kern_proc.c revision 1.193 1 /* $NetBSD: kern_proc.c,v 1.193 2014/07/12 09:57:25 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.193 2014/07/12 09:57:25 njoly Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/resourcevar.h>
79 #include <sys/buf.h>
80 #include <sys/acct.h>
81 #include <sys/wait.h>
82 #include <sys/file.h>
83 #include <ufs/ufs/quota.h>
84 #include <sys/uio.h>
85 #include <sys/pool.h>
86 #include <sys/pset.h>
87 #include <sys/mbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/signalvar.h>
91 #include <sys/ras.h>
92 #include <sys/filedesc.h>
93 #include <sys/syscall_stats.h>
94 #include <sys/kauth.h>
95 #include <sys/sleepq.h>
96 #include <sys/atomic.h>
97 #include <sys/kmem.h>
98 #include <sys/dtrace_bsd.h>
99 #include <sys/sysctl.h>
100 #include <sys/exec.h>
101 #include <sys/cpu.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #ifdef COMPAT_NETBSD32
106 #include <compat/netbsd32/netbsd32.h>
107 #endif
108
109 /*
110 * Process lists.
111 */
112
113 struct proclist allproc __cacheline_aligned;
114 struct proclist zombproc __cacheline_aligned;
115
116 kmutex_t * proc_lock __cacheline_aligned;
117
118 /*
119 * pid to proc lookup is done by indexing the pid_table array.
120 * Since pid numbers are only allocated when an empty slot
121 * has been found, there is no need to search any lists ever.
122 * (an orphaned pgrp will lock the slot, a session will lock
123 * the pgrp with the same number.)
124 * If the table is too small it is reallocated with twice the
125 * previous size and the entries 'unzipped' into the two halves.
126 * A linked list of free entries is passed through the pt_proc
127 * field of 'free' items - set odd to be an invalid ptr.
128 */
129
130 struct pid_table {
131 struct proc *pt_proc;
132 struct pgrp *pt_pgrp;
133 pid_t pt_pid;
134 };
135 #if 1 /* strongly typed cast - should be a noop */
136 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
137 #else
138 #define p2u(p) ((uint)p)
139 #endif
140 #define P_VALID(p) (!(p2u(p) & 1))
141 #define P_NEXT(p) (p2u(p) >> 1)
142 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
143
144 /*
145 * Table of process IDs (PIDs).
146 */
147 static struct pid_table *pid_table __read_mostly;
148
149 #define INITIAL_PID_TABLE_SIZE (1 << 5)
150
151 /* Table mask, threshold for growing and number of allocated PIDs. */
152 static u_int pid_tbl_mask __read_mostly;
153 static u_int pid_alloc_lim __read_mostly;
154 static u_int pid_alloc_cnt __cacheline_aligned;
155
156 /* Next free, last free and maximum PIDs. */
157 static u_int next_free_pt __cacheline_aligned;
158 static u_int last_free_pt __cacheline_aligned;
159 static pid_t pid_max __read_mostly;
160
161 /* Components of the first process -- never freed. */
162
163 extern struct emul emul_netbsd; /* defined in kern_exec.c */
164
165 struct session session0 = {
166 .s_count = 1,
167 .s_sid = 0,
168 };
169 struct pgrp pgrp0 = {
170 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
171 .pg_session = &session0,
172 };
173 filedesc_t filedesc0;
174 struct cwdinfo cwdi0 = {
175 .cwdi_cmask = CMASK,
176 .cwdi_refcnt = 1,
177 };
178 struct plimit limit0;
179 struct pstats pstat0;
180 struct vmspace vmspace0;
181 struct sigacts sigacts0;
182 struct proc proc0 = {
183 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
184 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
185 .p_nlwps = 1,
186 .p_nrlwps = 1,
187 .p_nlwpid = 1, /* must match lwp0.l_lid */
188 .p_pgrp = &pgrp0,
189 .p_comm = "system",
190 /*
191 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
192 * when they exit. init(8) can easily wait them out for us.
193 */
194 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
195 .p_stat = SACTIVE,
196 .p_nice = NZERO,
197 .p_emul = &emul_netbsd,
198 .p_cwdi = &cwdi0,
199 .p_limit = &limit0,
200 .p_fd = &filedesc0,
201 .p_vmspace = &vmspace0,
202 .p_stats = &pstat0,
203 .p_sigacts = &sigacts0,
204 #ifdef PROC0_MD_INITIALIZERS
205 PROC0_MD_INITIALIZERS
206 #endif
207 };
208 kauth_cred_t cred0;
209
210 static const int nofile = NOFILE;
211 static const int maxuprc = MAXUPRC;
212
213 static int sysctl_doeproc(SYSCTLFN_PROTO);
214 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
215
216 /*
217 * The process list descriptors, used during pid allocation and
218 * by sysctl. No locking on this data structure is needed since
219 * it is completely static.
220 */
221 const struct proclist_desc proclists[] = {
222 { &allproc },
223 { &zombproc },
224 { NULL },
225 };
226
227 static struct pgrp * pg_remove(pid_t);
228 static void pg_delete(pid_t);
229 static void orphanpg(struct pgrp *);
230
231 static specificdata_domain_t proc_specificdata_domain;
232
233 static pool_cache_t proc_cache;
234
235 static kauth_listener_t proc_listener;
236
237 static int
238 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
239 void *arg0, void *arg1, void *arg2, void *arg3)
240 {
241 struct proc *p;
242 int result;
243
244 result = KAUTH_RESULT_DEFER;
245 p = arg0;
246
247 switch (action) {
248 case KAUTH_PROCESS_CANSEE: {
249 enum kauth_process_req req;
250
251 req = (enum kauth_process_req)arg1;
252
253 switch (req) {
254 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
255 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
256 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
257 result = KAUTH_RESULT_ALLOW;
258
259 break;
260
261 case KAUTH_REQ_PROCESS_CANSEE_ENV:
262 if (kauth_cred_getuid(cred) !=
263 kauth_cred_getuid(p->p_cred) ||
264 kauth_cred_getuid(cred) !=
265 kauth_cred_getsvuid(p->p_cred))
266 break;
267
268 result = KAUTH_RESULT_ALLOW;
269
270 break;
271
272 default:
273 break;
274 }
275
276 break;
277 }
278
279 case KAUTH_PROCESS_FORK: {
280 int lnprocs = (int)(unsigned long)arg2;
281
282 /*
283 * Don't allow a nonprivileged user to use the last few
284 * processes. The variable lnprocs is the current number of
285 * processes, maxproc is the limit.
286 */
287 if (__predict_false((lnprocs >= maxproc - 5)))
288 break;
289
290 result = KAUTH_RESULT_ALLOW;
291
292 break;
293 }
294
295 case KAUTH_PROCESS_CORENAME:
296 case KAUTH_PROCESS_STOPFLAG:
297 if (proc_uidmatch(cred, p->p_cred) == 0)
298 result = KAUTH_RESULT_ALLOW;
299
300 break;
301
302 default:
303 break;
304 }
305
306 return result;
307 }
308
309 /*
310 * Initialize global process hashing structures.
311 */
312 void
313 procinit(void)
314 {
315 const struct proclist_desc *pd;
316 u_int i;
317 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
318
319 for (pd = proclists; pd->pd_list != NULL; pd++)
320 LIST_INIT(pd->pd_list);
321
322 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
323 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
324 * sizeof(struct pid_table), KM_SLEEP);
325 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
326 pid_max = PID_MAX;
327
328 /* Set free list running through table...
329 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
330 for (i = 0; i <= pid_tbl_mask; i++) {
331 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
332 pid_table[i].pt_pgrp = 0;
333 pid_table[i].pt_pid = 0;
334 }
335 /* slot 0 is just grabbed */
336 next_free_pt = 1;
337 /* Need to fix last entry. */
338 last_free_pt = pid_tbl_mask;
339 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
340 /* point at which we grow table - to avoid reusing pids too often */
341 pid_alloc_lim = pid_tbl_mask - 1;
342 #undef LINK_EMPTY
343
344 proc_specificdata_domain = specificdata_domain_create();
345 KASSERT(proc_specificdata_domain != NULL);
346
347 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
348 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
349
350 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
351 proc_listener_cb, NULL);
352 }
353
354 void
355 procinit_sysctl(void)
356 {
357 static struct sysctllog *clog;
358
359 sysctl_createv(&clog, 0, NULL, NULL,
360 CTLFLAG_PERMANENT,
361 CTLTYPE_NODE, "proc",
362 SYSCTL_DESCR("System-wide process information"),
363 sysctl_doeproc, 0, NULL, 0,
364 CTL_KERN, KERN_PROC, CTL_EOL);
365 sysctl_createv(&clog, 0, NULL, NULL,
366 CTLFLAG_PERMANENT,
367 CTLTYPE_NODE, "proc2",
368 SYSCTL_DESCR("Machine-independent process information"),
369 sysctl_doeproc, 0, NULL, 0,
370 CTL_KERN, KERN_PROC2, CTL_EOL);
371 sysctl_createv(&clog, 0, NULL, NULL,
372 CTLFLAG_PERMANENT,
373 CTLTYPE_NODE, "proc_args",
374 SYSCTL_DESCR("Process argument information"),
375 sysctl_kern_proc_args, 0, NULL, 0,
376 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
377
378 /*
379 "nodes" under these:
380
381 KERN_PROC_ALL
382 KERN_PROC_PID pid
383 KERN_PROC_PGRP pgrp
384 KERN_PROC_SESSION sess
385 KERN_PROC_TTY tty
386 KERN_PROC_UID uid
387 KERN_PROC_RUID uid
388 KERN_PROC_GID gid
389 KERN_PROC_RGID gid
390
391 all in all, probably not worth the effort...
