kern_proc.c revision 1.209.2.14 1 /* $NetBSD: kern_proc.c,v 1.209.2.14 2019/01/21 06:49:28 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.209.2.14 2019/01/21 06:49:28 pgoyette Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm.h>
112
113 /*
114 * Process lists.
115 */
116
117 struct proclist allproc __cacheline_aligned;
118 struct proclist zombproc __cacheline_aligned;
119
120 kmutex_t * proc_lock __cacheline_aligned;
121
122 /*
123 * pid to proc lookup is done by indexing the pid_table array.
124 * Since pid numbers are only allocated when an empty slot
125 * has been found, there is no need to search any lists ever.
126 * (an orphaned pgrp will lock the slot, a session will lock
127 * the pgrp with the same number.)
128 * If the table is too small it is reallocated with twice the
129 * previous size and the entries 'unzipped' into the two halves.
130 * A linked list of free entries is passed through the pt_proc
131 * field of 'free' items - set odd to be an invalid ptr.
132 */
133
134 struct pid_table {
135 struct proc *pt_proc;
136 struct pgrp *pt_pgrp;
137 pid_t pt_pid;
138 };
139 #if 1 /* strongly typed cast - should be a noop */
140 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
141 #else
142 #define p2u(p) ((uint)p)
143 #endif
144 #define P_VALID(p) (!(p2u(p) & 1))
145 #define P_NEXT(p) (p2u(p) >> 1)
146 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
147
148 /*
149 * Table of process IDs (PIDs).
150 */
151 static struct pid_table *pid_table __read_mostly;
152
153 #define INITIAL_PID_TABLE_SIZE (1 << 5)
154
155 /* Table mask, threshold for growing and number of allocated PIDs. */
156 static u_int pid_tbl_mask __read_mostly;
157 static u_int pid_alloc_lim __read_mostly;
158 static u_int pid_alloc_cnt __cacheline_aligned;
159
160 /* Next free, last free and maximum PIDs. */
161 static u_int next_free_pt __cacheline_aligned;
162 static u_int last_free_pt __cacheline_aligned;
163 static pid_t pid_max __read_mostly;
164
165 /* Components of the first process -- never freed. */
166
167 extern struct emul emul_netbsd; /* defined in kern_exec.c */
168
169 struct session session0 = {
170 .s_count = 1,
171 .s_sid = 0,
172 };
173 struct pgrp pgrp0 = {
174 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
175 .pg_session = &session0,
176 };
177 filedesc_t filedesc0;
178 struct cwdinfo cwdi0 = {
179 .cwdi_cmask = CMASK,
180 .cwdi_refcnt = 1,
181 };
182 struct plimit limit0;
183 struct pstats pstat0;
184 struct vmspace vmspace0;
185 struct sigacts sigacts0;
186 struct proc proc0 = {
187 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
188 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
189 .p_nlwps = 1,
190 .p_nrlwps = 1,
191 .p_nlwpid = 1, /* must match lwp0.l_lid */
192 .p_pgrp = &pgrp0,
193 .p_comm = "system",
194 /*
195 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
196 * when they exit. init(8) can easily wait them out for us.
197 */
198 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
199 .p_stat = SACTIVE,
200 .p_nice = NZERO,
201 .p_emul = &emul_netbsd,
202 .p_cwdi = &cwdi0,
203 .p_limit = &limit0,
204 .p_fd = &filedesc0,
205 .p_vmspace = &vmspace0,
206 .p_stats = &pstat0,
207 .p_sigacts = &sigacts0,
208 #ifdef PROC0_MD_INITIALIZERS
209 PROC0_MD_INITIALIZERS
210 #endif
211 };
212 kauth_cred_t cred0;
213
214 static const int nofile = NOFILE;
215 static const int maxuprc = MAXUPRC;
216
217 static int sysctl_doeproc(SYSCTLFN_PROTO);
218 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
219 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
220
221 #ifdef KASLR
222 static int kern_expose_address = 0;
223 #else
224 static int kern_expose_address = 1;
225 #endif
226 /*
227 * The process list descriptors, used during pid allocation and
228 * by sysctl. No locking on this data structure is needed since
229 * it is completely static.
230 */
231 const struct proclist_desc proclists[] = {
232 { &allproc },
233 { &zombproc },
234 { NULL },
235 };
236
237 static struct pgrp * pg_remove(pid_t);
238 static void pg_delete(pid_t);
239 static void orphanpg(struct pgrp *);
240
241 static specificdata_domain_t proc_specificdata_domain;
242
243 static pool_cache_t proc_cache;
244
245 static kauth_listener_t proc_listener;
246
247 static void fill_proc(const struct proc *, struct proc *, bool);
248 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
249
250 static int
251 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
252 void *arg0, void *arg1, void *arg2, void *arg3)
253 {
254 struct proc *p;
255 int result;
256
257 result = KAUTH_RESULT_DEFER;
258 p = arg0;
259
260 switch (action) {
261 case KAUTH_PROCESS_CANSEE: {
262 enum kauth_process_req req;
263
264 req = (enum kauth_process_req)arg1;
265
266 switch (req) {
267 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
268 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
269 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
270 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
271 result = KAUTH_RESULT_ALLOW;
272 break;
273
274 case KAUTH_REQ_PROCESS_CANSEE_ENV:
275 if (kauth_cred_getuid(cred) !=
276 kauth_cred_getuid(p->p_cred) ||
277 kauth_cred_getuid(cred) !=
278 kauth_cred_getsvuid(p->p_cred))
279 break;
280
281 result = KAUTH_RESULT_ALLOW;
282
283 break;
284
285 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
286 if (!kern_expose_address)
287 break;
288
289 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
290 break;
291
292 result = KAUTH_RESULT_ALLOW;
293
294 break;
295
296 default:
297 break;
298 }
299
300 break;
301 }
302
303 case KAUTH_PROCESS_FORK: {
304 int lnprocs = (int)(unsigned long)arg2;
305
306 /*
307 * Don't allow a nonprivileged user to use the last few
308 * processes. The variable lnprocs is the current number of
309 * processes, maxproc is the limit.
310 */
311 if (__predict_false((lnprocs >= maxproc - 5)))
312 break;
313
314 result = KAUTH_RESULT_ALLOW;
315
316 break;
317 }
318
319 case KAUTH_PROCESS_CORENAME:
320 case KAUTH_PROCESS_STOPFLAG:
321 if (proc_uidmatch(cred, p->p_cred) == 0)
322 result = KAUTH_RESULT_ALLOW;
323
324 break;
325
326 default:
327 break;
328 }
329
330 return result;
331 }
332
333 static int
334 proc_ctor(void *arg __unused, void *obj, int flags __unused)
335 {
336 memset(obj, 0, sizeof(struct proc));
337 return 0;
338 }
339
340 /*
341 * Initialize global process hashing structures.
342 */
343 void
344 procinit(void)
345 {
346 const struct proclist_desc *pd;
347 u_int i;
348 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
349
350 for (pd = proclists; pd->pd_list != NULL; pd++)
351 LIST_INIT(pd->pd_list);
352
353 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
354 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
355 * sizeof(struct pid_table), KM_SLEEP);
356 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
357 pid_max = PID_MAX;
358
359 /* Set free list running through table...
360 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
361 for (i = 0; i <= pid_tbl_mask; i++) {
362 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
363 pid_table[i].pt_pgrp = 0;
364 pid_table[i].pt_pid = 0;
365 }
366 /* slot 0 is just grabbed */
367 next_free_pt = 1;
368 /* Need to fix last entry. */
369 last_free_pt = pid_tbl_mask;
370 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
371 /* point at which we grow table - to avoid reusing pids too often */
372 pid_alloc_lim = pid_tbl_mask - 1;
373 #undef LINK_EMPTY
374
375 proc_specificdata_domain = specificdata_domain_create();
376 KASSERT(proc_specificdata_domain != NULL);
377
378 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
379 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
380
381 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
382 proc_listener_cb, NULL);
383 }
384
385 void
386 procinit_sysctl(void)
387 {
388 static struct sysctllog *clog;
389
390 sysctl_createv(&clog, 0, NULL, NULL,
391 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
392 CTLTYPE_INT, "expose_address",
393 SYSCTL_DESCR("Enable exposing kernel addresses"),
394 sysctl_security_expose_address, 0,
395 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
396 sysctl_createv(&clog, 0, NULL, NULL,
397 CTLFLAG_PERMANENT,
398 CTLTYPE_NODE, "proc",
399 SYSCTL_DESCR("System-wide process information"),
400 sysctl_doeproc, 0, NULL, 0,
401 CTL_KERN, KERN_PROC, CTL_EOL);
402 sysctl_createv(&clog, 0, NULL, NULL,
403 CTLFLAG_PERMANENT,
404 CTLTYPE_NODE, "proc2",
405 SYSCTL_DESCR("Machine-independent process information"),
406 sysctl_doeproc, 0, NULL, 0,
407 CTL_KERN, KERN_PROC2, CTL_EOL);
408 sysctl_createv(&clog, 0, NULL, NULL,
409 CTLFLAG_PERMANENT,
410 CTLTYPE_NODE, "proc_args",
411 SYSCTL_DESCR("Process argument information"),
412 sysctl_kern_proc_args, 0, NULL, 0,
413 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
414
415 /*
416 "nodes" under these:
417
418 KERN_PROC_ALL
419 KERN_PROC_PID pid
420 KERN_PROC_PGRP pgrp
421 KERN_PROC_SESSION sess
422 KERN_PROC_TTY tty
423 KERN_PROC_UID uid
424 KERN_PROC_RUID uid
425 KERN_PROC_GID gid
426 KERN_PROC_RGID gid
427
428 all in all, probably not worth the effort...
