Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.193.4.5
      1 /*	$NetBSD: kern_proc.c,v 1.193.4.5 2016/12/05 10:55:26 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.193.4.5 2016/12/05 10:55:26 skrll Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #endif
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/kernel.h>
     77 #include <sys/proc.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/buf.h>
     80 #include <sys/acct.h>
     81 #include <sys/wait.h>
     82 #include <sys/file.h>
     83 #include <ufs/ufs/quota.h>
     84 #include <sys/uio.h>
     85 #include <sys/pool.h>
     86 #include <sys/pset.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/ras.h>
     92 #include <sys/filedesc.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/kauth.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/atomic.h>
     97 #include <sys/kmem.h>
     98 #include <sys/namei.h>
     99 #include <sys/dtrace_bsd.h>
    100 #include <sys/sysctl.h>
    101 #include <sys/exec.h>
    102 #include <sys/cpu.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 #include <uvm/uvm.h>
    106 
    107 #ifdef COMPAT_NETBSD32
    108 #include <compat/netbsd32/netbsd32.h>
    109 #endif
    110 
    111 /*
    112  * Process lists.
    113  */
    114 
    115 struct proclist		allproc		__cacheline_aligned;
    116 struct proclist		zombproc	__cacheline_aligned;
    117 
    118 kmutex_t *		proc_lock	__cacheline_aligned;
    119 
    120 /*
    121  * pid to proc lookup is done by indexing the pid_table array.
    122  * Since pid numbers are only allocated when an empty slot
    123  * has been found, there is no need to search any lists ever.
    124  * (an orphaned pgrp will lock the slot, a session will lock
    125  * the pgrp with the same number.)
    126  * If the table is too small it is reallocated with twice the
    127  * previous size and the entries 'unzipped' into the two halves.
    128  * A linked list of free entries is passed through the pt_proc
    129  * field of 'free' items - set odd to be an invalid ptr.
    130  */
    131 
    132 struct pid_table {
    133 	struct proc	*pt_proc;
    134 	struct pgrp	*pt_pgrp;
    135 	pid_t		pt_pid;
    136 };
    137 #if 1	/* strongly typed cast - should be a noop */
    138 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    139 #else
    140 #define p2u(p) ((uint)p)
    141 #endif
    142 #define P_VALID(p) (!(p2u(p) & 1))
    143 #define P_NEXT(p) (p2u(p) >> 1)
    144 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    145 
    146 /*
    147  * Table of process IDs (PIDs).
    148  */
    149 static struct pid_table *pid_table	__read_mostly;
    150 
    151 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    152 
    153 /* Table mask, threshold for growing and number of allocated PIDs. */
    154 static u_int		pid_tbl_mask	__read_mostly;
    155 static u_int		pid_alloc_lim	__read_mostly;
    156 static u_int		pid_alloc_cnt	__cacheline_aligned;
    157 
    158 /* Next free, last free and maximum PIDs. */
    159 static u_int		next_free_pt	__cacheline_aligned;
    160 static u_int		last_free_pt	__cacheline_aligned;
    161 static pid_t		pid_max		__read_mostly;
    162 
    163 /* Components of the first process -- never freed. */
    164 
    165 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    166 
    167 struct session session0 = {
    168 	.s_count = 1,
    169 	.s_sid = 0,
    170 };
    171 struct pgrp pgrp0 = {
    172 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    173 	.pg_session = &session0,
    174 };
    175 filedesc_t filedesc0;
    176 struct cwdinfo cwdi0 = {
    177 	.cwdi_cmask = CMASK,
    178 	.cwdi_refcnt = 1,
    179 };
    180 struct plimit limit0;
    181 struct pstats pstat0;
    182 struct vmspace vmspace0;
    183 struct sigacts sigacts0;
    184 struct proc proc0 = {
    185 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    186 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    187 	.p_nlwps = 1,
    188 	.p_nrlwps = 1,
    189 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    190 	.p_pgrp = &pgrp0,
    191 	.p_comm = "system",
    192 	/*
    193 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    194 	 * when they exit.  init(8) can easily wait them out for us.
    195 	 */
    196 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    197 	.p_stat = SACTIVE,
    198 	.p_nice = NZERO,
    199 	.p_emul = &emul_netbsd,
    200 	.p_cwdi = &cwdi0,
    201 	.p_limit = &limit0,
    202 	.p_fd = &filedesc0,
    203 	.p_vmspace = &vmspace0,
    204 	.p_stats = &pstat0,
    205 	.p_sigacts = &sigacts0,
    206 #ifdef PROC0_MD_INITIALIZERS
    207 	PROC0_MD_INITIALIZERS
    208 #endif
    209 };
    210 kauth_cred_t cred0;
    211 
    212 static const int	nofile	= NOFILE;
    213 static const int	maxuprc	= MAXUPRC;
    214 
    215 static int sysctl_doeproc(SYSCTLFN_PROTO);
    216 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    217 
    218 /*
    219  * The process list descriptors, used during pid allocation and
    220  * by sysctl.  No locking on this data structure is needed since
    221  * it is completely static.
    222  */
    223 const struct proclist_desc proclists[] = {
    224 	{ &allproc	},
    225 	{ &zombproc	},
    226 	{ NULL		},
    227 };
    228 
    229 static struct pgrp *	pg_remove(pid_t);
    230 static void		pg_delete(pid_t);
    231 static void		orphanpg(struct pgrp *);
    232 
    233 static specificdata_domain_t proc_specificdata_domain;
    234 
    235 static pool_cache_t proc_cache;
    236 
    237 static kauth_listener_t proc_listener;
    238 
    239 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    240 
    241 static int
    242 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    243     void *arg0, void *arg1, void *arg2, void *arg3)
    244 {
    245 	struct proc *p;
    246 	int result;
    247 
    248 	result = KAUTH_RESULT_DEFER;
    249 	p = arg0;
    250 
    251 	switch (action) {
    252 	case KAUTH_PROCESS_CANSEE: {
    253 		enum kauth_process_req req;
    254 
    255 		req = (enum kauth_process_req)arg1;
    256 
    257 		switch (req) {
    258 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    259 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    260 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    261 			result = KAUTH_RESULT_ALLOW;
    262 
    263 			break;
    264 
    265 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    266 			if (kauth_cred_getuid(cred) !=
    267 			    kauth_cred_getuid(p->p_cred) ||
    268 			    kauth_cred_getuid(cred) !=
    269 			    kauth_cred_getsvuid(p->p_cred))
    270 				break;
    271 
    272 			result = KAUTH_RESULT_ALLOW;
    273 
    274 			break;
    275 
    276 		default:
    277 			break;
    278 		}
    279 
    280 		break;
    281 		}
    282 
    283 	case KAUTH_PROCESS_FORK: {
    284 		int lnprocs = (int)(unsigned long)arg2;
    285 
    286 		/*
    287 		 * Don't allow a nonprivileged user to use the last few
    288 		 * processes. The variable lnprocs is the current number of
    289 		 * processes, maxproc is the limit.
    290 		 */
    291 		if (__predict_false((lnprocs >= maxproc - 5)))
    292 			break;
    293 
    294 		result = KAUTH_RESULT_ALLOW;
    295 
    296 		break;
    297 		}
    298 
    299 	case KAUTH_PROCESS_CORENAME:
    300 	case KAUTH_PROCESS_STOPFLAG:
    301 		if (proc_uidmatch(cred, p->p_cred) == 0)
    302 			result = KAUTH_RESULT_ALLOW;
    303 
    304 		break;
    305 
    306 	default:
    307 		break;
    308 	}
    309 
    310 	return result;
    311 }
    312 
    313 /*
    314  * Initialize global process hashing structures.
    315  */
    316 void
    317 procinit(void)
    318 {
    319 	const struct proclist_desc *pd;
    320 	u_int i;
    321 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    322 
    323 	for (pd = proclists; pd->pd_list != NULL; pd++)
    324 		LIST_INIT(pd->pd_list);
    325 
    326 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    327 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    328 	    * sizeof(struct pid_table), KM_SLEEP);
    329 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    330 	pid_max = PID_MAX;
    331 
    332 	/* Set free list running through table...
    333 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    334 	for (i = 0; i <= pid_tbl_mask; i++) {
    335 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    336 		pid_table[i].pt_pgrp = 0;
    337 		pid_table[i].pt_pid = 0;
    338 	}
    339 	/* slot 0 is just grabbed */
    340 	next_free_pt = 1;
    341 	/* Need to fix last entry. */
    342 	last_free_pt = pid_tbl_mask;
    343 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    344 	/* point at which we grow table - to avoid reusing pids too often */
    345 	pid_alloc_lim = pid_tbl_mask - 1;
    346 #undef LINK_EMPTY
    347 
    348 	proc_specificdata_domain = specificdata_domain_create();
    349 	KASSERT(proc_specificdata_domain != NULL);
    350 
    351 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    352 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
    353 
    354 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    355 	    proc_listener_cb, NULL);
    356 }
    357 
    358 void
    359 procinit_sysctl(void)
    360 {
    361 	static struct sysctllog *clog;
    362 
    363 	sysctl_createv(&clog, 0, NULL, NULL,
    364 		       CTLFLAG_PERMANENT,
    365 		       CTLTYPE_NODE, "proc",
    366 		       SYSCTL_DESCR("System-wide process information"),
    367 		       sysctl_doeproc, 0, NULL, 0,
    368 		       CTL_KERN, KERN_PROC, CTL_EOL);
    369 	sysctl_createv(&clog, 0, NULL, NULL,
    370 		       CTLFLAG_PERMANENT,
    371 		       CTLTYPE_NODE, "proc2",
    372 		       SYSCTL_DESCR("Machine-independent process information"),
    373 		       sysctl_doeproc, 0, NULL, 0,
    374 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    375 	sysctl_createv(&clog, 0, NULL, NULL,
    376 		       CTLFLAG_PERMANENT,
    377 		       CTLTYPE_NODE, "proc_args",
    378 		       SYSCTL_DESCR("Process argument information"),
    379 		       sysctl_kern_proc_args, 0, NULL, 0,
    380 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    381 
    382 	/*
    383 	  "nodes" under these:
    384 
    385 	  KERN_PROC_ALL
    386 	  KERN_PROC_PID pid
    387 	  KERN_PROC_PGRP pgrp
    388 	  KERN_PROC_SESSION sess
    389 	  KERN_PROC_TTY tty
    390 	  KERN_PROC_UID uid
    391 	  KERN_PROC_RUID uid
    392 	  KERN_PROC_GID gid
    393 	  KERN_PROC_RGID gid
    394 
    395 	  all in all, probably not worth the effort...
