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.186.2.2
      1 /*	$NetBSD: kern_proc.c,v 1.186.2.2 2014/08/20 00:04:29 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.186.2.2 2014/08/20 00:04:29 tls Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/kernel.h>
     77 #include <sys/proc.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/buf.h>
     80 #include <sys/acct.h>
     81 #include <sys/wait.h>
     82 #include <sys/file.h>
     83 #include <ufs/ufs/quota.h>
     84 #include <sys/uio.h>
     85 #include <sys/pool.h>
     86 #include <sys/pset.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/ras.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/kauth.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/atomic.h>
     97 #include <sys/kmem.h>
     98 #include <sys/dtrace_bsd.h>
     99 #include <sys/sysctl.h>
    100 #include <sys/exec.h>
    101 #include <sys/cpu.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #ifdef COMPAT_NETBSD32
    106 #include <compat/netbsd32/netbsd32.h>
    107 #endif
    108 
    109 /*
    110  * Process lists.
    111  */
    112 
    113 struct proclist		allproc		__cacheline_aligned;
    114 struct proclist		zombproc	__cacheline_aligned;
    115 
    116 kmutex_t *		proc_lock	__cacheline_aligned;
    117 
    118 /*
    119  * pid to proc lookup is done by indexing the pid_table array.
    120  * Since pid numbers are only allocated when an empty slot
    121  * has been found, there is no need to search any lists ever.
    122  * (an orphaned pgrp will lock the slot, a session will lock
    123  * the pgrp with the same number.)
    124  * If the table is too small it is reallocated with twice the
    125  * previous size and the entries 'unzipped' into the two halves.
    126  * A linked list of free entries is passed through the pt_proc
    127  * field of 'free' items - set odd to be an invalid ptr.
    128  */
    129 
    130 struct pid_table {
    131 	struct proc	*pt_proc;
    132 	struct pgrp	*pt_pgrp;
    133 	pid_t		pt_pid;
    134 };
    135 #if 1	/* strongly typed cast - should be a noop */
    136 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    137 #else
    138 #define p2u(p) ((uint)p)
    139 #endif
    140 #define P_VALID(p) (!(p2u(p) & 1))
    141 #define P_NEXT(p) (p2u(p) >> 1)
    142 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    143 
    144 /*
    145  * Table of process IDs (PIDs).
    146  */
    147 static struct pid_table *pid_table	__read_mostly;
    148 
    149 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    150 
    151 /* Table mask, threshold for growing and number of allocated PIDs. */
    152 static u_int		pid_tbl_mask	__read_mostly;
    153 static u_int		pid_alloc_lim	__read_mostly;
    154 static u_int		pid_alloc_cnt	__cacheline_aligned;
    155 
    156 /* Next free, last free and maximum PIDs. */
    157 static u_int		next_free_pt	__cacheline_aligned;
    158 static u_int		last_free_pt	__cacheline_aligned;
    159 static pid_t		pid_max		__read_mostly;
    160 
    161 /* Components of the first process -- never freed. */
    162 
    163 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    164 
    165 struct session session0 = {
    166 	.s_count = 1,
    167 	.s_sid = 0,
    168 };
    169 struct pgrp pgrp0 = {
    170 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    171 	.pg_session = &session0,
    172 };
    173 filedesc_t filedesc0;
    174 struct cwdinfo cwdi0 = {
    175 	.cwdi_cmask = CMASK,
    176 	.cwdi_refcnt = 1,
    177 };
    178 struct plimit limit0;
    179 struct pstats pstat0;
    180 struct vmspace vmspace0;
    181 struct sigacts sigacts0;
    182 struct proc proc0 = {
    183 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    184 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    185 	.p_nlwps = 1,
    186 	.p_nrlwps = 1,
    187 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    188 	.p_pgrp = &pgrp0,
    189 	.p_comm = "system",
    190 	/*
    191 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    192 	 * when they exit.  init(8) can easily wait them out for us.
    193 	 */
    194 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    195 	.p_stat = SACTIVE,
    196 	.p_nice = NZERO,
    197 	.p_emul = &emul_netbsd,
    198 	.p_cwdi = &cwdi0,
    199 	.p_limit = &limit0,
    200 	.p_fd = &filedesc0,
    201 	.p_vmspace = &vmspace0,
    202 	.p_stats = &pstat0,
    203 	.p_sigacts = &sigacts0,
    204 #ifdef PROC0_MD_INITIALIZERS
    205 	PROC0_MD_INITIALIZERS
    206 #endif
    207 };
    208 kauth_cred_t cred0;
    209 
    210 static const int	nofile	= NOFILE;
    211 static const int	maxuprc	= MAXUPRC;
    212 
    213 static int sysctl_doeproc(SYSCTLFN_PROTO);
    214 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    215 
    216 /*
    217  * The process list descriptors, used during pid allocation and
    218  * by sysctl.  No locking on this data structure is needed since
    219  * it is completely static.
    220  */
    221 const struct proclist_desc proclists[] = {
    222 	{ &allproc	},
    223 	{ &zombproc	},
    224 	{ NULL		},
    225 };
    226 
    227 static struct pgrp *	pg_remove(pid_t);
    228 static void		pg_delete(pid_t);
    229 static void		orphanpg(struct pgrp *);
    230 
    231 static specificdata_domain_t proc_specificdata_domain;
    232 
    233 static pool_cache_t proc_cache;
    234 
    235 static kauth_listener_t proc_listener;
    236 
    237 static int
    238 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    239     void *arg0, void *arg1, void *arg2, void *arg3)
    240 {
    241 	struct proc *p;
    242 	int result;
    243 
    244 	result = KAUTH_RESULT_DEFER;
    245 	p = arg0;
    246 
    247 	switch (action) {
    248 	case KAUTH_PROCESS_CANSEE: {
    249 		enum kauth_process_req req;
    250 
    251 		req = (enum kauth_process_req)arg1;
    252 
    253 		switch (req) {
    254 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    255 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    256 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    257 			result = KAUTH_RESULT_ALLOW;
    258 
    259 			break;
    260 
    261 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    262 			if (kauth_cred_getuid(cred) !=
    263 			    kauth_cred_getuid(p->p_cred) ||
    264 			    kauth_cred_getuid(cred) !=
    265 			    kauth_cred_getsvuid(p->p_cred))
    266 				break;
    267 
    268 			result = KAUTH_RESULT_ALLOW;
    269 
    270 			break;
    271 
    272 		default:
    273 			break;
    274 		}
    275 
    276 		break;
    277 		}
    278 
    279 	case KAUTH_PROCESS_FORK: {
    280 		int lnprocs = (int)(unsigned long)arg2;
    281 
    282 		/*
    283 		 * Don't allow a nonprivileged user to use the last few
    284 		 * processes. The variable lnprocs is the current number of
    285 		 * processes, maxproc is the limit.
    286 		 */
    287 		if (__predict_false((lnprocs >= maxproc - 5)))
    288 			break;
    289 
    290 		result = KAUTH_RESULT_ALLOW;
    291 
    292 		break;
    293 		}
    294 
    295 	case KAUTH_PROCESS_CORENAME:
    296 	case KAUTH_PROCESS_STOPFLAG:
    297 		if (proc_uidmatch(cred, p->p_cred) == 0)
    298 			result = KAUTH_RESULT_ALLOW;
    299 
    300 		break;
    301 
    302 	default:
    303 		break;
    304 	}
    305 
    306 	return result;
    307 }
    308 
    309 /*
    310  * Initialize global process hashing structures.
    311  */
    312 void
    313 procinit(void)
    314 {
    315 	const struct proclist_desc *pd;
    316 	u_int i;
    317 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    318 
    319 	for (pd = proclists; pd->pd_list != NULL; pd++)
    320 		LIST_INIT(pd->pd_list);
    321 
    322 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    323 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    324 	    * sizeof(struct pid_table), KM_SLEEP);
    325 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    326 	pid_max = PID_MAX;
    327 
    328 	/* Set free list running through table...
    329 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    330 	for (i = 0; i <= pid_tbl_mask; i++) {
    331 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    332 		pid_table[i].pt_pgrp = 0;
    333 		pid_table[i].pt_pid = 0;
    334 	}
    335 	/* slot 0 is just grabbed */
    336 	next_free_pt = 1;
    337 	/* Need to fix last entry. */
    338 	last_free_pt = pid_tbl_mask;
    339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    340 	/* point at which we grow table - to avoid reusing pids too often */
    341 	pid_alloc_lim = pid_tbl_mask - 1;
    342 #undef LINK_EMPTY
    343 
    344 	proc_specificdata_domain = specificdata_domain_create();
    345 	KASSERT(proc_specificdata_domain != NULL);
    346 
    347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    349 
    350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    351 	    proc_listener_cb, NULL);
    352 }
    353 
    354 void
    355 procinit_sysctl(void)
    356 {
    357 	static struct sysctllog *clog;
    358 
    359 	sysctl_createv(&clog, 0, NULL, NULL,
    360 		       CTLFLAG_PERMANENT,
    361 		       CTLTYPE_NODE, "proc",
    362 		       SYSCTL_DESCR("System-wide process information"),
    363 		       sysctl_doeproc, 0, NULL, 0,
    364 		       CTL_KERN, KERN_PROC, CTL_EOL);
    365 	sysctl_createv(&clog, 0, NULL, NULL,
    366 		       CTLFLAG_PERMANENT,
    367 		       CTLTYPE_NODE, "proc2",
    368 		       SYSCTL_DESCR("Machine-independent process information"),
    369 		       sysctl_doeproc, 0, NULL, 0,
    370 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    371 	sysctl_createv(&clog, 0, NULL, NULL,
    372 		       CTLFLAG_PERMANENT,
    373 		       CTLTYPE_NODE, "proc_args",
    374 		       SYSCTL_DESCR("Process argument information"),
    375 		       sysctl_kern_proc_args, 0, NULL, 0,
    376 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    377 
    378 	/*
    379 	  "nodes" under these:
    380 
    381 	  KERN_PROC_ALL
    382 	  KERN_PROC_PID pid
    383 	  KERN_PROC_PGRP pgrp
    384 	  KERN_PROC_SESSION sess
    385 	  KERN_PROC_TTY tty
    386 	  KERN_PROC_UID uid
    387 	  KERN_PROC_RUID uid
    388 	  KERN_PROC_GID gid
    389 	  KERN_PROC_RGID gid
    390 
    391 	  all in all, probably not worth the effort...
