kern_proc.c revision 1.212.2.3 1 /* $NetBSD: kern_proc.c,v 1.212.2.3 2020/04/21 18:42:42 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.212.2.3 2020/04/21 18:42:42 martin Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109 #include <sys/vnode.h>
110
111 #include <uvm/uvm_extern.h>
112 #include <uvm/uvm.h>
113
114 /*
115 * Process lists.
116 */
117
118 struct proclist allproc __cacheline_aligned;
119 struct proclist zombproc __cacheline_aligned;
120
121 kmutex_t * proc_lock __cacheline_aligned;
122
123 /*
124 * pid to proc lookup is done by indexing the pid_table array.
125 * Since pid numbers are only allocated when an empty slot
126 * has been found, there is no need to search any lists ever.
127 * (an orphaned pgrp will lock the slot, a session will lock
128 * the pgrp with the same number.)
129 * If the table is too small it is reallocated with twice the
130 * previous size and the entries 'unzipped' into the two halves.
131 * A linked list of free entries is passed through the pt_proc
132 * field of 'free' items - set odd to be an invalid ptr.
133 */
134
135 struct pid_table {
136 struct proc *pt_proc;
137 struct pgrp *pt_pgrp;
138 pid_t pt_pid;
139 };
140 #if 1 /* strongly typed cast - should be a noop */
141 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
142 #else
143 #define p2u(p) ((uint)p)
144 #endif
145 #define P_VALID(p) (!(p2u(p) & 1))
146 #define P_NEXT(p) (p2u(p) >> 1)
147 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
148
149 /*
150 * Table of process IDs (PIDs).
151 */
152 static struct pid_table *pid_table __read_mostly;
153
154 #define INITIAL_PID_TABLE_SIZE (1 << 5)
155
156 /* Table mask, threshold for growing and number of allocated PIDs. */
157 static u_int pid_tbl_mask __read_mostly;
158 static u_int pid_alloc_lim __read_mostly;
159 static u_int pid_alloc_cnt __cacheline_aligned;
160
161 /* Next free, last free and maximum PIDs. */
162 static u_int next_free_pt __cacheline_aligned;
163 static u_int last_free_pt __cacheline_aligned;
164 static pid_t pid_max __read_mostly;
165
166 /* Components of the first process -- never freed. */
167
168 extern struct emul emul_netbsd; /* defined in kern_exec.c */
169
170 struct session session0 = {
171 .s_count = 1,
172 .s_sid = 0,
173 };
174 struct pgrp pgrp0 = {
175 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
176 .pg_session = &session0,
177 };
178 filedesc_t filedesc0;
179 struct cwdinfo cwdi0 = {
180 .cwdi_cmask = CMASK,
181 .cwdi_refcnt = 1,
182 };
183 struct plimit limit0;
184 struct pstats pstat0;
185 struct vmspace vmspace0;
186 struct sigacts sigacts0;
187 struct proc proc0 = {
188 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
189 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
190 .p_nlwps = 1,
191 .p_nrlwps = 1,
192 .p_nlwpid = 1, /* must match lwp0.l_lid */
193 .p_pgrp = &pgrp0,
194 .p_comm = "system",
195 /*
196 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
197 * when they exit. init(8) can easily wait them out for us.
198 */
199 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
200 .p_stat = SACTIVE,
201 .p_nice = NZERO,
202 .p_emul = &emul_netbsd,
203 .p_cwdi = &cwdi0,
204 .p_limit = &limit0,
205 .p_fd = &filedesc0,
206 .p_vmspace = &vmspace0,
207 .p_stats = &pstat0,
208 .p_sigacts = &sigacts0,
209 #ifdef PROC0_MD_INITIALIZERS
210 PROC0_MD_INITIALIZERS
211 #endif
212 };
213 kauth_cred_t cred0;
214
215 static const int nofile = NOFILE;
216 static const int maxuprc = MAXUPRC;
217
218 static int sysctl_doeproc(SYSCTLFN_PROTO);
219 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
220 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
221
222 #ifdef KASLR
223 static int kern_expose_address = 0;
224 #else
225 static int kern_expose_address = 1;
226 #endif
227 /*
228 * The process list descriptors, used during pid allocation and
229 * by sysctl. No locking on this data structure is needed since
230 * it is completely static.