    396 	*/
    397 }
    398 
    399 /*
    400  * Initialize process 0.
    401  */
    402 void
    403 proc0_init(void)
    404 {
    405 	struct proc *p;
    406 	struct pgrp *pg;
    407 	struct rlimit *rlim;
    408 	rlim_t lim;
    409 	int i;
    410 
    411 	p = &proc0;
    412 	pg = &pgrp0;
    413 
    414 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    415 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    416 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    417 
    418 	rw_init(&p->p_reflock);
    419 	cv_init(&p->p_waitcv, "wait");
    420 	cv_init(&p->p_lwpcv, "lwpwait");
    421 
    422 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    423 
    424 	pid_table[0].pt_proc = p;
    425 	LIST_INSERT_HEAD(&allproc, p, p_list);
    426 
    427 	pid_table[0].pt_pgrp = pg;
    428 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    429 
    430 #ifdef __HAVE_SYSCALL_INTERN
    431 	(*p->p_emul->e_syscall_intern)(p);
    432 #endif
    433 
    434 	/* Create credentials. */
    435 	cred0 = kauth_cred_alloc();
    436 	p->p_cred = cred0;
    437 
    438 	/* Create the CWD info. */
    439 	rw_init(&cwdi0.cwdi_lock);
    440 
    441 	/* Create the limits structures. */
    442 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    443 
    444 	rlim = limit0.pl_rlimit;
    445 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    446 		rlim[i].rlim_cur = RLIM_INFINITY;
    447 		rlim[i].rlim_max = RLIM_INFINITY;
    448 	}
    449 
    450 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    451 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    452 
    453 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    454 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    455 
    456 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    457 	rlim[RLIMIT_RSS].rlim_max = lim;
    458 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    459 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    460 
    461 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    462 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    463 
    464 	/* Note that default core name has zero length. */
    465 	limit0.pl_corename = defcorename;
    466 	limit0.pl_cnlen = 0;
    467 	limit0.pl_refcnt = 1;
    468 	limit0.pl_writeable = false;
    469 	limit0.pl_sv_limit = NULL;
    470 
    471 	/* Configure virtual memory system, set vm rlimits. */
    472 	uvm_init_limits(p);
    473 
    474 	/* Initialize file descriptor table for proc0. */
    475 	fd_init(&filedesc0);
    476 
    477 	/*
    478 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    479 	 * All kernel processes (which never have user space mappings)
    480 	 * share proc0's vmspace, and thus, the kernel pmap.
    481 	 */
    482 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    483 	    trunc_page(VM_MAXUSER_ADDRESS),
    484 #ifdef __USE_TOPDOWN_VM
    485 	    true
    486 #else
    487 	    false
    488 #endif
    489 	    );
    490 
    491 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    492 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    493 	siginit(p);
    494 
    495 	proc_initspecific(p);
    496 	kdtrace_proc_ctor(NULL, p);
    497 }
    498 
    499 /*
    500  * Session reference counting.
    501  */
    502 
    503 void
    504 proc_sesshold(struct session *ss)
    505 {
    506 
    507 	KASSERT(mutex_owned(proc_lock));
    508 	ss->s_count++;
    509 }
    510 
    511 void
    512 proc_sessrele(struct session *ss)
    513 {
    514 
    515 	KASSERT(mutex_owned(proc_lock));
    516 	/*
    517 	 * We keep the pgrp with the same id as the session in order to
    518 	 * stop a process being given the same pid.  Since the pgrp holds
    519 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    520 	 */
    521 	if (--ss->s_count == 0) {
    522 		struct pgrp *pg;
    523 
    524 		pg = pg_remove(ss->s_sid);
    525 		mutex_exit(proc_lock);
    526 
    527 		kmem_free(pg, sizeof(struct pgrp));
    528 		kmem_free(ss, sizeof(struct session));
    529 	} else {
    530 		mutex_exit(proc_lock);
    531 	}
    532 }
    533 
    534 /*
    535  * Check that the specified process group is in the session of the
    536  * specified process.
    537  * Treats -ve ids as process ids.
    538  * Used to validate TIOCSPGRP requests.
    539  */
    540 int
    541 pgid_in_session(struct proc *p, pid_t pg_id)
    542 {
    543 	struct pgrp *pgrp;
    544 	struct session *session;
    545 	int error;
    546 
    547 	mutex_enter(proc_lock);
    548 	if (pg_id < 0) {
    549 		struct proc *p1 = proc_find(-pg_id);
    550 		if (p1 == NULL) {
    551 			error = EINVAL;
    552 			goto fail;
    553 		}
    554 		pgrp = p1->p_pgrp;
    555 	} else {
    556 		pgrp = pgrp_find(pg_id);
    557 		if (pgrp == NULL) {
    558 			error = EINVAL;
    559 			goto fail;
    560 		}
    561 	}
    562 	session = pgrp->pg_session;
    563 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    564 fail:
    565 	mutex_exit(proc_lock);
    566 	return error;
    567 }
    568 
    569 /*
    570  * p_inferior: is p an inferior of q?
    571  */
    572 static inline bool
    573 p_inferior(struct proc *p, struct proc *q)
    574 {
    575 
    576 	KASSERT(mutex_owned(proc_lock));
    577 
    578 	for (; p != q; p = p->p_pptr)
    579 		if (p->p_pid == 0)
    580 			return false;
    581 	return true;
    582 }
    583 
    584 /*
    585  * proc_find: locate a process by the ID.
    586  *
    587  * => Must be called with proc_lock held.
    588  */
    589 proc_t *
    590 proc_find_raw(pid_t pid)
    591 {
    592 	struct pid_table *pt;
    593 	proc_t *p;
    594 
    595 	KASSERT(mutex_owned(proc_lock));
    596 	pt = &pid_table[pid & pid_tbl_mask];
    597 	p = pt->pt_proc;
    598 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    599 		return NULL;
    600 	}
    601 	return p;
    602 }
    603 
    604 proc_t *
    605 proc_find(pid_t pid)
    606 {
    607 	proc_t *p;
    608 
    609 	p = proc_find_raw(pid);
    610 	if (__predict_false(p == NULL)) {
    611 		return NULL;
    612 	}
    613 
    614 	/*
    615 	 * Only allow live processes to be found by PID.
    616 	 * XXX: p_stat might change, since unlocked.
    617 	 */
    618 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    619 		return p;
    620 	}
    621 	return NULL;
    622 }
    623 
    624 /*
    625  * pgrp_find: locate a process group by the ID.
    626  *
    627  * => Must be called with proc_lock held.
    628  */
    629 struct pgrp *
    630 pgrp_find(pid_t pgid)
    631 {
    632 	struct pgrp *pg;
    633 
    634 	KASSERT(mutex_owned(proc_lock));
    635 
    636 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    637 
    638 	/*
    639 	 * Cannot look up a process group that only exists because the
    640 	 * session has not died yet (traditional).
    641 	 */
    642 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    643 		return NULL;
    644 	}
    645 	return pg;
    646 }
    647 
    648 static void
    649 expand_pid_table(void)
    650 {
    651 	size_t pt_size, tsz;
    652 	struct pid_table *n_pt, *new_pt;
    653 	struct proc *proc;
    654 	struct pgrp *pgrp;
    655 	pid_t pid, rpid;
    656 	u_int i;
    657 	uint new_pt_mask;
    658 
    659 	pt_size = pid_tbl_mask + 1;
    660 	tsz = pt_size * 2 * sizeof(struct pid_table);
    661 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    662 	new_pt_mask = pt_size * 2 - 1;
    663 
    664 	mutex_enter(proc_lock);
    665 	if (pt_size != pid_tbl_mask + 1) {
    666 		/* Another process beat us to it... */
    667 		mutex_exit(proc_lock);
    668 		kmem_free(new_pt, tsz);
    669 		return;
    670 	}
    671 
    672 	/*
    673 	 * Copy entries from old table into new one.
    674 	 * If 'pid' is 'odd' we need to place in the upper half,
    675 	 * even pid's to the lower half.
    676 	 * Free items stay in the low half so we don't have to
    677 	 * fixup the reference to them.
    678 	 * We stuff free items on the front of the freelist
    679 	 * because we can't write to unmodified entries.
    680 	 * Processing the table backwards maintains a semblance
    681 	 * of issuing pid numbers that increase with time.
