Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.192
      1 /*	$NetBSD: kern_proc.c,v 1.192 2014/02/25 18:30:11 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.192 2014/02/25 18:30:11 pooka Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/kernel.h>
     77 #include <sys/proc.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/buf.h>
     80 #include <sys/acct.h>
     81 #include <sys/wait.h>
     82 #include <sys/file.h>
     83 #include <ufs/ufs/quota.h>
     84 #include <sys/uio.h>
     85 #include <sys/pool.h>
     86 #include <sys/pset.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/ras.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/kauth.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/atomic.h>
     97 #include <sys/kmem.h>
     98 #include <sys/dtrace_bsd.h>
     99 #include <sys/sysctl.h>
    100 #include <sys/exec.h>
    101 #include <sys/cpu.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #ifdef COMPAT_NETBSD32
    106 #include <compat/netbsd32/netbsd32.h>
    107 #endif
    108 
    109 /*
    110  * Process lists.
    111  */
    112 
    113 struct proclist		allproc		__cacheline_aligned;
    114 struct proclist		zombproc	__cacheline_aligned;
    115 
    116 kmutex_t *		proc_lock	__cacheline_aligned;
    117 
    118 /*
    119  * pid to proc lookup is done by indexing the pid_table array.
    120  * Since pid numbers are only allocated when an empty slot
    121  * has been found, there is no need to search any lists ever.
    122  * (an orphaned pgrp will lock the slot, a session will lock
    123  * the pgrp with the same number.)
    124  * If the table is too small it is reallocated with twice the
    125  * previous size and the entries 'unzipped' into the two halves.
    126  * A linked list of free entries is passed through the pt_proc
    127  * field of 'free' items - set odd to be an invalid ptr.
    128  */
    129 
    130 struct pid_table {
    131 	struct proc	*pt_proc;
    132 	struct pgrp	*pt_pgrp;
    133 	pid_t		pt_pid;
    134 };
    135 #if 1	/* strongly typed cast - should be a noop */
    136 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    137 #else
    138 #define p2u(p) ((uint)p)
    139 #endif
    140 #define P_VALID(p) (!(p2u(p) & 1))
    141 #define P_NEXT(p) (p2u(p) >> 1)
    142 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    143 
    144 /*
    145  * Table of process IDs (PIDs).
    146  */
    147 static struct pid_table *pid_table	__read_mostly;
    148 
    149 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    150 
    151 /* Table mask, threshold for growing and number of allocated PIDs. */
    152 static u_int		pid_tbl_mask	__read_mostly;
    153 static u_int		pid_alloc_lim	__read_mostly;
    154 static u_int		pid_alloc_cnt	__cacheline_aligned;
    155 
    156 /* Next free, last free and maximum PIDs. */
    157 static u_int		next_free_pt	__cacheline_aligned;
    158 static u_int		last_free_pt	__cacheline_aligned;
    159 static pid_t		pid_max		__read_mostly;
    160 
    161 /* Components of the first process -- never freed. */
    162 
    163 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    164 
    165 struct session session0 = {
    166 	.s_count = 1,
    167 	.s_sid = 0,
    168 };
    169 struct pgrp pgrp0 = {
    170 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    171 	.pg_session = &session0,
    172 };
    173 filedesc_t filedesc0;
    174 struct cwdinfo cwdi0 = {
    175 	.cwdi_cmask = CMASK,
    176 	.cwdi_refcnt = 1,
    177 };
    178 struct plimit limit0;
    179 struct pstats pstat0;
    180 struct vmspace vmspace0;
    181 struct sigacts sigacts0;
    182 struct proc proc0 = {
    183 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    184 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    185 	.p_nlwps = 1,
    186 	.p_nrlwps = 1,
    187 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    188 	.p_pgrp = &pgrp0,
    189 	.p_comm = "system",
    190 	/*
    191 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    192 	 * when they exit.  init(8) can easily wait them out for us.
    193 	 */
    194 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    195 	.p_stat = SACTIVE,
    196 	.p_nice = NZERO,
    197 	.p_emul = &emul_netbsd,
    198 	.p_cwdi = &cwdi0,
    199 	.p_limit = &limit0,
    200 	.p_fd = &filedesc0,
    201 	.p_vmspace = &vmspace0,
    202 	.p_stats = &pstat0,
    203 	.p_sigacts = &sigacts0,
    204 #ifdef PROC0_MD_INITIALIZERS
    205 	PROC0_MD_INITIALIZERS
    206 #endif
    207 };
    208 kauth_cred_t cred0;
    209 
    210 static const int	nofile	= NOFILE;
    211 static const int	maxuprc	= MAXUPRC;
    212 
    213 static int sysctl_doeproc(SYSCTLFN_PROTO);
    214 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    215 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
    216 
    217 /*
    218  * The process list descriptors, used during pid allocation and
    219  * by sysctl.  No locking on this data structure is needed since
    220  * it is completely static.
    221  */
    222 const struct proclist_desc proclists[] = {
    223 	{ &allproc	},
    224 	{ &zombproc	},
    225 	{ NULL		},
    226 };
    227 
    228 static struct pgrp *	pg_remove(pid_t);
    229 static void		pg_delete(pid_t);
    230 static void		orphanpg(struct pgrp *);
    231 
    232 static specificdata_domain_t proc_specificdata_domain;
    233 
    234 static pool_cache_t proc_cache;
    235 
    236 static kauth_listener_t proc_listener;
    237 
    238 static int
    239 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    240     void *arg0, void *arg1, void *arg2, void *arg3)
    241 {
    242 	struct proc *p;
    243 	int result;
    244 
    245 	result = KAUTH_RESULT_DEFER;
    246 	p = arg0;
    247 
    248 	switch (action) {
    249 	case KAUTH_PROCESS_CANSEE: {
    250 		enum kauth_process_req req;
    251 
    252 		req = (enum kauth_process_req)arg1;
    253 
    254 		switch (req) {
    255 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    256 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    257 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    258 			result = KAUTH_RESULT_ALLOW;
    259 
    260 			break;
    261 
    262 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    263 			if (kauth_cred_getuid(cred) !=
    264 			    kauth_cred_getuid(p->p_cred) ||
    265 			    kauth_cred_getuid(cred) !=
    266 			    kauth_cred_getsvuid(p->p_cred))
    267 				break;
    268 
    269 			result = KAUTH_RESULT_ALLOW;
    270 
    271 			break;
    272 
    273 		default:
    274 			break;
    275 		}
    276 
    277 		break;
    278 		}
    279 
    280 	case KAUTH_PROCESS_FORK: {
    281 		int lnprocs = (int)(unsigned long)arg2;
    282 
    283 		/*
    284 		 * Don't allow a nonprivileged user to use the last few
    285 		 * processes. The variable lnprocs is the current number of
    286 		 * processes, maxproc is the limit.
    287 		 */
    288 		if (__predict_false((lnprocs >= maxproc - 5)))
    289 			break;
    290 
    291 		result = KAUTH_RESULT_ALLOW;
    292 
    293 		break;
    294 		}
    295 
    296 	case KAUTH_PROCESS_CORENAME:
    297 	case KAUTH_PROCESS_STOPFLAG:
    298 		if (proc_uidmatch(cred, p->p_cred) == 0)
    299 			result = KAUTH_RESULT_ALLOW;
    300 
    301 		break;
    302 
    303 	default:
    304 		break;
    305 	}
    306 
    307 	return result;
    308 }
    309 
    310 /*
    311  * Initialize global process hashing structures.
    312  */
    313 void
    314 procinit(void)
    315 {
    316 	const struct proclist_desc *pd;
    317 	u_int i;
    318 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    319 
    320 	for (pd = proclists; pd->pd_list != NULL; pd++)
    321 		LIST_INIT(pd->pd_list);
    322 
    323 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    324 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    325 	    * sizeof(struct pid_table), KM_SLEEP);
    326 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    327 	pid_max = PID_MAX;
    328 
    329 	/* Set free list running through table...
    330 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    331 	for (i = 0; i <= pid_tbl_mask; i++) {
    332 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    333 		pid_table[i].pt_pgrp = 0;
    334 		pid_table[i].pt_pid = 0;
    335 	}
    336 	/* slot 0 is just grabbed */
    337 	next_free_pt = 1;
    338 	/* Need to fix last entry. */
    339 	last_free_pt = pid_tbl_mask;
    340 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    341 	/* point at which we grow table - to avoid reusing pids too often */
    342 	pid_alloc_lim = pid_tbl_mask - 1;
    343 #undef LINK_EMPTY
    344 
    345 	proc_specificdata_domain = specificdata_domain_create();
    346 	KASSERT(proc_specificdata_domain != NULL);
    347 
    348 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    349 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    350 
    351 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    352 	    proc_listener_cb, NULL);
    353 }
    354 
    355 void
    356 procinit_sysctl(void)
    357 {
    358 	static struct sysctllog *clog;
    359 
    360 	sysctl_createv(&clog, 0, NULL, NULL,
    361 		       CTLFLAG_PERMANENT,
    362 		       CTLTYPE_NODE, "proc",
    363 		       SYSCTL_DESCR("System-wide process information"),
    364 		       sysctl_doeproc, 0, NULL, 0,
    365 		       CTL_KERN, KERN_PROC, CTL_EOL);
    366 	sysctl_createv(&clog, 0, NULL, NULL,
    367 		       CTLFLAG_PERMANENT,
    368 		       CTLTYPE_NODE, "proc2",
    369 		       SYSCTL_DESCR("Machine-independent process information"),
    370 		       sysctl_doeproc, 0, NULL, 0,
    371 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    372 	sysctl_createv(&clog, 0, NULL, NULL,
    373 		       CTLFLAG_PERMANENT,
    374 		       CTLTYPE_NODE, "proc_args",
    375 		       SYSCTL_DESCR("Process argument information"),
    376 		       sysctl_kern_proc_args, 0, NULL, 0,
    377 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    378 
    379 	/*
    380 	  "nodes" under these:
    381 
    382 	  KERN_PROC_ALL
    383 	  KERN_PROC_PID pid
    384 	  KERN_PROC_PGRP pgrp
    385 	  KERN_PROC_SESSION sess
    386 	  KERN_PROC_TTY tty
    387 	  KERN_PROC_UID uid
    388 	  KERN_PROC_RUID uid
    389 	  KERN_PROC_GID gid
    390 	  KERN_PROC_RGID gid
    391 
    392 	  all in all, probably not worth the effort...
