kern_proc.c revision 1.209.2.3 1 /* $NetBSD: kern_proc.c,v 1.209.2.3 2018/09/06 06:56:42 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.209.2.3 2018/09/06 06:56:42 pgoyette Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #endif
73
74 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
75 && !defined(_RUMPKERNEL)
76 #define COMPAT_NETBSD32
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/pool.h>
91 #include <sys/pset.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108
109 #include <uvm/uvm_extern.h>
110 #include <uvm/uvm.h>
111
112 #ifdef COMPAT_NETBSD32
113 #include <compat/netbsd32/netbsd32.h>
114 #endif
115
116 /*
117 * Process lists.
118 */
119
120 struct proclist allproc __cacheline_aligned;
121 struct proclist zombproc __cacheline_aligned;
122
123 kmutex_t * proc_lock __cacheline_aligned;
124
125 /*
126 * pid to proc lookup is done by indexing the pid_table array.
127 * Since pid numbers are only allocated when an empty slot
128 * has been found, there is no need to search any lists ever.
129 * (an orphaned pgrp will lock the slot, a session will lock
130 * the pgrp with the same number.)
131 * If the table is too small it is reallocated with twice the
132 * previous size and the entries 'unzipped' into the two halves.
133 * A linked list of free entries is passed through the pt_proc
134 * field of 'free' items - set odd to be an invalid ptr.
135 */
136
137 struct pid_table {
138 struct proc *pt_proc;
139 struct pgrp *pt_pgrp;
140 pid_t pt_pid;
141 };
142 #if 1 /* strongly typed cast - should be a noop */
143 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
144 #else
145 #define p2u(p) ((uint)p)
146 #endif
147 #define P_VALID(p) (!(p2u(p) & 1))
148 #define P_NEXT(p) (p2u(p) >> 1)
149 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
150
151 /*
152 * Table of process IDs (PIDs).
153 */
154 static struct pid_table *pid_table __read_mostly;
155
156 #define INITIAL_PID_TABLE_SIZE (1 << 5)
157
158 /* Table mask, threshold for growing and number of allocated PIDs. */
159 static u_int pid_tbl_mask __read_mostly;
160 static u_int pid_alloc_lim __read_mostly;
161 static u_int pid_alloc_cnt __cacheline_aligned;
162
163 /* Next free, last free and maximum PIDs. */
164 static u_int next_free_pt __cacheline_aligned;
165 static u_int last_free_pt __cacheline_aligned;
166 static pid_t pid_max __read_mostly;
167
168 /* Components of the first process -- never freed. */
169
170 extern struct emul emul_netbsd; /* defined in kern_exec.c */
171
172 struct session session0 = {
173 .s_count = 1,
174 .s_sid = 0,
175 };
176 struct pgrp pgrp0 = {
177 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
178 .pg_session = &session0,
179 };
180 filedesc_t filedesc0;
181 struct cwdinfo cwdi0 = {
182 .cwdi_cmask = CMASK,
183 .cwdi_refcnt = 1,
184 };
185 struct plimit limit0;
186 struct pstats pstat0;
187 struct vmspace vmspace0;
188 struct sigacts sigacts0;
189 struct proc proc0 = {
190 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
191 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
192 .p_nlwps = 1,
193 .p_nrlwps = 1,
194 .p_nlwpid = 1, /* must match lwp0.l_lid */
195 .p_pgrp = &pgrp0,
196 .p_comm = "system",
197 /*
198 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
199 * when they exit. init(8) can easily wait them out for us.
200 */
201 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
202 .p_stat = SACTIVE,
203 .p_nice = NZERO,
204 .p_emul = &emul_netbsd,
205 .p_cwdi = &cwdi0,
206 .p_limit = &limit0,
207 .p_fd = &filedesc0,
208 .p_vmspace = &vmspace0,
209 .p_stats = &pstat0,
210 .p_sigacts = &sigacts0,
211 #ifdef PROC0_MD_INITIALIZERS
212 PROC0_MD_INITIALIZERS
213 #endif
214 };
215 kauth_cred_t cred0;
216
217 static const int nofile = NOFILE;
218 static const int maxuprc = MAXUPRC;
219
220 static int sysctl_doeproc(SYSCTLFN_PROTO);
221 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
222
223 /*
224 * The process list descriptors, used during pid allocation and
225 * by sysctl. No locking on this data structure is needed since
226 * it is completely static.
227 */
228 const struct proclist_desc proclists[] = {
229 { &allproc },
230 { &zombproc },
231 { NULL },
232 };
233
234 static struct pgrp * pg_remove(pid_t);
235 static void pg_delete(pid_t);
236 static void orphanpg(struct pgrp *);
237
238 static specificdata_domain_t proc_specificdata_domain;
239
240 static pool_cache_t proc_cache;
241
242 static kauth_listener_t proc_listener;
243
244 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
245
246 static int
247 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
248 void *arg0, void *arg1, void *arg2, void *arg3)
249 {
250 struct proc *p;
251 int result;
252
253 result = KAUTH_RESULT_DEFER;
254 p = arg0;
255
256 switch (action) {
257 case KAUTH_PROCESS_CANSEE: {
258 enum kauth_process_req req;
259
260 req = (enum kauth_process_req)arg1;
261
262 switch (req) {
263 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
264 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
265 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
266 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
267 result = KAUTH_RESULT_ALLOW;
268 break;
269
270 case KAUTH_REQ_PROCESS_CANSEE_ENV:
271 if (kauth_cred_getuid(cred) !=
272 kauth_cred_getuid(p->p_cred) ||
273 kauth_cred_getuid(cred) !=
274 kauth_cred_getsvuid(p->p_cred))
275 break;
276
277 result = KAUTH_RESULT_ALLOW;
278
279 break;
280
281 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
282 default:
283 break;
284 }
285
286 break;
287 }
288
289 case KAUTH_PROCESS_FORK: {
290 int lnprocs = (int)(unsigned long)arg2;
291
292 /*
293 * Don't allow a nonprivileged user to use the last few
294 * processes. The variable lnprocs is the current number of
295 * processes, maxproc is the limit.
296 */
297 if (__predict_false((lnprocs >= maxproc - 5)))
298 break;
299
300 result = KAUTH_RESULT_ALLOW;
301
302 break;
303 }
304
305 case KAUTH_PROCESS_CORENAME:
306 case KAUTH_PROCESS_STOPFLAG:
307 if (proc_uidmatch(cred, p->p_cred) == 0)
308 result = KAUTH_RESULT_ALLOW;
309
310 break;
311
312 default:
313 break;
314 }
315
316 return result;
317 }
318
319 /*
320 * Initialize global process hashing structures.
321 */
322 void
323 procinit(void)
324 {
325 const struct proclist_desc *pd;
326 u_int i;
327 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
328
329 for (pd = proclists; pd->pd_list != NULL; pd++)
330 LIST_INIT(pd->pd_list);
331
332 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
333 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
334 * sizeof(struct pid_table), KM_SLEEP);
335 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
336 pid_max = PID_MAX;
337
338 /* Set free list running through table...
339 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
340 for (i = 0; i <= pid_tbl_mask; i++) {
341 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
342 pid_table[i].pt_pgrp = 0;
343 pid_table[i].pt_pid = 0;
344 }
345 /* slot 0 is just grabbed */
346 next_free_pt = 1;
347 /* Need to fix last entry. */
348 last_free_pt = pid_tbl_mask;
349 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
350 /* point at which we grow table - to avoid reusing pids too often */
351 pid_alloc_lim = pid_tbl_mask - 1;
352 #undef LINK_EMPTY
353
354 proc_specificdata_domain = specificdata_domain_create();
355 KASSERT(proc_specificdata_domain != NULL);
356
357 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
358 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
359
360 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
361 proc_listener_cb, NULL);
362 }
363
364 void
365 procinit_sysctl(void)
366 {
367 static struct sysctllog *clog;
368
369 sysctl_createv(&clog, 0, NULL, NULL,
370 CTLFLAG_PERMANENT,
371 CTLTYPE_NODE, "proc",
372 SYSCTL_DESCR("System-wide process information"),
373 sysctl_doeproc, 0, NULL, 0,
374 CTL_KERN, KERN_PROC, CTL_EOL);
375 sysctl_createv(&clog, 0, NULL, NULL,
376 CTLFLAG_PERMANENT,
377 CTLTYPE_NODE, "proc2",
378 SYSCTL_DESCR("Machine-independent process information"),
379 sysctl_doeproc, 0, NULL, 0,
380 CTL_KERN, KERN_PROC2, CTL_EOL);
381 sysctl_createv(&clog, 0, NULL, NULL,
382 CTLFLAG_PERMANENT,
383 CTLTYPE_NODE, "proc_args",
384 SYSCTL_DESCR("Process argument information"),
385 sysctl_kern_proc_args, 0, NULL, 0,
386 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
387
388 /*
389 "nodes" under these:
390
391 KERN_PROC_ALL
392 KERN_PROC_PID pid
393 KERN_PROC_PGRP pgrp
394 KERN_PROC_SESSION sess
395 KERN_PROC_TTY tty
396 KERN_PROC_UID uid
397 KERN_PROC_RUID uid
398 KERN_PROC_GID gid
399 KERN_PROC_RGID gid
400
401 all in all, probably not worth the effort...