    392 	*/
    393 }
    394 
    395 /*
    396  * Initialize process 0.
    397  */
    398 void
    399 proc0_init(void)
    400 {
    401 	struct proc *p;
    402 	struct pgrp *pg;
    403 	struct rlimit *rlim;
    404 	rlim_t lim;
    405 	int i;
    406 
    407 	p = &proc0;
    408 	pg = &pgrp0;
    409 
    410 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    411 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    412 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    413 
    414 	rw_init(&p->p_reflock);
    415 	cv_init(&p->p_waitcv, "wait");
    416 	cv_init(&p->p_lwpcv, "lwpwait");
    417 
    418 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    419 
    420 	pid_table[0].pt_proc = p;
    421 	LIST_INSERT_HEAD(&allproc, p, p_list);
    422 
    423 	pid_table[0].pt_pgrp = pg;
    424 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    425 
    426 #ifdef __HAVE_SYSCALL_INTERN
    427 	(*p->p_emul->e_syscall_intern)(p);
    428 #endif
    429 
    430 	/* Create credentials. */
    431 	cred0 = kauth_cred_alloc();
    432 	p->p_cred = cred0;
    433 
    434 	/* Create the CWD info. */
    435 	rw_init(&cwdi0.cwdi_lock);
    436 
    437 	/* Create the limits structures. */
    438 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    439 
    440 	rlim = limit0.pl_rlimit;
    441 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    442 		rlim[i].rlim_cur = RLIM_INFINITY;
    443 		rlim[i].rlim_max = RLIM_INFINITY;
    444 	}
    445 
    446 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    447 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    448 
    449 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    450 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    451 
    452 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    453 	rlim[RLIMIT_RSS].rlim_max = lim;
    454 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    455 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    456 
    457 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    458 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    459 
    460 	/* Note that default core name has zero length. */
    461 	limit0.pl_corename = defcorename;
    462 	limit0.pl_cnlen = 0;
    463 	limit0.pl_refcnt = 1;
    464 	limit0.pl_writeable = false;
    465 	limit0.pl_sv_limit = NULL;
    466 
    467 	/* Configure virtual memory system, set vm rlimits. */
    468 	uvm_init_limits(p);
    469 
    470 	/* Initialize file descriptor table for proc0. */
    471 	fd_init(&filedesc0);
    472 
    473 	/*
    474 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    475 	 * All kernel processes (which never have user space mappings)
    476 	 * share proc0's vmspace, and thus, the kernel pmap.
    477 	 */
    478 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    479 	    trunc_page(VM_MAX_ADDRESS),
    480 #ifdef __USE_TOPDOWN_VM
    481 	    true
    482 #else
    483 	    false
    484 #endif
    485 	    );
    486 
    487 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    488 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    489 	siginit(p);
    490 
    491 	proc_initspecific(p);
    492 	kdtrace_proc_ctor(NULL, p);
    493 }
    494 
    495 /*
    496  * Session reference counting.
    497  */
    498 
    499 void
    500 proc_sesshold(struct session *ss)
    501 {
    502 
    503 	KASSERT(mutex_owned(proc_lock));
    504 	ss->s_count++;
    505 }
    506 
    507 void
    508 proc_sessrele(struct session *ss)
    509 {
    510 
    511 	KASSERT(mutex_owned(proc_lock));
    512 	/*
    513 	 * We keep the pgrp with the same id as the session in order to
    514 	 * stop a process being given the same pid.  Since the pgrp holds
    515 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    516 	 */
    517 	if (--ss->s_count == 0) {
    518 		struct pgrp *pg;
    519 
    520 		pg = pg_remove(ss->s_sid);
    521 		mutex_exit(proc_lock);
    522 
    523 		kmem_free(pg, sizeof(struct pgrp));
    524 		kmem_free(ss, sizeof(struct session));
    525 	} else {
    526 		mutex_exit(proc_lock);
    527 	}
    528 }
    529 
    530 /*
    531  * Check that the specified process group is in the session of the
    532  * specified process.
    533  * Treats -ve ids as process ids.
    534  * Used to validate TIOCSPGRP requests.
    535  */
    536 int
    537 pgid_in_session(struct proc *p, pid_t pg_id)
    538 {
    539 	struct pgrp *pgrp;
    540 	struct session *session;
    541 	int error;
    542 
    543 	mutex_enter(proc_lock);
    544 	if (pg_id < 0) {
    545 		struct proc *p1 = proc_find(-pg_id);
    546 		if (p1 == NULL) {
    547 			error = EINVAL;
    548 			goto fail;
    549 		}
    550 		pgrp = p1->p_pgrp;
    551 	} else {
    552 		pgrp = pgrp_find(pg_id);
    553 		if (pgrp == NULL) {
    554 			error = EINVAL;
    555 			goto fail;
    556 		}
    557 	}
    558 	session = pgrp->pg_session;
    559 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    560 fail:
    561 	mutex_exit(proc_lock);
    562 	return error;
    563 }
    564 
    565 /*
    566  * p_inferior: is p an inferior of q?
    567  */
    568 static inline bool
    569 p_inferior(struct proc *p, struct proc *q)
    570 {
    571 
    572 	KASSERT(mutex_owned(proc_lock));
    573 
    574 	for (; p != q; p = p->p_pptr)
    575 		if (p->p_pid == 0)
    576 			return false;
    577 	return true;
    578 }
    579 
    580 /*
    581  * proc_find: locate a process by the ID.
    582  *
    583  * => Must be called with proc_lock held.
    584  */
    585 proc_t *
    586 proc_find_raw(pid_t pid)
    587 {
    588 	struct pid_table *pt;
    589 	proc_t *p;
    590 
    591 	KASSERT(mutex_owned(proc_lock));
    592 	pt = &pid_table[pid & pid_tbl_mask];
    593 	p = pt->pt_proc;
    594 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    595 		return NULL;
    596 	}
    597 	return p;
    598 }
    599 
    600 proc_t *
    601 proc_find(pid_t pid)
    602 {
    603 	proc_t *p;
    604 
    605 	p = proc_find_raw(pid);
    606 	if (__predict_false(p == NULL)) {
    607 		return NULL;
    608 	}
    609 
    610 	/*
    611 	 * Only allow live processes to be found by PID.
    612 	 * XXX: p_stat might change, since unlocked.
    613 	 */
    614 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    615 		return p;
    616 	}
    617 	return NULL;
    618 }
    619 
    620 /*
    621  * pgrp_find: locate a process group by the ID.
    622  *
    623  * => Must be called with proc_lock held.
    624  */
    625 struct pgrp *
    626 pgrp_find(pid_t pgid)
    627 {
    628 	struct pgrp *pg;
    629 
    630 	KASSERT(mutex_owned(proc_lock));
    631 
    632 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    633 
    634 	/*
    635 	 * Cannot look up a process group that only exists because the
    636 	 * session has not died yet (traditional).
    637 	 */
    638 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    639 		return NULL;
    640 	}
    641 	return pg;
    642 }
    643 
    644 static void
    645 expand_pid_table(void)
    646 {
    647 	size_t pt_size, tsz;
    648 	struct pid_table *n_pt, *new_pt;
    649 	struct proc *proc;
    650 	struct pgrp *pgrp;
    651 	pid_t pid, rpid;
    652 	u_int i;
    653 	uint new_pt_mask;
    654 
    655 	pt_size = pid_tbl_mask + 1;
    656 	tsz = pt_size * 2 * sizeof(struct pid_table);
    657 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    658 	new_pt_mask = pt_size * 2 - 1;
    659 
    660 	mutex_enter(proc_lock);
    661 	if (pt_size != pid_tbl_mask + 1) {
    662 		/* Another process beat us to it... */
    663 		mutex_exit(proc_lock);
    664 		kmem_free(new_pt, tsz);
    665 		return;
    666 	}
    667 
    668 	/*
    669 	 * Copy entries from old table into new one.
    670 	 * If 'pid' is 'odd' we need to place in the upper half,
    671 	 * even pid's to the lower half.
    672 	 * Free items stay in the low half so we don't have to
    673 	 * fixup the reference to them.
    674 	 * We stuff free items on the front of the freelist
    675 	 * because we can't write to unmodified entries.
    676 	 * Processing the table backwards maintains a semblance
    677 	 * of issuing pid numbers that increase with time.