    393 	*/
    394 }
    395 
    396 /*
    397  * Initialize process 0.
    398  */
    399 void
    400 proc0_init(void)
    401 {
    402 	struct proc *p;
    403 	struct pgrp *pg;
    404 	struct rlimit *rlim;
    405 	rlim_t lim;
    406 	int i;
    407 
    408 	p = &proc0;
    409 	pg = &pgrp0;
    410 
    411 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    412 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    413 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    414 
    415 	rw_init(&p->p_reflock);
    416 	cv_init(&p->p_waitcv, "wait");
    417 	cv_init(&p->p_lwpcv, "lwpwait");
    418 
    419 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    420 
    421 	pid_table[0].pt_proc = p;
    422 	LIST_INSERT_HEAD(&allproc, p, p_list);
    423 
    424 	pid_table[0].pt_pgrp = pg;
    425 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    426 
    427 #ifdef __HAVE_SYSCALL_INTERN
    428 	(*p->p_emul->e_syscall_intern)(p);
    429 #endif
    430 
    431 	/* Create credentials. */
    432 	cred0 = kauth_cred_alloc();
    433 	p->p_cred = cred0;
    434 
    435 	/* Create the CWD info. */
    436 	rw_init(&cwdi0.cwdi_lock);
    437 
    438 	/* Create the limits structures. */
    439 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    440 
    441 	rlim = limit0.pl_rlimit;
    442 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    443 		rlim[i].rlim_cur = RLIM_INFINITY;
    444 		rlim[i].rlim_max = RLIM_INFINITY;
    445 	}
    446 
    447 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    448 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    449 
    450 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    451 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    452 
    453 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    454 	rlim[RLIMIT_RSS].rlim_max = lim;
    455 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    456 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    457 
    458 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    459 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    460 
    461 	/* Note that default core name has zero length. */
    462 	limit0.pl_corename = defcorename;
    463 	limit0.pl_cnlen = 0;
    464 	limit0.pl_refcnt = 1;
    465 	limit0.pl_writeable = false;
    466 	limit0.pl_sv_limit = NULL;
    467 
    468 	/* Configure virtual memory system, set vm rlimits. */
    469 	uvm_init_limits(p);
    470 
    471 	/* Initialize file descriptor table for proc0. */
    472 	fd_init(&filedesc0);
    473 
    474 	/*
    475 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    476 	 * All kernel processes (which never have user space mappings)
    477 	 * share proc0's vmspace, and thus, the kernel pmap.
    478 	 */
    479 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    480 	    trunc_page(VM_MAX_ADDRESS),
    481 #ifdef __USE_TOPDOWN_VM
    482 	    true
    483 #else
    484 	    false
    485 #endif
    486 	    );
    487 
    488 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    489 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    490 	siginit(p);
    491 
    492 	proc_initspecific(p);
    493 	kdtrace_proc_ctor(NULL, p);
    494 }
    495 
    496 /*
    497  * Session reference counting.
    498  */
    499 
    500 void
    501 proc_sesshold(struct session *ss)
    502 {
    503 
    504 	KASSERT(mutex_owned(proc_lock));
    505 	ss->s_count++;
    506 }
    507 
    508 void
    509 proc_sessrele(struct session *ss)
    510 {
    511 
    512 	KASSERT(mutex_owned(proc_lock));
    513 	/*
    514 	 * We keep the pgrp with the same id as the session in order to
    515 	 * stop a process being given the same pid.  Since the pgrp holds
    516 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    517 	 */
    518 	if (--ss->s_count == 0) {
    519 		struct pgrp *pg;
    520 
    521 		pg = pg_remove(ss->s_sid);
    522 		mutex_exit(proc_lock);
    523 
    524 		kmem_free(pg, sizeof(struct pgrp));
    525 		kmem_free(ss, sizeof(struct session));
    526 	} else {
    527 		mutex_exit(proc_lock);
    528 	}
    529 }
    530 
    531 /*
    532  * Check that the specified process group is in the session of the
    533  * specified process.
    534  * Treats -ve ids as process ids.
    535  * Used to validate TIOCSPGRP requests.
    536  */
    537 int
    538 pgid_in_session(struct proc *p, pid_t pg_id)
    539 {
    540 	struct pgrp *pgrp;
    541 	struct session *session;
    542 	int error;
    543 
    544 	mutex_enter(proc_lock);
    545 	if (pg_id < 0) {
    546 		struct proc *p1 = proc_find(-pg_id);
    547 		if (p1 == NULL) {
    548 			error = EINVAL;
    549 			goto fail;
    550 		}
    551 		pgrp = p1->p_pgrp;
    552 	} else {
    553 		pgrp = pgrp_find(pg_id);
    554 		if (pgrp == NULL) {
    555 			error = EINVAL;
    556 			goto fail;
    557 		}
    558 	}
    559 	session = pgrp->pg_session;
    560 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    561 fail:
    562 	mutex_exit(proc_lock);
    563 	return error;
    564 }
    565 
    566 /*
    567  * p_inferior: is p an inferior of q?
    568  */
    569 static inline bool
    570 p_inferior(struct proc *p, struct proc *q)
    571 {
    572 
    573 	KASSERT(mutex_owned(proc_lock));
    574 
    575 	for (; p != q; p = p->p_pptr)
    576 		if (p->p_pid == 0)
    577 			return false;
    578 	return true;
    579 }
    580 
    581 /*
    582  * proc_find: locate a process by the ID.
    583  *
    584  * => Must be called with proc_lock held.
    585  */
    586 proc_t *
    587 proc_find_raw(pid_t pid)
    588 {
    589 	struct pid_table *pt;
    590 	proc_t *p;
    591 
    592 	KASSERT(mutex_owned(proc_lock));
    593 	pt = &pid_table[pid & pid_tbl_mask];
    594 	p = pt->pt_proc;
    595 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    596 		return NULL;
    597 	}
    598 	return p;
    599 }
    600 
    601 proc_t *
    602 proc_find(pid_t pid)
    603 {
    604 	proc_t *p;
    605 
    606 	p = proc_find_raw(pid);
    607 	if (__predict_false(p == NULL)) {
    608 		return NULL;
    609 	}
    610 
    611 	/*
    612 	 * Only allow live processes to be found by PID.
    613 	 * XXX: p_stat might change, since unlocked.
    614 	 */
    615 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    616 		return p;
    617 	}
    618 	return NULL;
    619 }
    620 
    621 /*
    622  * pgrp_find: locate a process group by the ID.
    623  *
    624  * => Must be called with proc_lock held.
    625  */
    626 struct pgrp *
    627 pgrp_find(pid_t pgid)
    628 {
    629 	struct pgrp *pg;
    630 
    631 	KASSERT(mutex_owned(proc_lock));
    632 
    633 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    634 
    635 	/*
    636 	 * Cannot look up a process group that only exists because the
    637 	 * session has not died yet (traditional).
    638 	 */
    639 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    640 		return NULL;
    641 	}
    642 	return pg;
    643 }
    644 
    645 static void
    646 expand_pid_table(void)
    647 {
    648 	size_t pt_size, tsz;
    649 	struct pid_table *n_pt, *new_pt;
    650 	struct proc *proc;
    651 	struct pgrp *pgrp;
    652 	pid_t pid, rpid;
    653 	u_int i;
    654 	uint new_pt_mask;
    655 
    656 	pt_size = pid_tbl_mask + 1;
    657 	tsz = pt_size * 2 * sizeof(struct pid_table);
    658 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    659 	new_pt_mask = pt_size * 2 - 1;
    660 
    661 	mutex_enter(proc_lock);
    662 	if (pt_size != pid_tbl_mask + 1) {
    663 		/* Another process beat us to it... */
    664 		mutex_exit(proc_lock);
    665 		kmem_free(new_pt, tsz);
    666 		return;
    667 	}
    668 
    669 	/*
    670 	 * Copy entries from old table into new one.
    671 	 * If 'pid' is 'odd' we need to place in the upper half,
    672 	 * even pid's to the lower half.
    673 	 * Free items stay in the low half so we don't have to
    674 	 * fixup the reference to them.
    675 	 * We stuff free items on the front of the freelist
    676 	 * because we can't write to unmodified entries.
    677 	 * Processing the table backwards maintains a semblance
    678 	 * of issuing pid numbers that increase with time.
