kern_proc.c revision 1.209.2.1 1 /* $NetBSD: kern_proc.c,v 1.209.2.1 2018/03/15 09:12:06 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.209.2.1 2018/03/15 09:12:06 pgoyette Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
75 && !defined(_RUMPKERNEL)
76 #define COMPAT_NETBSD32
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/pool.h>
91 #include <sys/pset.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108
109 #include <uvm/uvm_extern.h>
110 #include <uvm/uvm.h>
111
112 #ifdef COMPAT_NETBSD32
113 #include <compat/netbsd32/netbsd32.h>
114 #endif
115
116 /*
117 * Process lists.
118 */
119
120 struct proclist allproc __cacheline_aligned;
121 struct proclist zombproc __cacheline_aligned;
122
123 kmutex_t * proc_lock __cacheline_aligned;
124
125 /*
126 * pid to proc lookup is done by indexing the pid_table array.
127 * Since pid numbers are only allocated when an empty slot
128 * has been found, there is no need to search any lists ever.
129 * (an orphaned pgrp will lock the slot, a session will lock
130 * the pgrp with the same number.)
131 * If the table is too small it is reallocated with twice the
132 * previous size and the entries 'unzipped' into the two halves.
133 * A linked list of free entries is passed through the pt_proc
134 * field of 'free' items - set odd to be an invalid ptr.
135 */
136
137 struct pid_table {
138 struct proc *pt_proc;
139 struct pgrp *pt_pgrp;
140 pid_t pt_pid;
141 };
142 #if 1 /* strongly typed cast - should be a noop */
143 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
144 #else
145 #define p2u(p) ((uint)p)
146 #endif
147 #define P_VALID(p) (!(p2u(p) & 1))
148 #define P_NEXT(p) (p2u(p) >> 1)
149 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
150
151 /*
152 * Table of process IDs (PIDs).
153 */
154 static struct pid_table *pid_table __read_mostly;
155
156 #define INITIAL_PID_TABLE_SIZE (1 << 5)
157
158 /* Table mask, threshold for growing and number of allocated PIDs. */
159 static u_int pid_tbl_mask __read_mostly;
160 static u_int pid_alloc_lim __read_mostly;
161 static u_int pid_alloc_cnt __cacheline_aligned;
162
163 /* Next free, last free and maximum PIDs. */
164 static u_int next_free_pt __cacheline_aligned;
165 static u_int last_free_pt __cacheline_aligned;
166 static pid_t pid_max __read_mostly;
167
168 /* Components of the first process -- never freed. */
169
170 extern struct emul emul_netbsd; /* defined in kern_exec.c */
171
172 struct session session0 = {
173 .s_count = 1,
174 .s_sid = 0,
175 };
176 struct pgrp pgrp0 = {
177 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
178 .pg_session = &session0,
179 };
180 filedesc_t filedesc0;
181 struct cwdinfo cwdi0 = {
182 .cwdi_cmask = CMASK,
183 .cwdi_refcnt = 1,
184 };
185 struct plimit limit0;
186 struct pstats pstat0;
187 struct vmspace vmspace0;
188 struct sigacts sigacts0;
189 struct proc proc0 = {
190 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
191 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
192 .p_nlwps = 1,
193 .p_nrlwps = 1,
194 .p_nlwpid = 1, /* must match lwp0.l_lid */
195 .p_pgrp = &pgrp0,
196 .p_comm = "system",
197 /*
198 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
199 * when they exit. init(8) can easily wait them out for us.
200 */
201 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
202 .p_stat = SACTIVE,
203 .p_nice = NZERO,
204 .p_emul = &emul_netbsd,
205 .p_cwdi = &cwdi0,
206 .p_limit = &limit0,
207 .p_fd = &filedesc0,
208 .p_vmspace = &vmspace0,
209 .p_stats = &pstat0,
210 .p_sigacts = &sigacts0,
211 #ifdef PROC0_MD_INITIALIZERS
212 PROC0_MD_INITIALIZERS
213 #endif
214 };
215 kauth_cred_t cred0;
216
217 static const int nofile = NOFILE;
218 static const int maxuprc = MAXUPRC;
219
220 static int sysctl_doeproc(SYSCTLFN_PROTO);
221 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
222
223 /*
224 * The process list descriptors, used during pid allocation and
225 * by sysctl. No locking on this data structure is needed since
226 * it is completely static.
227 */
228 const struct proclist_desc proclists[] = {
229 { &allproc },
230 { &zombproc },
231 { NULL },
232 };
233
234 static struct pgrp * pg_remove(pid_t);
235 static void pg_delete(pid_t);
236 static void orphanpg(struct pgrp *);
237
238 static specificdata_domain_t proc_specificdata_domain;
239
240 static pool_cache_t proc_cache;
241
242 static kauth_listener_t proc_listener;
243
244 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
245
246 static int
247 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
248 void *arg0, void *arg1, void *arg2, void *arg3)
249 {
250 struct proc *p;
251 int result;
252
253 result = KAUTH_RESULT_DEFER;
254 p = arg0;
255
256 switch (action) {
257 case KAUTH_PROCESS_CANSEE: {
258 enum kauth_process_req req;
259
260 req = (enum kauth_process_req)arg1;
261
262 switch (req) {
263 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
264 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
265 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
266 result = KAUTH_RESULT_ALLOW;
267
268 break;
269
270 case KAUTH_REQ_PROCESS_CANSEE_ENV:
271 if (kauth_cred_getuid(cred) !=
272 kauth_cred_getuid(p->p_cred) ||
273 kauth_cred_getuid(cred) !=
274 kauth_cred_getsvuid(p->p_cred))
275 break;
276
277 result = KAUTH_RESULT_ALLOW;
278
279 break;
280
281 default:
282 break;
283 }
284
285 break;
286 }
287
288 case KAUTH_PROCESS_FORK: {
289 int lnprocs = (int)(unsigned long)arg2;
290
291 /*
292 * Don't allow a nonprivileged user to use the last few
293 * processes. The variable lnprocs is the current number of
294 * processes, maxproc is the limit.
295 */
296 if (__predict_false((lnprocs >= maxproc - 5)))
297 break;
298
299 result = KAUTH_RESULT_ALLOW;
300
301 break;
302 }
303
304 case KAUTH_PROCESS_CORENAME:
305 case KAUTH_PROCESS_STOPFLAG:
306 if (proc_uidmatch(cred, p->p_cred) == 0)
307 result = KAUTH_RESULT_ALLOW;
308
309 break;
310
311 default:
312 break;
313 }
314
315 return result;
316 }
317
318 /*
319 * Initialize global process hashing structures.
320 */
321 void
322 procinit(void)
323 {
324 const struct proclist_desc *pd;
325 u_int i;
326 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
327
328 for (pd = proclists; pd->pd_list != NULL; pd++)
329 LIST_INIT(pd->pd_list);
330
331 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
332 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
333 * sizeof(struct pid_table), KM_SLEEP);
334 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
335 pid_max = PID_MAX;
336
337 /* Set free list running through table...
338 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
339 for (i = 0; i <= pid_tbl_mask; i++) {
340 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
341 pid_table[i].pt_pgrp = 0;
342 pid_table[i].pt_pid = 0;
343 }
344 /* slot 0 is just grabbed */
345 next_free_pt = 1;
346 /* Need to fix last entry. */
347 last_free_pt = pid_tbl_mask;
348 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
349 /* point at which we grow table - to avoid reusing pids too often */
350 pid_alloc_lim = pid_tbl_mask - 1;
351 #undef LINK_EMPTY
352
353 proc_specificdata_domain = specificdata_domain_create();
354 KASSERT(proc_specificdata_domain != NULL);
355
356 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
357 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
358
359 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
360 proc_listener_cb, NULL);
361 }
362
363 void
364 procinit_sysctl(void)
365 {
366 static struct sysctllog *clog;
367
368 sysctl_createv(&clog, 0, NULL, NULL,
369 CTLFLAG_PERMANENT,
370 CTLTYPE_NODE, "proc",
371 SYSCTL_DESCR("System-wide process information"),
372 sysctl_doeproc, 0, NULL, 0,
373 CTL_KERN, KERN_PROC, CTL_EOL);
374 sysctl_createv(&clog, 0, NULL, NULL,
375 CTLFLAG_PERMANENT,
376 CTLTYPE_NODE, "proc2",
377 SYSCTL_DESCR("Machine-independent process information"),
378 sysctl_doeproc, 0, NULL, 0,
379 CTL_KERN, KERN_PROC2, CTL_EOL);
380 sysctl_createv(&clog, 0, NULL, NULL,
381 CTLFLAG_PERMANENT,
382 CTLTYPE_NODE, "proc_args",
383 SYSCTL_DESCR("Process argument information"),
384 sysctl_kern_proc_args, 0, NULL, 0,
385 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
386
387 /*
388 "nodes" under these:
389
390 KERN_PROC_ALL
391 KERN_PROC_PID pid
392 KERN_PROC_PGRP pgrp
393 KERN_PROC_SESSION sess
394 KERN_PROC_TTY tty
395 KERN_PROC_UID uid
396 KERN_PROC_RUID uid
397 KERN_PROC_GID gid
398 KERN_PROC_RGID gid
399
400 all in all, probably not worth the effort...