    678 	 */
    679 	i = pt_size - 1;
    680 	n_pt = new_pt + i;
    681 	for (; ; i--, n_pt--) {
    682 		proc = pid_table[i].pt_proc;
    683 		pgrp = pid_table[i].pt_pgrp;
    684 		if (!P_VALID(proc)) {
    685 			/* Up 'use count' so that link is valid */
    686 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    687 			rpid = 0;
    688 			proc = P_FREE(pid);
    689 			if (pgrp)
    690 				pid = pgrp->pg_id;
    691 		} else {
    692 			pid = pid_table[i].pt_pid;
    693 			rpid = pid;
    694 		}
    695 
    696 		/* Save entry in appropriate half of table */
    697 		n_pt[pid & pt_size].pt_proc = proc;
    698 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    699 		n_pt[pid & pt_size].pt_pid = rpid;
    700 
    701 		/* Put other piece on start of free list */
    702 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    703 		n_pt[pid & pt_size].pt_proc =
    704 			P_FREE((pid & ~pt_size) | next_free_pt);
    705 		n_pt[pid & pt_size].pt_pgrp = 0;
    706 		n_pt[pid & pt_size].pt_pid = 0;
    707 
    708 		next_free_pt = i | (pid & pt_size);
    709 		if (i == 0)
    710 			break;
    711 	}
    712 
    713 	/* Save old table size and switch tables */
    714 	tsz = pt_size * sizeof(struct pid_table);
    715 	n_pt = pid_table;
    716 	pid_table = new_pt;
    717 	pid_tbl_mask = new_pt_mask;
    718 
    719 	/*
    720 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    721 	 * allocated pids we need it to be larger!
    722 	 */
    723 	if (pid_tbl_mask > PID_MAX) {
    724 		pid_max = pid_tbl_mask * 2 + 1;
    725 		pid_alloc_lim |= pid_alloc_lim << 1;
    726 	} else
    727 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    728 
    729 	mutex_exit(proc_lock);
    730 	kmem_free(n_pt, tsz);
    731 }
    732 
    733 struct proc *
    734 proc_alloc(void)
    735 {
    736 	struct proc *p;
    737 
    738 	p = pool_cache_get(proc_cache, PR_WAITOK);
    739 	p->p_stat = SIDL;			/* protect against others */
    740 	proc_initspecific(p);
    741 	kdtrace_proc_ctor(NULL, p);
    742 	p->p_pid = -1;
    743 	proc_alloc_pid(p);
    744 	return p;
    745 }
    746 
    747 /*
    748  * proc_alloc_pid: allocate PID and record the given proc 'p' so that
    749  * proc_find_raw() can find it by the PID.
    750  */
    751 
    752 pid_t
    753 proc_alloc_pid(struct proc *p)
    754 {
    755 	struct pid_table *pt;
    756 	pid_t pid;
    757 	int nxt;
    758 
    759 	for (;;expand_pid_table()) {
    760 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    761 			/* ensure pids cycle through 2000+ values */
    762 			continue;
    763 		mutex_enter(proc_lock);
    764 		pt = &pid_table[next_free_pt];
    765 #ifdef DIAGNOSTIC
    766 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    767 			panic("proc_alloc: slot busy");
    768 #endif
    769 		nxt = P_NEXT(pt->pt_proc);
    770 		if (nxt & pid_tbl_mask)
    771 			break;
    772 		/* Table full - expand (NB last entry not used....) */
    773 		mutex_exit(proc_lock);
    774 	}
    775 
    776 	/* pid is 'saved use count' + 'size' + entry */
    777 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    778 	if ((uint)pid > (uint)pid_max)
    779 		pid &= pid_tbl_mask;
    780 	next_free_pt = nxt & pid_tbl_mask;
    781 
    782 	/* Grab table slot */
    783 	pt->pt_proc = p;
    784 
    785 	KASSERT(pt->pt_pid == 0);
    786 	pt->pt_pid = pid;
    787 	if (p->p_pid == -1) {
    788 		p->p_pid = pid;
    789 	}
    790 	pid_alloc_cnt++;
    791 	mutex_exit(proc_lock);
    792 
    793 	return pid;
    794 }
    795 
    796 /*
    797  * Free a process id - called from proc_free (in kern_exit.c)
    798  *
    799  * Called with the proc_lock held.
    800  */
    801 void
    802 proc_free_pid(pid_t pid)
    803 {
    804 	struct pid_table *pt;
    805 
    806 	KASSERT(mutex_owned(proc_lock));
    807 
    808 	pt = &pid_table[pid & pid_tbl_mask];
    809 
    810 	/* save pid use count in slot */
    811 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    812 	KASSERT(pt->pt_pid == pid);
    813 	pt->pt_pid = 0;
    814 
    815 	if (pt->pt_pgrp == NULL) {
    816 		/* link last freed entry onto ours */
    817 		pid &= pid_tbl_mask;
    818 		pt = &pid_table[last_free_pt];
    819 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    820 		pt->pt_pid = 0;
    821 		last_free_pt = pid;
    822 		pid_alloc_cnt--;
    823 	}
    824 
    825 	atomic_dec_uint(&nprocs);
    826 }
    827 
    828 void
    829 proc_free_mem(struct proc *p)
    830 {
    831 
    832 	kdtrace_proc_dtor(NULL, p);
    833 	pool_cache_put(proc_cache, p);
    834 }
    835 
    836 /*
    837  * proc_enterpgrp: move p to a new or existing process group (and session).
    838  *
    839  * If we are creating a new pgrp, the pgid should equal
    840  * the calling process' pid.
    841  * If is only valid to enter a process group that is in the session
    842  * of the process.
    843  * Also mksess should only be set if we are creating a process group
    844  *
    845  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    846  */
    847 int
    848 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    849 {
    850 	struct pgrp *new_pgrp, *pgrp;
    851 	struct session *sess;
    852 	struct proc *p;
    853 	int rval;
    854 	pid_t pg_id = NO_PGID;
    855 
    856 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    857 
    858 	/* Allocate data areas we might need before doing any validity checks */
    859 	mutex_enter(proc_lock);		/* Because pid_table might change */
    860 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    861 		mutex_exit(proc_lock);
    862 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    863 		mutex_enter(proc_lock);
    864 	} else
    865 		new_pgrp = NULL;
    866 	rval = EPERM;	/* most common error (to save typing) */
    867 
    868 	/* Check pgrp exists or can be created */
    869 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    870 	if (pgrp != NULL && pgrp->pg_id != pgid)
    871 		goto done;
    872 
    873 	/* Can only set another process under restricted circumstances. */
    874 	if (pid != curp->p_pid) {
    875 		/* Must exist and be one of our children... */
    876 		p = proc_find(pid);
    877 		if (p == NULL || !p_inferior(p, curp)) {
    878 			rval = ESRCH;
    879 			goto done;
    880 		}
    881 		/* ... in the same session... */
    882 		if (sess != NULL || p->p_session != curp->p_session)
    883 			goto done;
    884 		/* ... existing pgid must be in same session ... */
    885 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    886 			goto done;
    887 		/* ... and not done an exec. */
    888 		if (p->p_flag & PK_EXEC) {
    889 			rval = EACCES;
    890 			goto done;
    891 		}
    892 	} else {
    893 		/* ... setsid() cannot re-enter a pgrp */
    894 		if (mksess && (curp->p_pgid == curp->p_pid ||
    895 		    pgrp_find(curp->p_pid)))
    896 			goto done;
    897 		p = curp;
    898 	}
    899 
    900 	/* Changing the process group/session of a session
    901 	   leader is definitely off limits. */
    902 	if (SESS_LEADER(p)) {
    903 		if (sess == NULL && p->p_pgrp == pgrp)
    904 			/* unless it's a definite noop */
    905 			rval = 0;
    906 		goto done;
    907 	}
    908 
    909 	/* Can only create a process group with id of process */
    910 	if (pgrp == NULL && pgid != pid)
    911 		goto done;
    912 
    913 	/* Can only create a session if creating pgrp */
    914 	if (sess != NULL && pgrp != NULL)
    915 		goto done;
    916 
    917 	/* Check we allocated memory for a pgrp... */
    918 	if (pgrp == NULL && new_pgrp == NULL)
    919 		goto done;
    920 
    921 	/* Don't attach to 'zombie' pgrp */
    922 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    923 		goto done;
    924 
    925 	/* Expect to succeed now */
    926 	rval = 0;
    927 
    928 	if (pgrp == p->p_pgrp)
    929 		/* nothing to do */
    930 		goto done;
    931 
    932 	/* Ok all setup, link up required structures */
    933 
    934 	if (pgrp == NULL) {
    935 		pgrp = new_pgrp;
    936 		new_pgrp = NULL;
    937 		if (sess != NULL) {
    938 			sess->s_sid = p->p_pid;
    939 			sess->s_leader = p;
    940 			sess->s_count = 1;
    941 			sess->s_ttyvp = NULL;
    942 			sess->s_ttyp = NULL;
    943 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    944 			memcpy(sess->s_login, p->p_session->s_login,
    945 			    sizeof(sess->s_login));
    946 			p->p_lflag &= ~PL_CONTROLT;
    947 		} else {
    948 			sess = p->p_pgrp->pg_session;
    949 			proc_sesshold(sess);
    950 		}
    951 		pgrp->pg_session = sess;
    952 		sess = NULL;
    953 
    954 		pgrp->pg_id = pgid;
    955 		LIST_INIT(&pgrp->pg_members);
    956 #ifdef DIAGNOSTIC
    957 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    958 			panic("enterpgrp: pgrp table slot in use");
    959 		if (__predict_false(mksess && p != curp))
    960 			panic("enterpgrp: mksession and p != curproc");
    961 #endif
    962 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    963 		pgrp->pg_jobc = 0;
    964 	}
    965 
    966 	/*
    967 	 * Adjust eligibility of affected pgrps to participate in job control.