    682 	 */
    683 	i = pt_size - 1;
    684 	n_pt = new_pt + i;
    685 	for (; ; i--, n_pt--) {
    686 		proc = pid_table[i].pt_proc;
    687 		pgrp = pid_table[i].pt_pgrp;
    688 		if (!P_VALID(proc)) {
    689 			/* Up 'use count' so that link is valid */
    690 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    691 			rpid = 0;
    692 			proc = P_FREE(pid);
    693 			if (pgrp)
    694 				pid = pgrp->pg_id;
    695 		} else {
    696 			pid = pid_table[i].pt_pid;
    697 			rpid = pid;
    698 		}
    699 
    700 		/* Save entry in appropriate half of table */
    701 		n_pt[pid & pt_size].pt_proc = proc;
    702 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    703 		n_pt[pid & pt_size].pt_pid = rpid;
    704 
    705 		/* Put other piece on start of free list */
    706 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    707 		n_pt[pid & pt_size].pt_proc =
    708 			P_FREE((pid & ~pt_size) | next_free_pt);
    709 		n_pt[pid & pt_size].pt_pgrp = 0;
    710 		n_pt[pid & pt_size].pt_pid = 0;
    711 
    712 		next_free_pt = i | (pid & pt_size);
    713 		if (i == 0)
    714 			break;
    715 	}
    716 
    717 	/* Save old table size and switch tables */
    718 	tsz = pt_size * sizeof(struct pid_table);
    719 	n_pt = pid_table;
    720 	pid_table = new_pt;
    721 	pid_tbl_mask = new_pt_mask;
    722 
    723 	/*
    724 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    725 	 * allocated pids we need it to be larger!
    726 	 */
    727 	if (pid_tbl_mask > PID_MAX) {
    728 		pid_max = pid_tbl_mask * 2 + 1;
    729 		pid_alloc_lim |= pid_alloc_lim << 1;
    730 	} else
    731 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    732 
    733 	mutex_exit(proc_lock);
    734 	kmem_free(n_pt, tsz);
    735 }
    736 
    737 struct proc *
    738 proc_alloc(void)
    739 {
    740 	struct proc *p;
    741 
    742 	p = pool_cache_get(proc_cache, PR_WAITOK);
    743 	p->p_stat = SIDL;			/* protect against others */
    744 	proc_initspecific(p);
    745 	kdtrace_proc_ctor(NULL, p);
    746 	p->p_pid = -1;
    747 	proc_alloc_pid(p);
    748 	return p;
    749 }
    750 
    751 /*
    752  * proc_alloc_pid: allocate PID and record the given proc 'p' so that
    753  * proc_find_raw() can find it by the PID.
    754  */
    755 
    756 pid_t
    757 proc_alloc_pid(struct proc *p)
    758 {
    759 	struct pid_table *pt;
    760 	pid_t pid;
    761 	int nxt;
    762 
    763 	for (;;expand_pid_table()) {
    764 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    765 			/* ensure pids cycle through 2000+ values */
    766 			continue;
    767 		mutex_enter(proc_lock);
    768 		pt = &pid_table[next_free_pt];
    769 #ifdef DIAGNOSTIC
    770 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    771 			panic("proc_alloc: slot busy");
    772 #endif
    773 		nxt = P_NEXT(pt->pt_proc);
    774 		if (nxt & pid_tbl_mask)
    775 			break;
    776 		/* Table full - expand (NB last entry not used....) */
    777 		mutex_exit(proc_lock);
    778 	}
    779 
    780 	/* pid is 'saved use count' + 'size' + entry */
    781 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    782 	if ((uint)pid > (uint)pid_max)
    783 		pid &= pid_tbl_mask;
    784 	next_free_pt = nxt & pid_tbl_mask;
    785 
    786 	/* Grab table slot */
    787 	pt->pt_proc = p;
    788 
    789 	KASSERT(pt->pt_pid == 0);
    790 	pt->pt_pid = pid;
    791 	if (p->p_pid == -1) {
    792 		p->p_pid = pid;
    793 	}
    794 	pid_alloc_cnt++;
    795 	mutex_exit(proc_lock);
    796 
    797 	return pid;
    798 }
    799 
    800 /*
    801  * Free a process id - called from proc_free (in kern_exit.c)
    802  *
    803  * Called with the proc_lock held.
    804  */
    805 void
    806 proc_free_pid(pid_t pid)
    807 {
    808 	struct pid_table *pt;
    809 
    810 	KASSERT(mutex_owned(proc_lock));
    811 
    812 	pt = &pid_table[pid & pid_tbl_mask];
    813 
    814 	/* save pid use count in slot */
    815 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    816 	KASSERT(pt->pt_pid == pid);
    817 	pt->pt_pid = 0;
    818 
    819 	if (pt->pt_pgrp == NULL) {
    820 		/* link last freed entry onto ours */
    821 		pid &= pid_tbl_mask;
    822 		pt = &pid_table[last_free_pt];
    823 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    824 		pt->pt_pid = 0;
    825 		last_free_pt = pid;
    826 		pid_alloc_cnt--;
    827 	}
    828 
    829 	atomic_dec_uint(&nprocs);
    830 }
    831 
    832 void
    833 proc_free_mem(struct proc *p)
    834 {
    835 
    836 	kdtrace_proc_dtor(NULL, p);
    837 	pool_cache_put(proc_cache, p);
    838 }
    839 
    840 /*
    841  * proc_enterpgrp: move p to a new or existing process group (and session).
    842  *
    843  * If we are creating a new pgrp, the pgid should equal
    844  * the calling process' pid.
    845  * If is only valid to enter a process group that is in the session
    846  * of the process.
    847  * Also mksess should only be set if we are creating a process group
    848  *
    849  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    850  */
    851 int
    852 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    853 {
    854 	struct pgrp *new_pgrp, *pgrp;
    855 	struct session *sess;
    856 	struct proc *p;
    857 	int rval;
    858 	pid_t pg_id = NO_PGID;
    859 
    860 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    861 
    862 	/* Allocate data areas we might need before doing any validity checks */
    863 	mutex_enter(proc_lock);		/* Because pid_table might change */
    864 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    865 		mutex_exit(proc_lock);
    866 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    867 		mutex_enter(proc_lock);
    868 	} else
    869 		new_pgrp = NULL;
    870 	rval = EPERM;	/* most common error (to save typing) */
    871 
    872 	/* Check pgrp exists or can be created */
    873 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    874 	if (pgrp != NULL && pgrp->pg_id != pgid)
    875 		goto done;
    876 
    877 	/* Can only set another process under restricted circumstances. */
    878 	if (pid != curp->p_pid) {
    879 		/* Must exist and be one of our children... */
    880 		p = proc_find(pid);
    881 		if (p == NULL || !p_inferior(p, curp)) {
    882 			rval = ESRCH;
    883 			goto done;
    884 		}
    885 		/* ... in the same session... */
    886 		if (sess != NULL || p->p_session != curp->p_session)
    887 			goto done;
    888 		/* ... existing pgid must be in same session ... */
    889 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    890 			goto done;
    891 		/* ... and not done an exec. */
    892 		if (p->p_flag & PK_EXEC) {
    893 			rval = EACCES;
    894 			goto done;
    895 		}
    896 	} else {
    897 		/* ... setsid() cannot re-enter a pgrp */
    898 		if (mksess && (curp->p_pgid == curp->p_pid ||
    899 		    pgrp_find(curp->p_pid)))
    900 			goto done;
    901 		p = curp;
    902 	}
    903 
    904 	/* Changing the process group/session of a session
    905 	   leader is definitely off limits. */
    906 	if (SESS_LEADER(p)) {
    907 		if (sess == NULL && p->p_pgrp == pgrp)
    908 			/* unless it's a definite noop */
    909 			rval = 0;
    910 		goto done;
    911 	}
    912 
    913 	/* Can only create a process group with id of process */
    914 	if (pgrp == NULL && pgid != pid)
    915 		goto done;
    916 
    917 	/* Can only create a session if creating pgrp */
    918 	if (sess != NULL && pgrp != NULL)
    919 		goto done;
    920 
    921 	/* Check we allocated memory for a pgrp... */
    922 	if (pgrp == NULL && new_pgrp == NULL)
    923 		goto done;
    924 
    925 	/* Don't attach to 'zombie' pgrp */
    926 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    927 		goto done;
    928 
    929 	/* Expect to succeed now */
    930 	rval = 0;
    931 
    932 	if (pgrp == p->p_pgrp)
    933 		/* nothing to do */
    934 		goto done;
    935 
    936 	/* Ok all setup, link up required structures */
    937 
    938 	if (pgrp == NULL) {
    939 		pgrp = new_pgrp;
    940 		new_pgrp = NULL;
    941 		if (sess != NULL) {
    942 			sess->s_sid = p->p_pid;
    943 			sess->s_leader = p;
    944 			sess->s_count = 1;
    945 			sess->s_ttyvp = NULL;
    946 			sess->s_ttyp = NULL;
    947 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    948 			memcpy(sess->s_login, p->p_session->s_login,
    949 			    sizeof(sess->s_login));
    950 			p->p_lflag &= ~PL_CONTROLT;
    951 		} else {
    952 			sess = p->p_pgrp->pg_session;
    953 			proc_sesshold(sess);
    954 		}
    955 		pgrp->pg_session = sess;
    956 		sess = NULL;
    957 
    958 		pgrp->pg_id = pgid;
    959 		LIST_INIT(&pgrp->pg_members);
    960 #ifdef DIAGNOSTIC
    961 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    962 			panic("enterpgrp: pgrp table slot in use");
    963 		if (__predict_false(mksess && p != curp))
    964 			panic("enterpgrp: mksession and p != curproc");
    965 #endif
    966 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    967 		pgrp->pg_jobc = 0;
    968 	}
    969 
    970 	/*
    971 	 * Adjust eligibility of affected pgrps to participate in job control.
    972 	 * Increment eligibility counts before decrementing, otherwise we
    973 	 * could reach 0 spuriously during the first call.