402 */
403 }
404
405 /*
406 * Initialize process 0.
407 */
408 void
409 proc0_init(void)
410 {
411 struct proc *p;
412 struct pgrp *pg;
413 struct rlimit *rlim;
414 rlim_t lim;
415 int i;
416
417 p = &proc0;
418 pg = &pgrp0;
419
420 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
421 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
422 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
423
424 rw_init(&p->p_reflock);
425 cv_init(&p->p_waitcv, "wait");
426 cv_init(&p->p_lwpcv, "lwpwait");
427
428 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
429
430 pid_table[0].pt_proc = p;
431 LIST_INSERT_HEAD(&allproc, p, p_list);
432
433 pid_table[0].pt_pgrp = pg;
434 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
435
436 #ifdef __HAVE_SYSCALL_INTERN
437 (*p->p_emul->e_syscall_intern)(p);
438 #endif
439
440 /* Create credentials. */
441 cred0 = kauth_cred_alloc();
442 p->p_cred = cred0;
443
444 /* Create the CWD info. */
445 rw_init(&cwdi0.cwdi_lock);
446
447 /* Create the limits structures. */
448 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
449
450 rlim = limit0.pl_rlimit;
451 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
452 rlim[i].rlim_cur = RLIM_INFINITY;
453 rlim[i].rlim_max = RLIM_INFINITY;
454 }
455
456 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
457 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
458
459 rlim[RLIMIT_NPROC].rlim_max = maxproc;
460 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
461
462 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
463 rlim[RLIMIT_RSS].rlim_max = lim;
464 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
465 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
466
467 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
468 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
469
470 /* Note that default core name has zero length. */
471 limit0.pl_corename = defcorename;
472 limit0.pl_cnlen = 0;
473 limit0.pl_refcnt = 1;
474 limit0.pl_writeable = false;
475 limit0.pl_sv_limit = NULL;
476
477 /* Configure virtual memory system, set vm rlimits. */
478 uvm_init_limits(p);
479
480 /* Initialize file descriptor table for proc0. */
481 fd_init(&filedesc0);
482
483 /*
484 * Initialize proc0's vmspace, which uses the kernel pmap.
485 * All kernel processes (which never have user space mappings)
486 * share proc0's vmspace, and thus, the kernel pmap.
487 */
488 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
489 trunc_page(VM_MAXUSER_ADDRESS),
490 #ifdef __USE_TOPDOWN_VM
491 true
492 #else
493 false
494 #endif
495 );
496
497 /* Initialize signal state for proc0. XXX IPL_SCHED */
498 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
499 siginit(p);
500
501 proc_initspecific(p);
502 kdtrace_proc_ctor(NULL, p);
503 }
504
505 /*
506 * Session reference counting.
507 */
508
509 void
510 proc_sesshold(struct session *ss)
511 {
512
513 KASSERT(mutex_owned(proc_lock));
514 ss->s_count++;
515 }
516
517 void
518 proc_sessrele(struct session *ss)
519 {
520
521 KASSERT(mutex_owned(proc_lock));
522 /*
523 * We keep the pgrp with the same id as the session in order to
524 * stop a process being given the same pid. Since the pgrp holds
525 * a reference to the session, it must be a 'zombie' pgrp by now.
526 */
527 if (--ss->s_count == 0) {
528 struct pgrp *pg;
529
530 pg = pg_remove(ss->s_sid);
531 mutex_exit(proc_lock);
532
533 kmem_free(pg, sizeof(struct pgrp));
534 kmem_free(ss, sizeof(struct session));
535 } else {
536 mutex_exit(proc_lock);
537 }
538 }
539
540 /*
541 * Check that the specified process group is in the session of the
542 * specified process.
543 * Treats -ve ids as process ids.
544 * Used to validate TIOCSPGRP requests.
545 */
546 int
547 pgid_in_session(struct proc *p, pid_t pg_id)
548 {
549 struct pgrp *pgrp;
550 struct session *session;
551 int error;
552
553 mutex_enter(proc_lock);
554 if (pg_id < 0) {
555 struct proc *p1 = proc_find(-pg_id);
556 if (p1 == NULL) {
557 error = EINVAL;
558 goto fail;
559 }
560 pgrp = p1->p_pgrp;
561 } else {
562 pgrp = pgrp_find(pg_id);
563 if (pgrp == NULL) {
564 error = EINVAL;
565 goto fail;
566 }
567 }
568 session = pgrp->pg_session;
569 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
570 fail:
571 mutex_exit(proc_lock);
572 return error;
573 }
574
575 /*
576 * p_inferior: is p an inferior of q?
577 */
578 static inline bool
579 p_inferior(struct proc *p, struct proc *q)
580 {
581
582 KASSERT(mutex_owned(proc_lock));
583
584 for (; p != q; p = p->p_pptr)
585 if (p->p_pid == 0)
586 return false;
587 return true;
588 }
589
590 /*
591 * proc_find: locate a process by the ID.
592 *
593 * => Must be called with proc_lock held.
594 */
595 proc_t *
596 proc_find_raw(pid_t pid)
597 {
598 struct pid_table *pt;
599 proc_t *p;
600
601 KASSERT(mutex_owned(proc_lock));
602 pt = &pid_table[pid & pid_tbl_mask];
603 p = pt->pt_proc;
604 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
605 return NULL;
606 }
607 return p;
608 }
609
610 proc_t *
611 proc_find(pid_t pid)
612 {
613 proc_t *p;
614
615 p = proc_find_raw(pid);
616 if (__predict_false(p == NULL)) {
617 return NULL;
618 }
619
620 /*
621 * Only allow live processes to be found by PID.
622 * XXX: p_stat might change, since unlocked.
623 */
624 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
625 return p;
626 }
627 return NULL;
628 }
629
630 /*
631 * pgrp_find: locate a process group by the ID.
632 *
633 * => Must be called with proc_lock held.
634 */
635 struct pgrp *
636 pgrp_find(pid_t pgid)
637 {
638 struct pgrp *pg;
639
640 KASSERT(mutex_owned(proc_lock));
641
642 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
643
644 /*
645 * Cannot look up a process group that only exists because the
646 * session has not died yet (traditional).
647 */
648 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
649 return NULL;
650 }
651 return pg;
652 }
653
654 static void
655 expand_pid_table(void)
656 {
657 size_t pt_size, tsz;
658 struct pid_table *n_pt, *new_pt;
659 struct proc *proc;
660 struct pgrp *pgrp;
661 pid_t pid, rpid;
662 u_int i;
663 uint new_pt_mask;
664
665 pt_size = pid_tbl_mask + 1;
666 tsz = pt_size * 2 * sizeof(struct pid_table);
667 new_pt = kmem_alloc(tsz, KM_SLEEP);
668 new_pt_mask = pt_size * 2 - 1;
669
670 mutex_enter(proc_lock);
671 if (pt_size != pid_tbl_mask + 1) {
672 /* Another process beat us to it... */
673 mutex_exit(proc_lock);
674 kmem_free(new_pt, tsz);
675 return;
676 }
677
678 /*
679 * Copy entries from old table into new one.
680 * If 'pid' is 'odd' we need to place in the upper half,
681 * even pid's to the lower half.
682 * Free items stay in the low half so we don't have to
683 * fixup the reference to them.
684 * We stuff free items on the front of the freelist
685 * because we can't write to unmodified entries.
686 * Processing the table backwards maintains a semblance
687 * of issuing pid numbers that increase with time.
688 */
689 i = pt_size - 1;
690 n_pt = new_pt + i;
691 for (; ; i--, n_pt--) {
692 proc = pid_table[i].pt_proc;
693 pgrp = pid_table[i].pt_pgrp;
694 if (!P_VALID(proc)) {
695 /* Up 'use count' so that link is valid */
696 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
697 rpid = 0;
698 proc = P_FREE(pid);
699 if (pgrp)
700 pid = pgrp->pg_id;
701 } else {
702 pid = pid_table[i].pt_pid;
703 rpid = pid;
704 }
705
706 /* Save entry in appropriate half of table */
707 n_pt[pid & pt_size].pt_proc = proc;
708 n_pt[pid & pt_size].pt_pgrp = pgrp;
709 n_pt[pid & pt_size].pt_pid = rpid;
710
711 /* Put other piece on start of free list */
712 pid = (pid ^ pt_size) & ~pid_tbl_mask;
713 n_pt[pid & pt_size].pt_proc =
714 P_FREE((pid & ~pt_size) | next_free_pt);
715 n_pt[pid & pt_size].pt_pgrp = 0;
716 n_pt[pid & pt_size].pt_pid = 0;
717
718 next_free_pt = i | (pid & pt_size);
719 if (i == 0)
720 break;
721 }
722
723 /* Save old table size and switch tables */
724 tsz = pt_size * sizeof(struct pid_table);
725 n_pt = pid_table;
726 pid_table = new_pt;
727 pid_tbl_mask = new_pt_mask;
728
729 /*
730 * pid_max starts as PID_MAX (= 30000), once we have 16384
731 * allocated pids we need it to be larger!