392 */
393 }
394
395 /*
396 * Initialize process 0.
397 */
398 void
399 proc0_init(void)
400 {
401 struct proc *p;
402 struct pgrp *pg;
403 struct rlimit *rlim;
404 rlim_t lim;
405 int i;
406
407 p = &proc0;
408 pg = &pgrp0;
409
410 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
411 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
412 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
413
414 rw_init(&p->p_reflock);
415 cv_init(&p->p_waitcv, "wait");
416 cv_init(&p->p_lwpcv, "lwpwait");
417
418 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
419
420 pid_table[0].pt_proc = p;
421 LIST_INSERT_HEAD(&allproc, p, p_list);
422
423 pid_table[0].pt_pgrp = pg;
424 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
425
426 #ifdef __HAVE_SYSCALL_INTERN
427 (*p->p_emul->e_syscall_intern)(p);
428 #endif
429
430 /* Create credentials. */
431 cred0 = kauth_cred_alloc();
432 p->p_cred = cred0;
433
434 /* Create the CWD info. */
435 rw_init(&cwdi0.cwdi_lock);
436
437 /* Create the limits structures. */
438 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
439
440 rlim = limit0.pl_rlimit;
441 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
442 rlim[i].rlim_cur = RLIM_INFINITY;
443 rlim[i].rlim_max = RLIM_INFINITY;
444 }
445
446 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
447 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
448
449 rlim[RLIMIT_NPROC].rlim_max = maxproc;
450 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
451
452 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
453 rlim[RLIMIT_RSS].rlim_max = lim;
454 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
455 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
456
457 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
458 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
459
460 /* Note that default core name has zero length. */
461 limit0.pl_corename = defcorename;
462 limit0.pl_cnlen = 0;
463 limit0.pl_refcnt = 1;
464 limit0.pl_writeable = false;
465 limit0.pl_sv_limit = NULL;
466
467 /* Configure virtual memory system, set vm rlimits. */
468 uvm_init_limits(p);
469
470 /* Initialize file descriptor table for proc0. */
471 fd_init(&filedesc0);
472
473 /*
474 * Initialize proc0's vmspace, which uses the kernel pmap.
475 * All kernel processes (which never have user space mappings)
476 * share proc0's vmspace, and thus, the kernel pmap.
477 */
478 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
479 trunc_page(VM_MAX_ADDRESS),
480 #ifdef __USE_TOPDOWN_VM
481 true
482 #else
483 false
484 #endif
485 );
486
487 /* Initialize signal state for proc0. XXX IPL_SCHED */
488 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
489 siginit(p);
490
491 proc_initspecific(p);
492 kdtrace_proc_ctor(NULL, p);
493 }
494
495 /*
496 * Session reference counting.
497 */
498
499 void
500 proc_sesshold(struct session *ss)
501 {
502
503 KASSERT(mutex_owned(proc_lock));
504 ss->s_count++;
505 }
506
507 void
508 proc_sessrele(struct session *ss)
509 {
510
511 KASSERT(mutex_owned(proc_lock));
512 /*
513 * We keep the pgrp with the same id as the session in order to
514 * stop a process being given the same pid. Since the pgrp holds
515 * a reference to the session, it must be a 'zombie' pgrp by now.
516 */
517 if (--ss->s_count == 0) {
518 struct pgrp *pg;
519
520 pg = pg_remove(ss->s_sid);
521 mutex_exit(proc_lock);
522
523 kmem_free(pg, sizeof(struct pgrp));
524 kmem_free(ss, sizeof(struct session));
525 } else {
526 mutex_exit(proc_lock);
527 }
528 }
529
530 /*
531 * Check that the specified process group is in the session of the
532 * specified process.
533 * Treats -ve ids as process ids.
534 * Used to validate TIOCSPGRP requests.
535 */
536 int
537 pgid_in_session(struct proc *p, pid_t pg_id)
538 {
539 struct pgrp *pgrp;
540 struct session *session;
541 int error;
542
543 mutex_enter(proc_lock);
544 if (pg_id < 0) {
545 struct proc *p1 = proc_find(-pg_id);
546 if (p1 == NULL) {
547 error = EINVAL;
548 goto fail;
549 }
550 pgrp = p1->p_pgrp;
551 } else {
552 pgrp = pgrp_find(pg_id);
553 if (pgrp == NULL) {
554 error = EINVAL;
555 goto fail;
556 }
557 }
558 session = pgrp->pg_session;
559 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
560 fail:
561 mutex_exit(proc_lock);
562 return error;
563 }
564
565 /*
566 * p_inferior: is p an inferior of q?
567 */
568 static inline bool
569 p_inferior(struct proc *p, struct proc *q)
570 {
571
572 KASSERT(mutex_owned(proc_lock));
573
574 for (; p != q; p = p->p_pptr)
575 if (p->p_pid == 0)
576 return false;
577 return true;
578 }
579
580 /*
581 * proc_find: locate a process by the ID.
582 *
583 * => Must be called with proc_lock held.
584 */
585 proc_t *
586 proc_find_raw(pid_t pid)
587 {
588 struct pid_table *pt;
589 proc_t *p;
590
591 KASSERT(mutex_owned(proc_lock));
592 pt = &pid_table[pid & pid_tbl_mask];
593 p = pt->pt_proc;
594 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
595 return NULL;
596 }
597 return p;
598 }
599
600 proc_t *
601 proc_find(pid_t pid)
602 {
603 proc_t *p;
604
605 p = proc_find_raw(pid);
606 if (__predict_false(p == NULL)) {
607 return NULL;
608 }
609
610 /*
611 * Only allow live processes to be found by PID.
612 * XXX: p_stat might change, since unlocked.
613 */
614 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
615 return p;
616 }
617 return NULL;
618 }
619
620 /*
621 * pgrp_find: locate a process group by the ID.
622 *
623 * => Must be called with proc_lock held.
624 */
625 struct pgrp *
626 pgrp_find(pid_t pgid)
627 {
628 struct pgrp *pg;
629
630 KASSERT(mutex_owned(proc_lock));
631
632 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
633
634 /*
635 * Cannot look up a process group that only exists because the
636 * session has not died yet (traditional).
637 */
638 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
639 return NULL;
640 }
641 return pg;
642 }
643
644 static void
645 expand_pid_table(void)
646 {
647 size_t pt_size, tsz;
648 struct pid_table *n_pt, *new_pt;
649 struct proc *proc;
650 struct pgrp *pgrp;
651 pid_t pid, rpid;
652 u_int i;
653 uint new_pt_mask;
654
655 pt_size = pid_tbl_mask + 1;
656 tsz = pt_size * 2 * sizeof(struct pid_table);
657 new_pt = kmem_alloc(tsz, KM_SLEEP);
658 new_pt_mask = pt_size * 2 - 1;
659
660 mutex_enter(proc_lock);
661 if (pt_size != pid_tbl_mask + 1) {
662 /* Another process beat us to it... */
663 mutex_exit(proc_lock);
664 kmem_free(new_pt, tsz);
665 return;
666 }
667
668 /*
669 * Copy entries from old table into new one.
670 * If 'pid' is 'odd' we need to place in the upper half,
671 * even pid's to the lower half.
672 * Free items stay in the low half so we don't have to
673 * fixup the reference to them.
674 * We stuff free items on the front of the freelist
675 * because we can't write to unmodified entries.
676 * Processing the table backwards maintains a semblance
677 * of issuing pid numbers that increase with time.