401 */
402 }
403
404 /*
405 * Initialize process 0.
406 */
407 void
408 proc0_init(void)
409 {
410 struct proc *p;
411 struct pgrp *pg;
412 struct rlimit *rlim;
413 rlim_t lim;
414 int i;
415
416 p = &proc0;
417 pg = &pgrp0;
418
419 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
420 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
421 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
422
423 rw_init(&p->p_reflock);
424 cv_init(&p->p_waitcv, "wait");
425 cv_init(&p->p_lwpcv, "lwpwait");
426
427 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
428
429 pid_table[0].pt_proc = p;
430 LIST_INSERT_HEAD(&allproc, p, p_list);
431
432 pid_table[0].pt_pgrp = pg;
433 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
434
435 #ifdef __HAVE_SYSCALL_INTERN
436 (*p->p_emul->e_syscall_intern)(p);
437 #endif
438
439 /* Create credentials. */
440 cred0 = kauth_cred_alloc();
441 p->p_cred = cred0;
442
443 /* Create the CWD info. */
444 rw_init(&cwdi0.cwdi_lock);
445
446 /* Create the limits structures. */
447 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
448
449 rlim = limit0.pl_rlimit;
450 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
451 rlim[i].rlim_cur = RLIM_INFINITY;
452 rlim[i].rlim_max = RLIM_INFINITY;
453 }
454
455 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
456 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
457
458 rlim[RLIMIT_NPROC].rlim_max = maxproc;
459 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
460
461 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
462 rlim[RLIMIT_RSS].rlim_max = lim;
463 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
464 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
465
466 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
467 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
468
469 /* Note that default core name has zero length. */
470 limit0.pl_corename = defcorename;
471 limit0.pl_cnlen = 0;
472 limit0.pl_refcnt = 1;
473 limit0.pl_writeable = false;
474 limit0.pl_sv_limit = NULL;
475
476 /* Configure virtual memory system, set vm rlimits. */
477 uvm_init_limits(p);
478
479 /* Initialize file descriptor table for proc0. */
480 fd_init(&filedesc0);
481
482 /*
483 * Initialize proc0's vmspace, which uses the kernel pmap.
484 * All kernel processes (which never have user space mappings)
485 * share proc0's vmspace, and thus, the kernel pmap.
486 */
487 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
488 trunc_page(VM_MAXUSER_ADDRESS),
489 #ifdef __USE_TOPDOWN_VM
490 true
491 #else
492 false
493 #endif
494 );
495
496 /* Initialize signal state for proc0. XXX IPL_SCHED */
497 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
498 siginit(p);
499
500 proc_initspecific(p);
501 kdtrace_proc_ctor(NULL, p);
502 }
503
504 /*
505 * Session reference counting.
506 */
507
508 void
509 proc_sesshold(struct session *ss)
510 {
511
512 KASSERT(mutex_owned(proc_lock));
513 ss->s_count++;
514 }
515
516 void
517 proc_sessrele(struct session *ss)
518 {
519
520 KASSERT(mutex_owned(proc_lock));
521 /*
522 * We keep the pgrp with the same id as the session in order to
523 * stop a process being given the same pid. Since the pgrp holds
524 * a reference to the session, it must be a 'zombie' pgrp by now.
525 */
526 if (--ss->s_count == 0) {
527 struct pgrp *pg;
528
529 pg = pg_remove(ss->s_sid);
530 mutex_exit(proc_lock);
531
532 kmem_free(pg, sizeof(struct pgrp));
533 kmem_free(ss, sizeof(struct session));
534 } else {
535 mutex_exit(proc_lock);
536 }
537 }
538
539 /*
540 * Check that the specified process group is in the session of the
541 * specified process.
542 * Treats -ve ids as process ids.
543 * Used to validate TIOCSPGRP requests.
544 */
545 int
546 pgid_in_session(struct proc *p, pid_t pg_id)
547 {
548 struct pgrp *pgrp;
549 struct session *session;
550 int error;
551
552 mutex_enter(proc_lock);
553 if (pg_id < 0) {
554 struct proc *p1 = proc_find(-pg_id);
555 if (p1 == NULL) {
556 error = EINVAL;
557 goto fail;
558 }
559 pgrp = p1->p_pgrp;
560 } else {
561 pgrp = pgrp_find(pg_id);
562 if (pgrp == NULL) {
563 error = EINVAL;
564 goto fail;
565 }
566 }
567 session = pgrp->pg_session;
568 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
569 fail:
570 mutex_exit(proc_lock);
571 return error;
572 }
573
574 /*
575 * p_inferior: is p an inferior of q?
576 */
577 static inline bool
578 p_inferior(struct proc *p, struct proc *q)
579 {
580
581 KASSERT(mutex_owned(proc_lock));
582
583 for (; p != q; p = p->p_pptr)
584 if (p->p_pid == 0)
585 return false;
586 return true;
587 }
588
589 /*
590 * proc_find: locate a process by the ID.
591 *
592 * => Must be called with proc_lock held.
593 */
594 proc_t *
595 proc_find_raw(pid_t pid)
596 {
597 struct pid_table *pt;
598 proc_t *p;
599
600 KASSERT(mutex_owned(proc_lock));
601 pt = &pid_table[pid & pid_tbl_mask];
602 p = pt->pt_proc;
603 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
604 return NULL;
605 }
606 return p;
607 }
608
609 proc_t *
610 proc_find(pid_t pid)
611 {
612 proc_t *p;
613
614 p = proc_find_raw(pid);
615 if (__predict_false(p == NULL)) {
616 return NULL;
617 }
618
619 /*
620 * Only allow live processes to be found by PID.
621 * XXX: p_stat might change, since unlocked.
622 */
623 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
624 return p;
625 }
626 return NULL;
627 }
628
629 /*
630 * pgrp_find: locate a process group by the ID.
631 *
632 * => Must be called with proc_lock held.
633 */
634 struct pgrp *
635 pgrp_find(pid_t pgid)
636 {
637 struct pgrp *pg;
638
639 KASSERT(mutex_owned(proc_lock));
640
641 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
642
643 /*
644 * Cannot look up a process group that only exists because the
645 * session has not died yet (traditional).
646 */
647 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
648 return NULL;
649 }
650 return pg;
651 }
652
653 static void
654 expand_pid_table(void)
655 {
656 size_t pt_size, tsz;
657 struct pid_table *n_pt, *new_pt;
658 struct proc *proc;
659 struct pgrp *pgrp;
660 pid_t pid, rpid;
661 u_int i;
662 uint new_pt_mask;
663
664 pt_size = pid_tbl_mask + 1;
665 tsz = pt_size * 2 * sizeof(struct pid_table);
666 new_pt = kmem_alloc(tsz, KM_SLEEP);
667 new_pt_mask = pt_size * 2 - 1;
668
669 mutex_enter(proc_lock);
670 if (pt_size != pid_tbl_mask + 1) {
671 /* Another process beat us to it... */
672 mutex_exit(proc_lock);
673 kmem_free(new_pt, tsz);
674 return;
675 }
676
677 /*
678 * Copy entries from old table into new one.
679 * If 'pid' is 'odd' we need to place in the upper half,
680 * even pid's to the lower half.
681 * Free items stay in the low half so we don't have to
682 * fixup the reference to them.
683 * We stuff free items on the front of the freelist
684 * because we can't write to unmodified entries.
685 * Processing the table backwards maintains a semblance
686 * of issuing pid numbers that increase with time.
687 */
688 i = pt_size - 1;
689 n_pt = new_pt + i;
690 for (; ; i--, n_pt--) {
691 proc = pid_table[i].pt_proc;
692 pgrp = pid_table[i].pt_pgrp;
693 if (!P_VALID(proc)) {
694 /* Up 'use count' so that link is valid */
695 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
696 rpid = 0;
697 proc = P_FREE(pid);
698 if (pgrp)
699 pid = pgrp->pg_id;
700 } else {
701 pid = pid_table[i].pt_pid;
702 rpid = pid;
703 }
704
705 /* Save entry in appropriate half of table */
706 n_pt[pid & pt_size].pt_proc = proc;
707 n_pt[pid & pt_size].pt_pgrp = pgrp;
708 n_pt[pid & pt_size].pt_pid = rpid;
709
710 /* Put other piece on start of free list */
711 pid = (pid ^ pt_size) & ~pid_tbl_mask;
712 n_pt[pid & pt_size].pt_proc =
713 P_FREE((pid & ~pt_size) | next_free_pt);
714 n_pt[pid & pt_size].pt_pgrp = 0;
715 n_pt[pid & pt_size].pt_pid = 0;
716
717 next_free_pt = i | (pid & pt_size);
718 if (i == 0)
719 break;
720 }
721
722 /* Save old table size and switch tables */
723 tsz = pt_size * sizeof(struct pid_table);
724 n_pt = pid_table;
725 pid_table = new_pt;
726 pid_tbl_mask = new_pt_mask;
727
728 /*
729 * pid_max starts as PID_MAX (= 30000), once we have 16384
730 * allocated pids we need it to be larger!