    679 	 */
    680 	i = pt_size - 1;
    681 	n_pt = new_pt + i;
    682 	for (; ; i--, n_pt--) {
    683 		proc = pid_table[i].pt_proc;
    684 		pgrp = pid_table[i].pt_pgrp;
    685 		if (!P_VALID(proc)) {
    686 			/* Up 'use count' so that link is valid */
    687 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    688 			rpid = 0;
    689 			proc = P_FREE(pid);
    690 			if (pgrp)
    691 				pid = pgrp->pg_id;
    692 		} else {
    693 			pid = pid_table[i].pt_pid;
    694 			rpid = pid;
    695 		}
    696 
    697 		/* Save entry in appropriate half of table */
    698 		n_pt[pid & pt_size].pt_proc = proc;
    699 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    700 		n_pt[pid & pt_size].pt_pid = rpid;
    701 
    702 		/* Put other piece on start of free list */
    703 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    704 		n_pt[pid & pt_size].pt_proc =
    705 			P_FREE((pid & ~pt_size) | next_free_pt);
    706 		n_pt[pid & pt_size].pt_pgrp = 0;
    707 		n_pt[pid & pt_size].pt_pid = 0;
    708 
    709 		next_free_pt = i | (pid & pt_size);
    710 		if (i == 0)
    711 			break;
    712 	}
    713 
    714 	/* Save old table size and switch tables */
    715 	tsz = pt_size * sizeof(struct pid_table);
    716 	n_pt = pid_table;
    717 	pid_table = new_pt;
    718 	pid_tbl_mask = new_pt_mask;
    719 
    720 	/*
    721 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    722 	 * allocated pids we need it to be larger!
    723 	 */
    724 	if (pid_tbl_mask > PID_MAX) {
    725 		pid_max = pid_tbl_mask * 2 + 1;
    726 		pid_alloc_lim |= pid_alloc_lim << 1;
    727 	} else
    728 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    729 
    730 	mutex_exit(proc_lock);
    731 	kmem_free(n_pt, tsz);
    732 }
    733 
    734 struct proc *
    735 proc_alloc(void)
    736 {
    737 	struct proc *p;
    738 
    739 	p = pool_cache_get(proc_cache, PR_WAITOK);
    740 	p->p_stat = SIDL;			/* protect against others */
    741 	proc_initspecific(p);
    742 	kdtrace_proc_ctor(NULL, p);
    743 	p->p_pid = -1;
    744 	proc_alloc_pid(p);
    745 	return p;
    746 }
    747 
    748 /*
    749  * proc_alloc_pid: allocate PID and record the given proc 'p' so that
    750  * proc_find_raw() can find it by the PID.
    751  */
    752 
    753 pid_t
    754 proc_alloc_pid(struct proc *p)
    755 {
    756 	struct pid_table *pt;
    757 	pid_t pid;
    758 	int nxt;
    759 
    760 	for (;;expand_pid_table()) {
    761 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    762 			/* ensure pids cycle through 2000+ values */
    763 			continue;
    764 		mutex_enter(proc_lock);
    765 		pt = &pid_table[next_free_pt];
    766 #ifdef DIAGNOSTIC
    767 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    768 			panic("proc_alloc: slot busy");
    769 #endif
    770 		nxt = P_NEXT(pt->pt_proc);
    771 		if (nxt & pid_tbl_mask)
    772 			break;
    773 		/* Table full - expand (NB last entry not used....) */
    774 		mutex_exit(proc_lock);
    775 	}
    776 
    777 	/* pid is 'saved use count' + 'size' + entry */
    778 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    779 	if ((uint)pid > (uint)pid_max)
    780 		pid &= pid_tbl_mask;
    781 	next_free_pt = nxt & pid_tbl_mask;
    782 
    783 	/* Grab table slot */
    784 	pt->pt_proc = p;
    785 
    786 	KASSERT(pt->pt_pid == 0);
    787 	pt->pt_pid = pid;
    788 	if (p->p_pid == -1) {
    789 		p->p_pid = pid;
    790 	}
    791 	pid_alloc_cnt++;
    792 	mutex_exit(proc_lock);
    793 
    794 	return pid;
    795 }
    796 
    797 /*
    798  * Free a process id - called from proc_free (in kern_exit.c)
    799  *
    800  * Called with the proc_lock held.
    801  */
    802 void
    803 proc_free_pid(pid_t pid)
    804 {
    805 	struct pid_table *pt;
    806 
    807 	KASSERT(mutex_owned(proc_lock));
    808 
    809 	pt = &pid_table[pid & pid_tbl_mask];
    810 
    811 	/* save pid use count in slot */
    812 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    813 	KASSERT(pt->pt_pid == pid);
    814 	pt->pt_pid = 0;
    815 
    816 	if (pt->pt_pgrp == NULL) {
    817 		/* link last freed entry onto ours */
    818 		pid &= pid_tbl_mask;
    819 		pt = &pid_table[last_free_pt];
    820 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    821 		pt->pt_pid = 0;
    822 		last_free_pt = pid;
    823 		pid_alloc_cnt--;
    824 	}
    825 
    826 	atomic_dec_uint(&nprocs);
    827 }
    828 
    829 void
    830 proc_free_mem(struct proc *p)
    831 {
    832 
    833 	kdtrace_proc_dtor(NULL, p);
    834 	pool_cache_put(proc_cache, p);
    835 }
    836 
    837 /*
    838  * proc_enterpgrp: move p to a new or existing process group (and session).
    839  *
    840  * If we are creating a new pgrp, the pgid should equal
    841  * the calling process' pid.
    842  * If is only valid to enter a process group that is in the session
    843  * of the process.
    844  * Also mksess should only be set if we are creating a process group
    845  *
    846  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    847  */
    848 int
    849 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    850 {
    851 	struct pgrp *new_pgrp, *pgrp;
    852 	struct session *sess;
    853 	struct proc *p;
    854 	int rval;
    855 	pid_t pg_id = NO_PGID;
    856 
    857 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    858 
    859 	/* Allocate data areas we might need before doing any validity checks */
    860 	mutex_enter(proc_lock);		/* Because pid_table might change */
    861 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    862 		mutex_exit(proc_lock);
    863 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    864 		mutex_enter(proc_lock);
    865 	} else
    866 		new_pgrp = NULL;
    867 	rval = EPERM;	/* most common error (to save typing) */
    868 
    869 	/* Check pgrp exists or can be created */
    870 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    871 	if (pgrp != NULL && pgrp->pg_id != pgid)
    872 		goto done;
    873 
    874 	/* Can only set another process under restricted circumstances. */
    875 	if (pid != curp->p_pid) {
    876 		/* Must exist and be one of our children... */
    877 		p = proc_find(pid);
    878 		if (p == NULL || !p_inferior(p, curp)) {
    879 			rval = ESRCH;
    880 			goto done;
    881 		}
    882 		/* ... in the same session... */
    883 		if (sess != NULL || p->p_session != curp->p_session)
    884 			goto done;
    885 		/* ... existing pgid must be in same session ... */
    886 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    887 			goto done;
    888 		/* ... and not done an exec. */
    889 		if (p->p_flag & PK_EXEC) {
    890 			rval = EACCES;
    891 			goto done;
    892 		}
    893 	} else {
    894 		/* ... setsid() cannot re-enter a pgrp */
    895 		if (mksess && (curp->p_pgid == curp->p_pid ||
    896 		    pgrp_find(curp->p_pid)))
    897 			goto done;
    898 		p = curp;
    899 	}
    900 
    901 	/* Changing the process group/session of a session
    902 	   leader is definitely off limits. */
    903 	if (SESS_LEADER(p)) {
    904 		if (sess == NULL && p->p_pgrp == pgrp)
    905 			/* unless it's a definite noop */
    906 			rval = 0;
    907 		goto done;
    908 	}
    909 
    910 	/* Can only create a process group with id of process */
    911 	if (pgrp == NULL && pgid != pid)
    912 		goto done;
    913 
    914 	/* Can only create a session if creating pgrp */
    915 	if (sess != NULL && pgrp != NULL)
    916 		goto done;
    917 
    918 	/* Check we allocated memory for a pgrp... */
    919 	if (pgrp == NULL && new_pgrp == NULL)
    920 		goto done;
    921 
    922 	/* Don't attach to 'zombie' pgrp */
    923 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    924 		goto done;
    925 
    926 	/* Expect to succeed now */
    927 	rval = 0;
    928 
    929 	if (pgrp == p->p_pgrp)
    930 		/* nothing to do */
    931 		goto done;
    932 
    933 	/* Ok all setup, link up required structures */
    934 
    935 	if (pgrp == NULL) {
    936 		pgrp = new_pgrp;
    937 		new_pgrp = NULL;
    938 		if (sess != NULL) {
    939 			sess->s_sid = p->p_pid;
    940 			sess->s_leader = p;
    941 			sess->s_count = 1;
    942 			sess->s_ttyvp = NULL;
    943 			sess->s_ttyp = NULL;
    944 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    945 			memcpy(sess->s_login, p->p_session->s_login,
    946 			    sizeof(sess->s_login));
    947 			p->p_lflag &= ~PL_CONTROLT;
    948 		} else {
    949 			sess = p->p_pgrp->pg_session;
    950 			proc_sesshold(sess);
    951 		}
    952 		pgrp->pg_session = sess;
    953 		sess = NULL;
    954 
    955 		pgrp->pg_id = pgid;
    956 		LIST_INIT(&pgrp->pg_members);
    957 #ifdef DIAGNOSTIC
    958 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    959 			panic("enterpgrp: pgrp table slot in use");
    960 		if (__predict_false(mksess && p != curp))
    961 			panic("enterpgrp: mksession and p != curproc");
    962 #endif
    963 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    964 		pgrp->pg_jobc = 0;
    965 	}
    966 
    967 	/*
    968 	 * Adjust eligibility of affected pgrps to participate in job control.