678 */
679 i = pt_size - 1;
680 n_pt = new_pt + i;
681 for (; ; i--, n_pt--) {
682 proc = pid_table[i].pt_proc;
683 pgrp = pid_table[i].pt_pgrp;
684 if (!P_VALID(proc)) {
685 /* Up 'use count' so that link is valid */
686 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
687 rpid = 0;
688 proc = P_FREE(pid);
689 if (pgrp)
690 pid = pgrp->pg_id;
691 } else {
692 pid = pid_table[i].pt_pid;
693 rpid = pid;
694 }
695
696 /* Save entry in appropriate half of table */
697 n_pt[pid & pt_size].pt_proc = proc;
698 n_pt[pid & pt_size].pt_pgrp = pgrp;
699 n_pt[pid & pt_size].pt_pid = rpid;
700
701 /* Put other piece on start of free list */
702 pid = (pid ^ pt_size) & ~pid_tbl_mask;
703 n_pt[pid & pt_size].pt_proc =
704 P_FREE((pid & ~pt_size) | next_free_pt);
705 n_pt[pid & pt_size].pt_pgrp = 0;
706 n_pt[pid & pt_size].pt_pid = 0;
707
708 next_free_pt = i | (pid & pt_size);
709 if (i == 0)
710 break;
711 }
712
713 /* Save old table size and switch tables */
714 tsz = pt_size * sizeof(struct pid_table);
715 n_pt = pid_table;
716 pid_table = new_pt;
717 pid_tbl_mask = new_pt_mask;
718
719 /*
720 * pid_max starts as PID_MAX (= 30000), once we have 16384
721 * allocated pids we need it to be larger!
722 */
723 if (pid_tbl_mask > PID_MAX) {
724 pid_max = pid_tbl_mask * 2 + 1;
725 pid_alloc_lim |= pid_alloc_lim << 1;
726 } else
727 pid_alloc_lim <<= 1; /* doubles number of free slots... */
728
729 mutex_exit(proc_lock);
730 kmem_free(n_pt, tsz);
731 }
732
733 struct proc *
734 proc_alloc(void)
735 {
736 struct proc *p;
737
738 p = pool_cache_get(proc_cache, PR_WAITOK);
739 p->p_stat = SIDL; /* protect against others */
740 proc_initspecific(p);
741 kdtrace_proc_ctor(NULL, p);
742 p->p_pid = -1;
743 proc_alloc_pid(p);
744 return p;
745 }
746
747 /*
748 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
749 * proc_find_raw() can find it by the PID.
750 */
751
752 pid_t
753 proc_alloc_pid(struct proc *p)
754 {
755 struct pid_table *pt;
756 pid_t pid;
757 int nxt;
758
759 for (;;expand_pid_table()) {
760 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
761 /* ensure pids cycle through 2000+ values */
762 continue;
763 mutex_enter(proc_lock);
764 pt = &pid_table[next_free_pt];
765 #ifdef DIAGNOSTIC
766 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
767 panic("proc_alloc: slot busy");
768 #endif
769 nxt = P_NEXT(pt->pt_proc);
770 if (nxt & pid_tbl_mask)
771 break;
772 /* Table full - expand (NB last entry not used....) */
773 mutex_exit(proc_lock);
774 }
775
776 /* pid is 'saved use count' + 'size' + entry */
777 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
778 if ((uint)pid > (uint)pid_max)
779 pid &= pid_tbl_mask;
780 next_free_pt = nxt & pid_tbl_mask;
781
782 /* Grab table slot */
783 pt->pt_proc = p;
784
785 KASSERT(pt->pt_pid == 0);
786 pt->pt_pid = pid;
787 if (p->p_pid == -1) {
788 p->p_pid = pid;
789 }
790 pid_alloc_cnt++;
791 mutex_exit(proc_lock);
792
793 return pid;
794 }
795
796 /*
797 * Free a process id - called from proc_free (in kern_exit.c)
798 *
799 * Called with the proc_lock held.
800 */
801 void
802 proc_free_pid(pid_t pid)
803 {
804 struct pid_table *pt;
805
806 KASSERT(mutex_owned(proc_lock));
807
808 pt = &pid_table[pid & pid_tbl_mask];
809
810 /* save pid use count in slot */
811 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
812 KASSERT(pt->pt_pid == pid);
813 pt->pt_pid = 0;
814
815 if (pt->pt_pgrp == NULL) {
816 /* link last freed entry onto ours */
817 pid &= pid_tbl_mask;
818 pt = &pid_table[last_free_pt];
819 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
820 pt->pt_pid = 0;
821 last_free_pt = pid;
822 pid_alloc_cnt--;
823 }
824
825 atomic_dec_uint(&nprocs);
826 }
827
828 void
829 proc_free_mem(struct proc *p)
830 {
831
832 kdtrace_proc_dtor(NULL, p);
833 pool_cache_put(proc_cache, p);
834 }
835
836 /*
837 * proc_enterpgrp: move p to a new or existing process group (and session).
838 *
839 * If we are creating a new pgrp, the pgid should equal
840 * the calling process' pid.
841 * If is only valid to enter a process group that is in the session
842 * of the process.
843 * Also mksess should only be set if we are creating a process group
844 *
845 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
846 */
847 int
848 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
849 {
850 struct pgrp *new_pgrp, *pgrp;
851 struct session *sess;
852 struct proc *p;
853 int rval;
854 pid_t pg_id = NO_PGID;
855
856 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
857
858 /* Allocate data areas we might need before doing any validity checks */
859 mutex_enter(proc_lock); /* Because pid_table might change */
860 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
861 mutex_exit(proc_lock);
862 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
863 mutex_enter(proc_lock);
864 } else
865 new_pgrp = NULL;
866 rval = EPERM; /* most common error (to save typing) */
867
868 /* Check pgrp exists or can be created */
869 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
870 if (pgrp != NULL && pgrp->pg_id != pgid)
871 goto done;
872
873 /* Can only set another process under restricted circumstances. */
874 if (pid != curp->p_pid) {
875 /* Must exist and be one of our children... */
876 p = proc_find(pid);
877 if (p == NULL || !p_inferior(p, curp)) {
878 rval = ESRCH;
879 goto done;
880 }
881 /* ... in the same session... */
882 if (sess != NULL || p->p_session != curp->p_session)
883 goto done;
884 /* ... existing pgid must be in same session ... */
885 if (pgrp != NULL && pgrp->pg_session != p->p_session)
886 goto done;
887 /* ... and not done an exec. */
888 if (p->p_flag & PK_EXEC) {
889 rval = EACCES;
890 goto done;
891 }
892 } else {
893 /* ... setsid() cannot re-enter a pgrp */
894 if (mksess && (curp->p_pgid == curp->p_pid ||
895 pgrp_find(curp->p_pid)))
896 goto done;
897 p = curp;
898 }
899
900 /* Changing the process group/session of a session
901 leader is definitely off limits. */
902 if (SESS_LEADER(p)) {
903 if (sess == NULL && p->p_pgrp == pgrp)
904 /* unless it's a definite noop */
905 rval = 0;
906 goto done;
907 }
908
909 /* Can only create a process group with id of process */
910 if (pgrp == NULL && pgid != pid)
911 goto done;
912
913 /* Can only create a session if creating pgrp */
914 if (sess != NULL && pgrp != NULL)
915 goto done;
916
917 /* Check we allocated memory for a pgrp... */
918 if (pgrp == NULL && new_pgrp == NULL)
919 goto done;
920
921 /* Don't attach to 'zombie' pgrp */
922 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
923 goto done;
924
925 /* Expect to succeed now */
926 rval = 0;
927
928 if (pgrp == p->p_pgrp)
929 /* nothing to do */
930 goto done;
931
932 /* Ok all setup, link up required structures */
933
934 if (pgrp == NULL) {
935 pgrp = new_pgrp;
936 new_pgrp = NULL;
937 if (sess != NULL) {
938 sess->s_sid = p->p_pid;
939 sess->s_leader = p;
940 sess->s_count = 1;
941 sess->s_ttyvp = NULL;
942 sess->s_ttyp = NULL;
943 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
944 memcpy(sess->s_login, p->p_session->s_login,
945 sizeof(sess->s_login));
946 p->p_lflag &= ~PL_CONTROLT;
947 } else {
948 sess = p->p_pgrp->pg_session;
949 proc_sesshold(sess);
950 }
951 pgrp->pg_session = sess;
952 sess = NULL;
953
954 pgrp->pg_id = pgid;
955 LIST_INIT(&pgrp->pg_members);
956 #ifdef DIAGNOSTIC
957 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
958 panic("enterpgrp: pgrp table slot in use");
959 if (__predict_false(mksess && p != curp))
960 panic("enterpgrp: mksession and p != curproc");
961 #endif
962 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
963 pgrp->pg_jobc = 0;
964 }
965
966 /*
967 * Adjust eligibility of affected pgrps to participate in job control.