731 */
732 if (pid_tbl_mask > PID_MAX) {
733 pid_max = pid_tbl_mask * 2 + 1;
734 pid_alloc_lim |= pid_alloc_lim << 1;
735 } else
736 pid_alloc_lim <<= 1; /* doubles number of free slots... */
737
738 mutex_exit(proc_lock);
739 kmem_free(n_pt, tsz);
740 }
741
742 struct proc *
743 proc_alloc(void)
744 {
745 struct proc *p;
746
747 p = pool_cache_get(proc_cache, PR_WAITOK);
748 p->p_stat = SIDL; /* protect against others */
749 proc_initspecific(p);
750 kdtrace_proc_ctor(NULL, p);
751 p->p_pid = -1;
752 proc_alloc_pid(p);
753 return p;
754 }
755
756 /*
757 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
758 * proc_find_raw() can find it by the PID.
759 */
760
761 pid_t
762 proc_alloc_pid(struct proc *p)
763 {
764 struct pid_table *pt;
765 pid_t pid;
766 int nxt;
767
768 for (;;expand_pid_table()) {
769 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
770 /* ensure pids cycle through 2000+ values */
771 continue;
772 mutex_enter(proc_lock);
773 pt = &pid_table[next_free_pt];
774 #ifdef DIAGNOSTIC
775 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
776 panic("proc_alloc: slot busy");
777 #endif
778 nxt = P_NEXT(pt->pt_proc);
779 if (nxt & pid_tbl_mask)
780 break;
781 /* Table full - expand (NB last entry not used....) */
782 mutex_exit(proc_lock);
783 }
784
785 /* pid is 'saved use count' + 'size' + entry */
786 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
787 if ((uint)pid > (uint)pid_max)
788 pid &= pid_tbl_mask;
789 next_free_pt = nxt & pid_tbl_mask;
790
791 /* Grab table slot */
792 pt->pt_proc = p;
793
794 KASSERT(pt->pt_pid == 0);
795 pt->pt_pid = pid;
796 if (p->p_pid == -1) {
797 p->p_pid = pid;
798 }
799 pid_alloc_cnt++;
800 mutex_exit(proc_lock);
801
802 return pid;
803 }
804
805 /*
806 * Free a process id - called from proc_free (in kern_exit.c)
807 *
808 * Called with the proc_lock held.
809 */
810 void
811 proc_free_pid(pid_t pid)
812 {
813 struct pid_table *pt;
814
815 KASSERT(mutex_owned(proc_lock));
816
817 pt = &pid_table[pid & pid_tbl_mask];
818
819 /* save pid use count in slot */
820 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
821 KASSERT(pt->pt_pid == pid);
822 pt->pt_pid = 0;
823
824 if (pt->pt_pgrp == NULL) {
825 /* link last freed entry onto ours */
826 pid &= pid_tbl_mask;
827 pt = &pid_table[last_free_pt];
828 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
829 pt->pt_pid = 0;
830 last_free_pt = pid;
831 pid_alloc_cnt--;
832 }
833
834 atomic_dec_uint(&nprocs);
835 }
836
837 void
838 proc_free_mem(struct proc *p)
839 {
840
841 kdtrace_proc_dtor(NULL, p);
842 pool_cache_put(proc_cache, p);
843 }
844
845 /*
846 * proc_enterpgrp: move p to a new or existing process group (and session).
847 *
848 * If we are creating a new pgrp, the pgid should equal
849 * the calling process' pid.
850 * If is only valid to enter a process group that is in the session
851 * of the process.
852 * Also mksess should only be set if we are creating a process group
853 *
854 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
855 */
856 int
857 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
858 {
859 struct pgrp *new_pgrp, *pgrp;
860 struct session *sess;
861 struct proc *p;
862 int rval;
863 pid_t pg_id = NO_PGID;
864
865 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
866
867 /* Allocate data areas we might need before doing any validity checks */
868 mutex_enter(proc_lock); /* Because pid_table might change */
869 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
870 mutex_exit(proc_lock);
871 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
872 mutex_enter(proc_lock);
873 } else
874 new_pgrp = NULL;
875 rval = EPERM; /* most common error (to save typing) */
876
877 /* Check pgrp exists or can be created */
878 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
879 if (pgrp != NULL && pgrp->pg_id != pgid)
880 goto done;
881
882 /* Can only set another process under restricted circumstances. */
883 if (pid != curp->p_pid) {
884 /* Must exist and be one of our children... */
885 p = proc_find(pid);
886 if (p == NULL || !p_inferior(p, curp)) {
887 rval = ESRCH;
888 goto done;
889 }
890 /* ... in the same session... */
891 if (sess != NULL || p->p_session != curp->p_session)
892 goto done;
893 /* ... existing pgid must be in same session ... */
894 if (pgrp != NULL && pgrp->pg_session != p->p_session)
895 goto done;
896 /* ... and not done an exec. */
897 if (p->p_flag & PK_EXEC) {
898 rval = EACCES;
899 goto done;
900 }
901 } else {
902 /* ... setsid() cannot re-enter a pgrp */
903 if (mksess && (curp->p_pgid == curp->p_pid ||
904 pgrp_find(curp->p_pid)))
905 goto done;
906 p = curp;
907 }
908
909 /* Changing the process group/session of a session
910 leader is definitely off limits. */
911 if (SESS_LEADER(p)) {
912 if (sess == NULL && p->p_pgrp == pgrp)
913 /* unless it's a definite noop */
914 rval = 0;
915 goto done;
916 }
917
918 /* Can only create a process group with id of process */
919 if (pgrp == NULL && pgid != pid)
920 goto done;
921
922 /* Can only create a session if creating pgrp */
923 if (sess != NULL && pgrp != NULL)
924 goto done;
925
926 /* Check we allocated memory for a pgrp... */
927 if (pgrp == NULL && new_pgrp == NULL)
928 goto done;
929
930 /* Don't attach to 'zombie' pgrp */
931 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
932 goto done;
933
934 /* Expect to succeed now */
935 rval = 0;
936
937 if (pgrp == p->p_pgrp)
938 /* nothing to do */
939 goto done;
940
941 /* Ok all setup, link up required structures */
942
943 if (pgrp == NULL) {
944 pgrp = new_pgrp;
945 new_pgrp = NULL;
946 if (sess != NULL) {
947 sess->s_sid = p->p_pid;
948 sess->s_leader = p;
949 sess->s_count = 1;
950 sess->s_ttyvp = NULL;
951 sess->s_ttyp = NULL;
952 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
953 memcpy(sess->s_login, p->p_session->s_login,
954 sizeof(sess->s_login));
955 p->p_lflag &= ~PL_CONTROLT;
956 } else {
957 sess = p->p_pgrp->pg_session;
958 proc_sesshold(sess);
959 }
960 pgrp->pg_session = sess;
961 sess = NULL;
962
963 pgrp->pg_id = pgid;
964 LIST_INIT(&pgrp->pg_members);
965 #ifdef DIAGNOSTIC
966 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
967 panic("enterpgrp: pgrp table slot in use");
968 if (__predict_false(mksess && p != curp))
969 panic("enterpgrp: mksession and p != curproc");
970 #endif
971 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
972 pgrp->pg_jobc = 0;
973 }
974
975 /*
976 * Adjust eligibility of affected pgrps to participate in job control.
977 * Increment eligibility counts before decrementing, otherwise we
978 * could reach 0 spuriously during the first call.
979 */
980 fixjobc(p, pgrp, 1);
981 fixjobc(p, p->p_pgrp, 0);
982
983 /* Interlock with ttread(). */
984 mutex_spin_enter(&tty_lock);
985
986 /* Move process to requested group. */
987 LIST_REMOVE(p, p_pglist);
988 if (LIST_EMPTY(&p->p_pgrp->pg_members))
989 /* defer delete until we've dumped the lock */
990 pg_id = p->p_pgrp->pg_id;
991 p->p_pgrp = pgrp;
992 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
993
994 /* Done with the swap; we can release the tty mutex. */
995 mutex_spin_exit(&tty_lock);
996
997 done:
998 if (pg_id != NO_PGID) {
999 /* Releases proc_lock. */
1000 pg_delete(pg_id);
1001 } else {
1002 mutex_exit(proc_lock);
1003 }
1004 if (sess != NULL)
1005 kmem_free(sess, sizeof(*sess));
1006 if (new_pgrp != NULL)
1007 kmem_free(new_pgrp, sizeof(*new_pgrp));
1008 #ifdef DEBUG_PGRP
1009 if (__predict_false(rval))
1010 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1011 pid, pgid, mksess, curp->p_pid, rval);
1012 #endif
1013 return rval;
1014 }
1015
1016 /*
1017 * proc_leavepgrp: remove a process from its process group.