    968 	 * Increment eligibility counts before decrementing, otherwise we
    969 	 * could reach 0 spuriously during the first call.
    970 	 */
    971 	fixjobc(p, pgrp, 1);
    972 	fixjobc(p, p->p_pgrp, 0);
    973 
    974 	/* Interlock with ttread(). */
    975 	mutex_spin_enter(&tty_lock);
    976 
    977 	/* Move process to requested group. */
    978 	LIST_REMOVE(p, p_pglist);
    979 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    980 		/* defer delete until we've dumped the lock */
    981 		pg_id = p->p_pgrp->pg_id;
    982 	p->p_pgrp = pgrp;
    983 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    984 
    985 	/* Done with the swap; we can release the tty mutex. */
    986 	mutex_spin_exit(&tty_lock);
    987 
    988     done:
    989 	if (pg_id != NO_PGID) {
    990 		/* Releases proc_lock. */
    991 		pg_delete(pg_id);
    992 	} else {
    993 		mutex_exit(proc_lock);
    994 	}
    995 	if (sess != NULL)
    996 		kmem_free(sess, sizeof(*sess));
    997 	if (new_pgrp != NULL)
    998 		kmem_free(new_pgrp, sizeof(*new_pgrp));
    999 #ifdef DEBUG_PGRP
   1000 	if (__predict_false(rval))
   1001 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1002 			pid, pgid, mksess, curp->p_pid, rval);
   1003 #endif
   1004 	return rval;
   1005 }
   1006 
   1007 /*
   1008  * proc_leavepgrp: remove a process from its process group.
   1009  *  => must be called with the proc_lock held, which will be released;
   1010  */
   1011 void
   1012 proc_leavepgrp(struct proc *p)
   1013 {
   1014 	struct pgrp *pgrp;
   1015 
   1016 	KASSERT(mutex_owned(proc_lock));
   1017 
   1018 	/* Interlock with ttread() */
   1019 	mutex_spin_enter(&tty_lock);
   1020 	pgrp = p->p_pgrp;
   1021 	LIST_REMOVE(p, p_pglist);
   1022 	p->p_pgrp = NULL;
   1023 	mutex_spin_exit(&tty_lock);
   1024 
   1025 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1026 		/* Releases proc_lock. */
   1027 		pg_delete(pgrp->pg_id);
   1028 	} else {
   1029 		mutex_exit(proc_lock);
   1030 	}
   1031 }
   1032 
   1033 /*
   1034  * pg_remove: remove a process group from the table.
   1035  *  => must be called with the proc_lock held;
   1036  *  => returns process group to free;
   1037  */
   1038 static struct pgrp *
   1039 pg_remove(pid_t pg_id)
   1040 {
   1041 	struct pgrp *pgrp;
   1042 	struct pid_table *pt;
   1043 
   1044 	KASSERT(mutex_owned(proc_lock));
   1045 
   1046 	pt = &pid_table[pg_id & pid_tbl_mask];
   1047 	pgrp = pt->pt_pgrp;
   1048 
   1049 	KASSERT(pgrp != NULL);
   1050 	KASSERT(pgrp->pg_id == pg_id);
   1051 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1052 
   1053 	pt->pt_pgrp = NULL;
   1054 
   1055 	if (!P_VALID(pt->pt_proc)) {
   1056 		/* Orphaned pgrp, put slot onto free list. */
   1057 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1058 		pg_id &= pid_tbl_mask;
   1059 		pt = &pid_table[last_free_pt];
   1060 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1061 		KASSERT(pt->pt_pid == 0);
   1062 		last_free_pt = pg_id;
   1063 		pid_alloc_cnt--;
   1064 	}
   1065 	return pgrp;
   1066 }
   1067 
   1068 /*
   1069  * pg_delete: delete and free a process group.
   1070  *  => must be called with the proc_lock held, which will be released.
   1071  */
   1072 static void
   1073 pg_delete(pid_t pg_id)
   1074 {
   1075 	struct pgrp *pg;
   1076 	struct tty *ttyp;
   1077 	struct session *ss;
   1078 
   1079 	KASSERT(mutex_owned(proc_lock));
   1080 
   1081 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1082 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1083 		mutex_exit(proc_lock);
   1084 		return;
   1085 	}
   1086 
   1087 	ss = pg->pg_session;
   1088 
   1089 	/* Remove reference (if any) from tty to this process group */
   1090 	mutex_spin_enter(&tty_lock);
   1091 	ttyp = ss->s_ttyp;
   1092 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1093 		ttyp->t_pgrp = NULL;
   1094 		KASSERT(ttyp->t_session == ss);
   1095 	}
   1096 	mutex_spin_exit(&tty_lock);
   1097 
   1098 	/*
   1099 	 * The leading process group in a session is freed by proc_sessrele(),
   1100 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1101 	 */
   1102 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1103 	proc_sessrele(ss);
   1104 
   1105 	if (pg != NULL) {
   1106 		/* Free it, if was not done by proc_sessrele(). */
   1107 		kmem_free(pg, sizeof(struct pgrp));
   1108 	}
   1109 }
   1110 
   1111 /*
   1112  * Adjust pgrp jobc counters when specified process changes process group.
   1113  * We count the number of processes in each process group that "qualify"
   1114  * the group for terminal job control (those with a parent in a different
   1115  * process group of the same session).  If that count reaches zero, the
   1116  * process group becomes orphaned.  Check both the specified process'
   1117  * process group and that of its children.
   1118  * entering == 0 => p is leaving specified group.
   1119  * entering == 1 => p is entering specified group.
   1120  *
   1121  * Call with proc_lock held.
   1122  */
   1123 void
   1124 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1125 {
   1126 	struct pgrp *hispgrp;
   1127 	struct session *mysession = pgrp->pg_session;
   1128 	struct proc *child;
   1129 
   1130 	KASSERT(mutex_owned(proc_lock));
   1131 
   1132 	/*
   1133 	 * Check p's parent to see whether p qualifies its own process
   1134 	 * group; if so, adjust count for p's process group.
   1135 	 */
   1136 	hispgrp = p->p_pptr->p_pgrp;
   1137 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1138 		if (entering) {
   1139 			pgrp->pg_jobc++;
   1140 			p->p_lflag &= ~PL_ORPHANPG;
   1141 		} else if (--pgrp->pg_jobc == 0)
   1142 			orphanpg(pgrp);
   1143 	}
   1144 
   1145 	/*
   1146 	 * Check this process' children to see whether they qualify
   1147 	 * their process groups; if so, adjust counts for children's
   1148 	 * process groups.
   1149 	 */
   1150 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1151 		hispgrp = child->p_pgrp;
   1152 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1153 		    !P_ZOMBIE(child)) {
   1154 			if (entering) {
   1155 				child->p_lflag &= ~PL_ORPHANPG;
   1156 				hispgrp->pg_jobc++;
   1157 			} else if (--hispgrp->pg_jobc == 0)
   1158 				orphanpg(hispgrp);
   1159 		}
   1160 	}
   1161 }
   1162 
   1163 /*
   1164  * A process group has become orphaned;
   1165  * if there are any stopped processes in the group,
   1166  * hang-up all process in that group.
   1167  *
   1168  * Call with proc_lock held.
   1169  */
   1170 static void
   1171 orphanpg(struct pgrp *pg)
   1172 {
   1173 	struct proc *p;
   1174 
   1175 	KASSERT(mutex_owned(proc_lock));
   1176 
   1177 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1178 		if (p->p_stat == SSTOP) {
   1179 			p->p_lflag |= PL_ORPHANPG;
   1180 			psignal(p, SIGHUP);
   1181 			psignal(p, SIGCONT);
   1182 		}
   1183 	}
   1184 }
   1185 
   1186 #ifdef DDB
   1187 #include <ddb/db_output.h>
   1188 void pidtbl_dump(void);
   1189 void
   1190 pidtbl_dump(void)
   1191 {
   1192 	struct pid_table *pt;
   1193 	struct proc *p;
   1194 	struct pgrp *pgrp;
   1195 	int id;
   1196 
   1197 	db_printf("pid table %p size %x, next %x, last %x\n",
   1198 		pid_table, pid_tbl_mask+1,
   1199 		next_free_pt, last_free_pt);
   1200 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1201 		p = pt->pt_proc;
   1202 		if (!P_VALID(p) && !pt->pt_pgrp)
   1203 			continue;
   1204 		db_printf("  id %x: ", id);
   1205 		if (P_VALID(p))
   1206 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1207 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1208 		else
   1209 			db_printf("next %x use %x\n",
   1210 				P_NEXT(p) & pid_tbl_mask,
   1211 				P_NEXT(p) & ~pid_tbl_mask);
   1212 		if ((pgrp = pt->pt_pgrp)) {
   1213 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1214 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1215 			    pgrp->pg_session->s_count,
   1216 			    pgrp->pg_session->s_login);
   1217 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1218 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1219 			    LIST_FIRST(&pgrp->pg_members));
   1220 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1221 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1222 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1223 			}
   1224 		}
   1225 	}
   1226 }
   1227 #endif /* DDB */
   1228 
   1229 #ifdef KSTACK_CHECK_MAGIC
   1230 
   1231 #define	KSTACK_MAGIC	0xdeadbeaf
   1232 
   1233 /* XXX should be per process basis? */
   1234 static int	kstackleftmin = KSTACK_SIZE;
   1235 static int	kstackleftthres = KSTACK_SIZE / 8;
   1236 
   1237 void
   1238 kstack_setup_magic(const struct lwp *l)
   1239 {
   1240 	uint32_t *ip;
   1241 	uint32_t const *end;
   1242 
   1243 	KASSERT(l != NULL);
   1244 	KASSERT(l != &lwp0);
   1245 
   1246 	/*
   1247 	 * fill all the stack with magic number
   1248 	 * so that later modification on it can be detected.