    974 	 */
    975 	fixjobc(p, pgrp, 1);
    976 	fixjobc(p, p->p_pgrp, 0);
    977 
    978 	/* Interlock with ttread(). */
    979 	mutex_spin_enter(&tty_lock);
    980 
    981 	/* Move process to requested group. */
    982 	LIST_REMOVE(p, p_pglist);
    983 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    984 		/* defer delete until we've dumped the lock */
    985 		pg_id = p->p_pgrp->pg_id;
    986 	p->p_pgrp = pgrp;
    987 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    988 
    989 	/* Done with the swap; we can release the tty mutex. */
    990 	mutex_spin_exit(&tty_lock);
    991 
    992     done:
    993 	if (pg_id != NO_PGID) {
    994 		/* Releases proc_lock. */
    995 		pg_delete(pg_id);
    996 	} else {
    997 		mutex_exit(proc_lock);
    998 	}
    999 	if (sess != NULL)
   1000 		kmem_free(sess, sizeof(*sess));
   1001 	if (new_pgrp != NULL)
   1002 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1003 #ifdef DEBUG_PGRP
   1004 	if (__predict_false(rval))
   1005 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1006 			pid, pgid, mksess, curp->p_pid, rval);
   1007 #endif
   1008 	return rval;
   1009 }
   1010 
   1011 /*
   1012  * proc_leavepgrp: remove a process from its process group.
   1013  *  => must be called with the proc_lock held, which will be released;
   1014  */
   1015 void
   1016 proc_leavepgrp(struct proc *p)
   1017 {
   1018 	struct pgrp *pgrp;
   1019 
   1020 	KASSERT(mutex_owned(proc_lock));
   1021 
   1022 	/* Interlock with ttread() */
   1023 	mutex_spin_enter(&tty_lock);
   1024 	pgrp = p->p_pgrp;
   1025 	LIST_REMOVE(p, p_pglist);
   1026 	p->p_pgrp = NULL;
   1027 	mutex_spin_exit(&tty_lock);
   1028 
   1029 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1030 		/* Releases proc_lock. */
   1031 		pg_delete(pgrp->pg_id);
   1032 	} else {
   1033 		mutex_exit(proc_lock);
   1034 	}
   1035 }
   1036 
   1037 /*
   1038  * pg_remove: remove a process group from the table.
   1039  *  => must be called with the proc_lock held;
   1040  *  => returns process group to free;
   1041  */
   1042 static struct pgrp *
   1043 pg_remove(pid_t pg_id)
   1044 {
   1045 	struct pgrp *pgrp;
   1046 	struct pid_table *pt;
   1047 
   1048 	KASSERT(mutex_owned(proc_lock));
   1049 
   1050 	pt = &pid_table[pg_id & pid_tbl_mask];
   1051 	pgrp = pt->pt_pgrp;
   1052 
   1053 	KASSERT(pgrp != NULL);
   1054 	KASSERT(pgrp->pg_id == pg_id);
   1055 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1056 
   1057 	pt->pt_pgrp = NULL;
   1058 
   1059 	if (!P_VALID(pt->pt_proc)) {
   1060 		/* Orphaned pgrp, put slot onto free list. */
   1061 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1062 		pg_id &= pid_tbl_mask;
   1063 		pt = &pid_table[last_free_pt];
   1064 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1065 		KASSERT(pt->pt_pid == 0);
   1066 		last_free_pt = pg_id;
   1067 		pid_alloc_cnt--;
   1068 	}
   1069 	return pgrp;
   1070 }
   1071 
   1072 /*
   1073  * pg_delete: delete and free a process group.
   1074  *  => must be called with the proc_lock held, which will be released.
   1075  */
   1076 static void
   1077 pg_delete(pid_t pg_id)
   1078 {
   1079 	struct pgrp *pg;
   1080 	struct tty *ttyp;
   1081 	struct session *ss;
   1082 
   1083 	KASSERT(mutex_owned(proc_lock));
   1084 
   1085 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1086 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1087 		mutex_exit(proc_lock);
   1088 		return;
   1089 	}
   1090 
   1091 	ss = pg->pg_session;
   1092 
   1093 	/* Remove reference (if any) from tty to this process group */
   1094 	mutex_spin_enter(&tty_lock);
   1095 	ttyp = ss->s_ttyp;
   1096 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1097 		ttyp->t_pgrp = NULL;
   1098 		KASSERT(ttyp->t_session == ss);
   1099 	}
   1100 	mutex_spin_exit(&tty_lock);
   1101 
   1102 	/*
   1103 	 * The leading process group in a session is freed by proc_sessrele(),
   1104 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1105 	 */
   1106 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1107 	proc_sessrele(ss);
   1108 
   1109 	if (pg != NULL) {
   1110 		/* Free it, if was not done by proc_sessrele(). */
   1111 		kmem_free(pg, sizeof(struct pgrp));
   1112 	}
   1113 }
   1114 
   1115 /*
   1116  * Adjust pgrp jobc counters when specified process changes process group.
   1117  * We count the number of processes in each process group that "qualify"
   1118  * the group for terminal job control (those with a parent in a different
   1119  * process group of the same session).  If that count reaches zero, the
   1120  * process group becomes orphaned.  Check both the specified process'
   1121  * process group and that of its children.
   1122  * entering == 0 => p is leaving specified group.
   1123  * entering == 1 => p is entering specified group.
   1124  *
   1125  * Call with proc_lock held.
   1126  */
   1127 void
   1128 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1129 {
   1130 	struct pgrp *hispgrp;
   1131 	struct session *mysession = pgrp->pg_session;
   1132 	struct proc *child;
   1133 
   1134 	KASSERT(mutex_owned(proc_lock));
   1135 
   1136 	/*
   1137 	 * Check p's parent to see whether p qualifies its own process
   1138 	 * group; if so, adjust count for p's process group.
   1139 	 */
   1140 	hispgrp = p->p_pptr->p_pgrp;
   1141 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1142 		if (entering) {
   1143 			pgrp->pg_jobc++;
   1144 			p->p_lflag &= ~PL_ORPHANPG;
   1145 		} else if (--pgrp->pg_jobc == 0)
   1146 			orphanpg(pgrp);
   1147 	}
   1148 
   1149 	/*
   1150 	 * Check this process' children to see whether they qualify
   1151 	 * their process groups; if so, adjust counts for children's
   1152 	 * process groups.
   1153 	 */
   1154 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1155 		hispgrp = child->p_pgrp;
   1156 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1157 		    !P_ZOMBIE(child)) {
   1158 			if (entering) {
   1159 				child->p_lflag &= ~PL_ORPHANPG;
   1160 				hispgrp->pg_jobc++;
   1161 			} else if (--hispgrp->pg_jobc == 0)
   1162 				orphanpg(hispgrp);
   1163 		}
   1164 	}
   1165 }
   1166 
   1167 /*
   1168  * A process group has become orphaned;
   1169  * if there are any stopped processes in the group,
   1170  * hang-up all process in that group.
   1171  *
   1172  * Call with proc_lock held.
   1173  */
   1174 static void
   1175 orphanpg(struct pgrp *pg)
   1176 {
   1177 	struct proc *p;
   1178 
   1179 	KASSERT(mutex_owned(proc_lock));
   1180 
   1181 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1182 		if (p->p_stat == SSTOP) {
   1183 			p->p_lflag |= PL_ORPHANPG;
   1184 			psignal(p, SIGHUP);
   1185 			psignal(p, SIGCONT);
   1186 		}
   1187 	}
   1188 }
   1189 
   1190 #ifdef DDB
   1191 #include <ddb/db_output.h>
   1192 void pidtbl_dump(void);
   1193 void
   1194 pidtbl_dump(void)
   1195 {
   1196 	struct pid_table *pt;
   1197 	struct proc *p;
   1198 	struct pgrp *pgrp;
   1199 	int id;
   1200 
   1201 	db_printf("pid table %p size %x, next %x, last %x\n",
   1202 		pid_table, pid_tbl_mask+1,
   1203 		next_free_pt, last_free_pt);
   1204 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1205 		p = pt->pt_proc;
   1206 		if (!P_VALID(p) && !pt->pt_pgrp)
   1207 			continue;
   1208 		db_printf("  id %x: ", id);
   1209 		if (P_VALID(p))
   1210 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1211 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1212 		else
   1213 			db_printf("next %x use %x\n",
   1214 				P_NEXT(p) & pid_tbl_mask,
   1215 				P_NEXT(p) & ~pid_tbl_mask);
   1216 		if ((pgrp = pt->pt_pgrp)) {
   1217 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1218 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1219 			    pgrp->pg_session->s_count,
   1220 			    pgrp->pg_session->s_login);
   1221 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1222 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1223 			    LIST_FIRST(&pgrp->pg_members));
   1224 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1225 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1226 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1227 			}
   1228 		}
   1229 	}
   1230 }
   1231 #endif /* DDB */
   1232 
   1233 #ifdef KSTACK_CHECK_MAGIC
   1234 
   1235 #define	KSTACK_MAGIC	0xdeadbeaf
   1236 
   1237 /* XXX should be per process basis? */
   1238 static int	kstackleftmin = KSTACK_SIZE;
   1239 static int	kstackleftthres = KSTACK_SIZE / 8;
   1240 
   1241 void
   1242 kstack_setup_magic(const struct lwp *l)
   1243 {
   1244 	uint32_t *ip;
   1245 	uint32_t const *end;
   1246 
   1247 	KASSERT(l != NULL);
   1248 	KASSERT(l != &lwp0);
   1249 
   1250 	/*
   1251 	 * fill all the stack with magic number
   1252 	 * so that later modification on it can be detected.