968 * Increment eligibility counts before decrementing, otherwise we
969 * could reach 0 spuriously during the first call.
970 */
971 fixjobc(p, pgrp, 1);
972 fixjobc(p, p->p_pgrp, 0);
973
974 /* Interlock with ttread(). */
975 mutex_spin_enter(&tty_lock);
976
977 /* Move process to requested group. */
978 LIST_REMOVE(p, p_pglist);
979 if (LIST_EMPTY(&p->p_pgrp->pg_members))
980 /* defer delete until we've dumped the lock */
981 pg_id = p->p_pgrp->pg_id;
982 p->p_pgrp = pgrp;
983 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
984
985 /* Done with the swap; we can release the tty mutex. */
986 mutex_spin_exit(&tty_lock);
987
988 done:
989 if (pg_id != NO_PGID) {
990 /* Releases proc_lock. */
991 pg_delete(pg_id);
992 } else {
993 mutex_exit(proc_lock);
994 }
995 if (sess != NULL)
996 kmem_free(sess, sizeof(*sess));
997 if (new_pgrp != NULL)
998 kmem_free(new_pgrp, sizeof(*new_pgrp));
999 #ifdef DEBUG_PGRP
1000 if (__predict_false(rval))
1001 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1002 pid, pgid, mksess, curp->p_pid, rval);
1003 #endif
1004 return rval;
1005 }
1006
1007 /*
1008 * proc_leavepgrp: remove a process from its process group.
1009 * => must be called with the proc_lock held, which will be released;
1010 */
1011 void
1012 proc_leavepgrp(struct proc *p)
1013 {
1014 struct pgrp *pgrp;
1015
1016 KASSERT(mutex_owned(proc_lock));
1017
1018 /* Interlock with ttread() */
1019 mutex_spin_enter(&tty_lock);
1020 pgrp = p->p_pgrp;
1021 LIST_REMOVE(p, p_pglist);
1022 p->p_pgrp = NULL;
1023 mutex_spin_exit(&tty_lock);
1024
1025 if (LIST_EMPTY(&pgrp->pg_members)) {
1026 /* Releases proc_lock. */
1027 pg_delete(pgrp->pg_id);
1028 } else {
1029 mutex_exit(proc_lock);
1030 }
1031 }
1032
1033 /*
1034 * pg_remove: remove a process group from the table.
1035 * => must be called with the proc_lock held;
1036 * => returns process group to free;
1037 */
1038 static struct pgrp *
1039 pg_remove(pid_t pg_id)
1040 {
1041 struct pgrp *pgrp;
1042 struct pid_table *pt;
1043
1044 KASSERT(mutex_owned(proc_lock));
1045
1046 pt = &pid_table[pg_id & pid_tbl_mask];
1047 pgrp = pt->pt_pgrp;
1048
1049 KASSERT(pgrp != NULL);
1050 KASSERT(pgrp->pg_id == pg_id);
1051 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1052
1053 pt->pt_pgrp = NULL;
1054
1055 if (!P_VALID(pt->pt_proc)) {
1056 /* Orphaned pgrp, put slot onto free list. */
1057 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1058 pg_id &= pid_tbl_mask;
1059 pt = &pid_table[last_free_pt];
1060 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1061 KASSERT(pt->pt_pid == 0);
1062 last_free_pt = pg_id;
1063 pid_alloc_cnt--;
1064 }
1065 return pgrp;
1066 }
1067
1068 /*
1069 * pg_delete: delete and free a process group.
1070 * => must be called with the proc_lock held, which will be released.
1071 */
1072 static void
1073 pg_delete(pid_t pg_id)
1074 {
1075 struct pgrp *pg;
1076 struct tty *ttyp;
1077 struct session *ss;
1078
1079 KASSERT(mutex_owned(proc_lock));
1080
1081 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1082 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1083 mutex_exit(proc_lock);
1084 return;
1085 }
1086
1087 ss = pg->pg_session;
1088
1089 /* Remove reference (if any) from tty to this process group */
1090 mutex_spin_enter(&tty_lock);
1091 ttyp = ss->s_ttyp;
1092 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1093 ttyp->t_pgrp = NULL;
1094 KASSERT(ttyp->t_session == ss);
1095 }
1096 mutex_spin_exit(&tty_lock);
1097
1098 /*
1099 * The leading process group in a session is freed by proc_sessrele(),
1100 * if last reference. Note: proc_sessrele() releases proc_lock.
1101 */
1102 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1103 proc_sessrele(ss);
1104
1105 if (pg != NULL) {
1106 /* Free it, if was not done by proc_sessrele(). */
1107 kmem_free(pg, sizeof(struct pgrp));
1108 }
1109 }
1110
1111 /*
1112 * Adjust pgrp jobc counters when specified process changes process group.
1113 * We count the number of processes in each process group that "qualify"
1114 * the group for terminal job control (those with a parent in a different
1115 * process group of the same session). If that count reaches zero, the
1116 * process group becomes orphaned. Check both the specified process'
1117 * process group and that of its children.
1118 * entering == 0 => p is leaving specified group.
1119 * entering == 1 => p is entering specified group.
1120 *
1121 * Call with proc_lock held.
1122 */
1123 void
1124 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1125 {
1126 struct pgrp *hispgrp;
1127 struct session *mysession = pgrp->pg_session;
1128 struct proc *child;
1129
1130 KASSERT(mutex_owned(proc_lock));
1131
1132 /*
1133 * Check p's parent to see whether p qualifies its own process
1134 * group; if so, adjust count for p's process group.
1135 */
1136 hispgrp = p->p_pptr->p_pgrp;
1137 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1138 if (entering) {
1139 pgrp->pg_jobc++;
1140 p->p_lflag &= ~PL_ORPHANPG;
1141 } else if (--pgrp->pg_jobc == 0)
1142 orphanpg(pgrp);
1143 }
1144
1145 /*
1146 * Check this process' children to see whether they qualify
1147 * their process groups; if so, adjust counts for children's
1148 * process groups.
1149 */
1150 LIST_FOREACH(child, &p->p_children, p_sibling) {
1151 hispgrp = child->p_pgrp;
1152 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1153 !P_ZOMBIE(child)) {
1154 if (entering) {
1155 child->p_lflag &= ~PL_ORPHANPG;
1156 hispgrp->pg_jobc++;
1157 } else if (--hispgrp->pg_jobc == 0)
1158 orphanpg(hispgrp);
1159 }
1160 }
1161 }
1162
1163 /*
1164 * A process group has become orphaned;
1165 * if there are any stopped processes in the group,
1166 * hang-up all process in that group.
1167 *
1168 * Call with proc_lock held.
1169 */
1170 static void
1171 orphanpg(struct pgrp *pg)
1172 {
1173 struct proc *p;
1174
1175 KASSERT(mutex_owned(proc_lock));
1176
1177 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1178 if (p->p_stat == SSTOP) {
1179 p->p_lflag |= PL_ORPHANPG;
1180 psignal(p, SIGHUP);
1181 psignal(p, SIGCONT);
1182 }
1183 }
1184 }
1185
1186 #ifdef DDB
1187 #include <ddb/db_output.h>
1188 void pidtbl_dump(void);
1189 void
1190 pidtbl_dump(void)
1191 {
1192 struct pid_table *pt;
1193 struct proc *p;
1194 struct pgrp *pgrp;
1195 int id;
1196
1197 db_printf("pid table %p size %x, next %x, last %x\n",
1198 pid_table, pid_tbl_mask+1,
1199 next_free_pt, last_free_pt);
1200 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1201 p = pt->pt_proc;
1202 if (!P_VALID(p) && !pt->pt_pgrp)
1203 continue;
1204 db_printf(" id %x: ", id);
1205 if (P_VALID(p))
1206 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1207 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1208 else
1209 db_printf("next %x use %x\n",
1210 P_NEXT(p) & pid_tbl_mask,
1211 P_NEXT(p) & ~pid_tbl_mask);
1212 if ((pgrp = pt->pt_pgrp)) {
1213 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1214 pgrp->pg_session, pgrp->pg_session->s_sid,
1215 pgrp->pg_session->s_count,
1216 pgrp->pg_session->s_login);
1217 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1218 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1219 LIST_FIRST(&pgrp->pg_members));
1220 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1221 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1222 p->p_pid, p, p->p_pgrp, p->p_comm);
1223 }
1224 }
1225 }
1226 }
1227 #endif /* DDB */
1228
1229 #ifdef KSTACK_CHECK_MAGIC
1230
1231 #define KSTACK_MAGIC 0xdeadbeaf
1232
1233 /* XXX should be per process basis? */
1234 static int kstackleftmin = KSTACK_SIZE;
1235 static int kstackleftthres = KSTACK_SIZE / 8;
1236
1237 void
1238 kstack_setup_magic(const struct lwp *l)
1239 {
1240 uint32_t *ip;
1241 uint32_t const *end;
1242
1243 KASSERT(l != NULL);
1244 KASSERT(l != &lwp0);
1245
1246 /*
1247 * fill all the stack with magic number
1248 * so that later modification on it can be detected.