    969 	 * Increment eligibility counts before decrementing, otherwise we
    970 	 * could reach 0 spuriously during the first call.
    971 	 */
    972 	fixjobc(p, pgrp, 1);
    973 	fixjobc(p, p->p_pgrp, 0);
    974 
    975 	/* Interlock with ttread(). */
    976 	mutex_spin_enter(&tty_lock);
    977 
    978 	/* Move process to requested group. */
    979 	LIST_REMOVE(p, p_pglist);
    980 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    981 		/* defer delete until we've dumped the lock */
    982 		pg_id = p->p_pgrp->pg_id;
    983 	p->p_pgrp = pgrp;
    984 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    985 
    986 	/* Done with the swap; we can release the tty mutex. */
    987 	mutex_spin_exit(&tty_lock);
    988 
    989     done:
    990 	if (pg_id != NO_PGID) {
    991 		/* Releases proc_lock. */
    992 		pg_delete(pg_id);
    993 	} else {
    994 		mutex_exit(proc_lock);
    995 	}
    996 	if (sess != NULL)
    997 		kmem_free(sess, sizeof(*sess));
    998 	if (new_pgrp != NULL)
    999 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1000 #ifdef DEBUG_PGRP
   1001 	if (__predict_false(rval))
   1002 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1003 			pid, pgid, mksess, curp->p_pid, rval);
   1004 #endif
   1005 	return rval;
   1006 }
   1007 
   1008 /*
   1009  * proc_leavepgrp: remove a process from its process group.
   1010  *  => must be called with the proc_lock held, which will be released;
   1011  */
   1012 void
   1013 proc_leavepgrp(struct proc *p)
   1014 {
   1015 	struct pgrp *pgrp;
   1016 
   1017 	KASSERT(mutex_owned(proc_lock));
   1018 
   1019 	/* Interlock with ttread() */
   1020 	mutex_spin_enter(&tty_lock);
   1021 	pgrp = p->p_pgrp;
   1022 	LIST_REMOVE(p, p_pglist);
   1023 	p->p_pgrp = NULL;
   1024 	mutex_spin_exit(&tty_lock);
   1025 
   1026 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1027 		/* Releases proc_lock. */
   1028 		pg_delete(pgrp->pg_id);
   1029 	} else {
   1030 		mutex_exit(proc_lock);
   1031 	}
   1032 }
   1033 
   1034 /*
   1035  * pg_remove: remove a process group from the table.
   1036  *  => must be called with the proc_lock held;
   1037  *  => returns process group to free;
   1038  */
   1039 static struct pgrp *
   1040 pg_remove(pid_t pg_id)
   1041 {
   1042 	struct pgrp *pgrp;
   1043 	struct pid_table *pt;
   1044 
   1045 	KASSERT(mutex_owned(proc_lock));
   1046 
   1047 	pt = &pid_table[pg_id & pid_tbl_mask];
   1048 	pgrp = pt->pt_pgrp;
   1049 
   1050 	KASSERT(pgrp != NULL);
   1051 	KASSERT(pgrp->pg_id == pg_id);
   1052 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1053 
   1054 	pt->pt_pgrp = NULL;
   1055 
   1056 	if (!P_VALID(pt->pt_proc)) {
   1057 		/* Orphaned pgrp, put slot onto free list. */
   1058 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1059 		pg_id &= pid_tbl_mask;
   1060 		pt = &pid_table[last_free_pt];
   1061 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1062 		KASSERT(pt->pt_pid == 0);
   1063 		last_free_pt = pg_id;
   1064 		pid_alloc_cnt--;
   1065 	}
   1066 	return pgrp;
   1067 }
   1068 
   1069 /*
   1070  * pg_delete: delete and free a process group.
   1071  *  => must be called with the proc_lock held, which will be released.
   1072  */
   1073 static void
   1074 pg_delete(pid_t pg_id)
   1075 {
   1076 	struct pgrp *pg;
   1077 	struct tty *ttyp;
   1078 	struct session *ss;
   1079 
   1080 	KASSERT(mutex_owned(proc_lock));
   1081 
   1082 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1083 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1084 		mutex_exit(proc_lock);
   1085 		return;
   1086 	}
   1087 
   1088 	ss = pg->pg_session;
   1089 
   1090 	/* Remove reference (if any) from tty to this process group */
   1091 	mutex_spin_enter(&tty_lock);
   1092 	ttyp = ss->s_ttyp;
   1093 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1094 		ttyp->t_pgrp = NULL;
   1095 		KASSERT(ttyp->t_session == ss);
   1096 	}
   1097 	mutex_spin_exit(&tty_lock);
   1098 
   1099 	/*
   1100 	 * The leading process group in a session is freed by proc_sessrele(),
   1101 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1102 	 */
   1103 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1104 	proc_sessrele(ss);
   1105 
   1106 	if (pg != NULL) {
   1107 		/* Free it, if was not done by proc_sessrele(). */
   1108 		kmem_free(pg, sizeof(struct pgrp));
   1109 	}
   1110 }
   1111 
   1112 /*
   1113  * Adjust pgrp jobc counters when specified process changes process group.
   1114  * We count the number of processes in each process group that "qualify"
   1115  * the group for terminal job control (those with a parent in a different
   1116  * process group of the same session).  If that count reaches zero, the
   1117  * process group becomes orphaned.  Check both the specified process'
   1118  * process group and that of its children.
   1119  * entering == 0 => p is leaving specified group.
   1120  * entering == 1 => p is entering specified group.
   1121  *
   1122  * Call with proc_lock held.
   1123  */
   1124 void
   1125 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1126 {
   1127 	struct pgrp *hispgrp;
   1128 	struct session *mysession = pgrp->pg_session;
   1129 	struct proc *child;
   1130 
   1131 	KASSERT(mutex_owned(proc_lock));
   1132 
   1133 	/*
   1134 	 * Check p's parent to see whether p qualifies its own process
   1135 	 * group; if so, adjust count for p's process group.
   1136 	 */
   1137 	hispgrp = p->p_pptr->p_pgrp;
   1138 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1139 		if (entering) {
   1140 			pgrp->pg_jobc++;
   1141 			p->p_lflag &= ~PL_ORPHANPG;
   1142 		} else if (--pgrp->pg_jobc == 0)
   1143 			orphanpg(pgrp);
   1144 	}
   1145 
   1146 	/*
   1147 	 * Check this process' children to see whether they qualify
   1148 	 * their process groups; if so, adjust counts for children's
   1149 	 * process groups.
   1150 	 */
   1151 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1152 		hispgrp = child->p_pgrp;
   1153 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1154 		    !P_ZOMBIE(child)) {
   1155 			if (entering) {
   1156 				child->p_lflag &= ~PL_ORPHANPG;
   1157 				hispgrp->pg_jobc++;
   1158 			} else if (--hispgrp->pg_jobc == 0)
   1159 				orphanpg(hispgrp);
   1160 		}
   1161 	}
   1162 }
   1163 
   1164 /*
   1165  * A process group has become orphaned;
   1166  * if there are any stopped processes in the group,
   1167  * hang-up all process in that group.
   1168  *
   1169  * Call with proc_lock held.
   1170  */
   1171 static void
   1172 orphanpg(struct pgrp *pg)
   1173 {
   1174 	struct proc *p;
   1175 
   1176 	KASSERT(mutex_owned(proc_lock));
   1177 
   1178 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1179 		if (p->p_stat == SSTOP) {
   1180 			p->p_lflag |= PL_ORPHANPG;
   1181 			psignal(p, SIGHUP);
   1182 			psignal(p, SIGCONT);
   1183 		}
   1184 	}
   1185 }
   1186 
   1187 #ifdef DDB
   1188 #include <ddb/db_output.h>
   1189 void pidtbl_dump(void);
   1190 void
   1191 pidtbl_dump(void)
   1192 {
   1193 	struct pid_table *pt;
   1194 	struct proc *p;
   1195 	struct pgrp *pgrp;
   1196 	int id;
   1197 
   1198 	db_printf("pid table %p size %x, next %x, last %x\n",
   1199 		pid_table, pid_tbl_mask+1,
   1200 		next_free_pt, last_free_pt);
   1201 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1202 		p = pt->pt_proc;
   1203 		if (!P_VALID(p) && !pt->pt_pgrp)
   1204 			continue;
   1205 		db_printf("  id %x: ", id);
   1206 		if (P_VALID(p))
   1207 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1208 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1209 		else
   1210 			db_printf("next %x use %x\n",
   1211 				P_NEXT(p) & pid_tbl_mask,
   1212 				P_NEXT(p) & ~pid_tbl_mask);
   1213 		if ((pgrp = pt->pt_pgrp)) {
   1214 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1215 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1216 			    pgrp->pg_session->s_count,
   1217 			    pgrp->pg_session->s_login);
   1218 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1219 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1220 			    LIST_FIRST(&pgrp->pg_members));
   1221 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1222 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1223 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1224 			}
   1225 		}
   1226 	}
   1227 }
   1228 #endif /* DDB */
   1229 
   1230 #ifdef KSTACK_CHECK_MAGIC
   1231 
   1232 #define	KSTACK_MAGIC	0xdeadbeaf
   1233 
   1234 /* XXX should be per process basis? */
   1235 static int	kstackleftmin = KSTACK_SIZE;
   1236 static int	kstackleftthres = KSTACK_SIZE / 8;
   1237 
   1238 void
   1239 kstack_setup_magic(const struct lwp *l)
   1240 {
   1241 	uint32_t *ip;
   1242 	uint32_t const *end;
   1243 
   1244 	KASSERT(l != NULL);
   1245 	KASSERT(l != &lwp0);
   1246 
   1247 	/*
   1248 	 * fill all the stack with magic number
   1249 	 * so that later modification on it can be detected.