1018 * => must be called with the proc_lock held, which will be released;
1019 */
1020 void
1021 proc_leavepgrp(struct proc *p)
1022 {
1023 struct pgrp *pgrp;
1024
1025 KASSERT(mutex_owned(proc_lock));
1026
1027 /* Interlock with ttread() */
1028 mutex_spin_enter(&tty_lock);
1029 pgrp = p->p_pgrp;
1030 LIST_REMOVE(p, p_pglist);
1031 p->p_pgrp = NULL;
1032 mutex_spin_exit(&tty_lock);
1033
1034 if (LIST_EMPTY(&pgrp->pg_members)) {
1035 /* Releases proc_lock. */
1036 pg_delete(pgrp->pg_id);
1037 } else {
1038 mutex_exit(proc_lock);
1039 }
1040 }
1041
1042 /*
1043 * pg_remove: remove a process group from the table.
1044 * => must be called with the proc_lock held;
1045 * => returns process group to free;
1046 */
1047 static struct pgrp *
1048 pg_remove(pid_t pg_id)
1049 {
1050 struct pgrp *pgrp;
1051 struct pid_table *pt;
1052
1053 KASSERT(mutex_owned(proc_lock));
1054
1055 pt = &pid_table[pg_id & pid_tbl_mask];
1056 pgrp = pt->pt_pgrp;
1057
1058 KASSERT(pgrp != NULL);
1059 KASSERT(pgrp->pg_id == pg_id);
1060 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1061
1062 pt->pt_pgrp = NULL;
1063
1064 if (!P_VALID(pt->pt_proc)) {
1065 /* Orphaned pgrp, put slot onto free list. */
1066 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1067 pg_id &= pid_tbl_mask;
1068 pt = &pid_table[last_free_pt];
1069 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1070 KASSERT(pt->pt_pid == 0);
1071 last_free_pt = pg_id;
1072 pid_alloc_cnt--;
1073 }
1074 return pgrp;
1075 }
1076
1077 /*
1078 * pg_delete: delete and free a process group.
1079 * => must be called with the proc_lock held, which will be released.
1080 */
1081 static void
1082 pg_delete(pid_t pg_id)
1083 {
1084 struct pgrp *pg;
1085 struct tty *ttyp;
1086 struct session *ss;
1087
1088 KASSERT(mutex_owned(proc_lock));
1089
1090 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1091 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1092 mutex_exit(proc_lock);
1093 return;
1094 }
1095
1096 ss = pg->pg_session;
1097
1098 /* Remove reference (if any) from tty to this process group */
1099 mutex_spin_enter(&tty_lock);
1100 ttyp = ss->s_ttyp;
1101 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1102 ttyp->t_pgrp = NULL;
1103 KASSERT(ttyp->t_session == ss);
1104 }
1105 mutex_spin_exit(&tty_lock);
1106
1107 /*
1108 * The leading process group in a session is freed by proc_sessrele(),
1109 * if last reference. Note: proc_sessrele() releases proc_lock.
1110 */
1111 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1112 proc_sessrele(ss);
1113
1114 if (pg != NULL) {
1115 /* Free it, if was not done by proc_sessrele(). */
1116 kmem_free(pg, sizeof(struct pgrp));
1117 }
1118 }
1119
1120 /*
1121 * Adjust pgrp jobc counters when specified process changes process group.
1122 * We count the number of processes in each process group that "qualify"
1123 * the group for terminal job control (those with a parent in a different
1124 * process group of the same session). If that count reaches zero, the
1125 * process group becomes orphaned. Check both the specified process'
1126 * process group and that of its children.
1127 * entering == 0 => p is leaving specified group.
1128 * entering == 1 => p is entering specified group.
1129 *
1130 * Call with proc_lock held.
1131 */
1132 void
1133 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1134 {
1135 struct pgrp *hispgrp;
1136 struct session *mysession = pgrp->pg_session;
1137 struct proc *child;
1138
1139 KASSERT(mutex_owned(proc_lock));
1140
1141 /*
1142 * Check p's parent to see whether p qualifies its own process
1143 * group; if so, adjust count for p's process group.
1144 */
1145 hispgrp = p->p_pptr->p_pgrp;
1146 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1147 if (entering) {
1148 pgrp->pg_jobc++;
1149 p->p_lflag &= ~PL_ORPHANPG;
1150 } else if (--pgrp->pg_jobc == 0)
1151 orphanpg(pgrp);
1152 }
1153
1154 /*
1155 * Check this process' children to see whether they qualify
1156 * their process groups; if so, adjust counts for children's
1157 * process groups.
1158 */
1159 LIST_FOREACH(child, &p->p_children, p_sibling) {
1160 hispgrp = child->p_pgrp;
1161 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1162 !P_ZOMBIE(child)) {
1163 if (entering) {
1164 child->p_lflag &= ~PL_ORPHANPG;
1165 hispgrp->pg_jobc++;
1166 } else if (--hispgrp->pg_jobc == 0)
1167 orphanpg(hispgrp);
1168 }
1169 }
1170 }
1171
1172 /*
1173 * A process group has become orphaned;
1174 * if there are any stopped processes in the group,
1175 * hang-up all process in that group.
1176 *
1177 * Call with proc_lock held.
1178 */
1179 static void
1180 orphanpg(struct pgrp *pg)
1181 {
1182 struct proc *p;
1183
1184 KASSERT(mutex_owned(proc_lock));
1185
1186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1187 if (p->p_stat == SSTOP) {
1188 p->p_lflag |= PL_ORPHANPG;
1189 psignal(p, SIGHUP);
1190 psignal(p, SIGCONT);
1191 }
1192 }
1193 }
1194
1195 #ifdef DDB
1196 #include <ddb/db_output.h>
1197 void pidtbl_dump(void);
1198 void
1199 pidtbl_dump(void)
1200 {
1201 struct pid_table *pt;
1202 struct proc *p;
1203 struct pgrp *pgrp;
1204 int id;
1205
1206 db_printf("pid table %p size %x, next %x, last %x\n",
1207 pid_table, pid_tbl_mask+1,
1208 next_free_pt, last_free_pt);
1209 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1210 p = pt->pt_proc;
1211 if (!P_VALID(p) && !pt->pt_pgrp)
1212 continue;
1213 db_printf(" id %x: ", id);
1214 if (P_VALID(p))
1215 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1216 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1217 else
1218 db_printf("next %x use %x\n",
1219 P_NEXT(p) & pid_tbl_mask,
1220 P_NEXT(p) & ~pid_tbl_mask);
1221 if ((pgrp = pt->pt_pgrp)) {
1222 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1223 pgrp->pg_session, pgrp->pg_session->s_sid,
1224 pgrp->pg_session->s_count,
1225 pgrp->pg_session->s_login);
1226 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1227 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1228 LIST_FIRST(&pgrp->pg_members));
1229 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1230 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1231 p->p_pid, p, p->p_pgrp, p->p_comm);
1232 }
1233 }
1234 }
1235 }
1236 #endif /* DDB */
1237
1238 #ifdef KSTACK_CHECK_MAGIC
1239
1240 #define KSTACK_MAGIC 0xdeadbeaf
1241
1242 /* XXX should be per process basis? */
1243 static int kstackleftmin = KSTACK_SIZE;
1244 static int kstackleftthres = KSTACK_SIZE / 8;
1245
1246 void
1247 kstack_setup_magic(const struct lwp *l)
1248 {
1249 uint32_t *ip;
1250 uint32_t const *end;
1251
1252 KASSERT(l != NULL);
1253 KASSERT(l != &lwp0);
1254
1255 /*
1256 * fill all the stack with magic number
1257 * so that later modification on it can be detected.