231 */
232 const struct proclist_desc proclists[] = {
233 { &allproc },
234 { &zombproc },
235 { NULL },
236 };
237
238 static struct pgrp * pg_remove(pid_t);
239 static void pg_delete(pid_t);
240 static void orphanpg(struct pgrp *);
241
242 static specificdata_domain_t proc_specificdata_domain;
243
244 static pool_cache_t proc_cache;
245
246 static kauth_listener_t proc_listener;
247
248 static void fill_proc(const struct proc *, struct proc *, bool);
249 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
250 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
251
252 static int
253 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
254 void *arg0, void *arg1, void *arg2, void *arg3)
255 {
256 struct proc *p;
257 int result;
258
259 result = KAUTH_RESULT_DEFER;
260 p = arg0;
261
262 switch (action) {
263 case KAUTH_PROCESS_CANSEE: {
264 enum kauth_process_req req;
265
266 req = (enum kauth_process_req)(uintptr_t)arg1;
267
268 switch (req) {
269 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
270 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
271 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
272 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
273 result = KAUTH_RESULT_ALLOW;
274 break;
275
276 case KAUTH_REQ_PROCESS_CANSEE_ENV:
277 if (kauth_cred_getuid(cred) !=
278 kauth_cred_getuid(p->p_cred) ||
279 kauth_cred_getuid(cred) !=
280 kauth_cred_getsvuid(p->p_cred))
281 break;
282
283 result = KAUTH_RESULT_ALLOW;
284
285 break;
286
287 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
288 if (!kern_expose_address)
289 break;
290
291 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
292 break;
293
294 result = KAUTH_RESULT_ALLOW;
295
296 break;
297
298 default:
299 break;
300 }
301
302 break;
303 }
304
305 case KAUTH_PROCESS_FORK: {
306 int lnprocs = (int)(unsigned long)arg2;
307
308 /*
309 * Don't allow a nonprivileged user to use the last few
310 * processes. The variable lnprocs is the current number of
311 * processes, maxproc is the limit.
312 */
313 if (__predict_false((lnprocs >= maxproc - 5)))
314 break;
315
316 result = KAUTH_RESULT_ALLOW;
317
318 break;
319 }
320
321 case KAUTH_PROCESS_CORENAME:
322 case KAUTH_PROCESS_STOPFLAG:
323 if (proc_uidmatch(cred, p->p_cred) == 0)
324 result = KAUTH_RESULT_ALLOW;
325
326 break;
327
328 default:
329 break;
330 }
331
332 return result;
333 }
334
335 static int
336 proc_ctor(void *arg __unused, void *obj, int flags __unused)
337 {
338 memset(obj, 0, sizeof(struct proc));
339 return 0;
340 }
341
342 /*
343 * Initialize global process hashing structures.
344 */
345 void
346 procinit(void)
347 {
348 const struct proclist_desc *pd;
349 u_int i;
350 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
351
352 for (pd = proclists; pd->pd_list != NULL; pd++)
353 LIST_INIT(pd->pd_list);
354
355 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
356 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
357 * sizeof(struct pid_table), KM_SLEEP);
358 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
359 pid_max = PID_MAX;
360
361 /* Set free list running through table...