   1250 	 */
   1251 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1252 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1253 	for (; ip < end; ip++) {
   1254 		*ip = KSTACK_MAGIC;
   1255 	}
   1256 }
   1257 
   1258 void
   1259 kstack_check_magic(const struct lwp *l)
   1260 {
   1261 	uint32_t const *ip, *end;
   1262 	int stackleft;
   1263 
   1264 	KASSERT(l != NULL);
   1265 
   1266 	/* don't check proc0 */ /*XXX*/
   1267 	if (l == &lwp0)
   1268 		return;
   1269 
   1270 #ifdef __MACHINE_STACK_GROWS_UP
   1271 	/* stack grows upwards (eg. hppa) */
   1272 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1273 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1274 	for (ip--; ip >= end; ip--)
   1275 		if (*ip != KSTACK_MAGIC)
   1276 			break;
   1277 
   1278 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1279 #else /* __MACHINE_STACK_GROWS_UP */
   1280 	/* stack grows downwards (eg. i386) */
   1281 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1282 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1283 	for (; ip < end; ip++)
   1284 		if (*ip != KSTACK_MAGIC)
   1285 			break;
   1286 
   1287 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1288 #endif /* __MACHINE_STACK_GROWS_UP */
   1289 
   1290 	if (kstackleftmin > stackleft) {
   1291 		kstackleftmin = stackleft;
   1292 		if (stackleft < kstackleftthres)
   1293 			printf("warning: kernel stack left %d bytes"
   1294 			    "(pid %u:lid %u)\n", stackleft,
   1295 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1296 	}
   1297 
   1298 	if (stackleft <= 0) {
   1299 		panic("magic on the top of kernel stack changed for "
   1300 		    "pid %u, lid %u: maybe kernel stack overflow",
   1301 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1302 	}
   1303 }
   1304 #endif /* KSTACK_CHECK_MAGIC */
   1305 
   1306 int
   1307 proclist_foreach_call(struct proclist *list,
   1308     int (*callback)(struct proc *, void *arg), void *arg)
   1309 {
   1310 	struct proc marker;
   1311 	struct proc *p;
   1312 	int ret = 0;
   1313 
   1314 	marker.p_flag = PK_MARKER;
   1315 	mutex_enter(proc_lock);
   1316 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1317 		if (p->p_flag & PK_MARKER) {
   1318 			p = LIST_NEXT(p, p_list);
   1319 			continue;
   1320 		}
   1321 		LIST_INSERT_AFTER(p, &marker, p_list);
   1322 		ret = (*callback)(p, arg);
   1323 		KASSERT(mutex_owned(proc_lock));
   1324 		p = LIST_NEXT(&marker, p_list);
   1325 		LIST_REMOVE(&marker, p_list);
   1326 	}
   1327 	mutex_exit(proc_lock);
   1328 
   1329 	return ret;
   1330 }
   1331 
   1332 int
   1333 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1334 {
   1335 
   1336 	/* XXXCDC: how should locking work here? */
   1337 
   1338 	/* curproc exception is for coredump. */
   1339 
   1340 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1341 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1342 		return EFAULT;
   1343 	}
   1344 
   1345 	uvmspace_addref(p->p_vmspace);
   1346 	*vm = p->p_vmspace;
   1347 
   1348 	return 0;
   1349 }
   1350 
   1351 /*
   1352  * Acquire a write lock on the process credential.
   1353  */
   1354 void
   1355 proc_crmod_enter(void)
   1356 {
   1357 	struct lwp *l = curlwp;
   1358 	struct proc *p = l->l_proc;
   1359 	kauth_cred_t oc;
   1360 
   1361 	/* Reset what needs to be reset in plimit. */
   1362 	if (p->p_limit->pl_corename != defcorename) {
   1363 		lim_setcorename(p, defcorename, 0);
   1364 	}
   1365 
   1366 	mutex_enter(p->p_lock);
   1367 
   1368 	/* Ensure the LWP cached credentials are up to date. */
   1369 	if ((oc = l->l_cred) != p->p_cred) {
   1370 		kauth_cred_hold(p->p_cred);
   1371 		l->l_cred = p->p_cred;
   1372 		kauth_cred_free(oc);
   1373 	}
   1374 }
   1375 
   1376 /*
   1377  * Set in a new process credential, and drop the write lock.  The credential
   1378  * must have a reference already.  Optionally, free a no-longer required
   1379  * credential.  The scheduler also needs to inspect p_cred, so we also
   1380  * briefly acquire the sched state mutex.
   1381  */
   1382 void
   1383 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1384 {
   1385 	struct lwp *l = curlwp, *l2;
   1386 	struct proc *p = l->l_proc;
   1387 	kauth_cred_t oc;
   1388 
   1389 	KASSERT(mutex_owned(p->p_lock));
   1390 
   1391 	/* Is there a new credential to set in? */
   1392 	if (scred != NULL) {
   1393 		p->p_cred = scred;
   1394 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1395 			if (l2 != l)
   1396 				l2->l_prflag |= LPR_CRMOD;
   1397 		}
   1398 
   1399 		/* Ensure the LWP cached credentials are up to date. */
   1400 		if ((oc = l->l_cred) != scred) {
   1401 			kauth_cred_hold(scred);
   1402 			l->l_cred = scred;
   1403 		}
   1404 	} else
   1405 		oc = NULL;	/* XXXgcc */
   1406 
   1407 	if (sugid) {
   1408 		/*
   1409 		 * Mark process as having changed credentials, stops
   1410 		 * tracing etc.
   1411 		 */
   1412 		p->p_flag |= PK_SUGID;
   1413 	}
   1414 
   1415 	mutex_exit(p->p_lock);
   1416 
   1417 	/* If there is a credential to be released, free it now. */
   1418 	if (fcred != NULL) {
   1419 		KASSERT(scred != NULL);
   1420 		kauth_cred_free(fcred);
   1421 		if (oc != scred)
   1422 			kauth_cred_free(oc);
   1423 	}
   1424 }
   1425 
   1426 /*
   1427  * proc_specific_key_create --
   1428  *	Create a key for subsystem proc-specific data.
   1429  */
   1430 int
   1431 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1432 {
   1433 
   1434 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1435 }
   1436 
   1437 /*
   1438  * proc_specific_key_delete --
   1439  *	Delete a key for subsystem proc-specific data.
   1440  */
   1441 void
   1442 proc_specific_key_delete(specificdata_key_t key)
   1443 {
   1444 
   1445 	specificdata_key_delete(proc_specificdata_domain, key);
   1446 }
   1447 
   1448 /*
   1449  * proc_initspecific --
   1450  *	Initialize a proc's specificdata container.
   1451  */
   1452 void
   1453 proc_initspecific(struct proc *p)
   1454 {
   1455 	int error __diagused;
   1456 
   1457 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1458 	KASSERT(error == 0);
   1459 }
   1460 
   1461 /*
   1462  * proc_finispecific --
   1463  *	Finalize a proc's specificdata container.
   1464  */
   1465 void
   1466 proc_finispecific(struct proc *p)
   1467 {
   1468 
   1469 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1470 }
   1471 
   1472 /*
   1473  * proc_getspecific --
   1474  *	Return proc-specific data corresponding to the specified key.
   1475  */
   1476 void *
   1477 proc_getspecific(struct proc *p, specificdata_key_t key)
   1478 {
   1479 
   1480 	return (specificdata_getspecific(proc_specificdata_domain,
   1481 					 &p->p_specdataref, key));
   1482 }
   1483 
   1484 /*
   1485  * proc_setspecific --
   1486  *	Set proc-specific data corresponding to the specified key.