732 */
733 if (pid_tbl_mask > PID_MAX) {
734 pid_max = pid_tbl_mask * 2 + 1;
735 pid_alloc_lim |= pid_alloc_lim << 1;
736 } else
737 pid_alloc_lim <<= 1; /* doubles number of free slots... */
738
739 mutex_exit(proc_lock);
740 kmem_free(n_pt, tsz);
741 }
742
743 struct proc *
744 proc_alloc(void)
745 {
746 struct proc *p;
747
748 p = pool_cache_get(proc_cache, PR_WAITOK);
749 p->p_stat = SIDL; /* protect against others */
750 proc_initspecific(p);
751 kdtrace_proc_ctor(NULL, p);
752 p->p_pid = -1;
753 proc_alloc_pid(p);
754 return p;
755 }
756
757 /*
758 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
759 * proc_find_raw() can find it by the PID.
760 */
761
762 pid_t
763 proc_alloc_pid(struct proc *p)
764 {
765 struct pid_table *pt;
766 pid_t pid;
767 int nxt;
768
769 for (;;expand_pid_table()) {
770 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
771 /* ensure pids cycle through 2000+ values */
772 continue;
773 mutex_enter(proc_lock);
774 pt = &pid_table[next_free_pt];
775 #ifdef DIAGNOSTIC
776 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
777 panic("proc_alloc: slot busy");
778 #endif
779 nxt = P_NEXT(pt->pt_proc);
780 if (nxt & pid_tbl_mask)
781 break;
782 /* Table full - expand (NB last entry not used....) */
783 mutex_exit(proc_lock);
784 }
785
786 /* pid is 'saved use count' + 'size' + entry */
787 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
788 if ((uint)pid > (uint)pid_max)
789 pid &= pid_tbl_mask;
790 next_free_pt = nxt & pid_tbl_mask;
791
792 /* Grab table slot */
793 pt->pt_proc = p;
794
795 KASSERT(pt->pt_pid == 0);
796 pt->pt_pid = pid;
797 if (p->p_pid == -1) {
798 p->p_pid = pid;
799 }
800 pid_alloc_cnt++;
801 mutex_exit(proc_lock);
802
803 return pid;
804 }
805
806 /*
807 * Free a process id - called from proc_free (in kern_exit.c)
808 *
809 * Called with the proc_lock held.
810 */
811 void
812 proc_free_pid(pid_t pid)
813 {
814 struct pid_table *pt;
815
816 KASSERT(mutex_owned(proc_lock));
817
818 pt = &pid_table[pid & pid_tbl_mask];
819
820 /* save pid use count in slot */
821 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
822 KASSERT(pt->pt_pid == pid);
823 pt->pt_pid = 0;
824
825 if (pt->pt_pgrp == NULL) {
826 /* link last freed entry onto ours */
827 pid &= pid_tbl_mask;
828 pt = &pid_table[last_free_pt];
829 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
830 pt->pt_pid = 0;
831 last_free_pt = pid;
832 pid_alloc_cnt--;
833 }
834
835 atomic_dec_uint(&nprocs);
836 }
837
838 void
839 proc_free_mem(struct proc *p)
840 {
841
842 kdtrace_proc_dtor(NULL, p);
843 pool_cache_put(proc_cache, p);
844 }
845
846 /*
847 * proc_enterpgrp: move p to a new or existing process group (and session).
848 *
849 * If we are creating a new pgrp, the pgid should equal
850 * the calling process' pid.
851 * If is only valid to enter a process group that is in the session
852 * of the process.
853 * Also mksess should only be set if we are creating a process group
854 *
855 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
856 */
857 int
858 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
859 {
860 struct pgrp *new_pgrp, *pgrp;
861 struct session *sess;
862 struct proc *p;
863 int rval;
864 pid_t pg_id = NO_PGID;
865
866 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
867
868 /* Allocate data areas we might need before doing any validity checks */
869 mutex_enter(proc_lock); /* Because pid_table might change */
870 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
871 mutex_exit(proc_lock);
872 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
873 mutex_enter(proc_lock);
874 } else
875 new_pgrp = NULL;
876 rval = EPERM; /* most common error (to save typing) */
877
878 /* Check pgrp exists or can be created */
879 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
880 if (pgrp != NULL && pgrp->pg_id != pgid)
881 goto done;
882
883 /* Can only set another process under restricted circumstances. */
884 if (pid != curp->p_pid) {
885 /* Must exist and be one of our children... */
886 p = proc_find(pid);
887 if (p == NULL || !p_inferior(p, curp)) {
888 rval = ESRCH;
889 goto done;
890 }
891 /* ... in the same session... */
892 if (sess != NULL || p->p_session != curp->p_session)
893 goto done;
894 /* ... existing pgid must be in same session ... */
895 if (pgrp != NULL && pgrp->pg_session != p->p_session)
896 goto done;
897 /* ... and not done an exec. */
898 if (p->p_flag & PK_EXEC) {
899 rval = EACCES;
900 goto done;
901 }
902 } else {
903 /* ... setsid() cannot re-enter a pgrp */
904 if (mksess && (curp->p_pgid == curp->p_pid ||
905 pgrp_find(curp->p_pid)))
906 goto done;
907 p = curp;
908 }
909
910 /* Changing the process group/session of a session
911 leader is definitely off limits. */
912 if (SESS_LEADER(p)) {
913 if (sess == NULL && p->p_pgrp == pgrp)
914 /* unless it's a definite noop */
915 rval = 0;
916 goto done;
917 }
918
919 /* Can only create a process group with id of process */
920 if (pgrp == NULL && pgid != pid)
921 goto done;
922
923 /* Can only create a session if creating pgrp */
924 if (sess != NULL && pgrp != NULL)
925 goto done;
926
927 /* Check we allocated memory for a pgrp... */
928 if (pgrp == NULL && new_pgrp == NULL)
929 goto done;
930
931 /* Don't attach to 'zombie' pgrp */
932 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
933 goto done;
934
935 /* Expect to succeed now */
936 rval = 0;
937
938 if (pgrp == p->p_pgrp)
939 /* nothing to do */
940 goto done;
941
942 /* Ok all setup, link up required structures */
943
944 if (pgrp == NULL) {
945 pgrp = new_pgrp;
946 new_pgrp = NULL;
947 if (sess != NULL) {
948 sess->s_sid = p->p_pid;
949 sess->s_leader = p;
950 sess->s_count = 1;
951 sess->s_ttyvp = NULL;
952 sess->s_ttyp = NULL;
953 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
954 memcpy(sess->s_login, p->p_session->s_login,
955 sizeof(sess->s_login));
956 p->p_lflag &= ~PL_CONTROLT;
957 } else {
958 sess = p->p_pgrp->pg_session;
959 proc_sesshold(sess);
960 }
961 pgrp->pg_session = sess;
962 sess = NULL;
963
964 pgrp->pg_id = pgid;
965 LIST_INIT(&pgrp->pg_members);
966 #ifdef DIAGNOSTIC
967 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
968 panic("enterpgrp: pgrp table slot in use");
969 if (__predict_false(mksess && p != curp))
970 panic("enterpgrp: mksession and p != curproc");
971 #endif
972 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
973 pgrp->pg_jobc = 0;
974 }
975
976 /*
977 * Adjust eligibility of affected pgrps to participate in job control.
978 * Increment eligibility counts before decrementing, otherwise we
979 * could reach 0 spuriously during the first call.
980 */
981 fixjobc(p, pgrp, 1);
982 fixjobc(p, p->p_pgrp, 0);
983
984 /* Interlock with ttread(). */
985 mutex_spin_enter(&tty_lock);
986
987 /* Move process to requested group. */
988 LIST_REMOVE(p, p_pglist);
989 if (LIST_EMPTY(&p->p_pgrp->pg_members))
990 /* defer delete until we've dumped the lock */
991 pg_id = p->p_pgrp->pg_id;
992 p->p_pgrp = pgrp;
993 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
994
995 /* Done with the swap; we can release the tty mutex. */
996 mutex_spin_exit(&tty_lock);
997
998 done:
999 if (pg_id != NO_PGID) {
1000 /* Releases proc_lock. */
1001 pg_delete(pg_id);
1002 } else {
1003 mutex_exit(proc_lock);
1004 }
1005 if (sess != NULL)
1006 kmem_free(sess, sizeof(*sess));
1007 if (new_pgrp != NULL)
1008 kmem_free(new_pgrp, sizeof(*new_pgrp));
1009 #ifdef DEBUG_PGRP
1010 if (__predict_false(rval))
1011 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1012 pid, pgid, mksess, curp->p_pid, rval);
1013 #endif
1014 return rval;
1015 }
1016
1017 /*
1018 * proc_leavepgrp: remove a process from its process group.