   1253 	 */
   1254 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1255 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1256 	for (; ip < end; ip++) {
   1257 		*ip = KSTACK_MAGIC;
   1258 	}
   1259 }
   1260 
   1261 void
   1262 kstack_check_magic(const struct lwp *l)
   1263 {
   1264 	uint32_t const *ip, *end;
   1265 	int stackleft;
   1266 
   1267 	KASSERT(l != NULL);
   1268 
   1269 	/* don't check proc0 */ /*XXX*/
   1270 	if (l == &lwp0)
   1271 		return;
   1272 
   1273 #ifdef __MACHINE_STACK_GROWS_UP
   1274 	/* stack grows upwards (eg. hppa) */
   1275 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1276 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1277 	for (ip--; ip >= end; ip--)
   1278 		if (*ip != KSTACK_MAGIC)
   1279 			break;
   1280 
   1281 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1282 #else /* __MACHINE_STACK_GROWS_UP */
   1283 	/* stack grows downwards (eg. i386) */
   1284 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1285 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1286 	for (; ip < end; ip++)
   1287 		if (*ip != KSTACK_MAGIC)
   1288 			break;
   1289 
   1290 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1291 #endif /* __MACHINE_STACK_GROWS_UP */
   1292 
   1293 	if (kstackleftmin > stackleft) {
   1294 		kstackleftmin = stackleft;
   1295 		if (stackleft < kstackleftthres)
   1296 			printf("warning: kernel stack left %d bytes"
   1297 			    "(pid %u:lid %u)\n", stackleft,
   1298 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1299 	}
   1300 
   1301 	if (stackleft <= 0) {
   1302 		panic("magic on the top of kernel stack changed for "
   1303 		    "pid %u, lid %u: maybe kernel stack overflow",
   1304 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1305 	}
   1306 }
   1307 #endif /* KSTACK_CHECK_MAGIC */
   1308 
   1309 int
   1310 proclist_foreach_call(struct proclist *list,
   1311     int (*callback)(struct proc *, void *arg), void *arg)
   1312 {
   1313 	struct proc marker;
   1314 	struct proc *p;
   1315 	int ret = 0;
   1316 
   1317 	marker.p_flag = PK_MARKER;
   1318 	mutex_enter(proc_lock);
   1319 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1320 		if (p->p_flag & PK_MARKER) {
   1321 			p = LIST_NEXT(p, p_list);
   1322 			continue;
   1323 		}
   1324 		LIST_INSERT_AFTER(p, &marker, p_list);
   1325 		ret = (*callback)(p, arg);
   1326 		KASSERT(mutex_owned(proc_lock));
   1327 		p = LIST_NEXT(&marker, p_list);
   1328 		LIST_REMOVE(&marker, p_list);
   1329 	}
   1330 	mutex_exit(proc_lock);
   1331 
   1332 	return ret;
   1333 }
   1334 
   1335 int
   1336 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1337 {
   1338 
   1339 	/* XXXCDC: how should locking work here? */
   1340 
   1341 	/* curproc exception is for coredump. */
   1342 
   1343 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1344 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1345 		return EFAULT;
   1346 	}
   1347 
   1348 	uvmspace_addref(p->p_vmspace);
   1349 	*vm = p->p_vmspace;
   1350 
   1351 	return 0;
   1352 }
   1353 
   1354 /*
   1355  * Acquire a write lock on the process credential.
   1356  */
   1357 void
   1358 proc_crmod_enter(void)
   1359 {
   1360 	struct lwp *l = curlwp;
   1361 	struct proc *p = l->l_proc;
   1362 	kauth_cred_t oc;
   1363 
   1364 	/* Reset what needs to be reset in plimit. */
   1365 	if (p->p_limit->pl_corename != defcorename) {
   1366 		lim_setcorename(p, defcorename, 0);
   1367 	}
   1368 
   1369 	mutex_enter(p->p_lock);
   1370 
   1371 	/* Ensure the LWP cached credentials are up to date. */
   1372 	if ((oc = l->l_cred) != p->p_cred) {
   1373 		kauth_cred_hold(p->p_cred);
   1374 		l->l_cred = p->p_cred;
   1375 		kauth_cred_free(oc);
   1376 	}
   1377 }
   1378 
   1379 /*
   1380  * Set in a new process credential, and drop the write lock.  The credential
   1381  * must have a reference already.  Optionally, free a no-longer required
   1382  * credential.  The scheduler also needs to inspect p_cred, so we also
   1383  * briefly acquire the sched state mutex.
   1384  */
   1385 void
   1386 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1387 {
   1388 	struct lwp *l = curlwp, *l2;
   1389 	struct proc *p = l->l_proc;
   1390 	kauth_cred_t oc;
   1391 
   1392 	KASSERT(mutex_owned(p->p_lock));
   1393 
   1394 	/* Is there a new credential to set in? */
   1395 	if (scred != NULL) {
   1396 		p->p_cred = scred;
   1397 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1398 			if (l2 != l)
   1399 				l2->l_prflag |= LPR_CRMOD;
   1400 		}
   1401 
   1402 		/* Ensure the LWP cached credentials are up to date. */
   1403 		if ((oc = l->l_cred) != scred) {
   1404 			kauth_cred_hold(scred);
   1405 			l->l_cred = scred;
   1406 		}
   1407 	} else
   1408 		oc = NULL;	/* XXXgcc */
   1409 
   1410 	if (sugid) {
   1411 		/*
   1412 		 * Mark process as having changed credentials, stops
   1413 		 * tracing etc.
   1414 		 */
   1415 		p->p_flag |= PK_SUGID;
   1416 	}
   1417 
   1418 	mutex_exit(p->p_lock);
   1419 
   1420 	/* If there is a credential to be released, free it now. */
   1421 	if (fcred != NULL) {
   1422 		KASSERT(scred != NULL);
   1423 		kauth_cred_free(fcred);
   1424 		if (oc != scred)
   1425 			kauth_cred_free(oc);
   1426 	}
   1427 }
   1428 
   1429 /*
   1430  * proc_specific_key_create --
   1431  *	Create a key for subsystem proc-specific data.
   1432  */
   1433 int
   1434 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1435 {
   1436 
   1437 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1438 }
   1439 
   1440 /*
   1441  * proc_specific_key_delete --
   1442  *	Delete a key for subsystem proc-specific data.
   1443  */
   1444 void
   1445 proc_specific_key_delete(specificdata_key_t key)
   1446 {
   1447 
   1448 	specificdata_key_delete(proc_specificdata_domain, key);
   1449 }
   1450 
   1451 /*
   1452  * proc_initspecific --
   1453  *	Initialize a proc's specificdata container.
   1454  */
   1455 void
   1456 proc_initspecific(struct proc *p)
   1457 {
   1458 	int error __diagused;
   1459 
   1460 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1461 	KASSERT(error == 0);
   1462 }
   1463 
   1464 /*
   1465  * proc_finispecific --
   1466  *	Finalize a proc's specificdata container.
   1467  */
   1468 void
   1469 proc_finispecific(struct proc *p)
   1470 {
   1471 
   1472 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1473 }
   1474 
   1475 /*
   1476  * proc_getspecific --
   1477  *	Return proc-specific data corresponding to the specified key.
   1478  */
   1479 void *
   1480 proc_getspecific(struct proc *p, specificdata_key_t key)
   1481 {
   1482 
   1483 	return (specificdata_getspecific(proc_specificdata_domain,
   1484 					 &p->p_specdataref, key));
   1485 }
   1486 
   1487 /*
   1488  * proc_setspecific --
   1489  *	Set proc-specific data corresponding to the specified key.