1249 */
1250 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1251 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1252 for (; ip < end; ip++) {
1253 *ip = KSTACK_MAGIC;
1254 }
1255 }
1256
1257 void
1258 kstack_check_magic(const struct lwp *l)
1259 {
1260 uint32_t const *ip, *end;
1261 int stackleft;
1262
1263 KASSERT(l != NULL);
1264
1265 /* don't check proc0 */ /*XXX*/
1266 if (l == &lwp0)
1267 return;
1268
1269 #ifdef __MACHINE_STACK_GROWS_UP
1270 /* stack grows upwards (eg. hppa) */
1271 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1272 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1273 for (ip--; ip >= end; ip--)
1274 if (*ip != KSTACK_MAGIC)
1275 break;
1276
1277 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1278 #else /* __MACHINE_STACK_GROWS_UP */
1279 /* stack grows downwards (eg. i386) */
1280 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1281 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1282 for (; ip < end; ip++)
1283 if (*ip != KSTACK_MAGIC)
1284 break;
1285
1286 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1287 #endif /* __MACHINE_STACK_GROWS_UP */
1288
1289 if (kstackleftmin > stackleft) {
1290 kstackleftmin = stackleft;
1291 if (stackleft < kstackleftthres)
1292 printf("warning: kernel stack left %d bytes"
1293 "(pid %u:lid %u)\n", stackleft,
1294 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1295 }
1296
1297 if (stackleft <= 0) {
1298 panic("magic on the top of kernel stack changed for "
1299 "pid %u, lid %u: maybe kernel stack overflow",
1300 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1301 }
1302 }
1303 #endif /* KSTACK_CHECK_MAGIC */
1304
1305 int
1306 proclist_foreach_call(struct proclist *list,
1307 int (*callback)(struct proc *, void *arg), void *arg)
1308 {
1309 struct proc marker;
1310 struct proc *p;
1311 int ret = 0;
1312
1313 marker.p_flag = PK_MARKER;
1314 mutex_enter(proc_lock);
1315 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1316 if (p->p_flag & PK_MARKER) {
1317 p = LIST_NEXT(p, p_list);
1318 continue;
1319 }
1320 LIST_INSERT_AFTER(p, &marker, p_list);
1321 ret = (*callback)(p, arg);
1322 KASSERT(mutex_owned(proc_lock));
1323 p = LIST_NEXT(&marker, p_list);
1324 LIST_REMOVE(&marker, p_list);
1325 }
1326 mutex_exit(proc_lock);
1327
1328 return ret;
1329 }
1330
1331 int
1332 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1333 {
1334
1335 /* XXXCDC: how should locking work here? */
1336
1337 /* curproc exception is for coredump. */
1338
1339 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1340 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1341 return EFAULT;
1342 }
1343
1344 uvmspace_addref(p->p_vmspace);
1345 *vm = p->p_vmspace;
1346
1347 return 0;
1348 }
1349
1350 /*
1351 * Acquire a write lock on the process credential.
1352 */
1353 void
1354 proc_crmod_enter(void)
1355 {
1356 struct lwp *l = curlwp;
1357 struct proc *p = l->l_proc;
1358 kauth_cred_t oc;
1359
1360 /* Reset what needs to be reset in plimit. */
1361 if (p->p_limit->pl_corename != defcorename) {
1362 lim_setcorename(p, defcorename, 0);
1363 }
1364
1365 mutex_enter(p->p_lock);
1366
1367 /* Ensure the LWP cached credentials are up to date. */
1368 if ((oc = l->l_cred) != p->p_cred) {
1369 kauth_cred_hold(p->p_cred);
1370 l->l_cred = p->p_cred;
1371 kauth_cred_free(oc);
1372 }
1373 }
1374
1375 /*
1376 * Set in a new process credential, and drop the write lock. The credential
1377 * must have a reference already. Optionally, free a no-longer required
1378 * credential. The scheduler also needs to inspect p_cred, so we also
1379 * briefly acquire the sched state mutex.
1380 */
1381 void
1382 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1383 {
1384 struct lwp *l = curlwp, *l2;
1385 struct proc *p = l->l_proc;
1386 kauth_cred_t oc;
1387
1388 KASSERT(mutex_owned(p->p_lock));
1389
1390 /* Is there a new credential to set in? */
1391 if (scred != NULL) {
1392 p->p_cred = scred;
1393 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1394 if (l2 != l)
1395 l2->l_prflag |= LPR_CRMOD;
1396 }
1397
1398 /* Ensure the LWP cached credentials are up to date. */
1399 if ((oc = l->l_cred) != scred) {
1400 kauth_cred_hold(scred);
1401 l->l_cred = scred;
1402 }
1403 } else
1404 oc = NULL; /* XXXgcc */
1405
1406 if (sugid) {
1407 /*
1408 * Mark process as having changed credentials, stops
1409 * tracing etc.
1410 */
1411 p->p_flag |= PK_SUGID;
1412 }
1413
1414 mutex_exit(p->p_lock);
1415
1416 /* If there is a credential to be released, free it now. */
1417 if (fcred != NULL) {
1418 KASSERT(scred != NULL);
1419 kauth_cred_free(fcred);
1420 if (oc != scred)
1421 kauth_cred_free(oc);
1422 }
1423 }
1424
1425 /*
1426 * proc_specific_key_create --
1427 * Create a key for subsystem proc-specific data.
1428 */
1429 int
1430 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1431 {
1432
1433 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1434 }
1435
1436 /*
1437 * proc_specific_key_delete --
1438 * Delete a key for subsystem proc-specific data.
1439 */
1440 void
1441 proc_specific_key_delete(specificdata_key_t key)
1442 {
1443
1444 specificdata_key_delete(proc_specificdata_domain, key);
1445 }
1446
1447 /*
1448 * proc_initspecific --
1449 * Initialize a proc's specificdata container.
1450 */
1451 void
1452 proc_initspecific(struct proc *p)
1453 {
1454 int error __diagused;
1455
1456 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1457 KASSERT(error == 0);
1458 }
1459
1460 /*
1461 * proc_finispecific --
1462 * Finalize a proc's specificdata container.
1463 */
1464 void
1465 proc_finispecific(struct proc *p)
1466 {
1467
1468 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1469 }
1470
1471 /*
1472 * proc_getspecific --
1473 * Return proc-specific data corresponding to the specified key.
1474 */
1475 void *
1476 proc_getspecific(struct proc *p, specificdata_key_t key)
1477 {
1478
1479 return (specificdata_getspecific(proc_specificdata_domain,
1480 &p->p_specdataref, key));
1481 }
1482
1483 /*
1484 * proc_setspecific --
1485 * Set proc-specific data corresponding to the specified key.