1019 * => must be called with the proc_lock held, which will be released;
1020 */
1021 void
1022 proc_leavepgrp(struct proc *p)
1023 {
1024 struct pgrp *pgrp;
1025
1026 KASSERT(mutex_owned(proc_lock));
1027
1028 /* Interlock with ttread() */
1029 mutex_spin_enter(&tty_lock);
1030 pgrp = p->p_pgrp;
1031 LIST_REMOVE(p, p_pglist);
1032 p->p_pgrp = NULL;
1033 mutex_spin_exit(&tty_lock);
1034
1035 if (LIST_EMPTY(&pgrp->pg_members)) {
1036 /* Releases proc_lock. */
1037 pg_delete(pgrp->pg_id);
1038 } else {
1039 mutex_exit(proc_lock);
1040 }
1041 }
1042
1043 /*
1044 * pg_remove: remove a process group from the table.
1045 * => must be called with the proc_lock held;
1046 * => returns process group to free;
1047 */
1048 static struct pgrp *
1049 pg_remove(pid_t pg_id)
1050 {
1051 struct pgrp *pgrp;
1052 struct pid_table *pt;
1053
1054 KASSERT(mutex_owned(proc_lock));
1055
1056 pt = &pid_table[pg_id & pid_tbl_mask];
1057 pgrp = pt->pt_pgrp;
1058
1059 KASSERT(pgrp != NULL);
1060 KASSERT(pgrp->pg_id == pg_id);
1061 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1062
1063 pt->pt_pgrp = NULL;
1064
1065 if (!P_VALID(pt->pt_proc)) {
1066 /* Orphaned pgrp, put slot onto free list. */
1067 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1068 pg_id &= pid_tbl_mask;
1069 pt = &pid_table[last_free_pt];
1070 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1071 KASSERT(pt->pt_pid == 0);
1072 last_free_pt = pg_id;
1073 pid_alloc_cnt--;
1074 }
1075 return pgrp;
1076 }
1077
1078 /*
1079 * pg_delete: delete and free a process group.
1080 * => must be called with the proc_lock held, which will be released.
1081 */
1082 static void
1083 pg_delete(pid_t pg_id)
1084 {
1085 struct pgrp *pg;
1086 struct tty *ttyp;
1087 struct session *ss;
1088
1089 KASSERT(mutex_owned(proc_lock));
1090
1091 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1092 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1093 mutex_exit(proc_lock);
1094 return;
1095 }
1096
1097 ss = pg->pg_session;
1098
1099 /* Remove reference (if any) from tty to this process group */
1100 mutex_spin_enter(&tty_lock);
1101 ttyp = ss->s_ttyp;
1102 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1103 ttyp->t_pgrp = NULL;
1104 KASSERT(ttyp->t_session == ss);
1105 }
1106 mutex_spin_exit(&tty_lock);
1107
1108 /*
1109 * The leading process group in a session is freed by proc_sessrele(),
1110 * if last reference. Note: proc_sessrele() releases proc_lock.
1111 */
1112 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1113 proc_sessrele(ss);
1114
1115 if (pg != NULL) {
1116 /* Free it, if was not done by proc_sessrele(). */
1117 kmem_free(pg, sizeof(struct pgrp));
1118 }
1119 }
1120
1121 /*
1122 * Adjust pgrp jobc counters when specified process changes process group.
1123 * We count the number of processes in each process group that "qualify"
1124 * the group for terminal job control (those with a parent in a different
1125 * process group of the same session). If that count reaches zero, the
1126 * process group becomes orphaned. Check both the specified process'
1127 * process group and that of its children.
1128 * entering == 0 => p is leaving specified group.
1129 * entering == 1 => p is entering specified group.
1130 *
1131 * Call with proc_lock held.
1132 */
1133 void
1134 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1135 {
1136 struct pgrp *hispgrp;
1137 struct session *mysession = pgrp->pg_session;
1138 struct proc *child;
1139
1140 KASSERT(mutex_owned(proc_lock));
1141
1142 /*
1143 * Check p's parent to see whether p qualifies its own process
1144 * group; if so, adjust count for p's process group.
1145 */
1146 hispgrp = p->p_pptr->p_pgrp;
1147 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1148 if (entering) {
1149 pgrp->pg_jobc++;
1150 p->p_lflag &= ~PL_ORPHANPG;
1151 } else if (--pgrp->pg_jobc == 0)
1152 orphanpg(pgrp);
1153 }
1154
1155 /*
1156 * Check this process' children to see whether they qualify
1157 * their process groups; if so, adjust counts for children's
1158 * process groups.
1159 */
1160 LIST_FOREACH(child, &p->p_children, p_sibling) {
1161 hispgrp = child->p_pgrp;
1162 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1163 !P_ZOMBIE(child)) {
1164 if (entering) {
1165 child->p_lflag &= ~PL_ORPHANPG;
1166 hispgrp->pg_jobc++;
1167 } else if (--hispgrp->pg_jobc == 0)
1168 orphanpg(hispgrp);
1169 }
1170 }
1171 }
1172
1173 /*
1174 * A process group has become orphaned;
1175 * if there are any stopped processes in the group,
1176 * hang-up all process in that group.
1177 *
1178 * Call with proc_lock held.
1179 */
1180 static void
1181 orphanpg(struct pgrp *pg)
1182 {
1183 struct proc *p;
1184
1185 KASSERT(mutex_owned(proc_lock));
1186
1187 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1188 if (p->p_stat == SSTOP) {
1189 p->p_lflag |= PL_ORPHANPG;
1190 psignal(p, SIGHUP);
1191 psignal(p, SIGCONT);
1192 }
1193 }
1194 }
1195
1196 #ifdef DDB
1197 #include <ddb/db_output.h>
1198 void pidtbl_dump(void);
1199 void
1200 pidtbl_dump(void)
1201 {
1202 struct pid_table *pt;
1203 struct proc *p;
1204 struct pgrp *pgrp;
1205 int id;
1206
1207 db_printf("pid table %p size %x, next %x, last %x\n",
1208 pid_table, pid_tbl_mask+1,
1209 next_free_pt, last_free_pt);
1210 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1211 p = pt->pt_proc;
1212 if (!P_VALID(p) && !pt->pt_pgrp)
1213 continue;
1214 db_printf(" id %x: ", id);
1215 if (P_VALID(p))
1216 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1217 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1218 else
1219 db_printf("next %x use %x\n",
1220 P_NEXT(p) & pid_tbl_mask,
1221 P_NEXT(p) & ~pid_tbl_mask);
1222 if ((pgrp = pt->pt_pgrp)) {
1223 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1224 pgrp->pg_session, pgrp->pg_session->s_sid,
1225 pgrp->pg_session->s_count,
1226 pgrp->pg_session->s_login);
1227 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1228 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1229 LIST_FIRST(&pgrp->pg_members));
1230 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1231 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1232 p->p_pid, p, p->p_pgrp, p->p_comm);
1233 }
1234 }
1235 }
1236 }
1237 #endif /* DDB */
1238
1239 #ifdef KSTACK_CHECK_MAGIC
1240
1241 #define KSTACK_MAGIC 0xdeadbeaf
1242
1243 /* XXX should be per process basis? */
1244 static int kstackleftmin = KSTACK_SIZE;
1245 static int kstackleftthres = KSTACK_SIZE / 8;
1246
1247 void
1248 kstack_setup_magic(const struct lwp *l)
1249 {
1250 uint32_t *ip;
1251 uint32_t const *end;
1252
1253 KASSERT(l != NULL);
1254 KASSERT(l != &lwp0);
1255
1256 /*
1257 * fill all the stack with magic number
1258 * so that later modification on it can be detected.
1259 */
1260 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1261 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1262 for (; ip < end; ip++) {
1263 *ip = KSTACK_MAGIC;
1264 }
1265 }
1266
1267 void
1268 kstack_check_magic(const struct lwp *l)
1269 {
1270 uint32_t const *ip, *end;
1271 int stackleft;
1272
1273 KASSERT(l != NULL);
1274
1275 /* don't check proc0 */ /*XXX*/
1276 if (l == &lwp0)
1277 return;
1278
1279 #ifdef __MACHINE_STACK_GROWS_UP
1280 /* stack grows upwards (eg. hppa) */
1281 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1282 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1283 for (ip--; ip >= end; ip--)
1284 if (*ip != KSTACK_MAGIC)
1285 break;
1286
1287 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1288 #else /* __MACHINE_STACK_GROWS_UP */
1289 /* stack grows downwards (eg. i386) */
1290 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1291 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1292 for (; ip < end; ip++)
1293 if (*ip != KSTACK_MAGIC)
1294 break;
1295
1296 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1297 #endif /* __MACHINE_STACK_GROWS_UP */
1298
1299 if (kstackleftmin > stackleft) {
1300 kstackleftmin = stackleft;
1301 if (stackleft < kstackleftthres)
1302 printf("warning: kernel stack left %d bytes"
1303 "(pid %u:lid %u)\n", stackleft,
1304 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1305 }
1306
1307 if (stackleft <= 0) {
1308 panic("magic on the top of kernel stack changed for "
1309 "pid %u, lid %u: maybe kernel stack overflow",
1310 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1311 }
1312 }
1313 #endif /* KSTACK_CHECK_MAGIC */
1314
1315 int
1316 proclist_foreach_call(struct proclist *list,
1317 int (*callback)(struct proc *, void *arg), void *arg)
1318 {
1319 struct proc marker;
1320 struct proc *p;
1321 int ret = 0;
1322
1323 marker.p_flag = PK_MARKER;
1324 mutex_enter(proc_lock);
1325 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1326 if (p->p_flag & PK_MARKER) {
1327 p = LIST_NEXT(p, p_list);
1328 continue;
1329 }
1330 LIST_INSERT_AFTER(p, &marker, p_list);
1331 ret = (*callback)(p, arg);
1332 KASSERT(mutex_owned(proc_lock));
1333 p = LIST_NEXT(&marker, p_list);
1334 LIST_REMOVE(&marker, p_list);
1335 }
1336 mutex_exit(proc_lock);
1337
1338 return ret;
1339 }
1340
1341 int
1342 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1343 {
1344
1345 /* XXXCDC: how should locking work here? */
1346
1347 /* curproc exception is for coredump. */
1348
1349 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1350 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1351 return EFAULT;
1352 }
1353
1354 uvmspace_addref(p->p_vmspace);
1355 *vm = p->p_vmspace;
1356
1357 return 0;
1358 }
1359
1360 /*
1361 * Acquire a write lock on the process credential.