362 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
363 for (i = 0; i <= pid_tbl_mask; i++) {
364 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
365 pid_table[i].pt_pgrp = 0;
366 pid_table[i].pt_pid = 0;
367 }
368 /* slot 0 is just grabbed */
369 next_free_pt = 1;
370 /* Need to fix last entry. */
371 last_free_pt = pid_tbl_mask;
372 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
373 /* point at which we grow table - to avoid reusing pids too often */
374 pid_alloc_lim = pid_tbl_mask - 1;
375 #undef LINK_EMPTY
376
377 proc_specificdata_domain = specificdata_domain_create();
378 KASSERT(proc_specificdata_domain != NULL);
379
380 proc_cache = pool_cache_init(sizeof(struct proc), coherency_unit, 0, 0,
381 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
382
383 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
384 proc_listener_cb, NULL);
385 }
386
387 void
388 procinit_sysctl(void)
389 {
390 static struct sysctllog *clog;
391
392 sysctl_createv(&clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 CTLTYPE_INT, "expose_address",
395 SYSCTL_DESCR("Enable exposing kernel addresses"),
396 sysctl_security_expose_address, 0,
397 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
398 sysctl_createv(&clog, 0, NULL, NULL,
399 CTLFLAG_PERMANENT,
400 CTLTYPE_NODE, "proc",
401 SYSCTL_DESCR("System-wide process information"),
402 sysctl_doeproc, 0, NULL, 0,
403 CTL_KERN, KERN_PROC, CTL_EOL);
404 sysctl_createv(&clog, 0, NULL, NULL,
405 CTLFLAG_PERMANENT,
406 CTLTYPE_NODE, "proc2",
407 SYSCTL_DESCR("Machine-independent process information"),
408 sysctl_doeproc, 0, NULL, 0,
409 CTL_KERN, KERN_PROC2, CTL_EOL);
410 sysctl_createv(&clog, 0, NULL, NULL,
411 CTLFLAG_PERMANENT,
412 CTLTYPE_NODE, "proc_args",
413 SYSCTL_DESCR("Process argument information"),
414 sysctl_kern_proc_args, 0, NULL, 0,
415 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
416
417 /*
418 "nodes" under these:
419
420 KERN_PROC_ALL
421 KERN_PROC_PID pid
422 KERN_PROC_PGRP pgrp
423 KERN_PROC_SESSION sess
424 KERN_PROC_TTY tty
425 KERN_PROC_UID uid
426 KERN_PROC_RUID uid
427 KERN_PROC_GID gid
428 KERN_PROC_RGID gid
429
430 all in all, probably not worth the effort...
431 */
432 }
433
434 /*
435 * Initialize process 0.
436 */
437 void
438 proc0_init(void)
439 {
440 struct proc *p;
441 struct pgrp *pg;
442 struct rlimit *rlim;
443 rlim_t lim;
444 int error __diagused;
445 int i;
446
447 p = &proc0;
448 pg = &pgrp0;
449
450 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
451 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
452 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
453
454 rw_init(&p->p_reflock);
455 rw_init(&p->p_treelock);
456 cv_init(&p->p_waitcv, "wait");
457 cv_init(&p->p_lwpcv, "lwpwait");
458
459 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
460 radix_tree_init_tree(&p->p_lwptree);
461 error = radix_tree_insert_node(&p->p_lwptree,
462 (uint64_t)(lwp0.l_lid - 1), &lwp0);
463 KASSERT(error == 0);
464
465 pid_table[0].pt_proc = p;
466 LIST_INSERT_HEAD(&allproc, p, p_list);
467
468 pid_table[0].pt_pgrp = pg;
469 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
470
471 #ifdef __HAVE_SYSCALL_INTERN
472 (*p->p_emul->e_syscall_intern)(p);
473 #endif
474
475 /* Create credentials. */
476 cred0 = kauth_cred_alloc();
477 p->p_cred = cred0;
478
479 /* Create the CWD info. */
480 mutex_init(&cwdi0.cwdi_lock, MUTEX_DEFAULT, IPL_NONE);
481
482 /* Create the limits structures. */
483 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
484
485 rlim = limit0.pl_rlimit;
486 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
487 rlim[i].rlim_cur = RLIM_INFINITY;
488 rlim[i].rlim_max = RLIM_INFINITY;
489 }
490
491 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
492 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
493
494 rlim[RLIMIT_NPROC].rlim_max = maxproc;
495 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
496
497 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem()));
498 rlim[RLIMIT_RSS].rlim_max = lim;
499 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
500 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
501
502 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
503 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
504
505 /* Note that default core name has zero length. */
506 limit0.pl_corename = defcorename;
507 limit0.pl_cnlen = 0;
508 limit0.pl_refcnt = 1;
509 limit0.pl_writeable = false;
510 limit0.pl_sv_limit = NULL;
511
512 /* Configure virtual memory system, set vm rlimits. */
513 uvm_init_limits(p);
514
515 /* Initialize file descriptor table for proc0. */
516 fd_init(&filedesc0);
517
518 /*
519 * Initialize proc0's vmspace, which uses the kernel pmap.