1258 */
1259 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1260 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1261 for (; ip < end; ip++) {
1262 *ip = KSTACK_MAGIC;
1263 }
1264 }
1265
1266 void
1267 kstack_check_magic(const struct lwp *l)
1268 {
1269 uint32_t const *ip, *end;
1270 int stackleft;
1271
1272 KASSERT(l != NULL);
1273
1274 /* don't check proc0 */ /*XXX*/
1275 if (l == &lwp0)
1276 return;
1277
1278 #ifdef __MACHINE_STACK_GROWS_UP
1279 /* stack grows upwards (eg. hppa) */
1280 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1281 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1282 for (ip--; ip >= end; ip--)
1283 if (*ip != KSTACK_MAGIC)
1284 break;
1285
1286 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1287 #else /* __MACHINE_STACK_GROWS_UP */
1288 /* stack grows downwards (eg. i386) */
1289 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1290 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1291 for (; ip < end; ip++)
1292 if (*ip != KSTACK_MAGIC)
1293 break;
1294
1295 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1296 #endif /* __MACHINE_STACK_GROWS_UP */
1297
1298 if (kstackleftmin > stackleft) {
1299 kstackleftmin = stackleft;
1300 if (stackleft < kstackleftthres)
1301 printf("warning: kernel stack left %d bytes"
1302 "(pid %u:lid %u)\n", stackleft,
1303 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1304 }
1305
1306 if (stackleft <= 0) {
1307 panic("magic on the top of kernel stack changed for "
1308 "pid %u, lid %u: maybe kernel stack overflow",
1309 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1310 }
1311 }
1312 #endif /* KSTACK_CHECK_MAGIC */
1313
1314 int
1315 proclist_foreach_call(struct proclist *list,
1316 int (*callback)(struct proc *, void *arg), void *arg)
1317 {
1318 struct proc marker;
1319 struct proc *p;
1320 int ret = 0;
1321
1322 marker.p_flag = PK_MARKER;
1323 mutex_enter(proc_lock);
1324 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1325 if (p->p_flag & PK_MARKER) {
1326 p = LIST_NEXT(p, p_list);
1327 continue;
1328 }
1329 LIST_INSERT_AFTER(p, &marker, p_list);
1330 ret = (*callback)(p, arg);
1331 KASSERT(mutex_owned(proc_lock));
1332 p = LIST_NEXT(&marker, p_list);
1333 LIST_REMOVE(&marker, p_list);
1334 }
1335 mutex_exit(proc_lock);
1336
1337 return ret;
1338 }
1339
1340 int
1341 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1342 {
1343
1344 /* XXXCDC: how should locking work here? */
1345
1346 /* curproc exception is for coredump. */
1347
1348 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1349 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1350 return EFAULT;
1351 }
1352
1353 uvmspace_addref(p->p_vmspace);
1354 *vm = p->p_vmspace;
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * Acquire a write lock on the process credential.
1361 */
1362 void
1363 proc_crmod_enter(void)
1364 {
1365 struct lwp *l = curlwp;
1366 struct proc *p = l->l_proc;
1367 kauth_cred_t oc;
1368
1369 /* Reset what needs to be reset in plimit. */
1370 if (p->p_limit->pl_corename != defcorename) {
1371 lim_setcorename(p, defcorename, 0);
1372 }
1373
1374 mutex_enter(p->p_lock);
1375
1376 /* Ensure the LWP cached credentials are up to date. */
1377 if ((oc = l->l_cred) != p->p_cred) {
1378 kauth_cred_hold(p->p_cred);
1379 l->l_cred = p->p_cred;
1380 kauth_cred_free(oc);
1381 }
1382 }
1383
1384 /*
1385 * Set in a new process credential, and drop the write lock. The credential
1386 * must have a reference already. Optionally, free a no-longer required
1387 * credential. The scheduler also needs to inspect p_cred, so we also
1388 * briefly acquire the sched state mutex.
1389 */
1390 void
1391 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1392 {
1393 struct lwp *l = curlwp, *l2;
1394 struct proc *p = l->l_proc;
1395 kauth_cred_t oc;
1396
1397 KASSERT(mutex_owned(p->p_lock));
1398
1399 /* Is there a new credential to set in? */
1400 if (scred != NULL) {
1401 p->p_cred = scred;
1402 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1403 if (l2 != l)
1404 l2->l_prflag |= LPR_CRMOD;
1405 }
1406
1407 /* Ensure the LWP cached credentials are up to date. */
1408 if ((oc = l->l_cred) != scred) {
1409 kauth_cred_hold(scred);
1410 l->l_cred = scred;
1411 }
1412 } else
1413 oc = NULL; /* XXXgcc */
1414
1415 if (sugid) {
1416 /*
1417 * Mark process as having changed credentials, stops
1418 * tracing etc.
1419 */
1420 p->p_flag |= PK_SUGID;
1421 }
1422
1423 mutex_exit(p->p_lock);
1424
1425 /* If there is a credential to be released, free it now. */
1426 if (fcred != NULL) {
1427 KASSERT(scred != NULL);
1428 kauth_cred_free(fcred);
1429 if (oc != scred)
1430 kauth_cred_free(oc);
1431 }
1432 }
1433
1434 /*
1435 * proc_specific_key_create --
1436 * Create a key for subsystem proc-specific data.
1437 */
1438 int
1439 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1440 {
1441
1442 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1443 }
1444
1445 /*
1446 * proc_specific_key_delete --
1447 * Delete a key for subsystem proc-specific data.
1448 */
1449 void
1450 proc_specific_key_delete(specificdata_key_t key)
1451 {
1452
1453 specificdata_key_delete(proc_specificdata_domain, key);
1454 }
1455
1456 /*
1457 * proc_initspecific --
1458 * Initialize a proc's specificdata container.
1459 */
1460 void
1461 proc_initspecific(struct proc *p)
1462 {
1463 int error __diagused;
1464
1465 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1466 KASSERT(error == 0);
1467 }
1468
1469 /*
1470 * proc_finispecific --
1471 * Finalize a proc's specificdata container.
1472 */
1473 void
1474 proc_finispecific(struct proc *p)
1475 {
1476
1477 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1478 }
1479
1480 /*
1481 * proc_getspecific --
1482 * Return proc-specific data corresponding to the specified key.
1483 */
1484 void *
1485 proc_getspecific(struct proc *p, specificdata_key_t key)
1486 {
1487
1488 return (specificdata_getspecific(proc_specificdata_domain,
1489 &p->p_specdataref, key));
1490 }
1491
1492 /*
1493 * proc_setspecific --
1494 * Set proc-specific data corresponding to the specified key.
1495 */
1496 void
1497 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1498 {
1499
1500 specificdata_setspecific(proc_specificdata_domain,
1501 &p->p_specdataref, key, data);
1502 }
1503
1504 int
1505 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1506 {
1507 int r = 0;
1508
1509 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1510 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1511 /*
1512 * suid proc of ours or proc not ours
1513 */
1514 r = EPERM;
1515 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1516 /*
1517 * sgid proc has sgid back to us temporarily
1518 */
1519 r = EPERM;
1520 } else {
1521 /*
1522 * our rgid must be in target's group list (ie,
1523 * sub-processes started by a sgid process)
1524 */
1525 int ismember = 0;
1526
1527 if (kauth_cred_ismember_gid(cred,
1528 kauth_cred_getgid(target), &ismember) != 0 ||
1529 !ismember)
1530 r = EPERM;
1531 }
1532
1533 return (r);
1534 }
1535
1536 /*
1537 * sysctl stuff
1538 */
1539
1540 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1541
1542 static const u_int sysctl_flagmap[] = {
1543 PK_ADVLOCK, P_ADVLOCK,
1544 PK_EXEC, P_EXEC,
1545 PK_NOCLDWAIT, P_NOCLDWAIT,
1546 PK_32, P_32,
1547 PK_CLDSIGIGN, P_CLDSIGIGN,
1548 PK_SUGID, P_SUGID,
1549 0
1550 };
1551
1552 static const u_int sysctl_sflagmap[] = {
1553 PS_NOCLDSTOP, P_NOCLDSTOP,
1554 PS_WEXIT, P_WEXIT,
1555 PS_STOPFORK, P_STOPFORK,
1556 PS_STOPEXEC, P_STOPEXEC,
1557 PS_STOPEXIT, P_STOPEXIT,
1558 0
1559 };
1560
1561 static const u_int sysctl_slflagmap[] = {
1562 PSL_TRACED, P_TRACED,
1563 PSL_CHTRACED, P_CHTRACED,
1564 PSL_SYSCALL, P_SYSCALL,
1565 0
1566 };
1567
1568 static const u_int sysctl_lflagmap[] = {
1569 PL_CONTROLT, P_CONTROLT,
1570 PL_PPWAIT, P_PPWAIT,
1571 0
1572 };
1573
1574 static const u_int sysctl_stflagmap[] = {
1575 PST_PROFIL, P_PROFIL,
1576 0
1577
1578 };
1579
1580 /* used by kern_lwp also */
1581 const u_int sysctl_lwpflagmap[] = {
1582 LW_SINTR, L_SINTR,
1583 LW_SYSTEM, L_SYSTEM,
1584 0
1585 };
1586
1587 /*
1588 * Find the most ``active'' lwp of a process and return it for ps display
1589 * purposes
1590 */
1591 static struct lwp *
1592 proc_active_lwp(struct proc *p)
1593 {
1594 static const int ostat[] = {
1595 0,
1596 2, /* LSIDL */
1597 6, /* LSRUN */
1598 5, /* LSSLEEP */
1599 4, /* LSSTOP */
1600 0, /* LSZOMB */
1601 1, /* LSDEAD */
1602 7, /* LSONPROC */
1603 3 /* LSSUSPENDED */
1604 };
1605
1606 struct lwp *l, *lp = NULL;
1607 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1608 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1609 if (lp == NULL ||
1610 ostat[l->l_stat] > ostat[lp->l_stat] ||
1611 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1612 l->l_cpticks > lp->l_cpticks)) {
1613 lp = l;
1614 continue;
1615 }
1616 }
1617 return lp;
1618 }
1619
1620 static int
1621 sysctl_doeproc(SYSCTLFN_ARGS)
1622 {
1623 union {
1624 struct kinfo_proc kproc;
1625 struct kinfo_proc2 kproc2;
1626 } *kbuf;
1627 struct proc *p, *next, *marker;
1628 char *where, *dp;
1629 int type, op, arg, error;
1630 u_int elem_size, kelem_size, elem_count;
1631 size_t buflen, needed;
1632 bool match, zombie, mmmbrains;
1633
1634 if (namelen == 1 && name[0] == CTL_QUERY)
1635 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1636
1637 dp = where = oldp;
1638 buflen = where != NULL ? *oldlenp : 0;
1639 error = 0;
1640 needed = 0;
1641 type = rnode->sysctl_num;
1642
1643 if (type == KERN_PROC) {
1644 if (namelen == 0)
1645 return EINVAL;
1646 switch (op = name[0]) {
1647 case KERN_PROC_ALL:
1648 if (namelen != 1)
1649 return EINVAL;
1650 arg = 0;
1651 break;
1652 default:
1653 if (namelen != 2)
1654 return EINVAL;
1655 arg = name[1];
1656 break;
1657 }
1658 elem_count = 0; /* Hush little compiler, don't you cry */
1659 kelem_size = elem_size = sizeof(kbuf->kproc);
1660 } else {
1661 if (namelen != 4)
1662 return EINVAL;
1663 op = name[0];
1664 arg = name[1];
1665 elem_size = name[2];
1666 elem_count = name[3];
1667 kelem_size = sizeof(kbuf->kproc2);
1668 }
1669
1670 sysctl_unlock();
1671
1672 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1673 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1674 marker->p_flag = PK_MARKER;
1675
1676 mutex_enter(proc_lock);
1677 /*
1678 * Start with zombies to prevent reporting processes twice, in case they
1679 * are dying and being moved from the list of alive processes to zombies.