   1487  */
   1488 void
   1489 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1490 {
   1491 
   1492 	specificdata_setspecific(proc_specificdata_domain,
   1493 				 &p->p_specdataref, key, data);
   1494 }
   1495 
   1496 int
   1497 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1498 {
   1499 	int r = 0;
   1500 
   1501 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1502 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1503 		/*
   1504 		 * suid proc of ours or proc not ours
   1505 		 */
   1506 		r = EPERM;
   1507 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1508 		/*
   1509 		 * sgid proc has sgid back to us temporarily
   1510 		 */
   1511 		r = EPERM;
   1512 	} else {
   1513 		/*
   1514 		 * our rgid must be in target's group list (ie,
   1515 		 * sub-processes started by a sgid process)
   1516 		 */
   1517 		int ismember = 0;
   1518 
   1519 		if (kauth_cred_ismember_gid(cred,
   1520 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1521 		    !ismember)
   1522 			r = EPERM;
   1523 	}
   1524 
   1525 	return (r);
   1526 }
   1527 
   1528 /*
   1529  * sysctl stuff
   1530  */
   1531 
   1532 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1533 
   1534 static const u_int sysctl_flagmap[] = {
   1535 	PK_ADVLOCK, P_ADVLOCK,
   1536 	PK_EXEC, P_EXEC,
   1537 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1538 	PK_32, P_32,
   1539 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1540 	PK_SUGID, P_SUGID,
   1541 	0
   1542 };
   1543 
   1544 static const u_int sysctl_sflagmap[] = {
   1545 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1546 	PS_WEXIT, P_WEXIT,
   1547 	PS_STOPFORK, P_STOPFORK,
   1548 	PS_STOPEXEC, P_STOPEXEC,
   1549 	PS_STOPEXIT, P_STOPEXIT,
   1550 	0
   1551 };
   1552 
   1553 static const u_int sysctl_slflagmap[] = {
   1554 	PSL_TRACED, P_TRACED,
   1555 	PSL_FSTRACE, P_FSTRACE,
   1556 	PSL_CHTRACED, P_CHTRACED,
   1557 	PSL_SYSCALL, P_SYSCALL,
   1558 	0
   1559 };
   1560 
   1561 static const u_int sysctl_lflagmap[] = {
   1562 	PL_CONTROLT, P_CONTROLT,
   1563 	PL_PPWAIT, P_PPWAIT,
   1564 	0
   1565 };
   1566 
   1567 static const u_int sysctl_stflagmap[] = {
   1568 	PST_PROFIL, P_PROFIL,
   1569 	0
   1570 
   1571 };
   1572 
   1573 /* used by kern_lwp also */
   1574 const u_int sysctl_lwpflagmap[] = {
   1575 	LW_SINTR, L_SINTR,
   1576 	LW_SYSTEM, L_SYSTEM,
   1577 	0
   1578 };
   1579 
   1580 /*
   1581  * Find the most ``active'' lwp of a process and return it for ps display
   1582  * purposes
   1583  */
   1584 static struct lwp *
   1585 proc_active_lwp(struct proc *p)
   1586 {
   1587 	static const int ostat[] = {
   1588 		0,
   1589 		2,	/* LSIDL */
   1590 		6,	/* LSRUN */
   1591 		5,	/* LSSLEEP */
   1592 		4,	/* LSSTOP */
   1593 		0,	/* LSZOMB */
   1594 		1,	/* LSDEAD */
   1595 		7,	/* LSONPROC */
   1596 		3	/* LSSUSPENDED */
   1597 	};
   1598 
   1599 	struct lwp *l, *lp = NULL;
   1600 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1601 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1602 		if (lp == NULL ||
   1603 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1604 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1605 		    l->l_cpticks > lp->l_cpticks)) {
   1606 			lp = l;
   1607 			continue;
   1608 		}
   1609 	}
   1610 	return lp;
   1611 }
   1612 
   1613 static int
   1614 sysctl_doeproc(SYSCTLFN_ARGS)
   1615 {
   1616 	union {
   1617 		struct kinfo_proc kproc;
   1618 		struct kinfo_proc2 kproc2;
   1619 	} *kbuf;
   1620 	struct proc *p, *next, *marker;
   1621 	char *where, *dp;
   1622 	int type, op, arg, error;
   1623 	u_int elem_size, kelem_size, elem_count;
   1624 	size_t buflen, needed;
   1625 	bool match, zombie, mmmbrains;
   1626 
   1627 	if (namelen == 1 && name[0] == CTL_QUERY)
   1628 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1629 
   1630 	dp = where = oldp;
   1631 	buflen = where != NULL ? *oldlenp : 0;
   1632 	error = 0;
   1633 	needed = 0;
   1634 	type = rnode->sysctl_num;
   1635 
   1636 	if (type == KERN_PROC) {
   1637 		if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
   1638 			return (EINVAL);
   1639 		op = name[0];
   1640 		if (op != KERN_PROC_ALL)
   1641 			arg = name[1];
   1642 		else
   1643 			arg = 0;		/* Quell compiler warning */
   1644 		elem_count = 0;	/* Ditto */
   1645 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1646 	} else {
   1647 		if (namelen != 4)
   1648 			return (EINVAL);
   1649 		op = name[0];
   1650 		arg = name[1];
   1651 		elem_size = name[2];
   1652 		elem_count = name[3];
   1653 		kelem_size = sizeof(kbuf->kproc2);
   1654 	}
   1655 
   1656 	sysctl_unlock();
   1657 
   1658 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1659 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1660 	marker->p_flag = PK_MARKER;
   1661 
   1662 	mutex_enter(proc_lock);
   1663 	mmmbrains = false;
   1664 	for (p = LIST_FIRST(&allproc);; p = next) {
   1665 		if (p == NULL) {
   1666 			if (!mmmbrains) {
   1667 				p = LIST_FIRST(&zombproc);
   1668 				mmmbrains = true;
   1669 			}
   1670 			if (p == NULL)
   1671 				break;
   1672 		}
   1673 		next = LIST_NEXT(p, p_list);
   1674 		if ((p->p_flag & PK_MARKER) != 0)
   1675 			continue;
   1676 
   1677 		/*
   1678 		 * Skip embryonic processes.
   1679 		 */
   1680 		if (p->p_stat == SIDL)
   1681 			continue;
   1682 
   1683 		mutex_enter(p->p_lock);
   1684 		error = kauth_authorize_process(l->l_cred,
   1685 		    KAUTH_PROCESS_CANSEE, p,
   1686 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1687 		if (error != 0) {
   1688 			mutex_exit(p->p_lock);
   1689 			continue;
   1690 		}
   1691 
   1692 		/*
   1693 		 * TODO - make more efficient (see notes below).
   1694 		 * do by session.
   1695 		 */
   1696 		switch (op) {
   1697 		case KERN_PROC_PID:
   1698 			/* could do this with just a lookup */
   1699 			match = (p->p_pid == (pid_t)arg);
   1700 			break;
   1701 
   1702 		case KERN_PROC_PGRP:
   1703 			/* could do this by traversing pgrp */
   1704 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1705 			break;
   1706 
   1707 		case KERN_PROC_SESSION:
   1708 			match = (p->p_session->s_sid == (pid_t)arg);
   1709 			break;
   1710 
   1711 		case KERN_PROC_TTY:
   1712 			match = true;
   1713 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1714 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1715 				    p->p_session->s_ttyp == NULL ||
   1716 				    p->p_session->s_ttyvp != NULL) {
   1717 				    	match = false;
   1718 				}
   1719 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1720 			    p->p_session->s_ttyp == NULL) {
   1721 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1722 					match = false;
   1723 				}
   1724 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1725 				match = false;
   1726 			}
   1727 			break;
   1728 
   1729 		case KERN_PROC_UID:
   1730 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1731 			break;
   1732 
   1733 		case KERN_PROC_RUID:
   1734 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1735 			break;
   1736 
   1737 		case KERN_PROC_GID:
   1738 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1739 			break;
   1740 
   1741 		case KERN_PROC_RGID:
   1742 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1743 			break;
   1744 
   1745 		case KERN_PROC_ALL:
   1746 			match = true;
   1747 			/* allow everything */
   1748 			break;
   1749 
   1750 		default:
   1751 			error = EINVAL;
   1752 			mutex_exit(p->p_lock);
   1753 			goto cleanup;
   1754 		}
   1755 		if (!match) {
   1756 			mutex_exit(p->p_lock);
   1757 			continue;
   1758 		}
   1759 
   1760 		/*
   1761 		 * Grab a hold on the process.
   1762 		 */
   1763 		if (mmmbrains) {
   1764 			zombie = true;
   1765 		} else {
   1766 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1767 		}
   1768 		if (zombie) {
   1769 			LIST_INSERT_AFTER(p, marker, p_list);
   1770 		}
   1771 
   1772 		if (buflen >= elem_size &&
   1773 		    (type == KERN_PROC || elem_count > 0)) {
   1774 			if (type == KERN_PROC) {
   1775 				kbuf->kproc.kp_proc = *p;
   1776 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1777 			} else {
   1778 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1779 				elem_count--;
   1780 			}
   1781 			mutex_exit(p->p_lock);
   1782 			mutex_exit(proc_lock);
   1783 			/*
   1784 			 * Copy out elem_size, but not larger than kelem_size
   1785 			 */
   1786 			error = sysctl_copyout(l, kbuf, dp,
   1787 			    min(kelem_size, elem_size));
   1788 			mutex_enter(proc_lock);
   1789 			if (error) {
   1790 				goto bah;
   1791 			}
   1792 			dp += elem_size;
   1793 			buflen -= elem_size;
   1794 		} else {
   1795 			mutex_exit(p->p_lock);
   1796 		}
   1797 		needed += elem_size;
   1798 
   1799 		/*
   1800 		 * Release reference to process.