1362 */
1363 void
1364 proc_crmod_enter(void)
1365 {
1366 struct lwp *l = curlwp;
1367 struct proc *p = l->l_proc;
1368 kauth_cred_t oc;
1369
1370 /* Reset what needs to be reset in plimit. */
1371 if (p->p_limit->pl_corename != defcorename) {
1372 lim_setcorename(p, defcorename, 0);
1373 }
1374
1375 mutex_enter(p->p_lock);
1376
1377 /* Ensure the LWP cached credentials are up to date. */
1378 if ((oc = l->l_cred) != p->p_cred) {
1379 kauth_cred_hold(p->p_cred);
1380 l->l_cred = p->p_cred;
1381 kauth_cred_free(oc);
1382 }
1383 }
1384
1385 /*
1386 * Set in a new process credential, and drop the write lock. The credential
1387 * must have a reference already. Optionally, free a no-longer required
1388 * credential. The scheduler also needs to inspect p_cred, so we also
1389 * briefly acquire the sched state mutex.
1390 */
1391 void
1392 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1393 {
1394 struct lwp *l = curlwp, *l2;
1395 struct proc *p = l->l_proc;
1396 kauth_cred_t oc;
1397
1398 KASSERT(mutex_owned(p->p_lock));
1399
1400 /* Is there a new credential to set in? */
1401 if (scred != NULL) {
1402 p->p_cred = scred;
1403 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1404 if (l2 != l)
1405 l2->l_prflag |= LPR_CRMOD;
1406 }
1407
1408 /* Ensure the LWP cached credentials are up to date. */
1409 if ((oc = l->l_cred) != scred) {
1410 kauth_cred_hold(scred);
1411 l->l_cred = scred;
1412 }
1413 } else
1414 oc = NULL; /* XXXgcc */
1415
1416 if (sugid) {
1417 /*
1418 * Mark process as having changed credentials, stops
1419 * tracing etc.
1420 */
1421 p->p_flag |= PK_SUGID;
1422 }
1423
1424 mutex_exit(p->p_lock);
1425
1426 /* If there is a credential to be released, free it now. */
1427 if (fcred != NULL) {
1428 KASSERT(scred != NULL);
1429 kauth_cred_free(fcred);
1430 if (oc != scred)
1431 kauth_cred_free(oc);
1432 }
1433 }
1434
1435 /*
1436 * proc_specific_key_create --
1437 * Create a key for subsystem proc-specific data.
1438 */
1439 int
1440 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1441 {
1442
1443 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1444 }
1445
1446 /*
1447 * proc_specific_key_delete --
1448 * Delete a key for subsystem proc-specific data.
1449 */
1450 void
1451 proc_specific_key_delete(specificdata_key_t key)
1452 {
1453
1454 specificdata_key_delete(proc_specificdata_domain, key);
1455 }
1456
1457 /*
1458 * proc_initspecific --
1459 * Initialize a proc's specificdata container.
1460 */
1461 void
1462 proc_initspecific(struct proc *p)
1463 {
1464 int error __diagused;
1465
1466 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1467 KASSERT(error == 0);
1468 }
1469
1470 /*
1471 * proc_finispecific --
1472 * Finalize a proc's specificdata container.
1473 */
1474 void
1475 proc_finispecific(struct proc *p)
1476 {
1477
1478 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1479 }
1480
1481 /*
1482 * proc_getspecific --
1483 * Return proc-specific data corresponding to the specified key.
1484 */
1485 void *
1486 proc_getspecific(struct proc *p, specificdata_key_t key)
1487 {
1488
1489 return (specificdata_getspecific(proc_specificdata_domain,
1490 &p->p_specdataref, key));
1491 }
1492
1493 /*
1494 * proc_setspecific --
1495 * Set proc-specific data corresponding to the specified key.
1496 */
1497 void
1498 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1499 {
1500
1501 specificdata_setspecific(proc_specificdata_domain,
1502 &p->p_specdataref, key, data);
1503 }
1504
1505 int
1506 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1507 {
1508 int r = 0;
1509
1510 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1511 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1512 /*
1513 * suid proc of ours or proc not ours
1514 */
1515 r = EPERM;
1516 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1517 /*
1518 * sgid proc has sgid back to us temporarily
1519 */
1520 r = EPERM;
1521 } else {
1522 /*
1523 * our rgid must be in target's group list (ie,
1524 * sub-processes started by a sgid process)
1525 */
1526 int ismember = 0;
1527
1528 if (kauth_cred_ismember_gid(cred,
1529 kauth_cred_getgid(target), &ismember) != 0 ||
1530 !ismember)
1531 r = EPERM;
1532 }
1533
1534 return (r);
1535 }
1536
1537 /*
1538 * sysctl stuff
1539 */
1540
1541 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1542
1543 static const u_int sysctl_flagmap[] = {
1544 PK_ADVLOCK, P_ADVLOCK,
1545 PK_EXEC, P_EXEC,
1546 PK_NOCLDWAIT, P_NOCLDWAIT,
1547 PK_32, P_32,
1548 PK_CLDSIGIGN, P_CLDSIGIGN,
1549 PK_SUGID, P_SUGID,
1550 0
1551 };
1552
1553 static const u_int sysctl_sflagmap[] = {
1554 PS_NOCLDSTOP, P_NOCLDSTOP,
1555 PS_WEXIT, P_WEXIT,
1556 PS_STOPFORK, P_STOPFORK,
1557 PS_STOPEXEC, P_STOPEXEC,
1558 PS_STOPEXIT, P_STOPEXIT,
1559 0
1560 };
1561
1562 static const u_int sysctl_slflagmap[] = {
1563 PSL_TRACED, P_TRACED,
1564 PSL_CHTRACED, P_CHTRACED,
1565 PSL_SYSCALL, P_SYSCALL,
1566 0
1567 };
1568
1569 static const u_int sysctl_lflagmap[] = {
1570 PL_CONTROLT, P_CONTROLT,
1571 PL_PPWAIT, P_PPWAIT,
1572 0
1573 };
1574
1575 static const u_int sysctl_stflagmap[] = {
1576 PST_PROFIL, P_PROFIL,
1577 0
1578
1579 };
1580
1581 /* used by kern_lwp also */
1582 const u_int sysctl_lwpflagmap[] = {
1583 LW_SINTR, L_SINTR,
1584 LW_SYSTEM, L_SYSTEM,
1585 0
1586 };
1587
1588 /*
1589 * Find the most ``active'' lwp of a process and return it for ps display
1590 * purposes
1591 */
1592 static struct lwp *
1593 proc_active_lwp(struct proc *p)
1594 {
1595 static const int ostat[] = {
1596 0,
1597 2, /* LSIDL */
1598 6, /* LSRUN */
1599 5, /* LSSLEEP */
1600 4, /* LSSTOP */
1601 0, /* LSZOMB */
1602 1, /* LSDEAD */
1603 7, /* LSONPROC */
1604 3 /* LSSUSPENDED */
1605 };
1606
1607 struct lwp *l, *lp = NULL;
1608 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1609 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1610 if (lp == NULL ||
1611 ostat[l->l_stat] > ostat[lp->l_stat] ||
1612 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1613 l->l_cpticks > lp->l_cpticks)) {
1614 lp = l;
1615 continue;
1616 }
1617 }
1618 return lp;
1619 }
1620
1621 static int
1622 sysctl_doeproc(SYSCTLFN_ARGS)
1623 {
1624 union {
1625 struct kinfo_proc kproc;
1626 struct kinfo_proc2 kproc2;
1627 } *kbuf;
1628 struct proc *p, *next, *marker;
1629 char *where, *dp;
1630 int type, op, arg, error;
1631 u_int elem_size, kelem_size, elem_count;
1632 size_t buflen, needed;
1633 bool match, zombie, mmmbrains;
1634
1635 if (namelen == 1 && name[0] == CTL_QUERY)
1636 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1637
1638 dp = where = oldp;
1639 buflen = where != NULL ? *oldlenp : 0;
1640 error = 0;
1641 needed = 0;
1642 type = rnode->sysctl_num;
1643
1644 if (type == KERN_PROC) {
1645 if (namelen == 0)
1646 return EINVAL;
1647 switch (op = name[0]) {
1648 case KERN_PROC_ALL:
1649 if (namelen != 1)
1650 return EINVAL;
1651 arg = 0;
1652 break;
1653 default:
1654 if (namelen != 2)
1655 return EINVAL;
1656 arg = name[1];
1657 break;
1658 }
1659 elem_count = 0; /* Hush little compiler, don't you cry */
1660 kelem_size = elem_size = sizeof(kbuf->kproc);
1661 } else {
1662 if (namelen != 4)
1663 return EINVAL;
1664 op = name[0];
1665 arg = name[1];
1666 elem_size = name[2];
1667 elem_count = name[3];
1668 kelem_size = sizeof(kbuf->kproc2);
1669 }
1670
1671 sysctl_unlock();
1672
1673 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
1674 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1675 marker->p_flag = PK_MARKER;
1676
1677 mutex_enter(proc_lock);
1678 /*
1679 * Start with zombies to prevent reporting processes twice, in case they
1680 * are dying and being moved from the list of alive processes to zombies.