1680 */
1681 mmmbrains = true;
1682 for (p = LIST_FIRST(&zombproc);; p = next) {
1683 if (p == NULL) {
1684 if (mmmbrains) {
1685 p = LIST_FIRST(&allproc);
1686 mmmbrains = false;
1687 }
1688 if (p == NULL)
1689 break;
1690 }
1691 next = LIST_NEXT(p, p_list);
1692 if ((p->p_flag & PK_MARKER) != 0)
1693 continue;
1694
1695 /*
1696 * Skip embryonic processes.
1697 */
1698 if (p->p_stat == SIDL)
1699 continue;
1700
1701 mutex_enter(p->p_lock);
1702 error = kauth_authorize_process(l->l_cred,
1703 KAUTH_PROCESS_CANSEE, p,
1704 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1705 if (error != 0) {
1706 mutex_exit(p->p_lock);
1707 continue;
1708 }
1709
1710 /*
1711 * Hande all the operations in one switch on the cost of
1712 * algorithm complexity is on purpose. The win splitting this
1713 * function into several similar copies makes maintenance burden
1714 * burden, code grow and boost is neglible in practical systems.
1715 */
1716 switch (op) {
1717 case KERN_PROC_PID:
1718 match = (p->p_pid == (pid_t)arg);
1719 break;
1720
1721 case KERN_PROC_PGRP:
1722 match = (p->p_pgrp->pg_id == (pid_t)arg);
1723 break;
1724
1725 case KERN_PROC_SESSION:
1726 match = (p->p_session->s_sid == (pid_t)arg);
1727 break;
1728
1729 case KERN_PROC_TTY:
1730 match = true;
1731 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1732 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1733 p->p_session->s_ttyp == NULL ||
1734 p->p_session->s_ttyvp != NULL) {
1735 match = false;
1736 }
1737 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1738 p->p_session->s_ttyp == NULL) {
1739 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1740 match = false;
1741 }
1742 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1743 match = false;
1744 }
1745 break;
1746
1747 case KERN_PROC_UID:
1748 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1749 break;
1750
1751 case KERN_PROC_RUID:
1752 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1753 break;
1754
1755 case KERN_PROC_GID:
1756 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1757 break;
1758
1759 case KERN_PROC_RGID:
1760 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1761 break;
1762
1763 case KERN_PROC_ALL:
1764 match = true;
1765 /* allow everything */
1766 break;
1767
1768 default:
1769 error = EINVAL;
1770 mutex_exit(p->p_lock);
1771 goto cleanup;
1772 }
1773 if (!match) {
1774 mutex_exit(p->p_lock);
1775 continue;
1776 }
1777
1778 /*
1779 * Grab a hold on the process.
1780 */
1781 if (mmmbrains) {
1782 zombie = true;
1783 } else {
1784 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1785 }
1786 if (zombie) {
1787 LIST_INSERT_AFTER(p, marker, p_list);
1788 }
1789
1790 if (buflen >= elem_size &&
1791 (type == KERN_PROC || elem_count > 0)) {
1792 if (type == KERN_PROC) {
1793 kbuf->kproc.kp_proc = *p;
1794 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1795 } else {
1796 fill_kproc2(p, &kbuf->kproc2, zombie);
1797 elem_count--;
1798 }
1799 mutex_exit(p->p_lock);
1800 mutex_exit(proc_lock);
1801 /*
1802 * Copy out elem_size, but not larger than kelem_size
1803 */
1804 error = sysctl_copyout(l, kbuf, dp,
1805 min(kelem_size, elem_size));
1806 mutex_enter(proc_lock);
1807 if (error) {
1808 goto bah;
1809 }
1810 dp += elem_size;
1811 buflen -= elem_size;
1812 } else {
1813 mutex_exit(p->p_lock);
1814 }
1815 needed += elem_size;
1816
1817 /*
1818 * Release reference to process.
1819 */
1820 if (zombie) {
1821 next = LIST_NEXT(marker, p_list);
1822 LIST_REMOVE(marker, p_list);
1823 } else {
1824 rw_exit(&p->p_reflock);
1825 next = LIST_NEXT(p, p_list);
1826 }
1827
1828 /*
1829 * Short-circuit break quickly!
1830 */
1831 if (op == KERN_PROC_PID)
1832 break;
1833 }
1834 mutex_exit(proc_lock);
1835
1836 if (where != NULL) {
1837 if (needed == 0) {
1838 error = ESRCH;
1839 goto out;
1840 }
1841 *oldlenp = dp - where;
1842 if (needed > *oldlenp) {
1843 error = ENOMEM;
1844 goto out;
1845 }
1846 } else {
1847 needed += KERN_PROCSLOP;
1848 *oldlenp = needed;
1849 }
1850 kmem_free(kbuf, sizeof(*kbuf));
1851 kmem_free(marker, sizeof(*marker));
1852 sysctl_relock();
1853 return 0;
1854 bah:
1855 if (zombie)
1856 LIST_REMOVE(marker, p_list);
1857 else
1858 rw_exit(&p->p_reflock);
1859 cleanup:
1860 mutex_exit(proc_lock);
1861 out:
1862 kmem_free(kbuf, sizeof(*kbuf));
1863 kmem_free(marker, sizeof(*marker));
1864 sysctl_relock();
1865 return error;
1866 }
1867
1868 int
1869 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1870 {
1871
1872 #ifdef COMPAT_NETBSD32
1873 if (p->p_flag & PK_32) {
1874 struct ps_strings32 arginfo32;
1875
1876 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1877 sizeof(arginfo32));
1878 if (error)
1879 return error;
1880 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1881 arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1882 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1883 arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1884 return 0;
1885 }
1886 #endif
1887 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1888 }
1889
1890 static int
1891 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1892 {
1893 void **cookie = cookie_;
1894 struct lwp *l = cookie[0];
1895 char *dst = cookie[1];
1896
1897 return sysctl_copyout(l, src, dst + off, len);
1898 }
1899
1900 /*
1901 * sysctl helper routine for kern.proc_args pseudo-subtree.
1902 */
1903 static int
1904 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1905 {
1906 struct ps_strings pss;
1907 struct proc *p;
1908 pid_t pid;
1909 int type, error;
1910 void *cookie[2];
1911
1912 if (namelen == 1 && name[0] == CTL_QUERY)
1913 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1914
1915 if (newp != NULL || namelen != 2)
1916 return (EINVAL);
1917 pid = name[0];
1918 type = name[1];
1919
1920 switch (type) {
1921 case KERN_PROC_PATHNAME:
1922 sysctl_unlock();
1923 error = fill_pathname(l, pid, oldp, oldlenp);
1924 sysctl_relock();
1925 return error;
1926
1927 case KERN_PROC_ARGV:
1928 case KERN_PROC_NARGV:
1929 case KERN_PROC_ENV:
1930 case KERN_PROC_NENV:
1931 /* ok */
1932 break;
1933 default:
1934 return (EINVAL);
1935 }
1936
1937 sysctl_unlock();
1938
1939 /* check pid */
1940 mutex_enter(proc_lock);
1941 if ((p = proc_find(pid)) == NULL) {
1942 error = EINVAL;
1943 goto out_locked;
1944 }
1945 mutex_enter(p->p_lock);
1946
1947 /* Check permission. */
1948 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1949 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1950 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1951 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1952 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1953 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1954 else
1955 error = EINVAL; /* XXXGCC */
1956 if (error) {
1957 mutex_exit(p->p_lock);
1958 goto out_locked;
1959 }
1960
1961 if (oldp == NULL) {
1962 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1963 *oldlenp = sizeof (int);
1964 else
1965 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1966 error = 0;
1967 mutex_exit(p->p_lock);
1968 goto out_locked;
1969 }
1970
1971 /*
1972 * Zombies don't have a stack, so we can't read their psstrings.