1486 */
1487 void
1488 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1489 {
1490
1491 specificdata_setspecific(proc_specificdata_domain,
1492 &p->p_specdataref, key, data);
1493 }
1494
1495 int
1496 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1497 {
1498 int r = 0;
1499
1500 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1501 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1502 /*
1503 * suid proc of ours or proc not ours
1504 */
1505 r = EPERM;
1506 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1507 /*
1508 * sgid proc has sgid back to us temporarily
1509 */
1510 r = EPERM;
1511 } else {
1512 /*
1513 * our rgid must be in target's group list (ie,
1514 * sub-processes started by a sgid process)
1515 */
1516 int ismember = 0;
1517
1518 if (kauth_cred_ismember_gid(cred,
1519 kauth_cred_getgid(target), &ismember) != 0 ||
1520 !ismember)
1521 r = EPERM;
1522 }
1523
1524 return (r);
1525 }
1526
1527 /*
1528 * sysctl stuff
1529 */
1530
1531 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1532
1533 static const u_int sysctl_flagmap[] = {
1534 PK_ADVLOCK, P_ADVLOCK,
1535 PK_EXEC, P_EXEC,
1536 PK_NOCLDWAIT, P_NOCLDWAIT,
1537 PK_32, P_32,
1538 PK_CLDSIGIGN, P_CLDSIGIGN,
1539 PK_SUGID, P_SUGID,
1540 0
1541 };
1542
1543 static const u_int sysctl_sflagmap[] = {
1544 PS_NOCLDSTOP, P_NOCLDSTOP,
1545 PS_WEXIT, P_WEXIT,
1546 PS_STOPFORK, P_STOPFORK,
1547 PS_STOPEXEC, P_STOPEXEC,
1548 PS_STOPEXIT, P_STOPEXIT,
1549 0
1550 };
1551
1552 static const u_int sysctl_slflagmap[] = {
1553 PSL_TRACED, P_TRACED,
1554 PSL_FSTRACE, P_FSTRACE,
1555 PSL_CHTRACED, P_CHTRACED,
1556 PSL_SYSCALL, P_SYSCALL,
1557 0
1558 };
1559
1560 static const u_int sysctl_lflagmap[] = {
1561 PL_CONTROLT, P_CONTROLT,
1562 PL_PPWAIT, P_PPWAIT,
1563 0
1564 };
1565
1566 static const u_int sysctl_stflagmap[] = {
1567 PST_PROFIL, P_PROFIL,
1568 0
1569
1570 };
1571
1572 /* used by kern_lwp also */
1573 const u_int sysctl_lwpflagmap[] = {
1574 LW_SINTR, L_SINTR,
1575 LW_SYSTEM, L_SYSTEM,
1576 0
1577 };
1578
1579 /*
1580 * Find the most ``active'' lwp of a process and return it for ps display
1581 * purposes
1582 */
1583 static struct lwp *
1584 proc_active_lwp(struct proc *p)
1585 {
1586 static const int ostat[] = {
1587 0,
1588 2, /* LSIDL */
1589 6, /* LSRUN */
1590 5, /* LSSLEEP */
1591 4, /* LSSTOP */
1592 0, /* LSZOMB */
1593 1, /* LSDEAD */
1594 7, /* LSONPROC */
1595 3 /* LSSUSPENDED */
1596 };
1597
1598 struct lwp *l, *lp = NULL;
1599 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1600 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1601 if (lp == NULL ||
1602 ostat[l->l_stat] > ostat[lp->l_stat] ||
1603 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1604 l->l_cpticks > lp->l_cpticks)) {
1605 lp = l;
1606 continue;
1607 }
1608 }
1609 return lp;
1610 }
1611
1612 static int
1613 sysctl_doeproc(SYSCTLFN_ARGS)
1614 {
1615 union {
1616 struct kinfo_proc kproc;
1617 struct kinfo_proc2 kproc2;
1618 } *kbuf;
1619 struct proc *p, *next, *marker;
1620 char *where, *dp;
1621 int type, op, arg, error;
1622 u_int elem_size, kelem_size, elem_count;
1623 size_t buflen, needed;
1624 bool match, zombie, mmmbrains;
1625
1626 if (namelen == 1 && name[0] == CTL_QUERY)
1627 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1628
1629 dp = where = oldp;
1630 buflen = where != NULL ? *oldlenp : 0;
1631 error = 0;
1632 needed = 0;
1633 type = rnode->sysctl_num;
1634
1635 if (type == KERN_PROC) {
1636 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1637 return (EINVAL);
1638 op = name[0];
1639 if (op != KERN_PROC_ALL)
1640 arg = name[1];
1641 else
1642 arg = 0; /* Quell compiler warning */
1643 elem_count = 0; /* Ditto */
1644 kelem_size = elem_size = sizeof(kbuf->kproc);
1645 } else {
1646 if (namelen != 4)
1647 return (EINVAL);
1648 op = name[0];
1649 arg = name[1];
1650 elem_size = name[2];
1651 elem_count = name[3];
1652 kelem_size = sizeof(kbuf->kproc2);
1653 }
1654
1655 sysctl_unlock();
1656
1657 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1658 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1659 marker->p_flag = PK_MARKER;
1660
1661 mutex_enter(proc_lock);
1662 mmmbrains = false;
1663 for (p = LIST_FIRST(&allproc);; p = next) {
1664 if (p == NULL) {
1665 if (!mmmbrains) {
1666 p = LIST_FIRST(&zombproc);
1667 mmmbrains = true;
1668 }
1669 if (p == NULL)
1670 break;
1671 }
1672 next = LIST_NEXT(p, p_list);
1673 if ((p->p_flag & PK_MARKER) != 0)
1674 continue;
1675
1676 /*
1677 * Skip embryonic processes.
1678 */
1679 if (p->p_stat == SIDL)
1680 continue;
1681
1682 mutex_enter(p->p_lock);
1683 error = kauth_authorize_process(l->l_cred,
1684 KAUTH_PROCESS_CANSEE, p,
1685 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1686 if (error != 0) {
1687 mutex_exit(p->p_lock);
1688 continue;
1689 }
1690
1691 /*
1692 * TODO - make more efficient (see notes below).
1693 * do by session.
1694 */
1695 switch (op) {
1696 case KERN_PROC_PID:
1697 /* could do this with just a lookup */
1698 match = (p->p_pid == (pid_t)arg);
1699 break;
1700
1701 case KERN_PROC_PGRP:
1702 /* could do this by traversing pgrp */
1703 match = (p->p_pgrp->pg_id == (pid_t)arg);
1704 break;
1705
1706 case KERN_PROC_SESSION:
1707 match = (p->p_session->s_sid == (pid_t)arg);
1708 break;
1709
1710 case KERN_PROC_TTY:
1711 match = true;
1712 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1713 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1714 p->p_session->s_ttyp == NULL ||
1715 p->p_session->s_ttyvp != NULL) {
1716 match = false;
1717 }
1718 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1719 p->p_session->s_ttyp == NULL) {
1720 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1721 match = false;
1722 }
1723 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1724 match = false;
1725 }
1726 break;
1727
1728 case KERN_PROC_UID:
1729 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1730 break;
1731
1732 case KERN_PROC_RUID:
1733 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1734 break;
1735
1736 case KERN_PROC_GID:
1737 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1738 break;
1739
1740 case KERN_PROC_RGID:
1741 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1742 break;
1743
1744 case KERN_PROC_ALL:
1745 match = true;
1746 /* allow everything */
1747 break;
1748
1749 default:
1750 error = EINVAL;
1751 mutex_exit(p->p_lock);
1752 goto cleanup;
1753 }
1754 if (!match) {
1755 mutex_exit(p->p_lock);
1756 continue;
1757 }
1758
1759 /*
1760 * Grab a hold on the process.
1761 */
1762 if (mmmbrains) {
1763 zombie = true;
1764 } else {
1765 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1766 }
1767 if (zombie) {
1768 LIST_INSERT_AFTER(p, marker, p_list);
1769 }
1770
1771 if (buflen >= elem_size &&
1772 (type == KERN_PROC || elem_count > 0)) {
1773 if (type == KERN_PROC) {
1774 kbuf->kproc.kp_proc = *p;
1775 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1776 } else {
1777 fill_kproc2(p, &kbuf->kproc2, zombie);
1778 elem_count--;
1779 }
1780 mutex_exit(p->p_lock);
1781 mutex_exit(proc_lock);
1782 /*
1783 * Copy out elem_size, but not larger than kelem_size
1784 */
1785 error = sysctl_copyout(l, kbuf, dp,
1786 min(kelem_size, elem_size));
1787 mutex_enter(proc_lock);
1788 if (error) {
1789 goto bah;
1790 }
1791 dp += elem_size;
1792 buflen -= elem_size;
1793 } else {
1794 mutex_exit(p->p_lock);
1795 }
1796 needed += elem_size;
1797
1798 /*
1799 * Release reference to process.
1800 */
1801 if (zombie) {
1802 next = LIST_NEXT(marker, p_list);
1803 LIST_REMOVE(marker, p_list);
1804 } else {
1805 rw_exit(&p->p_reflock);
1806 next = LIST_NEXT(p, p_list);
1807 }
1808 }
1809 mutex_exit(proc_lock);
1810
1811 if (where != NULL) {
1812 *oldlenp = dp - where;
1813 if (needed > *oldlenp) {
1814 error = ENOMEM;
1815 goto out;
1816 }
1817 } else {
1818 needed += KERN_PROCSLOP;
1819 *oldlenp = needed;
1820 }
1821 if (kbuf)
1822 kmem_free(kbuf, sizeof(*kbuf));
1823 if (marker)
1824 kmem_free(marker, sizeof(*marker));
1825 sysctl_relock();
1826 return 0;
1827 bah:
1828 if (zombie)
1829 LIST_REMOVE(marker, p_list);
1830 else
1831 rw_exit(&p->p_reflock);
1832 cleanup:
1833 mutex_exit(proc_lock);
1834 out:
1835 if (kbuf)
1836 kmem_free(kbuf, sizeof(*kbuf));
1837 if (marker)
1838 kmem_free(marker, sizeof(*marker));
1839 sysctl_relock();
1840 return error;
1841 }
1842
1843 int
1844 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1845 {
1846
1847 #ifdef COMPAT_NETBSD32
1848 if (p->p_flag & PK_32) {
1849 struct ps_strings32 arginfo32;
1850
1851 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1852 sizeof(arginfo32));
1853 if (error)
1854 return error;
1855 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1856 arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1857 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1858 arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1859 return 0;
1860 }
1861 #endif
1862 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1863 }
1864
1865 static int
1866 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1867 {
1868 void **cookie = cookie_;
1869 struct lwp *l = cookie[0];
1870 char *dst = cookie[1];
1871
1872 return sysctl_copyout(l, src, dst + off, len);
1873 }
1874
1875 /*
1876 * sysctl helper routine for kern.proc_args pseudo-subtree.