1681 */
1682 mmmbrains = true;
1683 for (p = LIST_FIRST(&zombproc);; p = next) {
1684 if (p == NULL) {
1685 if (mmmbrains) {
1686 p = LIST_FIRST(&allproc);
1687 mmmbrains = false;
1688 }
1689 if (p == NULL)
1690 break;
1691 }
1692 next = LIST_NEXT(p, p_list);
1693 if ((p->p_flag & PK_MARKER) != 0)
1694 continue;
1695
1696 /*
1697 * Skip embryonic processes.
1698 */
1699 if (p->p_stat == SIDL)
1700 continue;
1701
1702 mutex_enter(p->p_lock);
1703 error = kauth_authorize_process(l->l_cred,
1704 KAUTH_PROCESS_CANSEE, p,
1705 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
1706 if (error != 0) {
1707 mutex_exit(p->p_lock);
1708 continue;
1709 }
1710
1711 /*
1712 * Hande all the operations in one switch on the cost of
1713 * algorithm complexity is on purpose. The win splitting this
1714 * function into several similar copies makes maintenance burden
1715 * burden, code grow and boost is neglible in practical systems.
1716 */
1717 switch (op) {
1718 case KERN_PROC_PID:
1719 match = (p->p_pid == (pid_t)arg);
1720 break;
1721
1722 case KERN_PROC_PGRP:
1723 match = (p->p_pgrp->pg_id == (pid_t)arg);
1724 break;
1725
1726 case KERN_PROC_SESSION:
1727 match = (p->p_session->s_sid == (pid_t)arg);
1728 break;
1729
1730 case KERN_PROC_TTY:
1731 match = true;
1732 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1733 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1734 p->p_session->s_ttyp == NULL ||
1735 p->p_session->s_ttyvp != NULL) {
1736 match = false;
1737 }
1738 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1739 p->p_session->s_ttyp == NULL) {
1740 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1741 match = false;
1742 }
1743 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1744 match = false;
1745 }
1746 break;
1747
1748 case KERN_PROC_UID:
1749 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1750 break;
1751
1752 case KERN_PROC_RUID:
1753 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1754 break;
1755
1756 case KERN_PROC_GID:
1757 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1758 break;
1759
1760 case KERN_PROC_RGID:
1761 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1762 break;
1763
1764 case KERN_PROC_ALL:
1765 match = true;
1766 /* allow everything */
1767 break;
1768
1769 default:
1770 error = EINVAL;
1771 mutex_exit(p->p_lock);
1772 goto cleanup;
1773 }
1774 if (!match) {
1775 mutex_exit(p->p_lock);
1776 continue;
1777 }
1778
1779 /*
1780 * Grab a hold on the process.
1781 */
1782 if (mmmbrains) {
1783 zombie = true;
1784 } else {
1785 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1786 }
1787 if (zombie) {
1788 LIST_INSERT_AFTER(p, marker, p_list);
1789 }
1790
1791 if (buflen >= elem_size &&
1792 (type == KERN_PROC || elem_count > 0)) {
1793 if (type == KERN_PROC) {
1794 kbuf->kproc.kp_proc = *p;
1795 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
1796 } else {
1797 fill_kproc2(p, &kbuf->kproc2, zombie);
1798 elem_count--;
1799 }
1800 mutex_exit(p->p_lock);
1801 mutex_exit(proc_lock);
1802 /*
1803 * Copy out elem_size, but not larger than kelem_size
1804 */
1805 error = sysctl_copyout(l, kbuf, dp,
1806 uimin(kelem_size, elem_size));
1807 mutex_enter(proc_lock);
1808 if (error) {
1809 goto bah;
1810 }
1811 dp += elem_size;
1812 buflen -= elem_size;
1813 } else {
1814 mutex_exit(p->p_lock);
1815 }
1816 needed += elem_size;
1817
1818 /*
1819 * Release reference to process.
1820 */
1821 if (zombie) {
1822 next = LIST_NEXT(marker, p_list);
1823 LIST_REMOVE(marker, p_list);
1824 } else {
1825 rw_exit(&p->p_reflock);
1826 next = LIST_NEXT(p, p_list);
1827 }
1828
1829 /*
1830 * Short-circuit break quickly!
1831 */
1832 if (op == KERN_PROC_PID)
1833 break;
1834 }
1835 mutex_exit(proc_lock);
1836
1837 if (where != NULL) {
1838 *oldlenp = dp - where;
1839 if (needed > *oldlenp) {
1840 error = ENOMEM;
1841 goto out;
1842 }
1843 } else {
1844 needed += KERN_PROCSLOP;
1845 *oldlenp = needed;
1846 }
1847 kmem_free(kbuf, sizeof(*kbuf));
1848 kmem_free(marker, sizeof(*marker));
1849 sysctl_relock();
1850 return 0;
1851 bah:
1852 if (zombie)
1853 LIST_REMOVE(marker, p_list);
1854 else
1855 rw_exit(&p->p_reflock);
1856 cleanup:
1857 mutex_exit(proc_lock);
1858 out:
1859 kmem_free(kbuf, sizeof(*kbuf));
1860 kmem_free(marker, sizeof(*marker));
1861 sysctl_relock();
1862 return error;
1863 }
1864
1865 int
1866 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1867 {
1868
1869 #ifdef COMPAT_NETBSD32
1870 if (p->p_flag & PK_32) {
1871 struct ps_strings32 arginfo32;
1872
1873 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32,
1874 sizeof(arginfo32));
1875 if (error)
1876 return error;
1877 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr;
1878 arginfo->ps_nargvstr = arginfo32.ps_nargvstr;
1879 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr;
1880 arginfo->ps_nenvstr = arginfo32.ps_nenvstr;
1881 return 0;
1882 }
1883 #endif
1884 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1885 }
1886
1887 static int
1888 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1889 {
1890 void **cookie = cookie_;
1891 struct lwp *l = cookie[0];
1892 char *dst = cookie[1];
1893
1894 return sysctl_copyout(l, src, dst + off, len);
1895 }
1896
1897 /*
1898 * sysctl helper routine for kern.proc_args pseudo-subtree.
1899 */
1900 static int
1901 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1902 {
1903 struct ps_strings pss;
1904 struct proc *p;
1905 pid_t pid;
1906 int type, error;
1907 void *cookie[2];
1908
1909 if (namelen == 1 && name[0] == CTL_QUERY)
1910 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1911
1912 if (newp != NULL || namelen != 2)
1913 return (EINVAL);
1914 pid = name[0];
1915 type = name[1];
1916
1917 switch (type) {
1918 case KERN_PROC_PATHNAME:
1919 sysctl_unlock();
1920 error = fill_pathname(l, pid, oldp, oldlenp);
1921 sysctl_relock();
1922 return error;
1923
1924 case KERN_PROC_ARGV:
1925 case KERN_PROC_NARGV:
1926 case KERN_PROC_ENV:
1927 case KERN_PROC_NENV:
1928 /* ok */
1929 break;
1930 default:
1931 return (EINVAL);
1932 }
1933
1934 sysctl_unlock();
1935
1936 /* check pid */
1937 mutex_enter(proc_lock);
1938 if ((p = proc_find(pid)) == NULL) {
1939 error = EINVAL;
1940 goto out_locked;
1941 }
1942 mutex_enter(p->p_lock);
1943
1944 /* Check permission. */
1945 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1946 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1947 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1948 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1949 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1950 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1951 else
1952 error = EINVAL; /* XXXGCC */
1953 if (error) {
1954 mutex_exit(p->p_lock);
1955 goto out_locked;
1956 }
1957
1958 if (oldp == NULL) {
1959 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1960 *oldlenp = sizeof (int);
1961 else
1962 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1963 error = 0;
1964 mutex_exit(p->p_lock);
1965 goto out_locked;
1966 }
1967
1968 /*
1969 * Zombies don't have a stack, so we can't read their psstrings.