429 */
430 }
431
432 /*
433 * Initialize process 0.
434 */
435 void
436 proc0_init(void)
437 {
438 struct proc *p;
439 struct pgrp *pg;
440 struct rlimit *rlim;
441 rlim_t lim;
442 int i;
443
444 p = &proc0;
445 pg = &pgrp0;
446
447 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
448 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
449 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
450
451 rw_init(&p->p_reflock);
452 cv_init(&p->p_waitcv, "wait");
453 cv_init(&p->p_lwpcv, "lwpwait");
454
455 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
456
457 pid_table[0].pt_proc = p;
458 LIST_INSERT_HEAD(&allproc, p, p_list);
459
460 pid_table[0].pt_pgrp = pg;
461 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
462
463 #ifdef __HAVE_SYSCALL_INTERN
464 (*p->p_emul->e_syscall_intern)(p);
465 #endif
466
467 /* Create credentials. */
468 cred0 = kauth_cred_alloc();
469 p->p_cred = cred0;
470
471 /* Create the CWD info. */
472 rw_init(&cwdi0.cwdi_lock);
473
474 /* Create the limits structures. */
475 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
476
477 rlim = limit0.pl_rlimit;
478 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
479 rlim[i].rlim_cur = RLIM_INFINITY;
480 rlim[i].rlim_max = RLIM_INFINITY;
481 }
482
483 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
484 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
485
486 rlim[RLIMIT_NPROC].rlim_max = maxproc;
487 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
488
489 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
490 rlim[RLIMIT_RSS].rlim_max = lim;
491 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
492 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
493
494 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
495 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
496
497 /* Note that default core name has zero length. */
498 limit0.pl_corename = defcorename;
499 limit0.pl_cnlen = 0;
500 limit0.pl_refcnt = 1;
501 limit0.pl_writeable = false;
502 limit0.pl_sv_limit = NULL;
503
504 /* Configure virtual memory system, set vm rlimits. */
505 uvm_init_limits(p);
506
507 /* Initialize file descriptor table for proc0. */
508 fd_init(&filedesc0);
509
510 /*
511 * Initialize proc0's vmspace, which uses the kernel pmap.
512 * All kernel processes (which never have user space mappings)
513 * share proc0's vmspace, and thus, the kernel pmap.
514 */
515 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
516 trunc_page(VM_MAXUSER_ADDRESS),
517 #ifdef __USE_TOPDOWN_VM
518 true
519 #else
520 false
521 #endif
522 );
523
524 /* Initialize signal state for proc0. XXX IPL_SCHED */
525 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
526 siginit(p);
527
528 proc_initspecific(p);
529 kdtrace_proc_ctor(NULL, p);
530 }
531
532 /*
533 * Session reference counting.
534 */
535
536 void
537 proc_sesshold(struct session *ss)
538 {
539
540 KASSERT(mutex_owned(proc_lock));
541 ss->s_count++;
542 }
543
544 void
545 proc_sessrele(struct session *ss)
546 {
547
548 KASSERT(mutex_owned(proc_lock));
549 /*
550 * We keep the pgrp with the same id as the session in order to
551 * stop a process being given the same pid. Since the pgrp holds
552 * a reference to the session, it must be a 'zombie' pgrp by now.
553 */
554 if (--ss->s_count == 0) {
555 struct pgrp *pg;
556
557 pg = pg_remove(ss->s_sid);
558 mutex_exit(proc_lock);
559
560 kmem_free(pg, sizeof(struct pgrp));
561 kmem_free(ss, sizeof(struct session));
562 } else {
563 mutex_exit(proc_lock);
564 }
565 }
566
567 /*
568 * Check that the specified process group is in the session of the
569 * specified process.
570 * Treats -ve ids as process ids.
571 * Used to validate TIOCSPGRP requests.
572 */
573 int
574 pgid_in_session(struct proc *p, pid_t pg_id)
575 {
576 struct pgrp *pgrp;
577 struct session *session;
578 int error;
579
580 mutex_enter(proc_lock);
581 if (pg_id < 0) {
582 struct proc *p1 = proc_find(-pg_id);
583 if (p1 == NULL) {
584 error = EINVAL;
585 goto fail;
586 }
587 pgrp = p1->p_pgrp;
588 } else {
589 pgrp = pgrp_find(pg_id);
590 if (pgrp == NULL) {
591 error = EINVAL;
592 goto fail;
593 }
594 }
595 session = pgrp->pg_session;
596 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
597 fail:
598 mutex_exit(proc_lock);
599 return error;
600 }
601
602 /*
603 * p_inferior: is p an inferior of q?
604 */
605 static inline bool
606 p_inferior(struct proc *p, struct proc *q)
607 {
608
609 KASSERT(mutex_owned(proc_lock));
610
611 for (; p != q; p = p->p_pptr)
612 if (p->p_pid == 0)
613 return false;
614 return true;
615 }
616
617 /*
618 * proc_find: locate a process by the ID.
619 *
620 * => Must be called with proc_lock held.
621 */
622 proc_t *
623 proc_find_raw(pid_t pid)
624 {
625 struct pid_table *pt;
626 proc_t *p;
627
628 KASSERT(mutex_owned(proc_lock));
629 pt = &pid_table[pid & pid_tbl_mask];
630 p = pt->pt_proc;
631 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
632 return NULL;
633 }
634 return p;
635 }
636
637 proc_t *
638 proc_find(pid_t pid)
639 {
640 proc_t *p;
641
642 p = proc_find_raw(pid);
643 if (__predict_false(p == NULL)) {
644 return NULL;
645 }
646
647 /*
648 * Only allow live processes to be found by PID.
649 * XXX: p_stat might change, since unlocked.
650 */
651 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
652 return p;
653 }
654 return NULL;
655 }
656
657 /*
658 * pgrp_find: locate a process group by the ID.
659 *
660 * => Must be called with proc_lock held.
661 */
662 struct pgrp *
663 pgrp_find(pid_t pgid)
664 {
665 struct pgrp *pg;
666
667 KASSERT(mutex_owned(proc_lock));
668
669 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
670
671 /*
672 * Cannot look up a process group that only exists because the
673 * session has not died yet (traditional).
674 */
675 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
676 return NULL;
677 }
678 return pg;
679 }
680
681 static void
682 expand_pid_table(void)
683 {
684 size_t pt_size, tsz;
685 struct pid_table *n_pt, *new_pt;
686 struct proc *proc;
687 struct pgrp *pgrp;
688 pid_t pid, rpid;
689 u_int i;
690 uint new_pt_mask;
691
692 pt_size = pid_tbl_mask + 1;
693 tsz = pt_size * 2 * sizeof(struct pid_table);
694 new_pt = kmem_alloc(tsz, KM_SLEEP);
695 new_pt_mask = pt_size * 2 - 1;
696
697 mutex_enter(proc_lock);
698 if (pt_size != pid_tbl_mask + 1) {
699 /* Another process beat us to it... */
700 mutex_exit(proc_lock);
701 kmem_free(new_pt, tsz);
702 return;
703 }
704
705 /*
706 * Copy entries from old table into new one.
707 * If 'pid' is 'odd' we need to place in the upper half,
708 * even pid's to the lower half.
709 * Free items stay in the low half so we don't have to
710 * fixup the reference to them.
711 * We stuff free items on the front of the freelist
712 * because we can't write to unmodified entries.
713 * Processing the table backwards maintains a semblance
714 * of issuing pid numbers that increase with time.
715 */
716 i = pt_size - 1;
717 n_pt = new_pt + i;
718 for (; ; i--, n_pt--) {
719 proc = pid_table[i].pt_proc;
720 pgrp = pid_table[i].pt_pgrp;
721 if (!P_VALID(proc)) {
722 /* Up 'use count' so that link is valid */
723 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
724 rpid = 0;
725 proc = P_FREE(pid);
726 if (pgrp)
727 pid = pgrp->pg_id;
728 } else {
729 pid = pid_table[i].pt_pid;
730 rpid = pid;
731 }
732
733 /* Save entry in appropriate half of table */
734 n_pt[pid & pt_size].pt_proc = proc;
735 n_pt[pid & pt_size].pt_pgrp = pgrp;
736 n_pt[pid & pt_size].pt_pid = rpid;
737
738 /* Put other piece on start of free list */
739 pid = (pid ^ pt_size) & ~pid_tbl_mask;
740 n_pt[pid & pt_size].pt_proc =
741 P_FREE((pid & ~pt_size) | next_free_pt);
742 n_pt[pid & pt_size].pt_pgrp = 0;
743 n_pt[pid & pt_size].pt_pid = 0;
744
745 next_free_pt = i | (pid & pt_size);
746 if (i == 0)
747 break;
748 }
749
750 /* Save old table size and switch tables */
751 tsz = pt_size * sizeof(struct pid_table);
752 n_pt = pid_table;
753 pid_table = new_pt;
754 pid_tbl_mask = new_pt_mask;
755
756 /*
757 * pid_max starts as PID_MAX (= 30000), once we have 16384
758 * allocated pids we need it to be larger!