   1490  */
   1491 void
   1492 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1493 {
   1494 
   1495 	specificdata_setspecific(proc_specificdata_domain,
   1496 				 &p->p_specdataref, key, data);
   1497 }
   1498 
   1499 int
   1500 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1501 {
   1502 	int r = 0;
   1503 
   1504 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1505 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1506 		/*
   1507 		 * suid proc of ours or proc not ours
   1508 		 */
   1509 		r = EPERM;
   1510 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1511 		/*
   1512 		 * sgid proc has sgid back to us temporarily
   1513 		 */
   1514 		r = EPERM;
   1515 	} else {
   1516 		/*
   1517 		 * our rgid must be in target's group list (ie,
   1518 		 * sub-processes started by a sgid process)
   1519 		 */
   1520 		int ismember = 0;
   1521 
   1522 		if (kauth_cred_ismember_gid(cred,
   1523 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1524 		    !ismember)
   1525 			r = EPERM;
   1526 	}
   1527 
   1528 	return (r);
   1529 }
   1530 
   1531 /*
   1532  * sysctl stuff
   1533  */
   1534 
   1535 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1536 
   1537 static const u_int sysctl_flagmap[] = {
   1538 	PK_ADVLOCK, P_ADVLOCK,
   1539 	PK_EXEC, P_EXEC,
   1540 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1541 	PK_32, P_32,
   1542 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1543 	PK_SUGID, P_SUGID,
   1544 	0
   1545 };
   1546 
   1547 static const u_int sysctl_sflagmap[] = {
   1548 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1549 	PS_WEXIT, P_WEXIT,
   1550 	PS_STOPFORK, P_STOPFORK,
   1551 	PS_STOPEXEC, P_STOPEXEC,
   1552 	PS_STOPEXIT, P_STOPEXIT,
   1553 	0
   1554 };
   1555 
   1556 static const u_int sysctl_slflagmap[] = {
   1557 	PSL_TRACED, P_TRACED,
   1558 	PSL_FSTRACE, P_FSTRACE,
   1559 	PSL_CHTRACED, P_CHTRACED,
   1560 	PSL_SYSCALL, P_SYSCALL,
   1561 	0
   1562 };
   1563 
   1564 static const u_int sysctl_lflagmap[] = {
   1565 	PL_CONTROLT, P_CONTROLT,
   1566 	PL_PPWAIT, P_PPWAIT,
   1567 	0
   1568 };
   1569 
   1570 static const u_int sysctl_stflagmap[] = {
   1571 	PST_PROFIL, P_PROFIL,
   1572 	0
   1573 
   1574 };
   1575 
   1576 /* used by kern_lwp also */
   1577 const u_int sysctl_lwpflagmap[] = {
   1578 	LW_SINTR, L_SINTR,
   1579 	LW_SYSTEM, L_SYSTEM,
   1580 	0
   1581 };
   1582 
   1583 /*
   1584  * Find the most ``active'' lwp of a process and return it for ps display
   1585  * purposes
   1586  */
   1587 static struct lwp *
   1588 proc_active_lwp(struct proc *p)
   1589 {
   1590 	static const int ostat[] = {
   1591 		0,
   1592 		2,	/* LSIDL */
   1593 		6,	/* LSRUN */
   1594 		5,	/* LSSLEEP */
   1595 		4,	/* LSSTOP */
   1596 		0,	/* LSZOMB */
   1597 		1,	/* LSDEAD */
   1598 		7,	/* LSONPROC */
   1599 		3	/* LSSUSPENDED */
   1600 	};
   1601 
   1602 	struct lwp *l, *lp = NULL;
   1603 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1604 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1605 		if (lp == NULL ||
   1606 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1607 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1608 		    l->l_cpticks > lp->l_cpticks)) {
   1609 			lp = l;
   1610 			continue;
   1611 		}
   1612 	}
   1613 	return lp;
   1614 }
   1615 
   1616 static int
   1617 sysctl_doeproc(SYSCTLFN_ARGS)
   1618 {
   1619 	union {
   1620 		struct kinfo_proc kproc;
   1621 		struct kinfo_proc2 kproc2;
   1622 	} *kbuf;
   1623 	struct proc *p, *next, *marker;
   1624 	char *where, *dp;
   1625 	int type, op, arg, error;
   1626 	u_int elem_size, kelem_size, elem_count;
   1627 	size_t buflen, needed;
   1628 	bool match, zombie, mmmbrains;
   1629 
   1630 	if (namelen == 1 && name[0] == CTL_QUERY)
   1631 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1632 
   1633 	dp = where = oldp;
   1634 	buflen = where != NULL ? *oldlenp : 0;
   1635 	error = 0;
   1636 	needed = 0;
   1637 	type = rnode->sysctl_num;
   1638 
   1639 	if (type == KERN_PROC) {
   1640 		if (namelen == 0)
   1641 			return EINVAL;
   1642 		switch (op = name[0]) {
   1643 		case KERN_PROC_ALL:
   1644 			if (namelen != 1)
   1645 				return EINVAL;
   1646 			arg = 0;
   1647 			break;
   1648 		default:
   1649 			if (namelen != 2)
   1650 				return EINVAL;
   1651 			arg = name[1];
   1652 			break;
   1653 		}
   1654 		elem_count = 0;	/* Ditto */
   1655 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1656 	} else {
   1657 		if (namelen != 4)
   1658 			return EINVAL;
   1659 		op = name[0];
   1660 		arg = name[1];
   1661 		elem_size = name[2];
   1662 		elem_count = name[3];
   1663 		kelem_size = sizeof(kbuf->kproc2);
   1664 	}
   1665 
   1666 	sysctl_unlock();
   1667 
   1668 	kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
   1669 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1670 	marker->p_flag = PK_MARKER;
   1671 
   1672 	mutex_enter(proc_lock);
   1673 	mmmbrains = false;
   1674 	for (p = LIST_FIRST(&allproc);; p = next) {
   1675 		if (p == NULL) {
   1676 			if (!mmmbrains) {
   1677 				p = LIST_FIRST(&zombproc);
   1678 				mmmbrains = true;
   1679 			}
   1680 			if (p == NULL)
   1681 				break;
   1682 		}
   1683 		next = LIST_NEXT(p, p_list);
   1684 		if ((p->p_flag & PK_MARKER) != 0)
   1685 			continue;
   1686 
   1687 		/*
   1688 		 * Skip embryonic processes.
   1689 		 */
   1690 		if (p->p_stat == SIDL)
   1691 			continue;
   1692 
   1693 		mutex_enter(p->p_lock);
   1694 		error = kauth_authorize_process(l->l_cred,
   1695 		    KAUTH_PROCESS_CANSEE, p,
   1696 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1697 		if (error != 0) {
   1698 			mutex_exit(p->p_lock);
   1699 			continue;
   1700 		}
   1701 
   1702 		/*
   1703 		 * TODO - make more efficient (see notes below).
   1704 		 * do by session.
   1705 		 */
   1706 		switch (op) {
   1707 		case KERN_PROC_PID:
   1708 			/* could do this with just a lookup */
   1709 			match = (p->p_pid == (pid_t)arg);
   1710 			break;
   1711 
   1712 		case KERN_PROC_PGRP:
   1713 			/* could do this by traversing pgrp */
   1714 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1715 			break;
   1716 
   1717 		case KERN_PROC_SESSION:
   1718 			match = (p->p_session->s_sid == (pid_t)arg);
   1719 			break;
   1720 
   1721 		case KERN_PROC_TTY:
   1722 			match = true;
   1723 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1724 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1725 				    p->p_session->s_ttyp == NULL ||
   1726 				    p->p_session->s_ttyvp != NULL) {
   1727 				    	match = false;
   1728 				}
   1729 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1730 			    p->p_session->s_ttyp == NULL) {
   1731 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1732 					match = false;
   1733 				}
   1734 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1735 				match = false;
   1736 			}
   1737 			break;
   1738 
   1739 		case KERN_PROC_UID:
   1740 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1741 			break;
   1742 
   1743 		case KERN_PROC_RUID:
   1744 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1745 			break;
   1746 
   1747 		case KERN_PROC_GID:
   1748 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1749 			break;
   1750 
   1751 		case KERN_PROC_RGID:
   1752 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1753 			break;
   1754 
   1755 		case KERN_PROC_ALL:
   1756 			match = true;
   1757 			/* allow everything */
   1758 			break;
   1759 
   1760 		default:
   1761 			error = EINVAL;
   1762 			mutex_exit(p->p_lock);
   1763 			goto cleanup;
   1764 		}
   1765 		if (!match) {
   1766 			mutex_exit(p->p_lock);
   1767 			continue;
   1768 		}
   1769 
   1770 		/*
   1771 		 * Grab a hold on the process.
   1772 		 */
   1773 		if (mmmbrains) {
   1774 			zombie = true;
   1775 		} else {
   1776 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1777 		}
   1778 		if (zombie) {
   1779 			LIST_INSERT_AFTER(p, marker, p_list);
   1780 		}
   1781 
   1782 		if (buflen >= elem_size &&
   1783 		    (type == KERN_PROC || elem_count > 0)) {
   1784 			if (type == KERN_PROC) {
   1785 				kbuf->kproc.kp_proc = *p;
   1786 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
   1787 			} else {
   1788 				fill_kproc2(p, &kbuf->kproc2, zombie);
   1789 				elem_count--;
   1790 			}
   1791 			mutex_exit(p->p_lock);
   1792 			mutex_exit(proc_lock);
   1793 			/*
   1794 			 * Copy out elem_size, but not larger than kelem_size
   1795 			 */
   1796 			error = sysctl_copyout(l, kbuf, dp,
   1797 			    min(kelem_size, elem_size));
   1798 			mutex_enter(proc_lock);
   1799 			if (error) {
   1800 				goto bah;
   1801 			}
   1802 			dp += elem_size;
   1803 			buflen -= elem_size;
   1804 		} else {
   1805 			mutex_exit(p->p_lock);
   1806 		}
   1807 		needed += elem_size;
   1808 
   1809 		/*
   1810 		 * Release reference to process.
   1811 		 */
   1812 	 	if (zombie) {
   1813 			next = LIST_NEXT(marker, p_list);
   1814  			LIST_REMOVE(marker, p_list);
   1815 		} else {
   1816 			rw_exit(&p->p_reflock);
   1817 			next = LIST_NEXT(p, p_list);
   1818 		}
   1819 	}
   1820 	mutex_exit(proc_lock);
   1821 
   1822 	if (where != NULL) {
   1823 		*oldlenp = dp - where;
   1824 		if (needed > *oldlenp) {
   1825 			error = ENOMEM;
   1826 			goto out;
   1827 		}
   1828 	} else {
   1829 		needed += KERN_PROCSLOP;
   1830 		*oldlenp = needed;
   1831 	}
   1832 	if (kbuf)
   1833 		kmem_free(kbuf, sizeof(*kbuf));
   1834 	if (marker)
   1835 		kmem_free(marker, sizeof(*marker));
   1836 	sysctl_relock();
   1837 	return 0;
   1838  bah:
   1839  	if (zombie)
   1840  		LIST_REMOVE(marker, p_list);
   1841 	else
   1842 		rw_exit(&p->p_reflock);
   1843  cleanup:
   1844 	mutex_exit(proc_lock);
   1845  out:
   1846 	if (kbuf)
   1847 		kmem_free(kbuf, sizeof(*kbuf));
   1848 	if (marker)
   1849 		kmem_free(marker, sizeof(*marker));
   1850 	sysctl_relock();
   1851 	return error;
   1852 }
   1853 
   1854 int
   1855 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1856 {
   1857 
   1858 #ifdef COMPAT_NETBSD32
   1859 	if (p->p_flag & PK_32) {
   1860 		struct ps_strings32 arginfo32;
   1861 
   1862 		int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
   1863 		    sizeof(arginfo32));
   1864 		if (error)
   1865 			return error;
   1866 		arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
   1867 		arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
   1868 		arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
   1869 		arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
   1870 		return 0;
   1871 	}
   1872 #endif
   1873 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1874 }
   1875 
   1876 static int
   1877 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1878 {
   1879 	void **cookie = cookie_;
   1880 	struct lwp *l = cookie[0];
   1881 	char *dst = cookie[1];
   1882 
   1883 	return sysctl_copyout(l, src, dst + off, len);
   1884 }
   1885 
   1886 /*
   1887  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1888  */
   1889 static int
   1890 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1891 {
   1892 	struct ps_strings pss;
   1893 	struct proc *p;
   1894 	pid_t pid;
   1895 	int type, error;
   1896 	void *cookie[2];
   1897 
   1898 	if (namelen == 1 && name[0] == CTL_QUERY)
   1899 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1900 
   1901 	if (newp != NULL || namelen != 2)
   1902 		return (EINVAL);
   1903 	pid = name[0];
   1904 	type = name[1];
   1905 
   1906 	switch (type) {
   1907 	case KERN_PROC_PATHNAME:
   1908 		sysctl_unlock();
   1909 		error = fill_pathname(l, pid, oldp, oldlenp);
   1910 		sysctl_relock();
   1911 		return error;
   1912 
   1913 	case KERN_PROC_ARGV:
   1914 	case KERN_PROC_NARGV:
   1915 	case KERN_PROC_ENV:
   1916 	case KERN_PROC_NENV:
   1917 		/* ok */
   1918 		break;
   1919 	default:
   1920 		return (EINVAL);
   1921 	}
   1922 
   1923 	sysctl_unlock();
   1924 
   1925 	/* check pid */
   1926 	mutex_enter(proc_lock);
   1927 	if ((p = proc_find(pid)) == NULL) {
   1928 		error = EINVAL;
   1929 		goto out_locked;
   1930 	}
   1931 	mutex_enter(p->p_lock);
   1932 
   1933 	/* Check permission. */
   1934 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1935 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1936 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1937 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1938 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1939 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1940 	else
   1941 		error = EINVAL; /* XXXGCC */
   1942 	if (error) {
   1943 		mutex_exit(p->p_lock);
   1944 		goto out_locked;
   1945 	}
   1946 
   1947 	if (oldp == NULL) {
   1948 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1949 			*oldlenp = sizeof (int);
   1950 		else
   1951 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1952 		error = 0;
   1953 		mutex_exit(p->p_lock);
   1954 		goto out_locked;
   1955 	}
   1956 
   1957 	/*
   1958 	 * Zombies don't have a stack, so we can't read their psstrings.