520 * All kernel processes (which never have user space mappings)
521 * share proc0's vmspace, and thus, the kernel pmap.
522 */
523 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
524 trunc_page(VM_MAXUSER_ADDRESS),
525 #ifdef __USE_TOPDOWN_VM
526 true
527 #else
528 false
529 #endif
530 );
531
532 /* Initialize signal state for proc0. XXX IPL_SCHED */
533 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
534 siginit(p);
535
536 proc_initspecific(p);
537 kdtrace_proc_ctor(NULL, p);
538 }
539
540 /*
541 * Session reference counting.
542 */
543
544 void
545 proc_sesshold(struct session *ss)
546 {
547
548 KASSERT(mutex_owned(proc_lock));
549 ss->s_count++;
550 }
551
552 void
553 proc_sessrele(struct session *ss)
554 {
555
556 KASSERT(mutex_owned(proc_lock));
557 KASSERT(ss->s_count > 0);
558 /*
559 * We keep the pgrp with the same id as the session in order to
560 * stop a process being given the same pid. Since the pgrp holds
561 * a reference to the session, it must be a 'zombie' pgrp by now.
562 */
563 if (--ss->s_count == 0) {
564 struct pgrp *pg;
565
566 pg = pg_remove(ss->s_sid);
567 mutex_exit(proc_lock);
568
569 kmem_free(pg, sizeof(struct pgrp));
570 kmem_free(ss, sizeof(struct session));
571 } else {
572 mutex_exit(proc_lock);
573 }
574 }
575
576 /*
577 * Check that the specified process group is in the session of the
578 * specified process.
579 * Treats -ve ids as process ids.
580 * Used to validate TIOCSPGRP requests.
581 */
582 int
583 pgid_in_session(struct proc *p, pid_t pg_id)
584 {
585 struct pgrp *pgrp;
586 struct session *session;
587 int error;
588
589 mutex_enter(proc_lock);
590 if (pg_id < 0) {
591 struct proc *p1 = proc_find(-pg_id);
592 if (p1 == NULL) {
593 error = EINVAL;
594 goto fail;
595 }
596 pgrp = p1->p_pgrp;
597 } else {
598 pgrp = pgrp_find(pg_id);
599 if (pgrp == NULL) {
600 error = EINVAL;
601 goto fail;
602 }
603 }
604 session = pgrp->pg_session;
605 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
606 fail:
607 mutex_exit(proc_lock);
608 return error;
609 }
610
611 /*
612 * p_inferior: is p an inferior of q?
613 */
614 static inline bool
615 p_inferior(struct proc *p, struct proc *q)
616 {
617
618 KASSERT(mutex_owned(proc_lock));
619
620 for (; p != q; p = p->p_pptr)
621 if (p->p_pid == 0)
622 return false;
623 return true;
624 }
625
626 /*
627 * proc_find: locate a process by the ID.
628 *
629 * => Must be called with proc_lock held.
630 */
631 proc_t *
632 proc_find_raw(pid_t pid)
633 {
634 struct pid_table *pt;
635 proc_t *p;
636
637 KASSERT(mutex_owned(proc_lock));
638 pt = &pid_table[pid & pid_tbl_mask];
639 p = pt->pt_proc;
640 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
641 return NULL;
642 }
643 return p;
644 }
645
646 proc_t *
647 proc_find(pid_t pid)
648 {
649 proc_t *p;
650
651 p = proc_find_raw(pid);
652 if (__predict_false(p == NULL)) {
653 return NULL;
654 }
655
656 /*
657 * Only allow live processes to be found by PID.