759 */
760 if (pid_tbl_mask > PID_MAX) {
761 pid_max = pid_tbl_mask * 2 + 1;
762 pid_alloc_lim |= pid_alloc_lim << 1;
763 } else
764 pid_alloc_lim <<= 1; /* doubles number of free slots... */
765
766 mutex_exit(proc_lock);
767 kmem_free(n_pt, tsz);
768 }
769
770 struct proc *
771 proc_alloc(void)
772 {
773 struct proc *p;
774
775 p = pool_cache_get(proc_cache, PR_WAITOK);
776 p->p_stat = SIDL; /* protect against others */
777 proc_initspecific(p);
778 kdtrace_proc_ctor(NULL, p);
779 p->p_pid = -1;
780 proc_alloc_pid(p);
781 return p;
782 }
783
784 /*
785 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
786 * proc_find_raw() can find it by the PID.
787 */
788
789 pid_t
790 proc_alloc_pid(struct proc *p)
791 {
792 struct pid_table *pt;
793 pid_t pid;
794 int nxt;
795
796 for (;;expand_pid_table()) {
797 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
798 /* ensure pids cycle through 2000+ values */
799 continue;
800 mutex_enter(proc_lock);
801 pt = &pid_table[next_free_pt];
802 #ifdef DIAGNOSTIC
803 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
804 panic("proc_alloc: slot busy");
805 #endif
806 nxt = P_NEXT(pt->pt_proc);
807 if (nxt & pid_tbl_mask)
808 break;
809 /* Table full - expand (NB last entry not used....) */
810 mutex_exit(proc_lock);
811 }
812
813 /* pid is 'saved use count' + 'size' + entry */
814 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
815 if ((uint)pid > (uint)pid_max)
816 pid &= pid_tbl_mask;
817 next_free_pt = nxt & pid_tbl_mask;
818
819 /* Grab table slot */
820 pt->pt_proc = p;
821
822 KASSERT(pt->pt_pid == 0);
823 pt->pt_pid = pid;
824 if (p->p_pid == -1) {
825 p->p_pid = pid;
826 }
827 pid_alloc_cnt++;
828 mutex_exit(proc_lock);
829
830 return pid;
831 }
832
833 /*
834 * Free a process id - called from proc_free (in kern_exit.c)
835 *
836 * Called with the proc_lock held.
837 */
838 void
839 proc_free_pid(pid_t pid)
840 {
841 struct pid_table *pt;
842
843 KASSERT(mutex_owned(proc_lock));
844
845 pt = &pid_table[pid & pid_tbl_mask];
846
847 /* save pid use count in slot */
848 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
849 KASSERT(pt->pt_pid == pid);
850 pt->pt_pid = 0;
851
852 if (pt->pt_pgrp == NULL) {
853 /* link last freed entry onto ours */
854 pid &= pid_tbl_mask;
855 pt = &pid_table[last_free_pt];
856 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
857 pt->pt_pid = 0;
858 last_free_pt = pid;
859 pid_alloc_cnt--;
860 }
861
862 atomic_dec_uint(&nprocs);
863 }
864
865 void
866 proc_free_mem(struct proc *p)
867 {
868
869 kdtrace_proc_dtor(NULL, p);
870 pool_cache_put(proc_cache, p);
871 }
872
873 /*
874 * proc_enterpgrp: move p to a new or existing process group (and session).
875 *
876 * If we are creating a new pgrp, the pgid should equal
877 * the calling process' pid.
878 * If is only valid to enter a process group that is in the session
879 * of the process.
880 * Also mksess should only be set if we are creating a process group
881 *
882 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
883 */
884 int
885 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
886 {
887 struct pgrp *new_pgrp, *pgrp;
888 struct session *sess;
889 struct proc *p;
890 int rval;
891 pid_t pg_id = NO_PGID;
892
893 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
894
895 /* Allocate data areas we might need before doing any validity checks */
896 mutex_enter(proc_lock); /* Because pid_table might change */
897 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
898 mutex_exit(proc_lock);
899 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
900 mutex_enter(proc_lock);
901 } else
902 new_pgrp = NULL;
903 rval = EPERM; /* most common error (to save typing) */
904
905 /* Check pgrp exists or can be created */
906 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
907 if (pgrp != NULL && pgrp->pg_id != pgid)
908 goto done;
909
910 /* Can only set another process under restricted circumstances. */
911 if (pid != curp->p_pid) {
912 /* Must exist and be one of our children... */
913 p = proc_find(pid);
914 if (p == NULL || !p_inferior(p, curp)) {
915 rval = ESRCH;
916 goto done;
917 }
918 /* ... in the same session... */
919 if (sess != NULL || p->p_session != curp->p_session)
920 goto done;
921 /* ... existing pgid must be in same session ... */
922 if (pgrp != NULL && pgrp->pg_session != p->p_session)
923 goto done;
924 /* ... and not done an exec. */
925 if (p->p_flag & PK_EXEC) {
926 rval = EACCES;
927 goto done;
928 }
929 } else {
930 /* ... setsid() cannot re-enter a pgrp */
931 if (mksess && (curp->p_pgid == curp->p_pid ||
932 pgrp_find(curp->p_pid)))
933 goto done;
934 p = curp;
935 }
936
937 /* Changing the process group/session of a session
938 leader is definitely off limits. */
939 if (SESS_LEADER(p)) {
940 if (sess == NULL && p->p_pgrp == pgrp)
941 /* unless it's a definite noop */
942 rval = 0;
943 goto done;
944 }
945
946 /* Can only create a process group with id of process */
947 if (pgrp == NULL && pgid != pid)
948 goto done;
949
950 /* Can only create a session if creating pgrp */
951 if (sess != NULL && pgrp != NULL)
952 goto done;
953
954 /* Check we allocated memory for a pgrp... */
955 if (pgrp == NULL && new_pgrp == NULL)
956 goto done;
957
958 /* Don't attach to 'zombie' pgrp */
959 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
960 goto done;
961
962 /* Expect to succeed now */
963 rval = 0;
964
965 if (pgrp == p->p_pgrp)
966 /* nothing to do */
967 goto done;
968
969 /* Ok all setup, link up required structures */
970
971 if (pgrp == NULL) {
972 pgrp = new_pgrp;
973 new_pgrp = NULL;
974 if (sess != NULL) {
975 sess->s_sid = p->p_pid;
976 sess->s_leader = p;
977 sess->s_count = 1;
978 sess->s_ttyvp = NULL;
979 sess->s_ttyp = NULL;
980 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
981 memcpy(sess->s_login, p->p_session->s_login,
982 sizeof(sess->s_login));
983 p->p_lflag &= ~PL_CONTROLT;
984 } else {
985 sess = p->p_pgrp->pg_session;
986 proc_sesshold(sess);
987 }
988 pgrp->pg_session = sess;
989 sess = NULL;
990
991 pgrp->pg_id = pgid;
992 LIST_INIT(&pgrp->pg_members);
993 #ifdef DIAGNOSTIC
994 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
995 panic("enterpgrp: pgrp table slot in use");
996 if (__predict_false(mksess && p != curp))
997 panic("enterpgrp: mksession and p != curproc");
998 #endif
999 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1000 pgrp->pg_jobc = 0;
1001 }
1002
1003 /*
1004 * Adjust eligibility of affected pgrps to participate in job control.
1005 * Increment eligibility counts before decrementing, otherwise we
1006 * could reach 0 spuriously during the first call.
1007 */
1008 fixjobc(p, pgrp, 1);
1009 fixjobc(p, p->p_pgrp, 0);
1010
1011 /* Interlock with ttread(). */
1012 mutex_spin_enter(&tty_lock);
1013
1014 /* Move process to requested group. */
1015 LIST_REMOVE(p, p_pglist);
1016 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1017 /* defer delete until we've dumped the lock */
1018 pg_id = p->p_pgrp->pg_id;
1019 p->p_pgrp = pgrp;
1020 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1021
1022 /* Done with the swap; we can release the tty mutex. */
1023 mutex_spin_exit(&tty_lock);
1024
1025 done:
1026 if (pg_id != NO_PGID) {
1027 /* Releases proc_lock. */
1028 pg_delete(pg_id);
1029 } else {
1030 mutex_exit(proc_lock);
1031 }
1032 if (sess != NULL)
1033 kmem_free(sess, sizeof(*sess));
1034 if (new_pgrp != NULL)
1035 kmem_free(new_pgrp, sizeof(*new_pgrp));
1036 #ifdef DEBUG_PGRP
1037 if (__predict_false(rval))
1038 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1039 pid, pgid, mksess, curp->p_pid, rval);
1040 #endif
1041 return rval;
1042 }
1043
1044 /*
1045 * proc_leavepgrp: remove a process from its process group.
1046 * => must be called with the proc_lock held, which will be released;
1047 */
1048 void
1049 proc_leavepgrp(struct proc *p)
1050 {
1051 struct pgrp *pgrp;
1052
1053 KASSERT(mutex_owned(proc_lock));
1054
1055 /* Interlock with ttread() */
1056 mutex_spin_enter(&tty_lock);
1057 pgrp = p->p_pgrp;
1058 LIST_REMOVE(p, p_pglist);
1059 p->p_pgrp = NULL;
1060 mutex_spin_exit(&tty_lock);
1061
1062 if (LIST_EMPTY(&pgrp->pg_members)) {
1063 /* Releases proc_lock. */
1064 pg_delete(pgrp->pg_id);
1065 } else {
1066 mutex_exit(proc_lock);
1067 }
1068 }
1069
1070 /*
1071 * pg_remove: remove a process group from the table.