1970 * System processes also don't have a user stack.
1971 */
1972 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
1973 error = EINVAL;
1974 mutex_exit(p->p_lock);
1975 goto out_locked;
1976 }
1977
1978 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
1979 mutex_exit(p->p_lock);
1980 if (error) {
1981 goto out_locked;
1982 }
1983 mutex_exit(proc_lock);
1984
1985 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1986 int value;
1987 if ((error = copyin_psstrings(p, &pss)) == 0) {
1988 if (type == KERN_PROC_NARGV)
1989 value = pss.ps_nargvstr;
1990 else
1991 value = pss.ps_nenvstr;
1992 error = sysctl_copyout(l, &value, oldp, sizeof(value));
1993 *oldlenp = sizeof(value);
1994 }
1995 } else {
1996 cookie[0] = l;
1997 cookie[1] = oldp;
1998 error = copy_procargs(p, type, oldlenp,
1999 copy_procargs_sysctl_cb, cookie);
2000 }
2001 rw_exit(&p->p_reflock);
2002 sysctl_relock();
2003 return error;
2004
2005 out_locked:
2006 mutex_exit(proc_lock);
2007 sysctl_relock();
2008 return error;
2009 }
2010
2011 int
2012 copy_procargs(struct proc *p, int oid, size_t *limit,
2013 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2014 {
2015 struct ps_strings pss;
2016 size_t len, i, loaded, entry_len;
2017 struct uio auio;
2018 struct iovec aiov;
2019 int error, argvlen;
2020 char *arg;
2021 char **argv;
2022 vaddr_t user_argv;
2023 struct vmspace *vmspace;
2024
2025 /*
2026 * Allocate a temporary buffer to hold the argument vector and
2027 * the arguments themselve.
2028 */
2029 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2030 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2031
2032 /*
2033 * Lock the process down in memory.
2034 */
2035 vmspace = p->p_vmspace;
2036 uvmspace_addref(vmspace);
2037
2038 /*
2039 * Read in the ps_strings structure.
2040 */
2041 if ((error = copyin_psstrings(p, &pss)) != 0)
2042 goto done;
2043
2044 /*
2045 * Now read the address of the argument vector.
2046 */
2047 switch (oid) {
2048 case KERN_PROC_ARGV:
2049 user_argv = (uintptr_t)pss.ps_argvstr;
2050 argvlen = pss.ps_nargvstr;
2051 break;
2052 case KERN_PROC_ENV:
2053 user_argv = (uintptr_t)pss.ps_envstr;
2054 argvlen = pss.ps_nenvstr;
2055 break;
2056 default:
2057 error = EINVAL;
2058 goto done;
2059 }
2060
2061 if (argvlen < 0) {
2062 error = EIO;
2063 goto done;
2064 }
2065
2066
2067 /*
2068 * Now copy each string.
2069 */
2070 len = 0; /* bytes written to user buffer */
2071 loaded = 0; /* bytes from argv already processed */
2072 i = 0; /* To make compiler happy */
2073 entry_len = PROC_PTRSZ(p);
2074
2075 for (; argvlen; --argvlen) {
2076 int finished = 0;
2077 vaddr_t base;
2078 size_t xlen;
2079 int j;
2080
2081 if (loaded == 0) {
2082 size_t rem = entry_len * argvlen;
2083 loaded = MIN(rem, PAGE_SIZE);
2084 error = copyin_vmspace(vmspace,
2085 (const void *)user_argv, argv, loaded);
2086 if (error)
2087 break;
2088 user_argv += loaded;
2089 i = 0;
2090 }
2091
2092 #ifdef COMPAT_NETBSD32
2093 if (p->p_flag & PK_32) {
2094 netbsd32_charp *argv32;
2095
2096 argv32 = (netbsd32_charp *)argv;
2097 base = (vaddr_t)NETBSD32PTR64(argv32[i++]);
2098 } else
2099 #endif
2100 base = (vaddr_t)argv[i++];
2101 loaded -= entry_len;
2102
2103 /*
2104 * The program has messed around with its arguments,
2105 * possibly deleting some, and replacing them with
2106 * NULL's. Treat this as the last argument and not
2107 * a failure.
2108 */
2109 if (base == 0)
2110 break;
2111
2112 while (!finished) {
2113 xlen = PAGE_SIZE - (base & PAGE_MASK);
2114
2115 aiov.iov_base = arg;
2116 aiov.iov_len = PAGE_SIZE;
2117 auio.uio_iov = &aiov;
2118 auio.uio_iovcnt = 1;
2119 auio.uio_offset = base;
2120 auio.uio_resid = xlen;
2121 auio.uio_rw = UIO_READ;
2122 UIO_SETUP_SYSSPACE(&auio);
2123 error = uvm_io(&vmspace->vm_map, &auio, 0);
2124 if (error)
2125 goto done;
2126
2127 /* Look for the end of the string */
2128 for (j = 0; j < xlen; j++) {
2129 if (arg[j] == '\0') {
2130 xlen = j + 1;
2131 finished = 1;
2132 break;
2133 }
2134 }
2135
2136 /* Check for user buffer overflow */
2137 if (len + xlen > *limit) {
2138 finished = 1;
2139 if (len > *limit)
2140 xlen = 0;
2141 else
2142 xlen = *limit - len;
2143 }
2144
2145 /* Copyout the page */
2146 error = (*cb)(cookie, arg, len, xlen);
2147 if (error)
2148 goto done;
2149
2150 len += xlen;
2151 base += xlen;
2152 }
2153 }
2154 *limit = len;
2155
2156 done:
2157 kmem_free(argv, PAGE_SIZE);
2158 kmem_free(arg, PAGE_SIZE);
2159 uvmspace_free(vmspace);
2160 return error;
2161 }
2162
2163 #define SET_KERN_ADDR(dst, src, allow) \
2164 do { \
2165 if (allow) \
2166 dst = src; \
2167 } while (0);
2168
2169 /*
2170 * Fill in an eproc structure for the specified process.
2171 */
2172 void
2173 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
2174 {
2175 bool allowaddr;
2176 struct tty *tp;
2177 struct lwp *l;
2178 int error;
2179
2180 KASSERT(mutex_owned(proc_lock));
2181 KASSERT(mutex_owned(p->p_lock));
2182
2183 memset(ep, 0, sizeof(*ep));
2184
2185 /* If not privileged, don't expose kernel addresses. */
2186 error = kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
2187 curproc, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL);
2188 allowaddr = (error == 0);
2189
2190 SET_KERN_ADDR(ep->e_paddr, p, allowaddr);
2191 SET_KERN_ADDR(ep->e_sess, p->p_session, allowaddr);
2192 if (p->p_cred) {
2193 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2194 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2195 }
2196 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2197 struct vmspace *vm = p->p_vmspace;
2198
2199 ep->e_vm.vm_rssize = vm_resident_count(vm);
2200 ep->e_vm.vm_tsize = vm->vm_tsize;
2201 ep->e_vm.vm_dsize = vm->vm_dsize;
2202 ep->e_vm.vm_ssize = vm->vm_ssize;
2203 ep->e_vm.vm_map.size = vm->vm_map.size;
2204
2205 /* Pick the primary (first) LWP */
2206 l = proc_active_lwp(p);
2207 KASSERT(l != NULL);
2208 lwp_lock(l);
2209 if (l->l_wchan)
2210 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2211 lwp_unlock(l);
2212 }
2213 ep->e_ppid = p->p_ppid;
2214 if (p->p_pgrp && p->p_session) {
2215 ep->e_pgid = p->p_pgrp->pg_id;
2216 ep->e_jobc = p->p_pgrp->pg_jobc;
2217 ep->e_sid = p->p_session->s_sid;
2218 if ((p->p_lflag & PL_CONTROLT) &&
2219 (tp = p->p_session->s_ttyp)) {
2220 ep->e_tdev = tp->t_dev;
2221 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2222 SET_KERN_ADDR(ep->e_tsess, tp->t_session, allowaddr);
2223 } else
2224 ep->e_tdev = (uint32_t)NODEV;
2225 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2226 if (SESS_LEADER(p))
2227 ep->e_flag |= EPROC_SLEADER;
2228 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2229 }
2230 ep->e_xsize = ep->e_xrssize = 0;
2231 ep->e_xccount = ep->e_xswrss = 0;
2232 }
2233
2234 /*
2235 * Fill in a kinfo_proc2 structure for the specified process.