658 * XXX: p_stat might change, since unlocked.
659 */
660 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
661 return p;
662 }
663 return NULL;
664 }
665
666 /*
667 * pgrp_find: locate a process group by the ID.
668 *
669 * => Must be called with proc_lock held.
670 */
671 struct pgrp *
672 pgrp_find(pid_t pgid)
673 {
674 struct pgrp *pg;
675
676 KASSERT(mutex_owned(proc_lock));
677
678 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
679
680 /*
681 * Cannot look up a process group that only exists because the
682 * session has not died yet (traditional).
683 */
684 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
685 return NULL;
686 }
687 return pg;
688 }
689
690 static void
691 expand_pid_table(void)
692 {
693 size_t pt_size, tsz;
694 struct pid_table *n_pt, *new_pt;
695 struct proc *proc;
696 struct pgrp *pgrp;
697 pid_t pid, rpid;
698 u_int i;
699 uint new_pt_mask;
700
701 pt_size = pid_tbl_mask + 1;
702 tsz = pt_size * 2 * sizeof(struct pid_table);
703 new_pt = kmem_alloc(tsz, KM_SLEEP);
704 new_pt_mask = pt_size * 2 - 1;
705
706 mutex_enter(proc_lock);
707 if (pt_size != pid_tbl_mask + 1) {
708 /* Another process beat us to it... */
709 mutex_exit(proc_lock);
710 kmem_free(new_pt, tsz);
711 return;
712 }
713
714 /*
715 * Copy entries from old table into new one.
716 * If 'pid' is 'odd' we need to place in the upper half,
717 * even pid's to the lower half.
718 * Free items stay in the low half so we don't have to
719 * fixup the reference to them.
720 * We stuff free items on the front of the freelist
721 * because we can't write to unmodified entries.
722 * Processing the table backwards maintains a semblance
723 * of issuing pid numbers that increase with time.
724 */
725 i = pt_size - 1;
726 n_pt = new_pt + i;
727 for (; ; i--, n_pt--) {
728 proc = pid_table[i].pt_proc;
729 pgrp = pid_table[i].pt_pgrp;
730 if (!P_VALID(proc)) {
731 /* Up 'use count' so that link is valid */
732 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
733 rpid = 0;
734 proc = P_FREE(pid);
735 if (pgrp)
736 pid = pgrp->pg_id;
737 } else {
738 pid = pid_table[i].pt_pid;
739 rpid = pid;
740 }
741
742 /* Save entry in appropriate half of table */
743 n_pt[pid & pt_size].pt_proc = proc;
744 n_pt[pid & pt_size].pt_pgrp = pgrp;
745 n_pt[pid & pt_size].pt_pid = rpid;
746
747 /* Put other piece on start of free list */
748 pid = (pid ^ pt_size) & ~pid_tbl_mask;
749 n_pt[pid & pt_size].pt_proc =
750 P_FREE((pid & ~pt_size) | next_free_pt);
751 n_pt[pid & pt_size].pt_pgrp = 0;
752 n_pt[pid & pt_size].pt_pid = 0;
753
754 next_free_pt = i | (pid & pt_size);
755 if (i == 0)
756 break;
757 }
758
759 /* Save old table size and switch tables */
760 tsz = pt_size * sizeof(struct pid_table);
761 n_pt = pid_table;
762 pid_table = new_pt;
763 pid_tbl_mask = new_pt_mask;
764
765 /*
766 * pid_max starts as PID_MAX (= 30000), once we have 16384
767 * allocated pids we need it to be larger!