   1801 		 */
   1802 	 	if (zombie) {
   1803 			next = LIST_NEXT(marker, p_list);
   1804  			LIST_REMOVE(marker, p_list);
   1805 		} else {
   1806 			rw_exit(&p->p_reflock);
   1807 			next = LIST_NEXT(p, p_list);
   1808 		}
   1809 	}
   1810 	mutex_exit(proc_lock);
   1811 
   1812 	if (where != NULL) {
   1813 		*oldlenp = dp - where;
   1814 		if (needed > *oldlenp) {
   1815 			error = ENOMEM;
   1816 			goto out;
   1817 		}
   1818 	} else {
   1819 		needed += KERN_PROCSLOP;
   1820 		*oldlenp = needed;
   1821 	}
   1822 	if (kbuf)
   1823 		kmem_free(kbuf, sizeof(*kbuf));
   1824 	if (marker)
   1825 		kmem_free(marker, sizeof(*marker));
   1826 	sysctl_relock();
   1827 	return 0;
   1828  bah:
   1829  	if (zombie)
   1830  		LIST_REMOVE(marker, p_list);
   1831 	else
   1832 		rw_exit(&p->p_reflock);
   1833  cleanup:
   1834 	mutex_exit(proc_lock);
   1835  out:
   1836 	if (kbuf)
   1837 		kmem_free(kbuf, sizeof(*kbuf));
   1838 	if (marker)
   1839 		kmem_free(marker, sizeof(*marker));
   1840 	sysctl_relock();
   1841 	return error;
   1842 }
   1843 
   1844 int
   1845 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1846 {
   1847 
   1848 #ifdef COMPAT_NETBSD32
   1849 	if (p->p_flag & PK_32) {
   1850 		struct ps_strings32 arginfo32;
   1851 
   1852 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1853 		    sizeof(arginfo32));
   1854 		if (error)
   1855 			return error;
   1856 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1857 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1858 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1859 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1860 		return 0;
   1861 	}
   1862 #endif
   1863 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1864 }
   1865 
   1866 static int
   1867 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1868 {
   1869 	void **cookie = cookie_;
   1870 	struct lwp *l = cookie[0];
   1871 	char *dst = cookie[1];
   1872 
   1873 	return sysctl_copyout(l, src, dst + off, len);
   1874 }
   1875 
   1876 /*
   1877  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1878  */
   1879 static int
   1880 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1881 {
   1882 	struct ps_strings pss;
   1883 	struct proc *p;
   1884 	pid_t pid;
   1885 	int type, error;
   1886 	void *cookie[2];
   1887 
   1888 	if (namelen == 1 && name[0] == CTL_QUERY)
   1889 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1890 
   1891 	if (newp != NULL || namelen != 2)
   1892 		return (EINVAL);
   1893 	pid = name[0];
   1894 	type = name[1];
   1895 
   1896 	switch (type) {
   1897 	case KERN_PROC_ARGV:
   1898 	case KERN_PROC_NARGV:
   1899 	case KERN_PROC_ENV:
   1900 	case KERN_PROC_NENV:
   1901 		/* ok */
   1902 		break;
   1903 	default:
   1904 		return (EINVAL);
   1905 	}
   1906 
   1907 	sysctl_unlock();
   1908 
   1909 	/* check pid */
   1910 	mutex_enter(proc_lock);
   1911 	if ((p = proc_find(pid)) == NULL) {
   1912 		error = EINVAL;
   1913 		goto out_locked;
   1914 	}
   1915 	mutex_enter(p->p_lock);
   1916 
   1917 	/* Check permission. */
   1918 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1919 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1920 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1921 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1922 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1923 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1924 	else
   1925 		error = EINVAL; /* XXXGCC */
   1926 	if (error) {
   1927 		mutex_exit(p->p_lock);
   1928 		goto out_locked;
   1929 	}
   1930 
   1931 	if (oldp == NULL) {
   1932 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1933 			*oldlenp = sizeof (int);
   1934 		else
   1935 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1936 		error = 0;
   1937 		mutex_exit(p->p_lock);
   1938 		goto out_locked;
   1939 	}
   1940 
   1941 	/*
   1942 	 * Zombies don't have a stack, so we can't read their psstrings.
   1943 	 * System processes also don't have a user stack.
   1944 	 */
   1945 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1946 		error = EINVAL;
   1947 		mutex_exit(p->p_lock);
   1948 		goto out_locked;
   1949 	}
   1950 
   1951 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1952 	mutex_exit(p->p_lock);
   1953 	if (error) {
   1954 		goto out_locked;
   1955 	}
   1956 	mutex_exit(proc_lock);
   1957 
   1958 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1959 		int value;
   1960 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1961 			if (type == KERN_PROC_NARGV)
   1962 				value = pss.ps_nargvstr;
   1963 			else
   1964 				value = pss.ps_nenvstr;
   1965 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1966 			*oldlenp = sizeof(value);
   1967 		}
   1968 	} else {
   1969 		cookie[0] = l;
   1970 		cookie[1] = oldp;
   1971 		error = copy_procargs(p, type, oldlenp,
   1972 		    copy_procargs_sysctl_cb, cookie);
   1973 	}
   1974 	rw_exit(&p->p_reflock);
   1975 	sysctl_relock();
   1976 	return error;
   1977 
   1978 out_locked:
   1979 	mutex_exit(proc_lock);
   1980 	sysctl_relock();
   1981 	return error;
   1982 }
   1983 
   1984 int
   1985 copy_procargs(struct proc *p, int oid, size_t *limit,
   1986     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   1987 {
   1988 	struct ps_strings pss;
   1989 	size_t len, i, loaded, entry_len;
   1990 	struct uio auio;
   1991 	struct iovec aiov;
   1992 	int error, argvlen;
   1993 	char *arg;
   1994 	char **argv;
   1995 	vaddr_t user_argv;
   1996 	struct vmspace *vmspace;
   1997 
   1998 	/*
   1999 	 * Allocate a temporary buffer to hold the argument vector and
   2000 	 * the arguments themselve.
   2001 	 */
   2002 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2003 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2004 
   2005 	/*
   2006 	 * Lock the process down in memory.
   2007 	 */
   2008 	vmspace = p->p_vmspace;
   2009 	uvmspace_addref(vmspace);
   2010 
   2011 	/*
   2012 	 * Read in the ps_strings structure.
   2013 	 */
   2014 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2015 		goto done;
   2016 
   2017 	/*
   2018 	 * Now read the address of the argument vector.
   2019 	 */
   2020 	switch (oid) {
   2021 	case KERN_PROC_ARGV:
   2022 		user_argv = (uintptr_t)pss.ps_argvstr;
   2023 		argvlen = pss.ps_nargvstr;
   2024 		break;
   2025 	case KERN_PROC_ENV:
   2026 		user_argv = (uintptr_t)pss.ps_envstr;
   2027 		argvlen = pss.ps_nenvstr;
   2028 		break;
   2029 	default:
   2030 		error = EINVAL;
   2031 		goto done;
   2032 	}
   2033 
   2034 	if (argvlen < 0) {
   2035 		error = EIO;
   2036 		goto done;
   2037 	}
   2038 
   2039 #ifdef COMPAT_NETBSD32
   2040 	if (p->p_flag & PK_32)
   2041 		entry_len = sizeof(netbsd32_charp);
   2042 	else
   2043 #endif
   2044 		entry_len = sizeof(char *);
   2045 
   2046 	/*
   2047 	 * Now copy each string.
   2048 	 */
   2049 	len = 0; /* bytes written to user buffer */
   2050 	loaded = 0; /* bytes from argv already processed */
   2051 	i = 0; /* To make compiler happy */
   2052 
   2053 	for (; argvlen; --argvlen) {
   2054 		int finished = 0;
   2055 		vaddr_t base;
   2056 		size_t xlen;
   2057 		int j;
   2058 
   2059 		if (loaded == 0) {
   2060 			size_t rem = entry_len * argvlen;
   2061 			loaded = MIN(rem, PAGE_SIZE);
   2062 			error = copyin_vmspace(vmspace,
   2063 			    (const void *)user_argv, argv, loaded);
   2064 			if (error)
   2065 				break;
   2066 			user_argv += loaded;
   2067 			i = 0;
   2068 		}
   2069 
   2070 #ifdef COMPAT_NETBSD32
   2071 		if (p->p_flag & PK_32) {
   2072 			netbsd32_charp *argv32;
   2073 
   2074 			argv32 = (netbsd32_charp *)argv;
   2075 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2076 		} else
   2077 #endif
   2078 			base = (vaddr_t)argv[i++];
   2079 		loaded -= entry_len;
   2080 
   2081 		/*
   2082 		 * The program has messed around with its arguments,
   2083 		 * possibly deleting some, and replacing them with
   2084 		 * NULL's. Treat this as the last argument and not
   2085 		 * a failure.
   2086 		 */
   2087 		if (base == 0)
   2088 			break;
   2089 
   2090 		while (!finished) {
   2091 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2092 
   2093 			aiov.iov_base = arg;
   2094 			aiov.iov_len = PAGE_SIZE;
   2095 			auio.uio_iov = &aiov;
   2096 			auio.uio_iovcnt = 1;
   2097 			auio.uio_offset = base;
   2098 			auio.uio_resid = xlen;
   2099 			auio.uio_rw = UIO_READ;
   2100 			UIO_SETUP_SYSSPACE(&auio);
   2101 			error = uvm_io(&vmspace->vm_map, &auio);
   2102 			if (error)
   2103 				goto done;
   2104 
   2105 			/* Look for the end of the string */
   2106 			for (j = 0; j < xlen; j++) {
   2107 				if (arg[j] == '\0') {
   2108 					xlen = j + 1;
   2109 					finished = 1;
   2110 					break;
   2111 				}
   2112 			}
   2113 
   2114 			/* Check for user buffer overflow */
   2115 			if (len + xlen > *limit) {
   2116 				finished = 1;
   2117 				if (len > *limit)
   2118 					xlen = 0;
   2119 				else
   2120 					xlen = *limit - len;
   2121 			}
   2122 
   2123 			/* Copyout the page */
   2124 			error = (*cb)(cookie, arg, len, xlen);
   2125 			if (error)
   2126 				goto done;
   2127 
   2128 			len += xlen;
   2129 			base += xlen;
   2130 		}
   2131 	}
   2132 	*limit = len;
   2133 
   2134 done:
   2135 	kmem_free(argv, PAGE_SIZE);
   2136 	kmem_free(arg, PAGE_SIZE);
   2137 	uvmspace_free(vmspace);
   2138 	return error;
   2139 }
   2140 
   2141 /*
   2142  * Fill in an eproc structure for the specified process.