   1249 	 */
   1250 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1251 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1252 	for (; ip < end; ip++) {
   1253 		*ip = KSTACK_MAGIC;
   1254 	}
   1255 }
   1256 
   1257 void
   1258 kstack_check_magic(const struct lwp *l)
   1259 {
   1260 	uint32_t const *ip, *end;
   1261 	int stackleft;
   1262 
   1263 	KASSERT(l != NULL);
   1264 
   1265 	/* don't check proc0 */ /*XXX*/
   1266 	if (l == &lwp0)
   1267 		return;
   1268 
   1269 #ifdef __MACHINE_STACK_GROWS_UP
   1270 	/* stack grows upwards (eg. hppa) */
   1271 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1272 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1273 	for (ip--; ip >= end; ip--)
   1274 		if (*ip != KSTACK_MAGIC)
   1275 			break;
   1276 
   1277 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1278 #else /* __MACHINE_STACK_GROWS_UP */
   1279 	/* stack grows downwards (eg. i386) */
   1280 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1281 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1282 	for (; ip < end; ip++)
   1283 		if (*ip != KSTACK_MAGIC)
   1284 			break;
   1285 
   1286 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1287 #endif /* __MACHINE_STACK_GROWS_UP */
   1288 
   1289 	if (kstackleftmin > stackleft) {
   1290 		kstackleftmin = stackleft;
   1291 		if (stackleft < kstackleftthres)
   1292 			printf("warning: kernel stack left %d bytes"
   1293 			    "(pid %u:lid %u)\n", stackleft,
   1294 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1295 	}
   1296 
   1297 	if (stackleft <= 0) {
   1298 		panic("magic on the top of kernel stack changed for "
   1299 		    "pid %u, lid %u: maybe kernel stack overflow",
   1300 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1301 	}
   1302 }
   1303 #endif /* KSTACK_CHECK_MAGIC */
   1304 
   1305 int
   1306 proclist_foreach_call(struct proclist *list,
   1307     int (*callback)(struct proc *, void *arg), void *arg)
   1308 {
   1309 	struct proc marker;
   1310 	struct proc *p;
   1311 	int ret = 0;
   1312 
   1313 	marker.p_flag = PK_MARKER;
   1314 	mutex_enter(proc_lock);
   1315 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1316 		if (p->p_flag & PK_MARKER) {
   1317 			p = LIST_NEXT(p, p_list);
   1318 			continue;
   1319 		}
   1320 		LIST_INSERT_AFTER(p, &marker, p_list);
   1321 		ret = (*callback)(p, arg);
   1322 		KASSERT(mutex_owned(proc_lock));
   1323 		p = LIST_NEXT(&marker, p_list);
   1324 		LIST_REMOVE(&marker, p_list);
   1325 	}
   1326 	mutex_exit(proc_lock);
   1327 
   1328 	return ret;
   1329 }
   1330 
   1331 int
   1332 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1333 {
   1334 
   1335 	/* XXXCDC: how should locking work here? */
   1336 
   1337 	/* curproc exception is for coredump. */
   1338 
   1339 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1340 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1341 		return EFAULT;
   1342 	}
   1343 
   1344 	uvmspace_addref(p->p_vmspace);
   1345 	*vm = p->p_vmspace;
   1346 
   1347 	return 0;
   1348 }
   1349 
   1350 /*
   1351  * Acquire a write lock on the process credential.
   1352  */
   1353 void
   1354 proc_crmod_enter(void)
   1355 {
   1356 	struct lwp *l = curlwp;
   1357 	struct proc *p = l->l_proc;
   1358 	kauth_cred_t oc;
   1359 
   1360 	/* Reset what needs to be reset in plimit. */
   1361 	if (p->p_limit->pl_corename != defcorename) {
   1362 		lim_setcorename(p, defcorename, 0);
   1363 	}
   1364 
   1365 	mutex_enter(p->p_lock);
   1366 
   1367 	/* Ensure the LWP cached credentials are up to date. */
   1368 	if ((oc = l->l_cred) != p->p_cred) {
   1369 		kauth_cred_hold(p->p_cred);
   1370 		l->l_cred = p->p_cred;
   1371 		kauth_cred_free(oc);
   1372 	}
   1373 }
   1374 
   1375 /*
   1376  * Set in a new process credential, and drop the write lock.  The credential
   1377  * must have a reference already.  Optionally, free a no-longer required
   1378  * credential.  The scheduler also needs to inspect p_cred, so we also
   1379  * briefly acquire the sched state mutex.
   1380  */
   1381 void
   1382 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1383 {
   1384 	struct lwp *l = curlwp, *l2;
   1385 	struct proc *p = l->l_proc;
   1386 	kauth_cred_t oc;
   1387 
   1388 	KASSERT(mutex_owned(p->p_lock));
   1389 
   1390 	/* Is there a new credential to set in? */
   1391 	if (scred != NULL) {
   1392 		p->p_cred = scred;
   1393 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1394 			if (l2 != l)
   1395 				l2->l_prflag |= LPR_CRMOD;
   1396 		}
   1397 
   1398 		/* Ensure the LWP cached credentials are up to date. */
   1399 		if ((oc = l->l_cred) != scred) {
   1400 			kauth_cred_hold(scred);
   1401 			l->l_cred = scred;
   1402 		}
   1403 	} else
   1404 		oc = NULL;	/* XXXgcc */
   1405 
   1406 	if (sugid) {
   1407 		/*
   1408 		 * Mark process as having changed credentials, stops
   1409 		 * tracing etc.
   1410 		 */
   1411 		p->p_flag |= PK_SUGID;
   1412 	}
   1413 
   1414 	mutex_exit(p->p_lock);
   1415 
   1416 	/* If there is a credential to be released, free it now. */
   1417 	if (fcred != NULL) {
   1418 		KASSERT(scred != NULL);
   1419 		kauth_cred_free(fcred);
   1420 		if (oc != scred)
   1421 			kauth_cred_free(oc);
   1422 	}
   1423 }
   1424 
   1425 /*
   1426  * proc_specific_key_create --
   1427  *	Create a key for subsystem proc-specific data.
   1428  */
   1429 int
   1430 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1431 {
   1432 
   1433 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1434 }
   1435 
   1436 /*
   1437  * proc_specific_key_delete --
   1438  *	Delete a key for subsystem proc-specific data.
   1439  */
   1440 void
   1441 proc_specific_key_delete(specificdata_key_t key)
   1442 {
   1443 
   1444 	specificdata_key_delete(proc_specificdata_domain, key);
   1445 }
   1446 
   1447 /*
   1448  * proc_initspecific --
   1449  *	Initialize a proc's specificdata container.
   1450  */
   1451 void
   1452 proc_initspecific(struct proc *p)
   1453 {
   1454 	int error __diagused;
   1455 
   1456 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1457 	KASSERT(error == 0);
   1458 }
   1459 
   1460 /*
   1461  * proc_finispecific --
   1462  *	Finalize a proc's specificdata container.
   1463  */
   1464 void
   1465 proc_finispecific(struct proc *p)
   1466 {
   1467 
   1468 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1469 }
   1470 
   1471 /*
   1472  * proc_getspecific --
   1473  *	Return proc-specific data corresponding to the specified key.
   1474  */
   1475 void *
   1476 proc_getspecific(struct proc *p, specificdata_key_t key)
   1477 {
   1478 
   1479 	return (specificdata_getspecific(proc_specificdata_domain,
   1480 					 &p->p_specdataref, key));
   1481 }
   1482 
   1483 /*
   1484  * proc_setspecific --
   1485  *	Set proc-specific data corresponding to the specified key.