2236 */
2237 void
2238 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2239 {
2240 struct tty *tp;
2241 struct lwp *l, *l2;
2242 struct timeval ut, st, rt;
2243 sigset_t ss1, ss2;
2244 struct rusage ru;
2245 struct vmspace *vm;
2246 bool allowaddr;
2247 int error;
2248
2249 KASSERT(mutex_owned(proc_lock));
2250 KASSERT(mutex_owned(p->p_lock));
2251
2252 /* If not privileged, don't expose kernel addresses. */
2253 error = kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
2254 curproc, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL);
2255 allowaddr = (error == 0);
2256
2257 sigemptyset(&ss1);
2258 sigemptyset(&ss2);
2259 memset(ki, 0, sizeof(*ki));
2260
2261 SET_KERN_ADDR(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2262 SET_KERN_ADDR(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2263 SET_KERN_ADDR(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2264 SET_KERN_ADDR(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2265 SET_KERN_ADDR(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2266 SET_KERN_ADDR(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2267 SET_KERN_ADDR(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2268 SET_KERN_ADDR(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2269 ki->p_tsess = 0; /* may be changed if controlling tty below */
2270 SET_KERN_ADDR(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2271 ki->p_eflag = 0;
2272 ki->p_exitsig = p->p_exitsig;
2273 ki->p_flag = L_INMEM; /* Process never swapped out */
2274 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2275 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2276 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2277 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2278 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2279 ki->p_pid = p->p_pid;
2280 ki->p_ppid = p->p_ppid;
2281 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2282 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2283 ki->p_gid = kauth_cred_getegid(p->p_cred);
2284 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2285 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2286 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2287 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2288 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2289 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2290 UIO_SYSSPACE);
2291
2292 ki->p_uticks = p->p_uticks;
2293 ki->p_sticks = p->p_sticks;
2294 ki->p_iticks = p->p_iticks;
2295 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2296 SET_KERN_ADDR(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2297 ki->p_traceflag = p->p_traceflag;
2298
2299 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2300 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2301
2302 ki->p_cpticks = 0;
2303 ki->p_pctcpu = p->p_pctcpu;
2304 ki->p_estcpu = 0;
2305 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2306 ki->p_realstat = p->p_stat;
2307 ki->p_nice = p->p_nice;
2308 ki->p_xstat = P_WAITSTATUS(p);
2309 ki->p_acflag = p->p_acflag;
2310
2311 strncpy(ki->p_comm, p->p_comm,
2312 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2313 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2314
2315 ki->p_nlwps = p->p_nlwps;
2316 ki->p_realflag = ki->p_flag;
2317
2318 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2319 vm = p->p_vmspace;
2320 ki->p_vm_rssize = vm_resident_count(vm);
2321 ki->p_vm_tsize = vm->vm_tsize;
2322 ki->p_vm_dsize = vm->vm_dsize;
2323 ki->p_vm_ssize = vm->vm_ssize;
2324 ki->p_vm_vsize = atop(vm->vm_map.size);
2325 /*
2326 * Since the stack is initially mapped mostly with
2327 * PROT_NONE and grown as needed, adjust the "mapped size"
2328 * to skip the unused stack portion.
2329 */
2330 ki->p_vm_msize =
2331 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2332
2333 /* Pick the primary (first) LWP */
2334 l = proc_active_lwp(p);
2335 KASSERT(l != NULL);
2336 lwp_lock(l);
2337 ki->p_nrlwps = p->p_nrlwps;
2338 ki->p_forw = 0;
2339 ki->p_back = 0;
2340 SET_KERN_ADDR(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2341 ki->p_stat = l->l_stat;
2342 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2343 ki->p_swtime = l->l_swtime;
2344 ki->p_slptime = l->l_slptime;
2345 if (l->l_stat == LSONPROC)
2346 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2347 else
2348 ki->p_schedflags = 0;
2349 ki->p_priority = lwp_eprio(l);
2350 ki->p_usrpri = l->l_priority;
2351 if (l->l_wchan)
2352 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2353 SET_KERN_ADDR(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2354 ki->p_cpuid = cpu_index(l->l_cpu);
2355 lwp_unlock(l);
2356 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2357 /* This is hardly correct, but... */
2358 sigplusset(&l->l_sigpend.sp_set, &ss1);
2359 sigplusset(&l->l_sigmask, &ss2);
2360 ki->p_cpticks += l->l_cpticks;
2361 ki->p_pctcpu += l->l_pctcpu;
2362 ki->p_estcpu += l->l_estcpu;
2363 }
2364 }
2365 sigplusset(&p->p_sigpend.sp_set, &ss2);
2366 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2367 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2368
2369 if (p->p_session != NULL) {
2370 ki->p_sid = p->p_session->s_sid;
2371 ki->p__pgid = p->p_pgrp->pg_id;
2372 if (p->p_session->s_ttyvp)
2373 ki->p_eflag |= EPROC_CTTY;
2374 if (SESS_LEADER(p))
2375 ki->p_eflag |= EPROC_SLEADER;
2376 strncpy(ki->p_login, p->p_session->s_login,
2377 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2378 ki->p_jobc = p->p_pgrp->pg_jobc;
2379 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2380 ki->p_tdev = tp->t_dev;
2381 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2382 SET_KERN_ADDR(ki->p_tsess, PTRTOUINT64(tp->t_session),
2383 allowaddr);
2384 } else {
2385 ki->p_tdev = (int32_t)NODEV;
2386 }
2387 }
2388
2389 if (!P_ZOMBIE(p) && !zombie) {
2390 ki->p_uvalid = 1;
2391 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2392 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2393
2394 calcru(p, &ut, &st, NULL, &rt);
2395 ki->p_rtime_sec = rt.tv_sec;
2396 ki->p_rtime_usec = rt.tv_usec;
2397 ki->p_uutime_sec = ut.tv_sec;
2398 ki->p_uutime_usec = ut.tv_usec;
2399 ki->p_ustime_sec = st.tv_sec;
2400 ki->p_ustime_usec = st.tv_usec;
2401
2402 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2403 ki->p_uru_nvcsw = 0;
2404 ki->p_uru_nivcsw = 0;
2405 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2406 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2407 ki->p_uru_nivcsw += l2->l_nivcsw;
2408 ruadd(&ru, &l2->l_ru);
2409 }
2410 ki->p_uru_maxrss = ru.ru_maxrss;
2411 ki->p_uru_ixrss = ru.ru_ixrss;
2412 ki->p_uru_idrss = ru.ru_idrss;
2413 ki->p_uru_isrss = ru.ru_isrss;
2414 ki->p_uru_minflt = ru.ru_minflt;
2415 ki->p_uru_majflt = ru.ru_majflt;
2416 ki->p_uru_nswap = ru.ru_nswap;
2417 ki->p_uru_inblock = ru.ru_inblock;
2418 ki->p_uru_oublock = ru.ru_oublock;
2419 ki->p_uru_msgsnd = ru.ru_msgsnd;
2420 ki->p_uru_msgrcv = ru.ru_msgrcv;
2421 ki->p_uru_nsignals = ru.ru_nsignals;
2422
2423 timeradd(&p->p_stats->p_cru.ru_utime,
2424 &p->p_stats->p_cru.ru_stime, &ut);
2425 ki->p_uctime_sec = ut.tv_sec;
2426 ki->p_uctime_usec = ut.tv_usec;
2427 }
2428 }
2429
2430
2431 int
2432 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2433 {
2434 int error;
2435
2436 mutex_enter(proc_lock);
2437 if (pid == -1)
2438 *p = l->l_proc;
2439 else
2440 *p = proc_find(pid);
2441
2442 if (*p == NULL) {
2443 if (pid != -1)
2444 mutex_exit(proc_lock);
2445 return ESRCH;
2446 }
2447 if (pid != -1)
2448 mutex_enter((*p)->p_lock);
2449 mutex_exit(proc_lock);
2450
2451 error = kauth_authorize_process(l->l_cred,
2452 KAUTH_PROCESS_CANSEE, *p,
2453 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2454 if (error) {
2455 if (pid != -1)
2456 mutex_exit((*p)->p_lock);
2457 }
2458 return error;
2459 }
2460
2461 static int
2462 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2463 {
2464 int error;
2465 struct proc *p;
2466
2467 if ((error = proc_find_locked(l, &p, pid)) != 0)
2468 return error;
2469
2470 if (p->p_path == NULL) {
2471 if (pid != -1)
2472 mutex_exit(p->p_lock);
2473 return ENOENT;
2474 }
2475
2476 size_t len = strlen(p->p_path) + 1;
2477 if (oldp != NULL) {
2478 error = sysctl_copyout(l, p->p_path, oldp, *oldlenp);
2479 if (error == 0 && *oldlenp < len)
2480 error = ENOSPC;
2481 }
2482 *oldlenp = len;
2483 if (pid != -1)
2484 mutex_exit(p->p_lock);
2485 return error;
2486 }
2487
2488 int
2489 proc_getauxv(struct proc *p, void **buf, size_t *len)
2490 {
2491 struct ps_strings pss;
2492 int error;
2493 void *uauxv, *kauxv;
2494 size_t size;
2495
2496 if ((error = copyin_psstrings(p, &pss)) != 0)
2497 return error;
2498 if (pss.ps_envstr == NULL)
2499 return EIO;
2500
2501 size = p->p_execsw->es_arglen;
2502 if (size == 0)
2503 return EIO;
2504
2505 size_t ptrsz = PROC_PTRSZ(p);
2506 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
2507
2508 kauxv = kmem_alloc(size, KM_SLEEP);
2509
2510 error = copyin_proc(p, uauxv, kauxv, size);
2511 if (error) {
2512 kmem_free(kauxv, size);
2513 return error;
2514 }
2515
2516 *buf = kauxv;
2517 *len = size;
2518
2519 return 0;
2520 }
2521