1877 */
1878 static int
1879 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1880 {
1881 struct ps_strings pss;
1882 struct proc *p;
1883 pid_t pid;
1884 int type, error;
1885 void *cookie[2];
1886
1887 if (namelen == 1 && name[0] == CTL_QUERY)
1888 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1889
1890 if (newp != NULL || namelen != 2)
1891 return (EINVAL);
1892 pid = name[0];
1893 type = name[1];
1894
1895 switch (type) {
1896 case KERN_PROC_ARGV:
1897 case KERN_PROC_NARGV:
1898 case KERN_PROC_ENV:
1899 case KERN_PROC_NENV:
1900 /* ok */
1901 break;
1902 default:
1903 return (EINVAL);
1904 }
1905
1906 sysctl_unlock();
1907
1908 /* check pid */
1909 mutex_enter(proc_lock);
1910 if ((p = proc_find(pid)) == NULL) {
1911 error = EINVAL;
1912 goto out_locked;
1913 }
1914 mutex_enter(p->p_lock);
1915
1916 /* Check permission. */
1917 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1918 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1919 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1920 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1921 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1922 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1923 else
1924 error = EINVAL; /* XXXGCC */
1925 if (error) {
1926 mutex_exit(p->p_lock);
1927 goto out_locked;
1928 }
1929
1930 if (oldp == NULL) {
1931 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1932 *oldlenp = sizeof (int);
1933 else
1934 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1935 error = 0;
1936 mutex_exit(p->p_lock);
1937 goto out_locked;
1938 }
1939
1940 /*
1941 * Zombies don't have a stack, so we can't read their psstrings.
1942 * System processes also don't have a user stack.
1943 */
1944 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1945 error = EINVAL;
1946 mutex_exit(p->p_lock);
1947 goto out_locked;
1948 }
1949
1950 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1951 mutex_exit(p->p_lock);
1952 if (error) {
1953 goto out_locked;
1954 }
1955 mutex_exit(proc_lock);
1956
1957 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1958 int value;
1959 if ((error = copyin_psstrings(p, &pss)) == 0) {
1960 if (type == KERN_PROC_NARGV)
1961 value = pss.ps_nargvstr;
1962 else
1963 value = pss.ps_nenvstr;
1964 error = sysctl_copyout(l, &value, oldp, sizeof(value));
1965 *oldlenp = sizeof(value);
1966 }
1967 } else {
1968 cookie[0] = l;
1969 cookie[1] = oldp;
1970 error = copy_procargs(p, type, oldlenp,
1971 copy_procargs_sysctl_cb, cookie);
1972 }
1973 rw_exit(&p->p_reflock);
1974 sysctl_relock();
1975 return error;
1976
1977 out_locked:
1978 mutex_exit(proc_lock);
1979 sysctl_relock();
1980 return error;
1981 }
1982
1983 int
1984 copy_procargs(struct proc *p, int oid, size_t *limit,
1985 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
1986 {
1987 struct ps_strings pss;
1988 size_t len, i, loaded, entry_len;
1989 struct uio auio;
1990 struct iovec aiov;
1991 int error, argvlen;
1992 char *arg;
1993 char **argv;
1994 vaddr_t user_argv;
1995 struct vmspace *vmspace;
1996
1997 /*
1998 * Allocate a temporary buffer to hold the argument vector and
1999 * the arguments themselve.
2000 */
2001 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2002 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2003
2004 /*
2005 * Lock the process down in memory.
2006 */
2007 vmspace = p->p_vmspace;
2008 uvmspace_addref(vmspace);
2009
2010 /*
2011 * Read in the ps_strings structure.
2012 */
2013 if ((error = copyin_psstrings(p, &pss)) != 0)
2014 goto done;
2015
2016 /*
2017 * Now read the address of the argument vector.
2018 */
2019 switch (oid) {
2020 case KERN_PROC_ARGV:
2021 user_argv = (uintptr_t)pss.ps_argvstr;
2022 argvlen = pss.ps_nargvstr;
2023 break;
2024 case KERN_PROC_ENV:
2025 user_argv = (uintptr_t)pss.ps_envstr;
2026 argvlen = pss.ps_nenvstr;
2027 break;
2028 default:
2029 error = EINVAL;
2030 goto done;
2031 }
2032
2033 if (argvlen < 0) {
2034 error = EIO;
2035 goto done;
2036 }
2037
2038 #ifdef COMPAT_NETBSD32
2039 if (p->p_flag & PK_32)
2040 entry_len = sizeof(netbsd32_charp);
2041 else
2042 #endif
2043 entry_len = sizeof(char *);
2044
2045 /*
2046 * Now copy each string.
2047 */
2048 len = 0; /* bytes written to user buffer */
2049 loaded = 0; /* bytes from argv already processed */
2050 i = 0; /* To make compiler happy */
2051
2052 for (; argvlen; --argvlen) {
2053 int finished = 0;
2054 vaddr_t base;
2055 size_t xlen;
2056 int j;
2057
2058 if (loaded == 0) {
2059 size_t rem = entry_len * argvlen;
2060 loaded = MIN(rem, PAGE_SIZE);
2061 error = copyin_vmspace(vmspace,
2062 (const void *)user_argv, argv, loaded);
2063 if (error)
2064 break;
2065 user_argv += loaded;
2066 i = 0;
2067 }
2068
2069 #ifdef COMPAT_NETBSD32
2070 if (p->p_flag & PK_32) {
2071 netbsd32_charp *argv32;
2072
2073 argv32 = (netbsd32_charp *)argv;
2074 base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2075 } else
2076 #endif
2077 base = (vaddr_t)argv[i++];
2078 loaded -= entry_len;
2079
2080 /*
2081 * The program has messed around with its arguments,
2082 * possibly deleting some, and replacing them with
2083 * NULL's. Treat this as the last argument and not
2084 * a failure.
2085 */
2086 if (base == 0)
2087 break;
2088
2089 while (!finished) {
2090 xlen = PAGE_SIZE - (base & PAGE_MASK);
2091
2092 aiov.iov_base = arg;
2093 aiov.iov_len = PAGE_SIZE;
2094 auio.uio_iov = &aiov;
2095 auio.uio_iovcnt = 1;
2096 auio.uio_offset = base;
2097 auio.uio_resid = xlen;
2098 auio.uio_rw = UIO_READ;
2099 UIO_SETUP_SYSSPACE(&auio);
2100 error = uvm_io(&vmspace->vm_map, &auio);
2101 if (error)
2102 goto done;
2103
2104 /* Look for the end of the string */
2105 for (j = 0; j < xlen; j++) {
2106 if (arg[j] == '\0') {
2107 xlen = j + 1;
2108 finished = 1;
2109 break;
2110 }
2111 }
2112
2113 /* Check for user buffer overflow */
2114 if (len + xlen > *limit) {
2115 finished = 1;
2116 if (len > *limit)
2117 xlen = 0;
2118 else
2119 xlen = *limit - len;
2120 }
2121
2122 /* Copyout the page */
2123 error = (*cb)(cookie, arg, len, xlen);
2124 if (error)
2125 goto done;
2126
2127 len += xlen;
2128 base += xlen;
2129 }
2130 }
2131 *limit = len;
2132
2133 done:
2134 kmem_free(argv, PAGE_SIZE);
2135 kmem_free(arg, PAGE_SIZE);
2136 uvmspace_free(vmspace);
2137 return error;
2138 }
2139
2140 /*
2141 * Fill in an eproc structure for the specified process.