1072 * => must be called with the proc_lock held;
1073 * => returns process group to free;
1074 */
1075 static struct pgrp *
1076 pg_remove(pid_t pg_id)
1077 {
1078 struct pgrp *pgrp;
1079 struct pid_table *pt;
1080
1081 KASSERT(mutex_owned(proc_lock));
1082
1083 pt = &pid_table[pg_id & pid_tbl_mask];
1084 pgrp = pt->pt_pgrp;
1085
1086 KASSERT(pgrp != NULL);
1087 KASSERT(pgrp->pg_id == pg_id);
1088 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1089
1090 pt->pt_pgrp = NULL;
1091
1092 if (!P_VALID(pt->pt_proc)) {
1093 /* Orphaned pgrp, put slot onto free list. */
1094 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1095 pg_id &= pid_tbl_mask;
1096 pt = &pid_table[last_free_pt];
1097 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1098 KASSERT(pt->pt_pid == 0);
1099 last_free_pt = pg_id;
1100 pid_alloc_cnt--;
1101 }
1102 return pgrp;
1103 }
1104
1105 /*
1106 * pg_delete: delete and free a process group.
1107 * => must be called with the proc_lock held, which will be released.
1108 */
1109 static void
1110 pg_delete(pid_t pg_id)
1111 {
1112 struct pgrp *pg;
1113 struct tty *ttyp;
1114 struct session *ss;
1115
1116 KASSERT(mutex_owned(proc_lock));
1117
1118 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1119 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1120 mutex_exit(proc_lock);
1121 return;
1122 }
1123
1124 ss = pg->pg_session;
1125
1126 /* Remove reference (if any) from tty to this process group */
1127 mutex_spin_enter(&tty_lock);
1128 ttyp = ss->s_ttyp;
1129 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1130 ttyp->t_pgrp = NULL;
1131 KASSERT(ttyp->t_session == ss);
1132 }
1133 mutex_spin_exit(&tty_lock);
1134
1135 /*
1136 * The leading process group in a session is freed by proc_sessrele(),
1137 * if last reference. Note: proc_sessrele() releases proc_lock.
1138 */
1139 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1140 proc_sessrele(ss);
1141
1142 if (pg != NULL) {
1143 /* Free it, if was not done by proc_sessrele(). */
1144 kmem_free(pg, sizeof(struct pgrp));
1145 }
1146 }
1147
1148 /*
1149 * Adjust pgrp jobc counters when specified process changes process group.
1150 * We count the number of processes in each process group that "qualify"
1151 * the group for terminal job control (those with a parent in a different
1152 * process group of the same session). If that count reaches zero, the
1153 * process group becomes orphaned. Check both the specified process'
1154 * process group and that of its children.
1155 * entering == 0 => p is leaving specified group.
1156 * entering == 1 => p is entering specified group.
1157 *
1158 * Call with proc_lock held.
1159 */
1160 void
1161 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1162 {
1163 struct pgrp *hispgrp;
1164 struct session *mysession = pgrp->pg_session;
1165 struct proc *child;
1166
1167 KASSERT(mutex_owned(proc_lock));
1168
1169 /*
1170 * Check p's parent to see whether p qualifies its own process
1171 * group; if so, adjust count for p's process group.
1172 */
1173 hispgrp = p->p_pptr->p_pgrp;
1174 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1175 if (entering) {
1176 pgrp->pg_jobc++;
1177 p->p_lflag &= ~PL_ORPHANPG;
1178 } else if (--pgrp->pg_jobc == 0)
1179 orphanpg(pgrp);
1180 }
1181
1182 /*
1183 * Check this process' children to see whether they qualify
1184 * their process groups; if so, adjust counts for children's
1185 * process groups.
1186 */
1187 LIST_FOREACH(child, &p->p_children, p_sibling) {
1188 hispgrp = child->p_pgrp;
1189 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1190 !P_ZOMBIE(child)) {
1191 if (entering) {
1192 child->p_lflag &= ~PL_ORPHANPG;
1193 hispgrp->pg_jobc++;
1194 } else if (--hispgrp->pg_jobc == 0)
1195 orphanpg(hispgrp);
1196 }
1197 }
1198 }
1199
1200 /*
1201 * A process group has become orphaned;
1202 * if there are any stopped processes in the group,
1203 * hang-up all process in that group.
1204 *
1205 * Call with proc_lock held.
1206 */
1207 static void
1208 orphanpg(struct pgrp *pg)
1209 {
1210 struct proc *p;
1211
1212 KASSERT(mutex_owned(proc_lock));
1213
1214 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1215 if (p->p_stat == SSTOP) {
1216 p->p_lflag |= PL_ORPHANPG;
1217 psignal(p, SIGHUP);
1218 psignal(p, SIGCONT);
1219 }
1220 }
1221 }
1222
1223 #ifdef DDB
1224 #include <ddb/db_output.h>
1225 void pidtbl_dump(void);
1226 void
1227 pidtbl_dump(void)
1228 {
1229 struct pid_table *pt;
1230 struct proc *p;
1231 struct pgrp *pgrp;
1232 int id;
1233
1234 db_printf("pid table %p size %x, next %x, last %x\n",
1235 pid_table, pid_tbl_mask+1,
1236 next_free_pt, last_free_pt);
1237 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1238 p = pt->pt_proc;
1239 if (!P_VALID(p) && !pt->pt_pgrp)
1240 continue;
1241 db_printf(" id %x: ", id);
1242 if (P_VALID(p))
1243 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1244 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1245 else
1246 db_printf("next %x use %x\n",
1247 P_NEXT(p) & pid_tbl_mask,
1248 P_NEXT(p) & ~pid_tbl_mask);
1249 if ((pgrp = pt->pt_pgrp)) {
1250 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1251 pgrp->pg_session, pgrp->pg_session->s_sid,
1252 pgrp->pg_session->s_count,
1253 pgrp->pg_session->s_login);
1254 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1255 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1256 LIST_FIRST(&pgrp->pg_members));
1257 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1258 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1259 p->p_pid, p, p->p_pgrp, p->p_comm);
1260 }
1261 }
1262 }
1263 }
1264 #endif /* DDB */
1265
1266 #ifdef KSTACK_CHECK_MAGIC
1267
1268 #define KSTACK_MAGIC 0xdeadbeaf
1269
1270 /* XXX should be per process basis? */
1271 static int kstackleftmin = KSTACK_SIZE;
1272 static int kstackleftthres = KSTACK_SIZE / 8;
1273
1274 void
1275 kstack_setup_magic(const struct lwp *l)
1276 {
1277 uint32_t *ip;
1278 uint32_t const *end;
1279
1280 KASSERT(l != NULL);
1281 KASSERT(l != &lwp0);
1282
1283 /*
1284 * fill all the stack with magic number
1285 * so that later modification on it can be detected.
1286 */
1287 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1288 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1289 for (; ip < end; ip++) {
1290 *ip = KSTACK_MAGIC;
1291 }
1292 }
1293
1294 void
1295 kstack_check_magic(const struct lwp *l)
1296 {
1297 uint32_t const *ip, *end;
1298 int stackleft;
1299
1300 KASSERT(l != NULL);
1301
1302 /* don't check proc0 */ /*XXX*/
1303 if (l == &lwp0)
1304 return;
1305
1306 #ifdef __MACHINE_STACK_GROWS_UP
1307 /* stack grows upwards (eg. hppa) */
1308 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1309 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1310 for (ip--; ip >= end; ip--)
1311 if (*ip != KSTACK_MAGIC)
1312 break;
1313
1314 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1315 #else /* __MACHINE_STACK_GROWS_UP */
1316 /* stack grows downwards (eg. i386) */
1317 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1318 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1319 for (; ip < end; ip++)
1320 if (*ip != KSTACK_MAGIC)
1321 break;
1322
1323 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1324 #endif /* __MACHINE_STACK_GROWS_UP */
1325
1326 if (kstackleftmin > stackleft) {
1327 kstackleftmin = stackleft;
1328 if (stackleft < kstackleftthres)
1329 printf("warning: kernel stack left %d bytes"
1330 "(pid %u:lid %u)\n", stackleft,
1331 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1332 }
1333
1334 if (stackleft <= 0) {
1335 panic("magic on the top of kernel stack changed for "
1336 "pid %u, lid %u: maybe kernel stack overflow",
1337 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1338 }
1339 }
1340 #endif /* KSTACK_CHECK_MAGIC */
1341
1342 int
1343 proclist_foreach_call(struct proclist *list,
1344 int (*callback)(struct proc *, void *arg), void *arg)
1345 {
1346 struct proc marker;
1347 struct proc *p;
1348 int ret = 0;
1349
1350 marker.p_flag = PK_MARKER;
1351 mutex_enter(proc_lock);
1352 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1353 if (p->p_flag & PK_MARKER) {
1354 p = LIST_NEXT(p, p_list);
1355 continue;
1356 }
1357 LIST_INSERT_AFTER(p, &marker, p_list);
1358 ret = (*callback)(p, arg);
1359 KASSERT(mutex_owned(proc_lock));
1360 p = LIST_NEXT(&marker, p_list);
1361 LIST_REMOVE(&marker, p_list);
1362 }
1363 mutex_exit(proc_lock);
1364
1365 return ret;
1366 }
1367
1368 int
1369 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1370 {
1371
1372 /* XXXCDC: how should locking work here? */
1373
1374 /* curproc exception is for coredump. */
1375
1376 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1377 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1378 return EFAULT;
1379 }
1380
1381 uvmspace_addref(p->p_vmspace);
1382 *vm = p->p_vmspace;
1383
1384 return 0;
1385 }
1386
1387 /*
1388 * Acquire a write lock on the process credential.