768 */
769 if (pid_tbl_mask > PID_MAX) {
770 pid_max = pid_tbl_mask * 2 + 1;
771 pid_alloc_lim |= pid_alloc_lim << 1;
772 } else
773 pid_alloc_lim <<= 1; /* doubles number of free slots... */
774
775 mutex_exit(proc_lock);
776 kmem_free(n_pt, tsz);
777 }
778
779 struct proc *
780 proc_alloc(void)
781 {
782 struct proc *p;
783
784 p = pool_cache_get(proc_cache, PR_WAITOK);
785 p->p_stat = SIDL; /* protect against others */
786 proc_initspecific(p);
787 kdtrace_proc_ctor(NULL, p);
788 p->p_pid = -1;
789 proc_alloc_pid(p);
790 return p;
791 }
792
793 /*
794 * proc_alloc_pid: allocate PID and record the given proc 'p' so that
795 * proc_find_raw() can find it by the PID.
796 */
797
798 pid_t
799 proc_alloc_pid(struct proc *p)
800 {
801 struct pid_table *pt;
802 pid_t pid;
803 int nxt;
804
805 for (;;expand_pid_table()) {
806 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
807 /* ensure pids cycle through 2000+ values */
808 continue;
809 mutex_enter(proc_lock);
810 pt = &pid_table[next_free_pt];
811 #ifdef DIAGNOSTIC
812 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
813 panic("proc_alloc: slot busy");
814 #endif
815 nxt = P_NEXT(pt->pt_proc);
816 if (nxt & pid_tbl_mask)
817 break;
818 /* Table full - expand (NB last entry not used....) */
819 mutex_exit(proc_lock);
820 }
821
822 /* pid is 'saved use count' + 'size' + entry */
823 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
824 if ((uint)pid > (uint)pid_max)
825 pid &= pid_tbl_mask;
826 next_free_pt = nxt & pid_tbl_mask;
827
828 /* Grab table slot */
829 pt->pt_proc = p;
830
831 KASSERT(pt->pt_pid == 0);
832 pt->pt_pid = pid;
833 if (p->p_pid == -1) {
834 p->p_pid = pid;
835 }
836 pid_alloc_cnt++;
837 mutex_exit(proc_lock);
838
839 return pid;
840 }
841
842 /*
843 * Free a process id - called from proc_free (in kern_exit.c)
844 *
845 * Called with the proc_lock held.
846 */
847 void
848 proc_free_pid(pid_t pid)
849 {
850 struct pid_table *pt;
851
852 KASSERT(mutex_owned(proc_lock));
853
854 pt = &pid_table[pid & pid_tbl_mask];
855
856 /* save pid use count in slot */
857 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
858 KASSERT(pt->pt_pid == pid);
859 pt->pt_pid = 0;
860
861 if (pt->pt_pgrp == NULL) {
862 /* link last freed entry onto ours */
863 pid &= pid_tbl_mask;
864 pt = &pid_table[last_free_pt];
865 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
866 pt->pt_pid = 0;
867 last_free_pt = pid;
868 pid_alloc_cnt--;
869 }
870 }
871
872 void
873 proc_free_mem(struct proc *p)
874 {
875
876 kdtrace_proc_dtor(NULL, p);
877 pool_cache_put(proc_cache, p);
878 }
879
880 /*
881 * proc_enterpgrp: move p to a new or existing process group (and session).
882 *
883 * If we are creating a new pgrp, the pgid should equal
884 * the calling process' pid.
885 * If is only valid to enter a process group that is in the session
886 * of the process.