   1486  */
   1487 void
   1488 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1489 {
   1490 
   1491 	specificdata_setspecific(proc_specificdata_domain,
   1492 				 &p->p_specdataref, key, data);
   1493 }
   1494 
   1495 int
   1496 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1497 {
   1498 	int r = 0;
   1499 
   1500 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1501 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1502 		/*
   1503 		 * suid proc of ours or proc not ours
   1504 		 */
   1505 		r = EPERM;
   1506 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1507 		/*
   1508 		 * sgid proc has sgid back to us temporarily
   1509 		 */
   1510 		r = EPERM;
   1511 	} else {
   1512 		/*
   1513 		 * our rgid must be in target's group list (ie,
   1514 		 * sub-processes started by a sgid process)
   1515 		 */
   1516 		int ismember = 0;
   1517 
   1518 		if (kauth_cred_ismember_gid(cred,
   1519 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1520 		    !ismember)
   1521 			r = EPERM;
   1522 	}
   1523 
   1524 	return (r);
   1525 }
   1526 
   1527 /*
   1528  * sysctl stuff
   1529  */
   1530 
   1531 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1532 
   1533 static const u_int sysctl_flagmap[] = {
   1534 	PK_ADVLOCK, P_ADVLOCK,
   1535 	PK_EXEC, P_EXEC,
   1536 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1537 	PK_32, P_32,
   1538 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1539 	PK_SUGID, P_SUGID,
   1540 	0
   1541 };
   1542 
   1543 static const u_int sysctl_sflagmap[] = {
   1544 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1545 	PS_WEXIT, P_WEXIT,
   1546 	PS_STOPFORK, P_STOPFORK,
   1547 	PS_STOPEXEC, P_STOPEXEC,
   1548 	PS_STOPEXIT, P_STOPEXIT,
   1549 	0
   1550 };
   1551 
   1552 static const u_int sysctl_slflagmap[] = {
   1553 	PSL_TRACED, P_TRACED,
   1554 	PSL_FSTRACE, P_FSTRACE,
   1555 	PSL_CHTRACED, P_CHTRACED,
   1556 	PSL_SYSCALL, P_SYSCALL,
   1557 	0
   1558 };
   1559 
   1560 static const u_int sysctl_lflagmap[] = {
   1561 	PL_CONTROLT, P_CONTROLT,
   1562 	PL_PPWAIT, P_PPWAIT,
   1563 	0
   1564 };
   1565 
   1566 static const u_int sysctl_stflagmap[] = {
   1567 	PST_PROFIL, P_PROFIL,
   1568 	0
   1569 
   1570 };
   1571 
   1572 /* used by kern_lwp also */
   1573 const u_int sysctl_lwpflagmap[] = {
   1574 	LW_SINTR, L_SINTR,
   1575 	LW_SYSTEM, L_SYSTEM,
   1576 	0
   1577 };
   1578 
   1579 /*
   1580  * Find the most ``active'' lwp of a process and return it for ps display
   1581  * purposes
   1582  */
   1583 static struct lwp *
   1584 proc_active_lwp(struct proc *p)
   1585 {
   1586 	static const int ostat[] = {
   1587 		0,
   1588 		2,	/* LSIDL */
   1589 		6,	/* LSRUN */
   1590 		5,	/* LSSLEEP */
   1591 		4,	/* LSSTOP */
   1592 		0,	/* LSZOMB */
   1593 		1,	/* LSDEAD */
   1594 		7,	/* LSONPROC */
   1595 		3	/* LSSUSPENDED */
   1596 	};
   1597 
   1598 	struct lwp *l, *lp = NULL;
   1599 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1600 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1601 		if (lp == NULL ||
   1602 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1603 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1604 		    l->l_cpticks > lp->l_cpticks)) {
   1605 			lp = l;
   1606 			continue;
   1607 		}
   1608 	}
   1609 	return lp;
   1610 }
   1611 
   1612 static int
   1613 sysctl_doeproc(SYSCTLFN_ARGS)
   1614 {
   1615 	union {
   1616 		struct kinfo_proc kproc;
   1617 		struct kinfo_proc2 kproc2;
   1618 	} *kbuf;
   1619 	struct proc *p, *next, *marker;
   1620 	char *where, *dp;
   1621 	int type, op, arg, error;
   1622 	u_int elem_size, kelem_size, elem_count;
   1623 	size_t buflen, needed;
   1624 	bool match, zombie, mmmbrains;
   1625 
   1626 	if (namelen == 1 && name[0] == CTL_QUERY)
   1627 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1628 
   1629 	dp = where = oldp;
   1630 	buflen = where != NULL ? *oldlenp : 0;
   1631 	error = 0;
   1632 	needed = 0;
   1633 	type = rnode->sysctl_num;
   1634 
   1635 	if (type == KERN_PROC) {
   1636 		if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
   1637 			return (EINVAL);
   1638 		op = name[0];
   1639 		if (op != KERN_PROC_ALL)
   1640 			arg = name[1];
   1641 		else
   1642 			arg = 0;		/* Quell compiler warning */
   1643 		elem_count = 0;	/* Ditto */
   1644 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1645 	} else {
   1646 		if (namelen != 4)
   1647 			return (EINVAL);
   1648 		op = name[0];
   1649 		arg = name[1];
   1650 		elem_size = name[2];
   1651 		elem_count = name[3];
   1652 		kelem_size = sizeof(kbuf->kproc2);
   1653 	}
   1654 
   1655 	sysctl_unlock();
   1656 
   1657 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1658 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1659 	marker->p_flag = PK_MARKER;
   1660 
   1661 	mutex_enter(proc_lock);
   1662 	mmmbrains = false;
   1663 	for (p = LIST_FIRST(&allproc);; p = next) {
   1664 		if (p == NULL) {
   1665 			if (!mmmbrains) {
   1666 				p = LIST_FIRST(&zombproc);
   1667 				mmmbrains = true;
   1668 			}
   1669 			if (p == NULL)
   1670 				break;
   1671 		}
   1672 		next = LIST_NEXT(p, p_list);
   1673 		if ((p->p_flag & PK_MARKER) != 0)
   1674 			continue;
   1675 
   1676 		/*
   1677 		 * Skip embryonic processes.
   1678 		 */
   1679 		if (p->p_stat == SIDL)
   1680 			continue;
   1681 
   1682 		mutex_enter(p->p_lock);
   1683 		error = kauth_authorize_process(l->l_cred,
   1684 		    KAUTH_PROCESS_CANSEE, p,
   1685 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1686 		if (error != 0) {
   1687 			mutex_exit(p->p_lock);
   1688 			continue;
   1689 		}
   1690 
   1691 		/*
   1692 		 * TODO - make more efficient (see notes below).
   1693 		 * do by session.
   1694 		 */
   1695 		switch (op) {
   1696 		case KERN_PROC_PID:
   1697 			/* could do this with just a lookup */
   1698 			match = (p->p_pid == (pid_t)arg);
   1699 			break;
   1700 
   1701 		case KERN_PROC_PGRP:
   1702 			/* could do this by traversing pgrp */
   1703 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1704 			break;
   1705 
   1706 		case KERN_PROC_SESSION:
   1707 			match = (p->p_session->s_sid == (pid_t)arg);
   1708 			break;
   1709 
   1710 		case KERN_PROC_TTY:
   1711 			match = true;
   1712 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1713 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1714 				    p->p_session->s_ttyp == NULL ||
   1715 				    p->p_session->s_ttyvp != NULL) {
   1716 				    	match = false;
   1717 				}
   1718 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1719 			    p->p_session->s_ttyp == NULL) {
   1720 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1721 					match = false;
   1722 				}
   1723 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1724 				match = false;
   1725 			}
   1726 			break;
   1727 
   1728 		case KERN_PROC_UID:
   1729 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1730 			break;
   1731 
   1732 		case KERN_PROC_RUID:
   1733 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1734 			break;
   1735 
   1736 		case KERN_PROC_GID:
   1737 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1738 			break;
   1739 
   1740 		case KERN_PROC_RGID:
   1741 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1742 			break;
   1743 
   1744 		case KERN_PROC_ALL:
   1745 			match = true;
   1746 			/* allow everything */
   1747 			break;
   1748 
   1749 		default:
   1750 			error = EINVAL;
   1751 			mutex_exit(p->p_lock);
   1752 			goto cleanup;
   1753 		}
   1754 		if (!match) {
   1755 			mutex_exit(p->p_lock);
   1756 			continue;
   1757 		}
   1758 
   1759 		/*
   1760 		 * Grab a hold on the process.
   1761 		 */
   1762 		if (mmmbrains) {
   1763 			zombie = true;
   1764 		} else {
   1765 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1766 		}
   1767 		if (zombie) {
   1768 			LIST_INSERT_AFTER(p, marker, p_list);
   1769 		}
   1770 
   1771 		if (buflen >= elem_size &&
   1772 		    (type == KERN_PROC || elem_count > 0)) {
   1773 			if (type == KERN_PROC) {
   1774 				kbuf->kproc.kp_proc = *p;
   1775 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1776 			} else {
   1777 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1778 				elem_count--;
   1779 			}
   1780 			mutex_exit(p->p_lock);
   1781 			mutex_exit(proc_lock);
   1782 			/*
   1783 			 * Copy out elem_size, but not larger than kelem_size
   1784 			 */
   1785 			error = sysctl_copyout(l, kbuf, dp,
   1786 			    min(kelem_size, elem_size));
   1787 			mutex_enter(proc_lock);
   1788 			if (error) {
   1789 				goto bah;
   1790 			}
   1791 			dp += elem_size;
   1792 			buflen -= elem_size;
   1793 		} else {
   1794 			mutex_exit(p->p_lock);
   1795 		}
   1796 		needed += elem_size;
   1797 
   1798 		/*
   1799 		 * Release reference to process.