1389 */
1390 void
1391 proc_crmod_enter(void)
1392 {
1393 struct lwp *l = curlwp;
1394 struct proc *p = l->l_proc;
1395 kauth_cred_t oc;
1396
1397 /* Reset what needs to be reset in plimit. */
1398 if (p->p_limit->pl_corename != defcorename) {
1399 lim_setcorename(p, defcorename, 0);
1400 }
1401
1402 mutex_enter(p->p_lock);
1403
1404 /* Ensure the LWP cached credentials are up to date. */
1405 if ((oc = l->l_cred) != p->p_cred) {
1406 kauth_cred_hold(p->p_cred);
1407 l->l_cred = p->p_cred;
1408 kauth_cred_free(oc);
1409 }
1410 }
1411
1412 /*
1413 * Set in a new process credential, and drop the write lock. The credential
1414 * must have a reference already. Optionally, free a no-longer required
1415 * credential. The scheduler also needs to inspect p_cred, so we also
1416 * briefly acquire the sched state mutex.
1417 */
1418 void
1419 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1420 {
1421 struct lwp *l = curlwp, *l2;
1422 struct proc *p = l->l_proc;
1423 kauth_cred_t oc;
1424
1425 KASSERT(mutex_owned(p->p_lock));
1426
1427 /* Is there a new credential to set in? */
1428 if (scred != NULL) {
1429 p->p_cred = scred;
1430 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1431 if (l2 != l)
1432 l2->l_prflag |= LPR_CRMOD;
1433 }
1434
1435 /* Ensure the LWP cached credentials are up to date. */
1436 if ((oc = l->l_cred) != scred) {
1437 kauth_cred_hold(scred);
1438 l->l_cred = scred;
1439 }
1440 } else
1441 oc = NULL; /* XXXgcc */
1442
1443 if (sugid) {
1444 /*
1445 * Mark process as having changed credentials, stops
1446 * tracing etc.
1447 */
1448 p->p_flag |= PK_SUGID;
1449 }
1450
1451 mutex_exit(p->p_lock);
1452
1453 /* If there is a credential to be released, free it now. */
1454 if (fcred != NULL) {
1455 KASSERT(scred != NULL);
1456 kauth_cred_free(fcred);
1457 if (oc != scred)
1458 kauth_cred_free(oc);
1459 }
1460 }
1461
1462 /*
1463 * proc_specific_key_create --
1464 * Create a key for subsystem proc-specific data.
1465 */
1466 int
1467 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1468 {
1469
1470 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1471 }
1472
1473 /*
1474 * proc_specific_key_delete --
1475 * Delete a key for subsystem proc-specific data.
1476 */
1477 void
1478 proc_specific_key_delete(specificdata_key_t key)
1479 {
1480
1481 specificdata_key_delete(proc_specificdata_domain, key);
1482 }
1483
1484 /*
1485 * proc_initspecific --
1486 * Initialize a proc's specificdata container.
1487 */
1488 void
1489 proc_initspecific(struct proc *p)
1490 {
1491 int error __diagused;
1492
1493 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1494 KASSERT(error == 0);
1495 }
1496
1497 /*
1498 * proc_finispecific --
1499 * Finalize a proc's specificdata container.
1500 */
1501 void
1502 proc_finispecific(struct proc *p)
1503 {
1504
1505 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1506 }
1507
1508 /*
1509 * proc_getspecific --
1510 * Return proc-specific data corresponding to the specified key.
1511 */
1512 void *
1513 proc_getspecific(struct proc *p, specificdata_key_t key)
1514 {
1515
1516 return (specificdata_getspecific(proc_specificdata_domain,
1517 &p->p_specdataref, key));
1518 }
1519
1520 /*
1521 * proc_setspecific --
1522 * Set proc-specific data corresponding to the specified key.
1523 */
1524 void
1525 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1526 {
1527
1528 specificdata_setspecific(proc_specificdata_domain,
1529 &p->p_specdataref, key, data);
1530 }
1531
1532 int
1533 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1534 {
1535 int r = 0;
1536
1537 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1538 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1539 /*
1540 * suid proc of ours or proc not ours
1541 */
1542 r = EPERM;
1543 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1544 /*
1545 * sgid proc has sgid back to us temporarily
1546 */
1547 r = EPERM;
1548 } else {
1549 /*
1550 * our rgid must be in target's group list (ie,
1551 * sub-processes started by a sgid process)
1552 */
1553 int ismember = 0;
1554
1555 if (kauth_cred_ismember_gid(cred,
1556 kauth_cred_getgid(target), &ismember) != 0 ||
1557 !ismember)
1558 r = EPERM;
1559 }
1560
1561 return (r);
1562 }
1563
1564 /*
1565 * sysctl stuff
1566 */
1567
1568 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1569
1570 static const u_int sysctl_flagmap[] = {
1571 PK_ADVLOCK, P_ADVLOCK,
1572 PK_EXEC, P_EXEC,
1573 PK_NOCLDWAIT, P_NOCLDWAIT,
1574 PK_32, P_32,
1575 PK_CLDSIGIGN, P_CLDSIGIGN,
1576 PK_SUGID, P_SUGID,
1577 0
1578 };
1579
1580 static const u_int sysctl_sflagmap[] = {
1581 PS_NOCLDSTOP, P_NOCLDSTOP,
1582 PS_WEXIT, P_WEXIT,
1583 PS_STOPFORK, P_STOPFORK,
1584 PS_STOPEXEC, P_STOPEXEC,
1585 PS_STOPEXIT, P_STOPEXIT,
1586 0
1587 };
1588
1589 static const u_int sysctl_slflagmap[] = {
1590 PSL_TRACED, P_TRACED,
1591 PSL_CHTRACED, P_CHTRACED,
1592 PSL_SYSCALL, P_SYSCALL,
1593 0
1594 };
1595
1596 static const u_int sysctl_lflagmap[] = {
1597 PL_CONTROLT, P_CONTROLT,
1598 PL_PPWAIT, P_PPWAIT,
1599 0
1600 };
1601
1602 static const u_int sysctl_stflagmap[] = {
1603 PST_PROFIL, P_PROFIL,
1604 0
1605
1606 };
1607
1608 /* used by kern_lwp also */
1609 const u_int sysctl_lwpflagmap[] = {
1610 LW_SINTR, L_SINTR,
1611 LW_SYSTEM, L_SYSTEM,
1612 0
1613 };
1614
1615 /*
1616 * Find the most ``active'' lwp of a process and return it for ps display
1617 * purposes
1618 */
1619 static struct lwp *
1620 proc_active_lwp(struct proc *p)
1621 {
1622 static const int ostat[] = {
1623 0,
1624 2, /* LSIDL */
1625 6, /* LSRUN */
1626 5, /* LSSLEEP */
1627 4, /* LSSTOP */
1628 0, /* LSZOMB */
1629 1, /* LSDEAD */
1630 7, /* LSONPROC */
1631 3 /* LSSUSPENDED */
1632 };
1633
1634 struct lwp *l, *lp = NULL;
1635 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1636 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1637 if (lp == NULL ||
1638 ostat[l->l_stat] > ostat[lp->l_stat] ||
1639 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1640 l->l_cpticks > lp->l_cpticks)) {
1641 lp = l;
1642 continue;
1643 }
1644 }
1645 return lp;
1646 }
1647
1648 static int
1649 sysctl_doeproc(SYSCTLFN_ARGS)
1650 {
1651 union {
1652 struct kinfo_proc kproc;
1653 struct kinfo_proc2 kproc2;
1654 } *kbuf;
1655 struct proc *p, *next, *marker;
1656 char *where, *dp;
1657 int type, op, arg, error;
1658 u_int elem_size, kelem_size, elem_count;
1659 size_t buflen, needed;
1660 bool match, zombie, mmmbrains;
1661 const bool allowaddr = get_expose_address(curproc);
1662
1663 if (namelen == 1 && name[0] == CTL_QUERY)
1664 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1665
1666 dp = where = oldp;
1667 buflen = where != NULL ? *oldlenp : 0;
1668 error = 0;
1669 needed = 0;
1670 type = rnode->sysctl_num;
1671
1672 if (type == KERN_PROC) {
1673 if (namelen == 0)
1674 return EINVAL;
1675 switch (op = name[0]) {
1676 case KERN_PROC_ALL:
1677 if (namelen != 1)
1678 return EINVAL;
1679 arg = 0;
1680 break;
1681 default:
1682 if (namelen != 2)
1683 return EINVAL;
1684 arg = name[1];
1685 break;
1686 }
1687 elem_count = 0; /* Hush little compiler, don't you cry */
1688 kelem_size = elem_size = sizeof(kbuf->kproc);
1689 } else {
1690 if (namelen != 4)
1691 return EINVAL;
1692 op = name[0];
1693 arg = name[1];
1694 elem_size = name[2];
1695 elem_count = name[3];
1696 kelem_size = sizeof(kbuf->kproc2);
1697 }
1698
1699 sysctl_unlock();
1700
1701 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
1702 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1703 marker->p_flag = PK_MARKER;
1704
1705 mutex_enter(proc_lock);
1706 /*
1707 * Start with zombies to prevent reporting processes twice, in case they
1708 * are dying and being moved from the list of alive processes to zombies.
1709 */
1710 mmmbrains = true;
1711 for (p = LIST_FIRST(&zombproc);; p = next) {
1712 if (p == NULL) {
1713 if (mmmbrains) {
1714 p = LIST_FIRST(&allproc);
1715 mmmbrains = false;
1716 }
1717 if (p == NULL)
1718 break;
1719 }
1720 next = LIST_NEXT(p, p_list);
1721 if ((p->p_flag & PK_MARKER) != 0)
1722 continue;
1723
1724 /*
1725 * Skip embryonic processes.