1973 * System processes also don't have a user stack.
1974 */
1975 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1976 error = EINVAL;
1977 mutex_exit(p->p_lock);
1978 goto out_locked;
1979 }
1980
1981 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1982 mutex_exit(p->p_lock);
1983 if (error) {
1984 goto out_locked;
1985 }
1986 mutex_exit(proc_lock);
1987
1988 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1989 int value;
1990 if ((error = copyin_psstrings(p, &pss)) == 0) {
1991 if (type == KERN_PROC_NARGV)
1992 value = pss.ps_nargvstr;
1993 else
1994 value = pss.ps_nenvstr;
1995 error = sysctl_copyout(l, &value, oldp, sizeof(value));
1996 *oldlenp = sizeof(value);
1997 }
1998 } else {
1999 cookie[0] = l;
2000 cookie[1] = oldp;
2001 error = copy_procargs(p, type, oldlenp,
2002 copy_procargs_sysctl_cb, cookie);
2003 }
2004 rw_exit(&p->p_reflock);
2005 sysctl_relock();
2006 return error;
2007
2008 out_locked:
2009 mutex_exit(proc_lock);
2010 sysctl_relock();
2011 return error;
2012 }
2013
2014 int
2015 copy_procargs(struct proc *p, int oid, size_t *limit,
2016 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2017 {
2018 struct ps_strings pss;
2019 size_t len, i, loaded, entry_len;
2020 struct uio auio;
2021 struct iovec aiov;
2022 int error, argvlen;
2023 char *arg;
2024 char **argv;
2025 vaddr_t user_argv;
2026 struct vmspace *vmspace;
2027
2028 /*
2029 * Allocate a temporary buffer to hold the argument vector and
2030 * the arguments themselve.
2031 */
2032 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2033 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2034
2035 /*
2036 * Lock the process down in memory.
2037 */
2038 vmspace = p->p_vmspace;
2039 uvmspace_addref(vmspace);
2040
2041 /*
2042 * Read in the ps_strings structure.
2043 */
2044 if ((error = copyin_psstrings(p, &pss)) != 0)
2045 goto done;
2046
2047 /*
2048 * Now read the address of the argument vector.
2049 */
2050 switch (oid) {
2051 case KERN_PROC_ARGV:
2052 user_argv = (uintptr_t)pss.ps_argvstr;
2053 argvlen = pss.ps_nargvstr;
2054 break;
2055 case KERN_PROC_ENV:
2056 user_argv = (uintptr_t)pss.ps_envstr;
2057 argvlen = pss.ps_nenvstr;
2058 break;
2059 default:
2060 error = EINVAL;
2061 goto done;
2062 }
2063
2064 if (argvlen < 0) {
2065 error = EIO;
2066 goto done;
2067 }
2068
2069
2070 /*
2071 * Now copy each string.
2072 */
2073 len = 0; /* bytes written to user buffer */
2074 loaded = 0; /* bytes from argv already processed */
2075 i = 0; /* To make compiler happy */
2076 entry_len = PROC_PTRSZ(p);
2077
2078 for (; argvlen; --argvlen) {
2079 int finished = 0;
2080 vaddr_t base;
2081 size_t xlen;
2082 int j;
2083
2084 if (loaded == 0) {
2085 size_t rem = entry_len * argvlen;
2086 loaded = MIN(rem, PAGE_SIZE);
2087 error = copyin_vmspace(vmspace,
2088 (const void *)user_argv, argv, loaded);
2089 if (error)
2090 break;
2091 user_argv += loaded;
2092 i = 0;
2093 }
2094
2095 #ifdef COMPAT_NETBSD32
2096 if (p->p_flag & PK_32) {
2097 netbsd32_charp *argv32;
2098
2099 argv32 = (netbsd32_charp *)argv;
2100 base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2101 } else
2102 #endif
2103 base = (vaddr_t)argv[i++];
2104 loaded -= entry_len;
2105
2106 /*
2107 * The program has messed around with its arguments,
2108 * possibly deleting some, and replacing them with
2109 * NULL's. Treat this as the last argument and not
2110 * a failure.
2111 */
2112 if (base == 0)
2113 break;
2114
2115 while (!finished) {
2116 xlen = PAGE_SIZE - (base & PAGE_MASK);
2117
2118 aiov.iov_base = arg;
2119 aiov.iov_len = PAGE_SIZE;
2120 auio.uio_iov = &aiov;
2121 auio.uio_iovcnt = 1;
2122 auio.uio_offset = base;
2123 auio.uio_resid = xlen;
2124 auio.uio_rw = UIO_READ;
2125 UIO_SETUP_SYSSPACE(&auio);
2126 error = uvm_io(&vmspace->vm_map, &auio, 0);
2127 if (error)
2128 goto done;
2129
2130 /* Look for the end of the string */
2131 for (j = 0; j < xlen; j++) {
2132 if (arg[j] == '\0') {
2133 xlen = j + 1;
2134 finished = 1;
2135 break;
2136 }
2137 }
2138
2139 /* Check for user buffer overflow */
2140 if (len + xlen > *limit) {
2141 finished = 1;
2142 if (len > *limit)
2143 xlen = 0;
2144 else
2145 xlen = *limit - len;
2146 }
2147
2148 /* Copyout the page */
2149 error = (*cb)(cookie, arg, len, xlen);
2150 if (error)
2151 goto done;
2152
2153 len += xlen;
2154 base += xlen;
2155 }
2156 }
2157 *limit = len;
2158
2159 done:
2160 kmem_free(argv, PAGE_SIZE);
2161 kmem_free(arg, PAGE_SIZE);
2162 uvmspace_free(vmspace);
2163 return error;
2164 }
2165
2166 /*
2167 * Fill in an eproc structure for the specified process.
2168 */
2169 void
2170 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2171 {
2172 struct tty *tp;
2173 struct lwp *l;
2174
2175 KASSERT(mutex_owned(proc_lock));
2176 KASSERT(mutex_owned(p->p_lock));
2177
2178 memset(ep, 0, sizeof(*ep));
2179
2180 ep->e_paddr = p;
2181 ep->e_sess = p->p_session;
2182 if (p->p_cred) {
2183 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2184 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2185 }
2186 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2187 struct vmspace *vm = p->p_vmspace;
2188
2189 ep->e_vm.vm_rssize = vm_resident_count(vm);
2190 ep->e_vm.vm_tsize = vm->vm_tsize;
2191 ep->e_vm.vm_dsize = vm->vm_dsize;
2192 ep->e_vm.vm_ssize = vm->vm_ssize;
2193 ep->e_vm.vm_map.size = vm->vm_map.size;
2194
2195 /* Pick the primary (first) LWP */
2196 l = proc_active_lwp(p);
2197 KASSERT(l != NULL);
2198 lwp_lock(l);
2199 if (l->l_wchan)
2200 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2201 lwp_unlock(l);
2202 }
2203 ep->e_ppid = p->p_ppid;
2204 if (p->p_pgrp && p->p_session) {
2205 ep->e_pgid = p->p_pgrp->pg_id;
2206 ep->e_jobc = p->p_pgrp->pg_jobc;
2207 ep->e_sid = p->p_session->s_sid;
2208 if ((p->p_lflag & PL_CONTROLT) &&
2209 (tp = ep->e_sess->s_ttyp)) {
2210 ep->e_tdev = tp->t_dev;
2211 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2212 ep->e_tsess = tp->t_session;
2213 } else
2214 ep->e_tdev = (uint32_t)NODEV;
2215 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2216 if (SESS_LEADER(p))
2217 ep->e_flag |= EPROC_SLEADER;
2218 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2219 }
2220 ep->e_xsize = ep->e_xrssize = 0;
2221 ep->e_xccount = ep->e_xswrss = 0;
2222 }
2223
2224 /*
2225 * Fill in a kinfo_proc2 structure for the specified process.