   1959 	 * System processes also don't have a user stack.
   1960 	 */
   1961 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1962 		error = EINVAL;
   1963 		mutex_exit(p->p_lock);
   1964 		goto out_locked;
   1965 	}
   1966 
   1967 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   1968 	mutex_exit(p->p_lock);
   1969 	if (error) {
   1970 		goto out_locked;
   1971 	}
   1972 	mutex_exit(proc_lock);
   1973 
   1974 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   1975 		int value;
   1976 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   1977 			if (type == KERN_PROC_NARGV)
   1978 				value = pss.ps_nargvstr;
   1979 			else
   1980 				value = pss.ps_nenvstr;
   1981 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   1982 			*oldlenp = sizeof(value);
   1983 		}
   1984 	} else {
   1985 		cookie[0] = l;
   1986 		cookie[1] = oldp;
   1987 		error = copy_procargs(p, type, oldlenp,
   1988 		    copy_procargs_sysctl_cb, cookie);
   1989 	}
   1990 	rw_exit(&p->p_reflock);
   1991 	sysctl_relock();
   1992 	return error;
   1993 
   1994 out_locked:
   1995 	mutex_exit(proc_lock);
   1996 	sysctl_relock();
   1997 	return error;
   1998 }
   1999 
   2000 int
   2001 copy_procargs(struct proc *p, int oid, size_t *limit,
   2002     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2003 {
   2004 	struct ps_strings pss;
   2005 	size_t len, i, loaded, entry_len;
   2006 	struct uio auio;
   2007 	struct iovec aiov;
   2008 	int error, argvlen;
   2009 	char *arg;
   2010 	char **argv;
   2011 	vaddr_t user_argv;
   2012 	struct vmspace *vmspace;
   2013 
   2014 	/*
   2015 	 * Allocate a temporary buffer to hold the argument vector and
   2016 	 * the arguments themselve.
   2017 	 */
   2018 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2019 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2020 
   2021 	/*
   2022 	 * Lock the process down in memory.
   2023 	 */
   2024 	vmspace = p->p_vmspace;
   2025 	uvmspace_addref(vmspace);
   2026 
   2027 	/*
   2028 	 * Read in the ps_strings structure.
   2029 	 */
   2030 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2031 		goto done;
   2032 
   2033 	/*
   2034 	 * Now read the address of the argument vector.
   2035 	 */
   2036 	switch (oid) {
   2037 	case KERN_PROC_ARGV:
   2038 		user_argv = (uintptr_t)pss.ps_argvstr;
   2039 		argvlen = pss.ps_nargvstr;
   2040 		break;
   2041 	case KERN_PROC_ENV:
   2042 		user_argv = (uintptr_t)pss.ps_envstr;
   2043 		argvlen = pss.ps_nenvstr;
   2044 		break;
   2045 	default:
   2046 		error = EINVAL;
   2047 		goto done;
   2048 	}
   2049 
   2050 	if (argvlen < 0) {
   2051 		error = EIO;
   2052 		goto done;
   2053 	}
   2054 
   2055 
   2056 	/*
   2057 	 * Now copy each string.
   2058 	 */
   2059 	len = 0; /* bytes written to user buffer */
   2060 	loaded = 0; /* bytes from argv already processed */
   2061 	i = 0; /* To make compiler happy */
   2062 	entry_len = PROC_PTRSZ(p);
   2063 
   2064 	for (; argvlen; --argvlen) {
   2065 		int finished = 0;
   2066 		vaddr_t base;
   2067 		size_t xlen;
   2068 		int j;
   2069 
   2070 		if (loaded == 0) {
   2071 			size_t rem = entry_len * argvlen;
   2072 			loaded = MIN(rem, PAGE_SIZE);
   2073 			error = copyin_vmspace(vmspace,
   2074 			    (const void *)user_argv, argv, loaded);
   2075 			if (error)
   2076 				break;
   2077 			user_argv += loaded;
   2078 			i = 0;
   2079 		}
   2080 
   2081 #ifdef COMPAT_NETBSD32
   2082 		if (p->p_flag & PK_32) {
   2083 			netbsd32_charp *argv32;
   2084 
   2085 			argv32 = (netbsd32_charp *)argv;
   2086 			base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
   2087 		} else
   2088 #endif
   2089 			base = (vaddr_t)argv[i++];
   2090 		loaded -= entry_len;
   2091 
   2092 		/*
   2093 		 * The program has messed around with its arguments,
   2094 		 * possibly deleting some, and replacing them with
   2095 		 * NULL's. Treat this as the last argument and not
   2096 		 * a failure.
   2097 		 */
   2098 		if (base == 0)
   2099 			break;
   2100 
   2101 		while (!finished) {
   2102 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2103 
   2104 			aiov.iov_base = arg;
   2105 			aiov.iov_len = PAGE_SIZE;
   2106 			auio.uio_iov = &aiov;
   2107 			auio.uio_iovcnt = 1;
   2108 			auio.uio_offset = base;
   2109 			auio.uio_resid = xlen;
   2110 			auio.uio_rw = UIO_READ;
   2111 			UIO_SETUP_SYSSPACE(&auio);
   2112 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2113 			if (error)
   2114 				goto done;
   2115 
   2116 			/* Look for the end of the string */
   2117 			for (j = 0; j < xlen; j++) {
   2118 				if (arg[j] == '\0') {
   2119 					xlen = j + 1;
   2120 					finished = 1;
   2121 					break;
   2122 				}
   2123 			}
   2124 
   2125 			/* Check for user buffer overflow */
   2126 			if (len + xlen > *limit) {
   2127 				finished = 1;
   2128 				if (len > *limit)
   2129 					xlen = 0;
   2130 				else
   2131 					xlen = *limit - len;
   2132 			}
   2133 
   2134 			/* Copyout the page */
   2135 			error = (*cb)(cookie, arg, len, xlen);
   2136 			if (error)
   2137 				goto done;
   2138 
   2139 			len += xlen;
   2140 			base += xlen;
   2141 		}
   2142 	}
   2143 	*limit = len;
   2144 
   2145 done:
   2146 	kmem_free(argv, PAGE_SIZE);
   2147 	kmem_free(arg, PAGE_SIZE);
   2148 	uvmspace_free(vmspace);
   2149 	return error;
   2150 }
   2151 
   2152 /*
   2153  * Fill in an eproc structure for the specified process.
   2154  */
   2155 void
   2156 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
   2157 {
   2158 	struct tty *tp;
   2159 	struct lwp *l;
   2160 
   2161 	KASSERT(mutex_owned(proc_lock));
   2162 	KASSERT(mutex_owned(p->p_lock));
   2163 
   2164 	memset(ep, 0, sizeof(*ep));
   2165 
   2166 	ep->e_paddr = p;
   2167 	ep->e_sess = p->p_session;
   2168 	if (p->p_cred) {
   2169 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2170 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2171 	}
   2172 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2173 		struct vmspace *vm = p->p_vmspace;
   2174 
   2175 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2176 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2177 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2178 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2179 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2180 
   2181 		/* Pick the primary (first) LWP */
   2182 		l = proc_active_lwp(p);
   2183 		KASSERT(l != NULL);
   2184 		lwp_lock(l);
   2185 		if (l->l_wchan)
   2186 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2187 		lwp_unlock(l);
   2188 	}
   2189 	ep->e_ppid = p->p_ppid;
   2190 	if (p->p_pgrp && p->p_session) {
   2191 		ep->e_pgid = p->p_pgrp->pg_id;
   2192 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2193 		ep->e_sid = p->p_session->s_sid;
   2194 		if ((p->p_lflag & PL_CONTROLT) &&
   2195 		    (tp = ep->e_sess->s_ttyp)) {
   2196 			ep->e_tdev = tp->t_dev;
   2197 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2198 			ep->e_tsess = tp->t_session;
   2199 		} else
   2200 			ep->e_tdev = (uint32_t)NODEV;
   2201 		ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
   2202 		if (SESS_LEADER(p))
   2203 			ep->e_flag |= EPROC_SLEADER;
   2204 		strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
   2205 	}
   2206 	ep->e_xsize = ep->e_xrssize = 0;
   2207 	ep->e_xccount = ep->e_xswrss = 0;
   2208 }
   2209 
   2210 /*
   2211  * Fill in a kinfo_proc2 structure for the specified process.