   1800 		 */
   1801 	 	if (zombie) {
   1802 			next = LIST_NEXT(marker, p_list);
   1803  			LIST_REMOVE(marker, p_list);
   1804 		} else {
   1805 			rw_exit(&p->p_reflock);
   1806 			next = LIST_NEXT(p, p_list);
   1807 		}
   1808 	}
   1809 	mutex_exit(proc_lock);
   1810 
   1811 	if (where != NULL) {
   1812 		*oldlenp = dp - where;
   1813 		if (needed > *oldlenp) {
   1814 			error = ENOMEM;
   1815 			goto out;
   1816 		}
   1817 	} else {
   1818 		needed += KERN_PROCSLOP;
   1819 		*oldlenp = needed;
   1820 	}
   1821 	if (kbuf)
   1822 		kmem_free(kbuf, sizeof(*kbuf));
   1823 	if (marker)
   1824 		kmem_free(marker, sizeof(*marker));
   1825 	sysctl_relock();
   1826 	return 0;
   1827  bah:
   1828  	if (zombie)
   1829  		LIST_REMOVE(marker, p_list);
   1830 	else
   1831 		rw_exit(&p->p_reflock);
   1832  cleanup:
   1833 	mutex_exit(proc_lock);
   1834  out:
   1835 	if (kbuf)
   1836 		kmem_free(kbuf, sizeof(*kbuf));
   1837 	if (marker)
   1838 		kmem_free(marker, sizeof(*marker));
   1839 	sysctl_relock();
   1840 	return error;
   1841 }
   1842 
   1843 int
   1844 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1845 {
   1846 
   1847 #ifdef COMPAT_NETBSD32
   1848 	if (p->p_flag & PK_32) {
   1849 		struct ps_strings32 arginfo32;
   1850 
   1851 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1852 		    sizeof(arginfo32));
   1853 		if (error)
   1854 			return error;
   1855 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1856 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1857 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1858 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1859 		return 0;
   1860 	}
   1861 #endif
   1862 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1863 }
   1864 
   1865 static int
   1866 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1867 {
   1868 	void **cookie = cookie_;
   1869 	struct lwp *l = cookie[0];
   1870 	char *dst = cookie[1];
   1871 
   1872 	return sysctl_copyout(l, src, dst + off, len);
   1873 }
   1874 
   1875 /*
   1876  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1877  */
   1878 static int
   1879 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1880 {
   1881 	struct ps_strings pss;
   1882 	struct proc *p;
   1883 	pid_t pid;
   1884 	int type, error;
   1885 	void *cookie[2];
   1886 
   1887 	if (namelen == 1 && name[0] == CTL_QUERY)
   1888 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1889 
   1890 	if (newp != NULL || namelen != 2)
   1891 		return (EINVAL);
   1892 	pid = name[0];
   1893 	type = name[1];
   1894 
   1895 	switch (type) {
   1896 	case KERN_PROC_ARGV:
   1897 	case KERN_PROC_NARGV:
   1898 	case KERN_PROC_ENV:
   1899 	case KERN_PROC_NENV:
   1900 		/* ok */
   1901 		break;
   1902 	default:
   1903 		return (EINVAL);
   1904 	}
   1905 
   1906 	sysctl_unlock();
   1907 
   1908 	/* check pid */
   1909 	mutex_enter(proc_lock);
   1910 	if ((p = proc_find(pid)) == NULL) {
   1911 		error = EINVAL;
   1912 		goto out_locked;
   1913 	}
   1914 	mutex_enter(p->p_lock);
   1915 
   1916 	/* Check permission. */
   1917 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1918 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1919 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1920 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1921 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1922 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1923 	else
   1924 		error = EINVAL; /* XXXGCC */
   1925 	if (error) {
   1926 		mutex_exit(p->p_lock);
   1927 		goto out_locked;
   1928 	}
   1929 
   1930 	if (oldp == NULL) {
   1931 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1932 			*oldlenp = sizeof (int);
   1933 		else
   1934 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1935 		error = 0;
   1936 		mutex_exit(p->p_lock);
   1937 		goto out_locked;
   1938 	}
   1939 
   1940 	/*
   1941 	 * Zombies don't have a stack, so we can't read their psstrings.
   1942 	 * System processes also don't have a user stack.
   1943 	 */
   1944 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1945 		error = EINVAL;
   1946 		mutex_exit(p->p_lock);
   1947 		goto out_locked;
   1948 	}
   1949 
   1950 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1951 	mutex_exit(p->p_lock);
   1952 	if (error) {
   1953 		goto out_locked;
   1954 	}
   1955 	mutex_exit(proc_lock);
   1956 
   1957 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1958 		int value;
   1959 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1960 			if (type == KERN_PROC_NARGV)
   1961 				value = pss.ps_nargvstr;
   1962 			else
   1963 				value = pss.ps_nenvstr;
   1964 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1965 			*oldlenp = sizeof(value);
   1966 		}
   1967 	} else {
   1968 		cookie[0] = l;
   1969 		cookie[1] = oldp;
   1970 		error = copy_procargs(p, type, oldlenp,
   1971 		    copy_procargs_sysctl_cb, cookie);
   1972 	}
   1973 	rw_exit(&p->p_reflock);
   1974 	sysctl_relock();
   1975 	return error;
   1976 
   1977 out_locked:
   1978 	mutex_exit(proc_lock);
   1979 	sysctl_relock();
   1980 	return error;
   1981 }
   1982 
   1983 int
   1984 copy_procargs(struct proc *p, int oid, size_t *limit,
   1985     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   1986 {
   1987 	struct ps_strings pss;
   1988 	size_t len, i, loaded, entry_len;
   1989 	struct uio auio;
   1990 	struct iovec aiov;
   1991 	int error, argvlen;
   1992 	char *arg;
   1993 	char **argv;
   1994 	vaddr_t user_argv;
   1995 	struct vmspace *vmspace;
   1996 
   1997 	/*
   1998 	 * Allocate a temporary buffer to hold the argument vector and
   1999 	 * the arguments themselve.
   2000 	 */
   2001 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2002 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2003 
   2004 	/*
   2005 	 * Lock the process down in memory.
   2006 	 */
   2007 	vmspace = p->p_vmspace;
   2008 	uvmspace_addref(vmspace);
   2009 
   2010 	/*
   2011 	 * Read in the ps_strings structure.
   2012 	 */
   2013 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2014 		goto done;
   2015 
   2016 	/*
   2017 	 * Now read the address of the argument vector.
   2018 	 */
   2019 	switch (oid) {
   2020 	case KERN_PROC_ARGV:
   2021 		user_argv = (uintptr_t)pss.ps_argvstr;
   2022 		argvlen = pss.ps_nargvstr;
   2023 		break;
   2024 	case KERN_PROC_ENV:
   2025 		user_argv = (uintptr_t)pss.ps_envstr;
   2026 		argvlen = pss.ps_nenvstr;
   2027 		break;
   2028 	default:
   2029 		error = EINVAL;
   2030 		goto done;
   2031 	}
   2032 
   2033 	if (argvlen < 0) {
   2034 		error = EIO;
   2035 		goto done;
   2036 	}
   2037 
   2038 #ifdef COMPAT_NETBSD32
   2039 	if (p->p_flag & PK_32)
   2040 		entry_len = sizeof(netbsd32_charp);
   2041 	else
   2042 #endif
   2043 		entry_len = sizeof(char *);
   2044 
   2045 	/*
   2046 	 * Now copy each string.
   2047 	 */
   2048 	len = 0; /* bytes written to user buffer */
   2049 	loaded = 0; /* bytes from argv already processed */
   2050 	i = 0; /* To make compiler happy */
   2051 
   2052 	for (; argvlen; --argvlen) {
   2053 		int finished = 0;
   2054 		vaddr_t base;
   2055 		size_t xlen;
   2056 		int j;
   2057 
   2058 		if (loaded == 0) {
   2059 			size_t rem = entry_len * argvlen;
   2060 			loaded = MIN(rem, PAGE_SIZE);
   2061 			error = copyin_vmspace(vmspace,
   2062 			    (const void *)user_argv, argv, loaded);
   2063 			if (error)
   2064 				break;
   2065 			user_argv += loaded;
   2066 			i = 0;
   2067 		}
   2068 
   2069 #ifdef COMPAT_NETBSD32
   2070 		if (p->p_flag & PK_32) {
   2071 			netbsd32_charp *argv32;
   2072 
   2073 			argv32 = (netbsd32_charp *)argv;
   2074 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2075 		} else
   2076 #endif
   2077 			base = (vaddr_t)argv[i++];
   2078 		loaded -= entry_len;
   2079 
   2080 		/*
   2081 		 * The program has messed around with its arguments,
   2082 		 * possibly deleting some, and replacing them with
   2083 		 * NULL's. Treat this as the last argument and not
   2084 		 * a failure.
   2085 		 */
   2086 		if (base == 0)
   2087 			break;
   2088 
   2089 		while (!finished) {
   2090 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2091 
   2092 			aiov.iov_base = arg;
   2093 			aiov.iov_len = PAGE_SIZE;
   2094 			auio.uio_iov = &aiov;
   2095 			auio.uio_iovcnt = 1;
   2096 			auio.uio_offset = base;
   2097 			auio.uio_resid = xlen;
   2098 			auio.uio_rw = UIO_READ;
   2099 			UIO_SETUP_SYSSPACE(&auio);
   2100 			error = uvm_io(&vmspace->vm_map, &auio);
   2101 			if (error)
   2102 				goto done;
   2103 
   2104 			/* Look for the end of the string */
   2105 			for (j = 0; j < xlen; j++) {
   2106 				if (arg[j] == '\0') {
   2107 					xlen = j + 1;
   2108 					finished = 1;
   2109 					break;
   2110 				}
   2111 			}
   2112 
   2113 			/* Check for user buffer overflow */
   2114 			if (len + xlen > *limit) {
   2115 				finished = 1;
   2116 				if (len > *limit)
   2117 					xlen = 0;
   2118 				else
   2119 					xlen = *limit - len;
   2120 			}
   2121 
   2122 			/* Copyout the page */
   2123 			error = (*cb)(cookie, arg, len, xlen);
   2124 			if (error)
   2125 				goto done;
   2126 
   2127 			len += xlen;
   2128 			base += xlen;
   2129 		}
   2130 	}
   2131 	*limit = len;
   2132 
   2133 done:
   2134 	kmem_free(argv, PAGE_SIZE);
   2135 	kmem_free(arg, PAGE_SIZE);
   2136 	uvmspace_free(vmspace);
   2137 	return error;
   2138 }
   2139 
   2140 /*
   2141  * Fill in an eproc structure for the specified process.