1726 */
1727 if (p->p_stat == SIDL)
1728 continue;
1729
1730 mutex_enter(p->p_lock);
1731 error = kauth_authorize_process(l->l_cred,
1732 KAUTH_PROCESS_CANSEE, p,
1733 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
1734 if (error != 0) {
1735 mutex_exit(p->p_lock);
1736 continue;
1737 }
1738
1739 /*
1740 * Hande all the operations in one switch on the cost of
1741 * algorithm complexity is on purpose. The win splitting this
1742 * function into several similar copies makes maintenance burden
1743 * burden, code grow and boost is neglible in practical systems.
1744 */
1745 switch (op) {
1746 case KERN_PROC_PID:
1747 match = (p->p_pid == (pid_t)arg);
1748 break;
1749
1750 case KERN_PROC_PGRP:
1751 match = (p->p_pgrp->pg_id == (pid_t)arg);
1752 break;
1753
1754 case KERN_PROC_SESSION:
1755 match = (p->p_session->s_sid == (pid_t)arg);
1756 break;
1757
1758 case KERN_PROC_TTY:
1759 match = true;
1760 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1761 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1762 p->p_session->s_ttyp == NULL ||
1763 p->p_session->s_ttyvp != NULL) {
1764 match = false;
1765 }
1766 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1767 p->p_session->s_ttyp == NULL) {
1768 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1769 match = false;
1770 }
1771 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1772 match = false;
1773 }
1774 break;
1775
1776 case KERN_PROC_UID:
1777 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1778 break;
1779
1780 case KERN_PROC_RUID:
1781 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1782 break;
1783
1784 case KERN_PROC_GID:
1785 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1786 break;
1787
1788 case KERN_PROC_RGID:
1789 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1790 break;
1791
1792 case KERN_PROC_ALL:
1793 match = true;
1794 /* allow everything */
1795 break;
1796
1797 default:
1798 error = EINVAL;
1799 mutex_exit(p->p_lock);
1800 goto cleanup;
1801 }
1802 if (!match) {
1803 mutex_exit(p->p_lock);
1804 continue;
1805 }
1806
1807 /*
1808 * Grab a hold on the process.
1809 */
1810 if (mmmbrains) {
1811 zombie = true;
1812 } else {
1813 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1814 }
1815 if (zombie) {
1816 LIST_INSERT_AFTER(p, marker, p_list);
1817 }
1818
1819 if (buflen >= elem_size &&
1820 (type == KERN_PROC || elem_count > 0)) {
1821 if (type == KERN_PROC) {
1822 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
1823 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
1824 allowaddr);
1825 } else {
1826 fill_kproc2(p, &kbuf->kproc2, zombie,
1827 allowaddr);
1828 elem_count--;
1829 }
1830 mutex_exit(p->p_lock);
1831 mutex_exit(proc_lock);
1832 /*
1833 * Copy out elem_size, but not larger than kelem_size
1834 */
1835 error = sysctl_copyout(l, kbuf, dp,
1836 uimin(kelem_size, elem_size));
1837 mutex_enter(proc_lock);
1838 if (error) {
1839 goto bah;
1840 }
1841 dp += elem_size;
1842 buflen -= elem_size;
1843 } else {
1844 mutex_exit(p->p_lock);
1845 }
1846 needed += elem_size;
1847
1848 /*
1849 * Release reference to process.
1850 */
1851 if (zombie) {
1852 next = LIST_NEXT(marker, p_list);
1853 LIST_REMOVE(marker, p_list);
1854 } else {
1855 rw_exit(&p->p_reflock);
1856 next = LIST_NEXT(p, p_list);
1857 }
1858
1859 /*
1860 * Short-circuit break quickly!
1861 */
1862 if (op == KERN_PROC_PID)
1863 break;
1864 }
1865 mutex_exit(proc_lock);
1866
1867 if (where != NULL) {
1868 *oldlenp = dp - where;
1869 if (needed > *oldlenp) {
1870 error = ENOMEM;
1871 goto out;
1872 }
1873 } else {
1874 needed += KERN_PROCSLOP;
1875 *oldlenp = needed;
1876 }
1877 kmem_free(kbuf, sizeof(*kbuf));
1878 kmem_free(marker, sizeof(*marker));
1879 sysctl_relock();
1880 return 0;
1881 bah:
1882 if (zombie)
1883 LIST_REMOVE(marker, p_list);
1884 else
1885 rw_exit(&p->p_reflock);
1886 cleanup:
1887 mutex_exit(proc_lock);
1888 out:
1889 kmem_free(kbuf, sizeof(*kbuf));
1890 kmem_free(marker, sizeof(*marker));
1891 sysctl_relock();
1892 return error;
1893 }
1894
1895 /*
1896 * compat_netbsd32 hooks
1897 */
1898 #if !defined(_RUMPKERNEL)
1899 MODULE_CALL_HOOK_DECL(kern_proc_32_copyin_hook, int,
1900 (struct proc *p, struct ps_strings *s));
1901 MODULE_CALL_HOOK(kern_proc_32_copyin_hook, int,
1902 (struct proc *p, struct ps_strings *s), (p, s), enosys());
1903
1904 MODULE_CALL_HOOK_DECL(kern_proc_32_base_hook, void,
1905 (char **argv, size_t i, vaddr_t *base));
1906 MODULE_CALL_VOID_HOOK(kern_proc_32_base_hook,
1907 (char **argv, size_t i, vaddr_t *base), (argv, i, base), __nothing);
1908 #endif /* !defined(_RUMPKERNEL) */
1909
1910 int
1911 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1912 {
1913
1914 #if !defined(_RUMPKERNEL)
1915 if (p->p_flag & PK_32)
1916 return kern_proc_32_copyin_hook_call(p, arginfo);
1917 #endif /* !defined(_RUMPKERNEL) */
1918
1919 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1920 }
1921
1922 static int
1923 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1924 {
1925 void **cookie = cookie_;
1926 struct lwp *l = cookie[0];
1927 char *dst = cookie[1];
1928
1929 return sysctl_copyout(l, src, dst + off, len);
1930 }
1931
1932 /*
1933 * sysctl helper routine for kern.proc_args pseudo-subtree.
1934 */
1935 static int
1936 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1937 {
1938 struct ps_strings pss;
1939 struct proc *p;
1940 pid_t pid;
1941 int type, error;
1942 void *cookie[2];
1943
1944 if (namelen == 1 && name[0] == CTL_QUERY)
1945 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1946
1947 if (newp != NULL || namelen != 2)
1948 return (EINVAL);
1949 pid = name[0];
1950 type = name[1];
1951
1952 switch (type) {
1953 case KERN_PROC_PATHNAME:
1954 sysctl_unlock();
1955 error = fill_pathname(l, pid, oldp, oldlenp);
1956 sysctl_relock();
1957 return error;
1958
1959 case KERN_PROC_ARGV:
1960 case KERN_PROC_NARGV:
1961 case KERN_PROC_ENV:
1962 case KERN_PROC_NENV:
1963 /* ok */
1964 break;
1965 default:
1966 return (EINVAL);
1967 }
1968
1969 sysctl_unlock();
1970
1971 /* check pid */
1972 mutex_enter(proc_lock);
1973 if ((p = proc_find(pid)) == NULL) {
1974 error = EINVAL;
1975 goto out_locked;
1976 }
1977 mutex_enter(p->p_lock);
1978
1979 /* Check permission. */
1980 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1981 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1982 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1983 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1984 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1985 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1986 else
1987 error = EINVAL; /* XXXGCC */
1988 if (error) {
1989 mutex_exit(p->p_lock);
1990 goto out_locked;
1991 }
1992
1993 if (oldp == NULL) {
1994 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1995 *oldlenp = sizeof (int);
1996 else
1997 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1998 error = 0;
1999 mutex_exit(p->p_lock);
2000 goto out_locked;
2001 }
2002
2003 /*
2004 * Zombies don't have a stack, so we can't read their psstrings.
2005 * System processes also don't have a user stack.
2006 */
2007 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2008 error = EINVAL;
2009 mutex_exit(p->p_lock);
2010 goto out_locked;
2011 }
2012
2013 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2014 mutex_exit(p->p_lock);
2015 if (error) {
2016 goto out_locked;
2017 }
2018 mutex_exit(proc_lock);
2019
2020 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2021 int value;
2022 if ((error = copyin_psstrings(p, &pss)) == 0) {
2023 if (type == KERN_PROC_NARGV)
2024 value = pss.ps_nargvstr;
2025 else
2026 value = pss.ps_nenvstr;
2027 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2028 *oldlenp = sizeof(value);
2029 }
2030 } else {
2031 cookie[0] = l;
2032 cookie[1] = oldp;
2033 error = copy_procargs(p, type, oldlenp,
2034 copy_procargs_sysctl_cb, cookie);
2035 }
2036 rw_exit(&p->p_reflock);
2037 sysctl_relock();
2038 return error;
2039
2040 out_locked:
2041 mutex_exit(proc_lock);
2042 sysctl_relock();
2043 return error;
2044 }
2045
2046 int
2047 copy_procargs(struct proc *p, int oid, size_t *limit,
2048 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2049 {
2050 struct ps_strings pss;
2051 size_t len, i, loaded, entry_len;
2052 struct uio auio;
2053 struct iovec aiov;
2054 int error, argvlen;
2055 char *arg;
2056 char **argv;
2057 vaddr_t user_argv;
2058 struct vmspace *vmspace;
2059
2060 /*
2061 * Allocate a temporary buffer to hold the argument vector and
2062 * the arguments themselve.
2063 */
2064 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2065 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2066
2067 /*
2068 * Lock the process down in memory.