   2143  */
   2144 void
   2145 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2146 {
   2147 	struct tty *tp;
   2148 	struct lwp *l;
   2149 
   2150 	KASSERT(mutex_owned(proc_lock));
   2151 	KASSERT(mutex_owned(p->p_lock));
   2152 
   2153 	memset(ep, 0, sizeof(*ep));
   2154 
   2155 	ep->e_paddr = p;
   2156 	ep->e_sess = p->p_session;
   2157 	if (p->p_cred) {
   2158 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2159 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2160 	}
   2161 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2162 		struct vmspace *vm = p->p_vmspace;
   2163 
   2164 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2165 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2166 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2167 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2168 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2169 
   2170 		/* Pick the primary (first) LWP */
   2171 		l = proc_active_lwp(p);
   2172 		KASSERT(l != NULL);
   2173 		lwp_lock(l);
   2174 		if (l->l_wchan)
   2175 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2176 		lwp_unlock(l);
   2177 	}
   2178 	if (p->p_pptr)
   2179 		ep->e_ppid = p->p_pptr->p_pid;
   2180 	if (p->p_pgrp && p->p_session) {
   2181 		ep->e_pgid = p->p_pgrp->pg_id;
   2182 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2183 		ep->e_sid = p->p_session->s_sid;
   2184 		if ((p->p_lflag & PL_CONTROLT) &&
   2185 		    (tp = ep->e_sess->s_ttyp)) {
   2186 			ep->e_tdev = tp->t_dev;
   2187 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2188 			ep->e_tsess = tp->t_session;
   2189 		} else
   2190 			ep->e_tdev = (uint32_t)NODEV;
   2191 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2192 		if (SESS_LEADER(p))
   2193 			ep->e_flag |= EPROC_SLEADER;
   2194 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2195 	}
   2196 	ep->e_xsize = ep->e_xrssize = 0;
   2197 	ep->e_xccount = ep->e_xswrss = 0;
   2198 }
   2199 
   2200 /*
   2201  * Fill in a kinfo_proc2 structure for the specified process.
   2202  */
   2203 static void
   2204 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2205 {
   2206 	struct tty *tp;
   2207 	struct lwp *l, *l2;
   2208 	struct timeval ut, st, rt;
   2209 	sigset_t ss1, ss2;
   2210 	struct rusage ru;
   2211 	struct vmspace *vm;
   2212 
   2213 	KASSERT(mutex_owned(proc_lock));
   2214 	KASSERT(mutex_owned(p->p_lock));
   2215 
   2216 	sigemptyset(&ss1);
   2217 	sigemptyset(&ss2);
   2218 	memset(ki, 0, sizeof(*ki));
   2219 
   2220 	ki->p_paddr = PTRTOUINT64(p);
   2221 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2222 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2223 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2224 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2225 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2226 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2227 	ki->p_sess = PTRTOUINT64(p->p_session);
   2228 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2229 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2230 	ki->p_eflag = 0;
   2231 	ki->p_exitsig = p->p_exitsig;
   2232 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2233 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2234 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2235 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2236 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2237 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2238 	ki->p_pid = p->p_pid;
   2239 	if (p->p_pptr)
   2240 		ki->p_ppid = p->p_pptr->p_pid;
   2241 	else
   2242 		ki->p_ppid = 0;
   2243 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2244 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2245 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2246 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2247 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2248 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2249 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2250 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2251 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2252 	    UIO_SYSSPACE);
   2253 
   2254 	ki->p_uticks = p->p_uticks;
   2255 	ki->p_sticks = p->p_sticks;
   2256 	ki->p_iticks = p->p_iticks;
   2257 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2258 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2259 	ki->p_traceflag = p->p_traceflag;
   2260 
   2261 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2262 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2263 
   2264 	ki->p_cpticks = 0;
   2265 	ki->p_pctcpu = p->p_pctcpu;
   2266 	ki->p_estcpu = 0;
   2267 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2268 	ki->p_realstat = p->p_stat;
   2269 	ki->p_nice = p->p_nice;
   2270 	ki->p_xstat = p->p_xstat;
   2271 	ki->p_acflag = p->p_acflag;
   2272 
   2273 	strncpy(ki->p_comm, p->p_comm,
   2274 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2275 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2276 
   2277 	ki->p_nlwps = p->p_nlwps;
   2278 	ki->p_realflag = ki->p_flag;
   2279 
   2280 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2281 		vm = p->p_vmspace;
   2282 		ki->p_vm_rssize = vm_resident_count(vm);
   2283 		ki->p_vm_tsize = vm->vm_tsize;
   2284 		ki->p_vm_dsize = vm->vm_dsize;
   2285 		ki->p_vm_ssize = vm->vm_ssize;
   2286 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2287 		/*
   2288 		 * Since the stack is initially mapped mostly with
   2289 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2290 		 * to skip the unused stack portion.
   2291 		 */
   2292 		ki->p_vm_msize =
   2293 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2294 
   2295 		/* Pick the primary (first) LWP */
   2296 		l = proc_active_lwp(p);
   2297 		KASSERT(l != NULL);
   2298 		lwp_lock(l);
   2299 		ki->p_nrlwps = p->p_nrlwps;
   2300 		ki->p_forw = 0;
   2301 		ki->p_back = 0;
   2302 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2303 		ki->p_stat = l->l_stat;
   2304 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2305 		ki->p_swtime = l->l_swtime;
   2306 		ki->p_slptime = l->l_slptime;
   2307 		if (l->l_stat == LSONPROC)
   2308 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2309 		else
   2310 			ki->p_schedflags = 0;
   2311 		ki->p_priority = lwp_eprio(l);
   2312 		ki->p_usrpri = l->l_priority;
   2313 		if (l->l_wchan)
   2314 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2315 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2316 		ki->p_cpuid = cpu_index(l->l_cpu);
   2317 		lwp_unlock(l);
   2318 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2319 			/* This is hardly correct, but... */
   2320 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2321 			sigplusset(&l->l_sigmask, &ss2);
   2322 			ki->p_cpticks += l->l_cpticks;
   2323 			ki->p_pctcpu += l->l_pctcpu;
   2324 			ki->p_estcpu += l->l_estcpu;
   2325 		}
   2326 	}
   2327 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2328 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2329 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2330 
   2331 	if (p->p_session != NULL) {
   2332 		ki->p_sid = p->p_session->s_sid;
   2333 		ki->p__pgid = p->p_pgrp->pg_id;
   2334 		if (p->p_session->s_ttyvp)
   2335 			ki->p_eflag |= EPROC_CTTY;
   2336 		if (SESS_LEADER(p))
   2337 			ki->p_eflag |= EPROC_SLEADER;
   2338 		strncpy(ki->p_login, p->p_session->s_login,
   2339 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2340 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2341 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2342 			ki->p_tdev = tp->t_dev;
   2343 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2344 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2345 		} else {
   2346 			ki->p_tdev = (int32_t)NODEV;
   2347 		}
   2348 	}
   2349 
   2350 	if (!P_ZOMBIE(p) && !zombie) {
   2351 		ki->p_uvalid = 1;
   2352 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2353 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2354 
   2355 		calcru(p, &ut, &st, NULL, &rt);
   2356 		ki->p_rtime_sec = rt.tv_sec;
   2357 		ki->p_rtime_usec = rt.tv_usec;
   2358 		ki->p_uutime_sec = ut.tv_sec;
   2359 		ki->p_uutime_usec = ut.tv_usec;
   2360 		ki->p_ustime_sec = st.tv_sec;
   2361 		ki->p_ustime_usec = st.tv_usec;
   2362 
   2363 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2364 		ki->p_uru_nvcsw = 0;
   2365 		ki->p_uru_nivcsw = 0;
   2366 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2367 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2368 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2369 			ruadd(&ru, &l2->l_ru);
   2370 		}
   2371 		ki->p_uru_maxrss = ru.ru_maxrss;
   2372 		ki->p_uru_ixrss = ru.ru_ixrss;
   2373 		ki->p_uru_idrss = ru.ru_idrss;
   2374 		ki->p_uru_isrss = ru.ru_isrss;
   2375 		ki->p_uru_minflt = ru.ru_minflt;
   2376 		ki->p_uru_majflt = ru.ru_majflt;
   2377 		ki->p_uru_nswap = ru.ru_nswap;
   2378 		ki->p_uru_inblock = ru.ru_inblock;
   2379 		ki->p_uru_oublock = ru.ru_oublock;
   2380 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2381 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2382 		ki->p_uru_nsignals = ru.ru_nsignals;
   2383 
   2384 		timeradd(&p->p_stats->p_cru.ru_utime,
   2385 			 &p->p_stats->p_cru.ru_stime, &ut);
   2386 		ki->p_uctime_sec = ut.tv_sec;
   2387 		ki->p_uctime_usec = ut.tv_usec;
   2388 	}
   2389 }
   2390