2142 */
2143 void
2144 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2145 {
2146 struct tty *tp;
2147 struct lwp *l;
2148
2149 KASSERT(mutex_owned(proc_lock));
2150 KASSERT(mutex_owned(p->p_lock));
2151
2152 memset(ep, 0, sizeof(*ep));
2153
2154 ep->e_paddr = p;
2155 ep->e_sess = p->p_session;
2156 if (p->p_cred) {
2157 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2158 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2159 }
2160 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2161 struct vmspace *vm = p->p_vmspace;
2162
2163 ep->e_vm.vm_rssize = vm_resident_count(vm);
2164 ep->e_vm.vm_tsize = vm->vm_tsize;
2165 ep->e_vm.vm_dsize = vm->vm_dsize;
2166 ep->e_vm.vm_ssize = vm->vm_ssize;
2167 ep->e_vm.vm_map.size = vm->vm_map.size;
2168
2169 /* Pick the primary (first) LWP */
2170 l = proc_active_lwp(p);
2171 KASSERT(l != NULL);
2172 lwp_lock(l);
2173 if (l->l_wchan)
2174 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2175 lwp_unlock(l);
2176 }
2177 if (p->p_pptr)
2178 ep->e_ppid = p->p_pptr->p_pid;
2179 if (p->p_pgrp && p->p_session) {
2180 ep->e_pgid = p->p_pgrp->pg_id;
2181 ep->e_jobc = p->p_pgrp->pg_jobc;
2182 ep->e_sid = p->p_session->s_sid;
2183 if ((p->p_lflag & PL_CONTROLT) &&
2184 (tp = ep->e_sess->s_ttyp)) {
2185 ep->e_tdev = tp->t_dev;
2186 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2187 ep->e_tsess = tp->t_session;
2188 } else
2189 ep->e_tdev = (uint32_t)NODEV;
2190 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2191 if (SESS_LEADER(p))
2192 ep->e_flag |= EPROC_SLEADER;
2193 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2194 }
2195 ep->e_xsize = ep->e_xrssize = 0;
2196 ep->e_xccount = ep->e_xswrss = 0;
2197 }
2198
2199 /*
2200 * Fill in a kinfo_proc2 structure for the specified process.
2201 */
2202 void
2203 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2204 {
2205 struct tty *tp;
2206 struct lwp *l, *l2;
2207 struct timeval ut, st, rt;
2208 sigset_t ss1, ss2;
2209 struct rusage ru;
2210 struct vmspace *vm;
2211
2212 KASSERT(mutex_owned(proc_lock));
2213 KASSERT(mutex_owned(p->p_lock));
2214
2215 sigemptyset(&ss1);
2216 sigemptyset(&ss2);
2217 memset(ki, 0, sizeof(*ki));
2218
2219 ki->p_paddr = PTRTOUINT64(p);
2220 ki->p_fd = PTRTOUINT64(p->p_fd);
2221 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2222 ki->p_stats = PTRTOUINT64(p->p_stats);
2223 ki->p_limit = PTRTOUINT64(p->p_limit);
2224 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2225 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2226 ki->p_sess = PTRTOUINT64(p->p_session);
2227 ki->p_tsess = 0; /* may be changed if controlling tty below */
2228 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2229 ki->p_eflag = 0;
2230 ki->p_exitsig = p->p_exitsig;
2231 ki->p_flag = L_INMEM; /* Process never swapped out */
2232 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2233 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2234 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2235 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2236 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2237 ki->p_pid = p->p_pid;
2238 if (p->p_pptr)
2239 ki->p_ppid = p->p_pptr->p_pid;
2240 else
2241 ki->p_ppid = 0;
2242 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2243 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2244 ki->p_gid = kauth_cred_getegid(p->p_cred);
2245 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2246 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2247 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2248 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2249 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2250 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2251 UIO_SYSSPACE);
2252
2253 ki->p_uticks = p->p_uticks;
2254 ki->p_sticks = p->p_sticks;
2255 ki->p_iticks = p->p_iticks;
2256 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2257 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2258 ki->p_traceflag = p->p_traceflag;
2259
2260 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2261 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2262
2263 ki->p_cpticks = 0;
2264 ki->p_pctcpu = p->p_pctcpu;
2265 ki->p_estcpu = 0;
2266 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2267 ki->p_realstat = p->p_stat;
2268 ki->p_nice = p->p_nice;
2269 ki->p_xstat = p->p_xstat;
2270 ki->p_acflag = p->p_acflag;
2271
2272 strncpy(ki->p_comm, p->p_comm,
2273 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2274 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2275
2276 ki->p_nlwps = p->p_nlwps;
2277 ki->p_realflag = ki->p_flag;
2278
2279 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2280 vm = p->p_vmspace;
2281 ki->p_vm_rssize = vm_resident_count(vm);
2282 ki->p_vm_tsize = vm->vm_tsize;
2283 ki->p_vm_dsize = vm->vm_dsize;
2284 ki->p_vm_ssize = vm->vm_ssize;
2285 ki->p_vm_vsize = atop(vm->vm_map.size);
2286 /*
2287 * Since the stack is initially mapped mostly with
2288 * PROT_NONE and grown as needed, adjust the "mapped size"
2289 * to skip the unused stack portion.
2290 */
2291 ki->p_vm_msize =
2292 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2293
2294 /* Pick the primary (first) LWP */
2295 l = proc_active_lwp(p);
2296 KASSERT(l != NULL);
2297 lwp_lock(l);
2298 ki->p_nrlwps = p->p_nrlwps;
2299 ki->p_forw = 0;
2300 ki->p_back = 0;
2301 ki->p_addr = PTRTOUINT64(l->l_addr);
2302 ki->p_stat = l->l_stat;
2303 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2304 ki->p_swtime = l->l_swtime;
2305 ki->p_slptime = l->l_slptime;
2306 if (l->l_stat == LSONPROC)
2307 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2308 else
2309 ki->p_schedflags = 0;
2310 ki->p_priority = lwp_eprio(l);
2311 ki->p_usrpri = l->l_priority;
2312 if (l->l_wchan)
2313 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2314 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2315 ki->p_cpuid = cpu_index(l->l_cpu);
2316 lwp_unlock(l);
2317 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2318 /* This is hardly correct, but... */
2319 sigplusset(&l->l_sigpend.sp_set, &ss1);
2320 sigplusset(&l->l_sigmask, &ss2);
2321 ki->p_cpticks += l->l_cpticks;
2322 ki->p_pctcpu += l->l_pctcpu;
2323 ki->p_estcpu += l->l_estcpu;
2324 }
2325 }
2326 sigplusset(&p->p_sigpend.sp_set, &ss2);
2327 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2328 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2329
2330 if (p->p_session != NULL) {
2331 ki->p_sid = p->p_session->s_sid;
2332 ki->p__pgid = p->p_pgrp->pg_id;
2333 if (p->p_session->s_ttyvp)
2334 ki->p_eflag |= EPROC_CTTY;
2335 if (SESS_LEADER(p))
2336 ki->p_eflag |= EPROC_SLEADER;
2337 strncpy(ki->p_login, p->p_session->s_login,
2338 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2339 ki->p_jobc = p->p_pgrp->pg_jobc;
2340 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2341 ki->p_tdev = tp->t_dev;
2342 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2343 ki->p_tsess = PTRTOUINT64(tp->t_session);
2344 } else {
2345 ki->p_tdev = (int32_t)NODEV;
2346 }
2347 }
2348
2349 if (!P_ZOMBIE(p) && !zombie) {
2350 ki->p_uvalid = 1;
2351 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2352 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2353
2354 calcru(p, &ut, &st, NULL, &rt);
2355 ki->p_rtime_sec = rt.tv_sec;
2356 ki->p_rtime_usec = rt.tv_usec;
2357 ki->p_uutime_sec = ut.tv_sec;
2358 ki->p_uutime_usec = ut.tv_usec;
2359 ki->p_ustime_sec = st.tv_sec;
2360 ki->p_ustime_usec = st.tv_usec;
2361
2362 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2363 ki->p_uru_nvcsw = 0;
2364 ki->p_uru_nivcsw = 0;
2365 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2366 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2367 ki->p_uru_nivcsw += l2->l_nivcsw;
2368 ruadd(&ru, &l2->l_ru);
2369 }
2370 ki->p_uru_maxrss = ru.ru_maxrss;
2371 ki->p_uru_ixrss = ru.ru_ixrss;
2372 ki->p_uru_idrss = ru.ru_idrss;
2373 ki->p_uru_isrss = ru.ru_isrss;
2374 ki->p_uru_minflt = ru.ru_minflt;
2375 ki->p_uru_majflt = ru.ru_majflt;
2376 ki->p_uru_nswap = ru.ru_nswap;
2377 ki->p_uru_inblock = ru.ru_inblock;
2378 ki->p_uru_oublock = ru.ru_oublock;
2379 ki->p_uru_msgsnd = ru.ru_msgsnd;
2380 ki->p_uru_msgrcv = ru.ru_msgrcv;
2381 ki->p_uru_nsignals = ru.ru_nsignals;
2382
2383 timeradd(&p->p_stats->p_cru.ru_utime,
2384 &p->p_stats->p_cru.ru_stime, &ut);
2385 ki->p_uctime_sec = ut.tv_sec;
2386 ki->p_uctime_usec = ut.tv_usec;
2387 }
2388 }
2389