2069 */
2070 vmspace = p->p_vmspace;
2071 uvmspace_addref(vmspace);
2072
2073 /*
2074 * Read in the ps_strings structure.
2075 */
2076 if ((error = copyin_psstrings(p, &pss)) != 0)
2077 goto done;
2078
2079 /*
2080 * Now read the address of the argument vector.
2081 */
2082 switch (oid) {
2083 case KERN_PROC_ARGV:
2084 user_argv = (uintptr_t)pss.ps_argvstr;
2085 argvlen = pss.ps_nargvstr;
2086 break;
2087 case KERN_PROC_ENV:
2088 user_argv = (uintptr_t)pss.ps_envstr;
2089 argvlen = pss.ps_nenvstr;
2090 break;
2091 default:
2092 error = EINVAL;
2093 goto done;
2094 }
2095
2096 if (argvlen < 0) {
2097 error = EIO;
2098 goto done;
2099 }
2100
2101
2102 /*
2103 * Now copy each string.
2104 */
2105 len = 0; /* bytes written to user buffer */
2106 loaded = 0; /* bytes from argv already processed */
2107 i = 0; /* To make compiler happy */
2108 entry_len = PROC_PTRSZ(p);
2109
2110 for (; argvlen; --argvlen) {
2111 int finished = 0;
2112 vaddr_t base;
2113 size_t xlen;
2114 int j;
2115
2116 if (loaded == 0) {
2117 size_t rem = entry_len * argvlen;
2118 loaded = MIN(rem, PAGE_SIZE);
2119 error = copyin_vmspace(vmspace,
2120 (const void *)user_argv, argv, loaded);
2121 if (error)
2122 break;
2123 user_argv += loaded;
2124 i = 0;
2125 }
2126
2127 #if !defined(_RUMPKERNEL)
2128 if (p->p_flag & PK_32)
2129 kern_proc_32_base_hook_call(argv, i++, &base);
2130 else
2131 #endif /* !defined(_RUMPKERNEL) */
2132 base = (vaddr_t)argv[i++];
2133 loaded -= entry_len;
2134
2135 /*
2136 * The program has messed around with its arguments,
2137 * possibly deleting some, and replacing them with
2138 * NULL's. Treat this as the last argument and not
2139 * a failure.
2140 */
2141 if (base == 0)
2142 break;
2143
2144 while (!finished) {
2145 xlen = PAGE_SIZE - (base & PAGE_MASK);
2146
2147 aiov.iov_base = arg;
2148 aiov.iov_len = PAGE_SIZE;
2149 auio.uio_iov = &aiov;
2150 auio.uio_iovcnt = 1;
2151 auio.uio_offset = base;
2152 auio.uio_resid = xlen;
2153 auio.uio_rw = UIO_READ;
2154 UIO_SETUP_SYSSPACE(&auio);
2155 error = uvm_io(&vmspace->vm_map, &auio, 0);
2156 if (error)
2157 goto done;
2158
2159 /* Look for the end of the string */
2160 for (j = 0; j < xlen; j++) {
2161 if (arg[j] == '\0') {
2162 xlen = j + 1;
2163 finished = 1;
2164 break;
2165 }
2166 }
2167
2168 /* Check for user buffer overflow */
2169 if (len + xlen > *limit) {
2170 finished = 1;
2171 if (len > *limit)
2172 xlen = 0;
2173 else
2174 xlen = *limit - len;
2175 }
2176
2177 /* Copyout the page */
2178 error = (*cb)(cookie, arg, len, xlen);
2179 if (error)
2180 goto done;
2181
2182 len += xlen;
2183 base += xlen;
2184 }
2185 }
2186 *limit = len;
2187
2188 done:
2189 kmem_free(argv, PAGE_SIZE);
2190 kmem_free(arg, PAGE_SIZE);
2191 uvmspace_free(vmspace);
2192 return error;
2193 }
2194
2195 /*
2196 * Fill in a proc structure for the specified process.
2197 */
2198 static void
2199 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2200 {
2201 COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
2202 COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
2203 COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
2204 COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
2205 COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
2206 COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
2207 COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2208 COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
2209 COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
2210 COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
2211 COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
2212 COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
2213 COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
2214 COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
2215 COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
2216 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2217 COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
2218 p->p_exitsig = psrc->p_exitsig;
2219 p->p_flag = psrc->p_flag;
2220 p->p_sflag = psrc->p_sflag;
2221 p->p_slflag = psrc->p_slflag;
2222 p->p_lflag = psrc->p_lflag;
2223 p->p_stflag = psrc->p_stflag;
2224 p->p_stat = psrc->p_stat;
2225 p->p_trace_enabled = psrc->p_trace_enabled;
2226 p->p_pid = psrc->p_pid;
2227 COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
2228 COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
2229 COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
2230 COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
2231 COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
2232 COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
2233 p->p_nlwps = psrc->p_nlwps;
2234 p->p_nzlwps = psrc->p_nzlwps;
2235 p->p_nrlwps = psrc->p_nrlwps;
2236 p->p_nlwpwait = psrc->p_nlwpwait;
2237 p->p_ndlwps = psrc->p_ndlwps;
2238 p->p_nlwpid = psrc->p_nlwpid;
2239 p->p_nstopchild = psrc->p_nstopchild;
2240 p->p_waited = psrc->p_waited;
2241 COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2242 COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2243 COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
2244 p->p_estcpu = psrc->p_estcpu;
2245 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2246 p->p_forktime = psrc->p_forktime;
2247 p->p_pctcpu = psrc->p_pctcpu;
2248 COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
2249 COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
2250 p->p_rtime = psrc->p_rtime;
2251 p->p_uticks = psrc->p_uticks;
2252 p->p_sticks = psrc->p_sticks;
2253 p->p_iticks = psrc->p_iticks;
2254 p->p_xutime = psrc->p_xutime;
2255 p->p_xstime = psrc->p_xstime;
2256 p->p_traceflag = psrc->p_traceflag;
2257 COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
2258 COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
2259 COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
2260 COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
2261 COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
2262 COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
2263 COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2264 COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
2265 COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2266 p->p_ppid = psrc->p_ppid;
2267 p->p_fpid = psrc->p_fpid;
2268 p->p_vfpid = psrc->p_vfpid;
2269 p->p_vfpid_done = psrc->p_vfpid_done;
2270 p->p_lwp_created = psrc->p_lwp_created;
2271 p->p_lwp_exited = psrc->p_lwp_exited;
2272 p->p_nsems = psrc->p_nsems;
2273 COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
2274 COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
2275 p->p_nice = psrc->p_nice;
2276 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2277 COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
2278 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2279 p->p_pax = psrc->p_pax;
2280 p->p_xexit = psrc->p_xexit;
2281 p->p_xsig = psrc->p_xsig;
2282 p->p_acflag = psrc->p_acflag;
2283 COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
2284 p->p_stackbase = psrc->p_stackbase;
2285 COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
2286 }
2287
2288 /*
2289 * Fill in an eproc structure for the specified process.
2290 */
2291 void
2292 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2293 {
2294 struct tty *tp;
2295 struct lwp *l;
2296
2297 KASSERT(mutex_owned(proc_lock));
2298 KASSERT(mutex_owned(p->p_lock));
2299
2300 COND_SET_VALUE(ep->e_paddr, p, allowaddr);
2301 COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
2302 if (p->p_cred) {
2303 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2304 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2305 }
2306 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2307 struct vmspace *vm = p->p_vmspace;
2308
2309 ep->e_vm.vm_rssize = vm_resident_count(vm);
2310 ep->e_vm.vm_tsize = vm->vm_tsize;
2311 ep->e_vm.vm_dsize = vm->vm_dsize;
2312 ep->e_vm.vm_ssize = vm->vm_ssize;
2313 ep->e_vm.vm_map.size = vm->vm_map.size;
2314
2315 /* Pick the primary (first) LWP */
2316 l = proc_active_lwp(p);
2317 KASSERT(l != NULL);
2318 lwp_lock(l);
2319 if (l->l_wchan)
2320 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2321 lwp_unlock(l);
2322 }
2323 ep->e_ppid = p->p_ppid;
2324 if (p->p_pgrp && p->p_session) {
2325 ep->e_pgid = p->p_pgrp->pg_id;
2326 ep->e_jobc = p->p_pgrp->pg_jobc;
2327 ep->e_sid = p->p_session->s_sid;
2328 if ((p->p_lflag & PL_CONTROLT) &&
2329 (tp = p->p_session->s_ttyp)) {
2330 ep->e_tdev = tp->t_dev;
2331 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2332 COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
2333 } else
2334 ep->e_tdev = (uint32_t)NODEV;
2335 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2336 if (SESS_LEADER(p))
2337 ep->e_flag |= EPROC_SLEADER;
2338 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2339 }
2340 ep->e_xsize = ep->e_xrssize = 0;
2341 ep->e_xccount = ep->e_xswrss = 0;
2342 }
2343
2344 /*
2345 * Fill in a kinfo_proc2 structure for the specified process.