2226 */
2227 void
2228 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2229 {
2230 struct tty *tp;
2231 struct lwp *l, *l2;
2232 struct timeval ut, st, rt;
2233 sigset_t ss1, ss2;
2234 struct rusage ru;
2235 struct vmspace *vm;
2236
2237 KASSERT(mutex_owned(proc_lock));
2238 KASSERT(mutex_owned(p->p_lock));
2239
2240 sigemptyset(&ss1);
2241 sigemptyset(&ss2);
2242 memset(ki, 0, sizeof(*ki));
2243
2244 ki->p_paddr = PTRTOUINT64(p);
2245 ki->p_fd = PTRTOUINT64(p->p_fd);
2246 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2247 ki->p_stats = PTRTOUINT64(p->p_stats);
2248 ki->p_limit = PTRTOUINT64(p->p_limit);
2249 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2250 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2251 ki->p_sess = PTRTOUINT64(p->p_session);
2252 ki->p_tsess = 0; /* may be changed if controlling tty below */
2253 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2254 ki->p_eflag = 0;
2255 ki->p_exitsig = p->p_exitsig;
2256 ki->p_flag = L_INMEM; /* Process never swapped out */
2257 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2258 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2259 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2260 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2261 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2262 ki->p_pid = p->p_pid;
2263 ki->p_ppid = p->p_ppid;
2264 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2265 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2266 ki->p_gid = kauth_cred_getegid(p->p_cred);
2267 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2268 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2269 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2270 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2271 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2272 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2273 UIO_SYSSPACE);
2274
2275 ki->p_uticks = p->p_uticks;
2276 ki->p_sticks = p->p_sticks;
2277 ki->p_iticks = p->p_iticks;
2278 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2279 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2280 ki->p_traceflag = p->p_traceflag;
2281
2282 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2283 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2284
2285 ki->p_cpticks = 0;
2286 ki->p_pctcpu = p->p_pctcpu;
2287 ki->p_estcpu = 0;
2288 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2289 ki->p_realstat = p->p_stat;
2290 ki->p_nice = p->p_nice;
2291 ki->p_xstat = P_WAITSTATUS(p);
2292 ki->p_acflag = p->p_acflag;
2293
2294 strncpy(ki->p_comm, p->p_comm,
2295 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2296 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2297
2298 ki->p_nlwps = p->p_nlwps;
2299 ki->p_realflag = ki->p_flag;
2300
2301 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2302 vm = p->p_vmspace;
2303 ki->p_vm_rssize = vm_resident_count(vm);
2304 ki->p_vm_tsize = vm->vm_tsize;
2305 ki->p_vm_dsize = vm->vm_dsize;
2306 ki->p_vm_ssize = vm->vm_ssize;
2307 ki->p_vm_vsize = atop(vm->vm_map.size);
2308 /*
2309 * Since the stack is initially mapped mostly with
2310 * PROT_NONE and grown as needed, adjust the "mapped size"
2311 * to skip the unused stack portion.
2312 */
2313 ki->p_vm_msize =
2314 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2315
2316 /* Pick the primary (first) LWP */
2317 l = proc_active_lwp(p);
2318 KASSERT(l != NULL);
2319 lwp_lock(l);
2320 ki->p_nrlwps = p->p_nrlwps;
2321 ki->p_forw = 0;
2322 ki->p_back = 0;
2323 ki->p_addr = PTRTOUINT64(l->l_addr);
2324 ki->p_stat = l->l_stat;
2325 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2326 ki->p_swtime = l->l_swtime;
2327 ki->p_slptime = l->l_slptime;
2328 if (l->l_stat == LSONPROC)
2329 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2330 else
2331 ki->p_schedflags = 0;
2332 ki->p_priority = lwp_eprio(l);
2333 ki->p_usrpri = l->l_priority;
2334 if (l->l_wchan)
2335 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2336 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2337 ki->p_cpuid = cpu_index(l->l_cpu);
2338 lwp_unlock(l);
2339 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2340 /* This is hardly correct, but... */
2341 sigplusset(&l->l_sigpend.sp_set, &ss1);
2342 sigplusset(&l->l_sigmask, &ss2);
2343 ki->p_cpticks += l->l_cpticks;
2344 ki->p_pctcpu += l->l_pctcpu;
2345 ki->p_estcpu += l->l_estcpu;
2346 }
2347 }
2348 sigplusset(&p->p_sigpend.sp_set, &ss2);
2349 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2350 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2351
2352 if (p->p_session != NULL) {
2353 ki->p_sid = p->p_session->s_sid;
2354 ki->p__pgid = p->p_pgrp->pg_id;
2355 if (p->p_session->s_ttyvp)
2356 ki->p_eflag |= EPROC_CTTY;
2357 if (SESS_LEADER(p))
2358 ki->p_eflag |= EPROC_SLEADER;
2359 strncpy(ki->p_login, p->p_session->s_login,
2360 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2361 ki->p_jobc = p->p_pgrp->pg_jobc;
2362 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2363 ki->p_tdev = tp->t_dev;
2364 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2365 ki->p_tsess = PTRTOUINT64(tp->t_session);
2366 } else {
2367 ki->p_tdev = (int32_t)NODEV;
2368 }
2369 }
2370
2371 if (!P_ZOMBIE(p) && !zombie) {
2372 ki->p_uvalid = 1;
2373 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2374 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2375
2376 calcru(p, &ut, &st, NULL, &rt);
2377 ki->p_rtime_sec = rt.tv_sec;
2378 ki->p_rtime_usec = rt.tv_usec;
2379 ki->p_uutime_sec = ut.tv_sec;
2380 ki->p_uutime_usec = ut.tv_usec;
2381 ki->p_ustime_sec = st.tv_sec;
2382 ki->p_ustime_usec = st.tv_usec;
2383
2384 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2385 ki->p_uru_nvcsw = 0;
2386 ki->p_uru_nivcsw = 0;
2387 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2388 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2389 ki->p_uru_nivcsw += l2->l_nivcsw;
2390 ruadd(&ru, &l2->l_ru);
2391 }
2392 ki->p_uru_maxrss = ru.ru_maxrss;
2393 ki->p_uru_ixrss = ru.ru_ixrss;
2394 ki->p_uru_idrss = ru.ru_idrss;
2395 ki->p_uru_isrss = ru.ru_isrss;
2396 ki->p_uru_minflt = ru.ru_minflt;
2397 ki->p_uru_majflt = ru.ru_majflt;
2398 ki->p_uru_nswap = ru.ru_nswap;
2399 ki->p_uru_inblock = ru.ru_inblock;
2400 ki->p_uru_oublock = ru.ru_oublock;
2401 ki->p_uru_msgsnd = ru.ru_msgsnd;
2402 ki->p_uru_msgrcv = ru.ru_msgrcv;
2403 ki->p_uru_nsignals = ru.ru_nsignals;
2404
2405 timeradd(&p->p_stats->p_cru.ru_utime,
2406 &p->p_stats->p_cru.ru_stime, &ut);
2407 ki->p_uctime_sec = ut.tv_sec;
2408 ki->p_uctime_usec = ut.tv_usec;
2409 }
2410 }
2411
2412
2413 int
2414 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2415 {
2416 int error;
2417
2418 mutex_enter(proc_lock);
2419 if (pid == -1)
2420 *p = l->l_proc;
2421 else
2422 *p = proc_find(pid);
2423
2424 if (*p == NULL) {
2425 if (pid != -1)
2426 mutex_exit(proc_lock);
2427 return ESRCH;
2428 }
2429 if (pid != -1)
2430 mutex_enter((*p)->p_lock);
2431 mutex_exit(proc_lock);
2432
2433 error = kauth_authorize_process(l->l_cred,
2434 KAUTH_PROCESS_CANSEE, *p,
2435 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2436 if (error) {
2437 if (pid != -1)
2438 mutex_exit((*p)->p_lock);
2439 }
2440 return error;
2441 }
2442
2443 static int
2444 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2445 {
2446 int error;
2447 struct proc *p;
2448
2449 if ((error = proc_find_locked(l, &p, pid)) != 0)
2450 return error;
2451
2452 if (p->p_path == NULL) {
2453 if (pid != -1)
2454 mutex_exit(p->p_lock);
2455 return ENOENT;
2456 }
2457
2458 size_t len = strlen(p->p_path) + 1;
2459 if (oldp != NULL) {
2460 error = sysctl_copyout(l, p->p_path, oldp, *oldlenp);
2461 if (error == 0 && *oldlenp < len)
2462 error = ENOSPC;
2463 }
2464 *oldlenp = len;
2465 if (pid != -1)
2466 mutex_exit(p->p_lock);
2467 return error;
2468 }
2469
2470 int
2471 proc_getauxv(struct proc *p, void **buf, size_t *len)
2472 {
2473 struct ps_strings pss;
2474 int error;
2475 void *uauxv, *kauxv;
2476 size_t size;
2477
2478 if ((error = copyin_psstrings(p, &pss)) != 0)
2479 return error;
2480 if (pss.ps_envstr == NULL)
2481 return EIO;
2482
2483 size = p->p_execsw->es_arglen;
2484 if (size == 0)
2485 return EIO;
2486
2487 size_t ptrsz = PROC_PTRSZ(p);
2488 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
2489
2490 kauxv = kmem_alloc(size, KM_SLEEP);
2491
2492 error = copyin_proc(p, uauxv, kauxv, size);
2493 if (error) {
2494 kmem_free(kauxv, size);
2495 return error;
2496 }
2497
2498 *buf = kauxv;
2499 *len = size;
2500
2501 return 0;
2502 }
2503