   2142  */
   2143 void
   2144 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2145 {
   2146 	struct tty *tp;
   2147 	struct lwp *l;
   2148 
   2149 	KASSERT(mutex_owned(proc_lock));
   2150 	KASSERT(mutex_owned(p->p_lock));
   2151 
   2152 	memset(ep, 0, sizeof(*ep));
   2153 
   2154 	ep->e_paddr = p;
   2155 	ep->e_sess = p->p_session;
   2156 	if (p->p_cred) {
   2157 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2158 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2159 	}
   2160 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2161 		struct vmspace *vm = p->p_vmspace;
   2162 
   2163 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2164 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2165 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2166 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2167 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2168 
   2169 		/* Pick the primary (first) LWP */
   2170 		l = proc_active_lwp(p);
   2171 		KASSERT(l != NULL);
   2172 		lwp_lock(l);
   2173 		if (l->l_wchan)
   2174 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2175 		lwp_unlock(l);
   2176 	}
   2177 	if (p->p_pptr)
   2178 		ep->e_ppid = p->p_pptr->p_pid;
   2179 	if (p->p_pgrp && p->p_session) {
   2180 		ep->e_pgid = p->p_pgrp->pg_id;
   2181 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2182 		ep->e_sid = p->p_session->s_sid;
   2183 		if ((p->p_lflag & PL_CONTROLT) &&
   2184 		    (tp = ep->e_sess->s_ttyp)) {
   2185 			ep->e_tdev = tp->t_dev;
   2186 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2187 			ep->e_tsess = tp->t_session;
   2188 		} else
   2189 			ep->e_tdev = (uint32_t)NODEV;
   2190 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2191 		if (SESS_LEADER(p))
   2192 			ep->e_flag |= EPROC_SLEADER;
   2193 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2194 	}
   2195 	ep->e_xsize = ep->e_xrssize = 0;
   2196 	ep->e_xccount = ep->e_xswrss = 0;
   2197 }
   2198 
   2199 /*
   2200  * Fill in a kinfo_proc2 structure for the specified process.
   2201  */
   2202 void
   2203 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2204 {
   2205 	struct tty *tp;
   2206 	struct lwp *l, *l2;
   2207 	struct timeval ut, st, rt;
   2208 	sigset_t ss1, ss2;
   2209 	struct rusage ru;
   2210 	struct vmspace *vm;
   2211 
   2212 	KASSERT(mutex_owned(proc_lock));
   2213 	KASSERT(mutex_owned(p->p_lock));
   2214 
   2215 	sigemptyset(&ss1);
   2216 	sigemptyset(&ss2);
   2217 	memset(ki, 0, sizeof(*ki));
   2218 
   2219 	ki->p_paddr = PTRTOUINT64(p);
   2220 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2221 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2222 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2223 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2224 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2225 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2226 	ki->p_sess = PTRTOUINT64(p->p_session);
   2227 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2228 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2229 	ki->p_eflag = 0;
   2230 	ki->p_exitsig = p->p_exitsig;
   2231 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2232 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2233 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2234 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2235 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2236 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2237 	ki->p_pid = p->p_pid;
   2238 	if (p->p_pptr)
   2239 		ki->p_ppid = p->p_pptr->p_pid;
   2240 	else
   2241 		ki->p_ppid = 0;
   2242 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2243 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2244 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2245 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2246 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2247 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2248 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2249 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2250 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2251 	    UIO_SYSSPACE);
   2252 
   2253 	ki->p_uticks = p->p_uticks;
   2254 	ki->p_sticks = p->p_sticks;
   2255 	ki->p_iticks = p->p_iticks;
   2256 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2257 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2258 	ki->p_traceflag = p->p_traceflag;
   2259 
   2260 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2261 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2262 
   2263 	ki->p_cpticks = 0;
   2264 	ki->p_pctcpu = p->p_pctcpu;
   2265 	ki->p_estcpu = 0;
   2266 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2267 	ki->p_realstat = p->p_stat;
   2268 	ki->p_nice = p->p_nice;
   2269 	ki->p_xstat = p->p_xstat;
   2270 	ki->p_acflag = p->p_acflag;
   2271 
   2272 	strncpy(ki->p_comm, p->p_comm,
   2273 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2274 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2275 
   2276 	ki->p_nlwps = p->p_nlwps;
   2277 	ki->p_realflag = ki->p_flag;
   2278 
   2279 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2280 		vm = p->p_vmspace;
   2281 		ki->p_vm_rssize = vm_resident_count(vm);
   2282 		ki->p_vm_tsize = vm->vm_tsize;
   2283 		ki->p_vm_dsize = vm->vm_dsize;
   2284 		ki->p_vm_ssize = vm->vm_ssize;
   2285 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2286 		/*
   2287 		 * Since the stack is initially mapped mostly with
   2288 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2289 		 * to skip the unused stack portion.
   2290 		 */
   2291 		ki->p_vm_msize =
   2292 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2293 
   2294 		/* Pick the primary (first) LWP */
   2295 		l = proc_active_lwp(p);
   2296 		KASSERT(l != NULL);
   2297 		lwp_lock(l);
   2298 		ki->p_nrlwps = p->p_nrlwps;
   2299 		ki->p_forw = 0;
   2300 		ki->p_back = 0;
   2301 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2302 		ki->p_stat = l->l_stat;
   2303 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2304 		ki->p_swtime = l->l_swtime;
   2305 		ki->p_slptime = l->l_slptime;
   2306 		if (l->l_stat == LSONPROC)
   2307 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2308 		else
   2309 			ki->p_schedflags = 0;
   2310 		ki->p_priority = lwp_eprio(l);
   2311 		ki->p_usrpri = l->l_priority;
   2312 		if (l->l_wchan)
   2313 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2314 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2315 		ki->p_cpuid = cpu_index(l->l_cpu);
   2316 		lwp_unlock(l);
   2317 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2318 			/* This is hardly correct, but... */
   2319 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2320 			sigplusset(&l->l_sigmask, &ss2);
   2321 			ki->p_cpticks += l->l_cpticks;
   2322 			ki->p_pctcpu += l->l_pctcpu;
   2323 			ki->p_estcpu += l->l_estcpu;
   2324 		}
   2325 	}
   2326 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2327 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2328 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2329 
   2330 	if (p->p_session != NULL) {
   2331 		ki->p_sid = p->p_session->s_sid;
   2332 		ki->p__pgid = p->p_pgrp->pg_id;
   2333 		if (p->p_session->s_ttyvp)
   2334 			ki->p_eflag |= EPROC_CTTY;
   2335 		if (SESS_LEADER(p))
   2336 			ki->p_eflag |= EPROC_SLEADER;
   2337 		strncpy(ki->p_login, p->p_session->s_login,
   2338 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2339 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2340 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2341 			ki->p_tdev = tp->t_dev;
   2342 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2343 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2344 		} else {
   2345 			ki->p_tdev = (int32_t)NODEV;
   2346 		}
   2347 	}
   2348 
   2349 	if (!P_ZOMBIE(p) && !zombie) {
   2350 		ki->p_uvalid = 1;
   2351 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2352 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2353 
   2354 		calcru(p, &ut, &st, NULL, &rt);
   2355 		ki->p_rtime_sec = rt.tv_sec;
   2356 		ki->p_rtime_usec = rt.tv_usec;
   2357 		ki->p_uutime_sec = ut.tv_sec;
   2358 		ki->p_uutime_usec = ut.tv_usec;
   2359 		ki->p_ustime_sec = st.tv_sec;
   2360 		ki->p_ustime_usec = st.tv_usec;
   2361 
   2362 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2363 		ki->p_uru_nvcsw = 0;
   2364 		ki->p_uru_nivcsw = 0;
   2365 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2366 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2367 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2368 			ruadd(&ru, &l2->l_ru);
   2369 		}
   2370 		ki->p_uru_maxrss = ru.ru_maxrss;
   2371 		ki->p_uru_ixrss = ru.ru_ixrss;
   2372 		ki->p_uru_idrss = ru.ru_idrss;
   2373 		ki->p_uru_isrss = ru.ru_isrss;
   2374 		ki->p_uru_minflt = ru.ru_minflt;
   2375 		ki->p_uru_majflt = ru.ru_majflt;
   2376 		ki->p_uru_nswap = ru.ru_nswap;
   2377 		ki->p_uru_inblock = ru.ru_inblock;
   2378 		ki->p_uru_oublock = ru.ru_oublock;
   2379 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2380 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2381 		ki->p_uru_nsignals = ru.ru_nsignals;
   2382 
   2383 		timeradd(&p->p_stats->p_cru.ru_utime,
   2384 			 &p->p_stats->p_cru.ru_stime, &ut);
   2385 		ki->p_uctime_sec = ut.tv_sec;
   2386 		ki->p_uctime_usec = ut.tv_usec;
   2387 	}
   2388 }
   2389