   2212  */
   2213 void
   2214 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
   2215 {
   2216 	struct tty *tp;
   2217 	struct lwp *l, *l2;
   2218 	struct timeval ut, st, rt;
   2219 	sigset_t ss1, ss2;
   2220 	struct rusage ru;
   2221 	struct vmspace *vm;
   2222 
   2223 	KASSERT(mutex_owned(proc_lock));
   2224 	KASSERT(mutex_owned(p->p_lock));
   2225 
   2226 	sigemptyset(&ss1);
   2227 	sigemptyset(&ss2);
   2228 	memset(ki, 0, sizeof(*ki));
   2229 
   2230 	ki->p_paddr = PTRTOUINT64(p);
   2231 	ki->p_fd = PTRTOUINT64(p->p_fd);
   2232 	ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
   2233 	ki->p_stats = PTRTOUINT64(p->p_stats);
   2234 	ki->p_limit = PTRTOUINT64(p->p_limit);
   2235 	ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
   2236 	ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
   2237 	ki->p_sess = PTRTOUINT64(p->p_session);
   2238 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2239 	ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
   2240 	ki->p_eflag = 0;
   2241 	ki->p_exitsig = p->p_exitsig;
   2242 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2243 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2244 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2245 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2246 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2247 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2248 	ki->p_pid = p->p_pid;
   2249 	ki->p_ppid = p->p_ppid;
   2250 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2251 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2252 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2253 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2254 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2255 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2256 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2257 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2258 	    min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2259 	    UIO_SYSSPACE);
   2260 
   2261 	ki->p_uticks = p->p_uticks;
   2262 	ki->p_sticks = p->p_sticks;
   2263 	ki->p_iticks = p->p_iticks;
   2264 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2265 	ki->p_tracep = PTRTOUINT64(p->p_tracep);
   2266 	ki->p_traceflag = p->p_traceflag;
   2267 
   2268 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2269 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2270 
   2271 	ki->p_cpticks = 0;
   2272 	ki->p_pctcpu = p->p_pctcpu;
   2273 	ki->p_estcpu = 0;
   2274 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2275 	ki->p_realstat = p->p_stat;
   2276 	ki->p_nice = p->p_nice;
   2277 	ki->p_xstat = P_WAITSTATUS(p);
   2278 	ki->p_acflag = p->p_acflag;
   2279 
   2280 	strncpy(ki->p_comm, p->p_comm,
   2281 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2282 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2283 
   2284 	ki->p_nlwps = p->p_nlwps;
   2285 	ki->p_realflag = ki->p_flag;
   2286 
   2287 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2288 		vm = p->p_vmspace;
   2289 		ki->p_vm_rssize = vm_resident_count(vm);
   2290 		ki->p_vm_tsize = vm->vm_tsize;
   2291 		ki->p_vm_dsize = vm->vm_dsize;
   2292 		ki->p_vm_ssize = vm->vm_ssize;
   2293 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2294 		/*
   2295 		 * Since the stack is initially mapped mostly with
   2296 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2297 		 * to skip the unused stack portion.
   2298 		 */
   2299 		ki->p_vm_msize =
   2300 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2301 
   2302 		/* Pick the primary (first) LWP */
   2303 		l = proc_active_lwp(p);
   2304 		KASSERT(l != NULL);
   2305 		lwp_lock(l);
   2306 		ki->p_nrlwps = p->p_nrlwps;
   2307 		ki->p_forw = 0;
   2308 		ki->p_back = 0;
   2309 		ki->p_addr = PTRTOUINT64(l->l_addr);
   2310 		ki->p_stat = l->l_stat;
   2311 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2312 		ki->p_swtime = l->l_swtime;
   2313 		ki->p_slptime = l->l_slptime;
   2314 		if (l->l_stat == LSONPROC)
   2315 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2316 		else
   2317 			ki->p_schedflags = 0;
   2318 		ki->p_priority = lwp_eprio(l);
   2319 		ki->p_usrpri = l->l_priority;
   2320 		if (l->l_wchan)
   2321 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2322 		ki->p_wchan = PTRTOUINT64(l->l_wchan);
   2323 		ki->p_cpuid = cpu_index(l->l_cpu);
   2324 		lwp_unlock(l);
   2325 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2326 			/* This is hardly correct, but... */
   2327 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2328 			sigplusset(&l->l_sigmask, &ss2);
   2329 			ki->p_cpticks += l->l_cpticks;
   2330 			ki->p_pctcpu += l->l_pctcpu;
   2331 			ki->p_estcpu += l->l_estcpu;
   2332 		}
   2333 	}
   2334 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2335 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2336 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2337 
   2338 	if (p->p_session != NULL) {
   2339 		ki->p_sid = p->p_session->s_sid;
   2340 		ki->p__pgid = p->p_pgrp->pg_id;
   2341 		if (p->p_session->s_ttyvp)
   2342 			ki->p_eflag |= EPROC_CTTY;
   2343 		if (SESS_LEADER(p))
   2344 			ki->p_eflag |= EPROC_SLEADER;
   2345 		strncpy(ki->p_login, p->p_session->s_login,
   2346 		    min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2347 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2348 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2349 			ki->p_tdev = tp->t_dev;
   2350 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2351 			ki->p_tsess = PTRTOUINT64(tp->t_session);
   2352 		} else {
   2353 			ki->p_tdev = (int32_t)NODEV;
   2354 		}
   2355 	}
   2356 
   2357 	if (!P_ZOMBIE(p) && !zombie) {
   2358 		ki->p_uvalid = 1;
   2359 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2360 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2361 
   2362 		calcru(p, &ut, &st, NULL, &rt);
   2363 		ki->p_rtime_sec = rt.tv_sec;
   2364 		ki->p_rtime_usec = rt.tv_usec;
   2365 		ki->p_uutime_sec = ut.tv_sec;
   2366 		ki->p_uutime_usec = ut.tv_usec;
   2367 		ki->p_ustime_sec = st.tv_sec;
   2368 		ki->p_ustime_usec = st.tv_usec;
   2369 
   2370 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2371 		ki->p_uru_nvcsw = 0;
   2372 		ki->p_uru_nivcsw = 0;
   2373 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2374 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2375 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2376 			ruadd(&ru, &l2->l_ru);
   2377 		}
   2378 		ki->p_uru_maxrss = ru.ru_maxrss;
   2379 		ki->p_uru_ixrss = ru.ru_ixrss;
   2380 		ki->p_uru_idrss = ru.ru_idrss;
   2381 		ki->p_uru_isrss = ru.ru_isrss;
   2382 		ki->p_uru_minflt = ru.ru_minflt;
   2383 		ki->p_uru_majflt = ru.ru_majflt;
   2384 		ki->p_uru_nswap = ru.ru_nswap;
   2385 		ki->p_uru_inblock = ru.ru_inblock;
   2386 		ki->p_uru_oublock = ru.ru_oublock;
   2387 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2388 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2389 		ki->p_uru_nsignals = ru.ru_nsignals;
   2390 
   2391 		timeradd(&p->p_stats->p_cru.ru_utime,
   2392 			 &p->p_stats->p_cru.ru_stime, &ut);
   2393 		ki->p_uctime_sec = ut.tv_sec;
   2394 		ki->p_uctime_usec = ut.tv_usec;
   2395 	}
   2396 }
   2397 
   2398 
   2399 int
   2400 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2401 {
   2402 	int error;
   2403 
   2404 	mutex_enter(proc_lock);
   2405 	if (pid == -1)
   2406 		*p = l->l_proc;
   2407 	else
   2408 		*p = proc_find(pid);
   2409 
   2410 	if (*p == NULL) {
   2411 		if (pid != -1)
   2412 			mutex_exit(proc_lock);
   2413 		return ESRCH;
   2414 	}
   2415 	if (pid != -1)
   2416 		mutex_enter((*p)->p_lock);
   2417 	mutex_exit(proc_lock);
   2418 
   2419 	error = kauth_authorize_process(l->l_cred,
   2420 	    KAUTH_PROCESS_CANSEE, *p,
   2421 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2422 	if (error) {
   2423 		if (pid != -1)
   2424 			mutex_exit((*p)->p_lock);
   2425 	}
   2426 	return error;
   2427 }
   2428 
   2429 static int
   2430 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2431 {
   2432 #ifndef _RUMPKERNEL
   2433 	int error;
   2434 	struct proc *p;
   2435 	char *path;
   2436 	size_t len;
   2437 
   2438 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2439 		return error;
   2440 
   2441 	if (p->p_textvp == NULL) {
   2442 		if (pid != -1)
   2443 			mutex_exit(p->p_lock);
   2444 		return ENOENT;
   2445 	}
   2446 
   2447 	path = PNBUF_GET();
   2448 	error = vnode_to_path(path, MAXPATHLEN / 2, p->p_textvp, l, p);
   2449 	if (error)
   2450 		goto out;
   2451 
   2452 	len = strlen(path) + 1;
   2453 	if (oldp != NULL) {
   2454 		error = sysctl_copyout(l, path, oldp, *oldlenp);
   2455 		if (error == 0 && *oldlenp < len)
   2456 			error = ENOSPC;
   2457 	}
   2458 	*oldlenp = len;
   2459 out:
   2460 	PNBUF_PUT(path);
   2461 	if (pid != -1)
   2462 		mutex_exit(p->p_lock);
   2463 	return error;
   2464 #else
   2465 	return 0;
   2466 #endif
   2467 }
   2468