2346 */
2347 void
2348 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2349 {
2350 struct tty *tp;
2351 struct lwp *l, *l2;
2352 struct timeval ut, st, rt;
2353 sigset_t ss1, ss2;
2354 struct rusage ru;
2355 struct vmspace *vm;
2356
2357 KASSERT(mutex_owned(proc_lock));
2358 KASSERT(mutex_owned(p->p_lock));
2359
2360 sigemptyset(&ss1);
2361 sigemptyset(&ss2);
2362
2363 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2364 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2365 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2366 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2367 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2368 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2369 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2370 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2371 ki->p_tsess = 0; /* may be changed if controlling tty below */
2372 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2373 ki->p_eflag = 0;
2374 ki->p_exitsig = p->p_exitsig;
2375 ki->p_flag = L_INMEM; /* Process never swapped out */
2376 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2377 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2378 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2379 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2380 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2381 ki->p_pid = p->p_pid;
2382 ki->p_ppid = p->p_ppid;
2383 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2384 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2385 ki->p_gid = kauth_cred_getegid(p->p_cred);
2386 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2387 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2388 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2389 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2390 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2391 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2392 UIO_SYSSPACE);
2393
2394 ki->p_uticks = p->p_uticks;
2395 ki->p_sticks = p->p_sticks;
2396 ki->p_iticks = p->p_iticks;
2397 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2398 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2399 ki->p_traceflag = p->p_traceflag;
2400
2401 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2402 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2403
2404 ki->p_cpticks = 0;
2405 ki->p_pctcpu = p->p_pctcpu;
2406 ki->p_estcpu = 0;
2407 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2408 ki->p_realstat = p->p_stat;
2409 ki->p_nice = p->p_nice;
2410 ki->p_xstat = P_WAITSTATUS(p);
2411 ki->p_acflag = p->p_acflag;
2412
2413 strncpy(ki->p_comm, p->p_comm,
2414 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2415 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2416
2417 ki->p_nlwps = p->p_nlwps;
2418 ki->p_realflag = ki->p_flag;
2419
2420 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2421 vm = p->p_vmspace;
2422 ki->p_vm_rssize = vm_resident_count(vm);
2423 ki->p_vm_tsize = vm->vm_tsize;
2424 ki->p_vm_dsize = vm->vm_dsize;
2425 ki->p_vm_ssize = vm->vm_ssize;
2426 ki->p_vm_vsize = atop(vm->vm_map.size);
2427 /*
2428 * Since the stack is initially mapped mostly with
2429 * PROT_NONE and grown as needed, adjust the "mapped size"
2430 * to skip the unused stack portion.
2431 */
2432 ki->p_vm_msize =
2433 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2434
2435 /* Pick the primary (first) LWP */
2436 l = proc_active_lwp(p);
2437 KASSERT(l != NULL);
2438 lwp_lock(l);
2439 ki->p_nrlwps = p->p_nrlwps;
2440 ki->p_forw = 0;
2441 ki->p_back = 0;
2442 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2443 ki->p_stat = l->l_stat;
2444 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2445 ki->p_swtime = l->l_swtime;
2446 ki->p_slptime = l->l_slptime;
2447 if (l->l_stat == LSONPROC)
2448 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2449 else
2450 ki->p_schedflags = 0;
2451 ki->p_priority = lwp_eprio(l);
2452 ki->p_usrpri = l->l_priority;
2453 if (l->l_wchan)
2454 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2455 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2456 ki->p_cpuid = cpu_index(l->l_cpu);
2457 lwp_unlock(l);
2458 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2459 /* This is hardly correct, but... */
2460 sigplusset(&l->l_sigpend.sp_set, &ss1);
2461 sigplusset(&l->l_sigmask, &ss2);
2462 ki->p_cpticks += l->l_cpticks;
2463 ki->p_pctcpu += l->l_pctcpu;
2464 ki->p_estcpu += l->l_estcpu;
2465 }
2466 }
2467 sigplusset(&p->p_sigpend.sp_set, &ss2);
2468 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2469 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2470
2471 if (p->p_session != NULL) {
2472 ki->p_sid = p->p_session->s_sid;
2473 ki->p__pgid = p->p_pgrp->pg_id;
2474 if (p->p_session->s_ttyvp)
2475 ki->p_eflag |= EPROC_CTTY;
2476 if (SESS_LEADER(p))
2477 ki->p_eflag |= EPROC_SLEADER;
2478 strncpy(ki->p_login, p->p_session->s_login,
2479 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2480 ki->p_jobc = p->p_pgrp->pg_jobc;
2481 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2482 ki->p_tdev = tp->t_dev;
2483 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2484 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2485 allowaddr);
2486 } else {
2487 ki->p_tdev = (int32_t)NODEV;
2488 }
2489 }
2490
2491 if (!P_ZOMBIE(p) && !zombie) {
2492 ki->p_uvalid = 1;
2493 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2494 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2495
2496 calcru(p, &ut, &st, NULL, &rt);
2497 ki->p_rtime_sec = rt.tv_sec;
2498 ki->p_rtime_usec = rt.tv_usec;
2499 ki->p_uutime_sec = ut.tv_sec;
2500 ki->p_uutime_usec = ut.tv_usec;
2501 ki->p_ustime_sec = st.tv_sec;
2502 ki->p_ustime_usec = st.tv_usec;
2503
2504 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2505 ki->p_uru_nvcsw = 0;
2506 ki->p_uru_nivcsw = 0;
2507 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2508 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2509 ki->p_uru_nivcsw += l2->l_nivcsw;
2510 ruadd(&ru, &l2->l_ru);
2511 }
2512 ki->p_uru_maxrss = ru.ru_maxrss;
2513 ki->p_uru_ixrss = ru.ru_ixrss;
2514 ki->p_uru_idrss = ru.ru_idrss;
2515 ki->p_uru_isrss = ru.ru_isrss;
2516 ki->p_uru_minflt = ru.ru_minflt;
2517 ki->p_uru_majflt = ru.ru_majflt;
2518 ki->p_uru_nswap = ru.ru_nswap;
2519 ki->p_uru_inblock = ru.ru_inblock;
2520 ki->p_uru_oublock = ru.ru_oublock;
2521 ki->p_uru_msgsnd = ru.ru_msgsnd;
2522 ki->p_uru_msgrcv = ru.ru_msgrcv;
2523 ki->p_uru_nsignals = ru.ru_nsignals;
2524
2525 timeradd(&p->p_stats->p_cru.ru_utime,
2526 &p->p_stats->p_cru.ru_stime, &ut);
2527 ki->p_uctime_sec = ut.tv_sec;
2528 ki->p_uctime_usec = ut.tv_usec;
2529 }
2530 }
2531
2532
2533 int
2534 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2535 {
2536 int error;
2537
2538 mutex_enter(proc_lock);
2539 if (pid == -1)
2540 *p = l->l_proc;
2541 else
2542 *p = proc_find(pid);
2543
2544 if (*p == NULL) {
2545 if (pid != -1)
2546 mutex_exit(proc_lock);
2547 return ESRCH;
2548 }
2549 if (pid != -1)
2550 mutex_enter((*p)->p_lock);
2551 mutex_exit(proc_lock);
2552
2553 error = kauth_authorize_process(l->l_cred,
2554 KAUTH_PROCESS_CANSEE, *p,
2555 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2556 if (error) {
2557 if (pid != -1)
2558 mutex_exit((*p)->p_lock);
2559 }
2560 return error;
2561 }
2562
2563 static int
2564 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2565 {
2566 int error;
2567 struct proc *p;
2568
2569 if ((error = proc_find_locked(l, &p, pid)) != 0)
2570 return error;
2571
2572 if (p->p_path == NULL) {
2573 if (pid != -1)
2574 mutex_exit(p->p_lock);
2575 return ENOENT;
2576 }
2577
2578 size_t len = strlen(p->p_path) + 1;
2579 if (oldp != NULL) {
2580 size_t copylen = uimin(len, *oldlenp);
2581 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2582 if (error == 0 && *oldlenp < len)
2583 error = ENOSPC;
2584 }
2585 *oldlenp = len;
2586 if (pid != -1)
2587 mutex_exit(p->p_lock);
2588 return error;
2589 }
2590
2591 int
2592 proc_getauxv(struct proc *p, void **buf, size_t *len)
2593 {
2594 struct ps_strings pss;
2595 int error;
2596 void *uauxv, *kauxv;
2597 size_t size;
2598
2599 if ((error = copyin_psstrings(p, &pss)) != 0)
2600 return error;
2601 if (pss.ps_envstr == NULL)
2602 return EIO;
2603
2604 size = p->p_execsw->es_arglen;
2605 if (size == 0)
2606 return EIO;
2607
2608 size_t ptrsz = PROC_PTRSZ(p);
2609 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
2610
2611 kauxv = kmem_alloc(size, KM_SLEEP);
2612
2613 error = copyin_proc(p, uauxv, kauxv, size);
2614 if (error) {
2615 kmem_free(kauxv, size);
2616 return error;
2617 }
2618
2619 *buf = kauxv;
2620 *len = size;
2621
2622 return 0;
2623 }
2624
2625
2626 static int
2627 sysctl_security_expose_address(SYSCTLFN_ARGS)
2628 {
2629 int expose_address, error;
2630 struct sysctlnode node;
2631
2632 node = *rnode;
2633 node.sysctl_data = &expose_address;
2634 expose_address = *(int *)rnode->sysctl_data;
2635 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2636 if (error || newp == NULL)
2637 return error;
2638
2639 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
2640 0, NULL, NULL, NULL))
2641 return EPERM;
2642
2643 switch (expose_address) {
2644 case 0:
2645 case 1:
2646 case 2:
2647 break;
2648 default:
2649 return EINVAL;
2650 }
2651
2652 *(int *)rnode->sysctl_data = expose_address;
2653
2654 return 0;
2655 }
2656
2657 bool
2658 get_expose_address(struct proc *p)
2659 {
2660 /* allow only if sysctl variable is set or privileged */
2661 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
2662 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
2663 }
2664