887 * Also mksess should only be set if we are creating a process group
888 *
889 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
890 */
891 int
892 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
893 {
894 struct pgrp *new_pgrp, *pgrp;
895 struct session *sess;
896 struct proc *p;
897 int rval;
898 pid_t pg_id = NO_PGID;
899
900 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
901
902 /* Allocate data areas we might need before doing any validity checks */
903 mutex_enter(proc_lock); /* Because pid_table might change */
904 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
905 mutex_exit(proc_lock);
906 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
907 mutex_enter(proc_lock);
908 } else
909 new_pgrp = NULL;
910 rval = EPERM; /* most common error (to save typing) */
911
912 /* Check pgrp exists or can be created */
913 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
914 if (pgrp != NULL && pgrp->pg_id != pgid)
915 goto done;
916
917 /* Can only set another process under restricted circumstances. */
918 if (pid != curp->p_pid) {
919 /* Must exist and be one of our children... */
920 p = proc_find(pid);
921 if (p == NULL || !p_inferior(p, curp)) {
922 rval = ESRCH;
923 goto done;
924 }
925 /* ... in the same session... */
926 if (sess != NULL || p->p_session != curp->p_session)
927 goto done;
928 /* ... existing pgid must be in same session ... */
929 if (pgrp != NULL && pgrp->pg_session != p->p_session)
930 goto done;
931 /* ... and not done an exec. */
932 if (p->p_flag & PK_EXEC) {
933 rval = EACCES;
934 goto done;
935 }
936 } else {
937 /* ... setsid() cannot re-enter a pgrp */
938 if (mksess && (curp->p_pgid == curp->p_pid ||
939 pgrp_find(curp->p_pid)))
940 goto done;
941 p = curp;
942 }
943
944 /* Changing the process group/session of a session
945 leader is definitely off limits. */
946 if (SESS_LEADER(p)) {
947 if (sess == NULL && p->p_pgrp == pgrp)
948 /* unless it's a definite noop */
949 rval = 0;
950 goto done;
951 }
952
953 /* Can only create a process group with id of process */
954 if (pgrp == NULL && pgid != pid)
955 goto done;
956
957 /* Can only create a session if creating pgrp */
958 if (sess != NULL && pgrp != NULL)
959 goto done;
960
961 /* Check we allocated memory for a pgrp... */
962 if (pgrp == NULL && new_pgrp == NULL)
963 goto done;
964
965 /* Don't attach to 'zombie' pgrp */
966 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
967 goto done;
968
969 /* Expect to succeed now */
970 rval = 0;
971
972 if (pgrp == p->p_pgrp)
973 /* nothing to do */
974 goto done;
975
976 /* Ok all setup, link up required structures */
977
978 if (pgrp == NULL) {
979 pgrp = new_pgrp;
980 new_pgrp = NULL;
981 if (sess != NULL) {
982 sess->s_sid = p->p_pid;
983 sess->s_leader = p;
984 sess->s_count = 1;
985 sess->s_ttyvp = NULL;
986 sess->s_ttyp = NULL;
987 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
988 memcpy(sess->s_login, p->p_session->s_login,
989 sizeof(sess->s_login));
990 p->p_lflag &= ~PL_CONTROLT;
991 } else {
992 sess = p->p_pgrp->pg_session;
993 proc_sesshold(sess);
994 }
995 pgrp->pg_session = sess;
996 sess = NULL;
997
998 pgrp->pg_id = pgid;
999 LIST_INIT(&pgrp->pg_members);
1000 #ifdef DIAGNOSTIC
1001 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1002 panic("enterpgrp: pgrp table slot in use");
1003 if (__predict_false(mksess && p != curp))
1004 panic("enterpgrp: mksession and p != curproc");
1005 #endif
1006 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1007 pgrp->pg_jobc = 0;
1008 }
1009
1010 /*
1011 * Adjust eligibility of affected pgrps to participate in job control.
1012 * Increment eligibility counts before decrementing, otherwise we
1013 * could reach 0 spuriously during the first call.
1014 */
1015 fixjobc(p, pgrp, 1);
1016 fixjobc(p, p->p_pgrp, 0);
1017
1018 /* Interlock with ttread(). */
1019 mutex_spin_enter(&tty_lock);
1020
1021 /* Move process to requested group. */
1022 LIST_REMOVE(p, p_pglist);
1023 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1024 /* defer delete until we've dumped the lock */
1025 pg_id = p->p_pgrp->pg_id;
1026 p->p_pgrp = pgrp;
1027 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1028
1029 /* Done with the swap; we can release the tty mutex. */
1030 mutex_spin_exit(&tty_lock);
1031
1032 done:
1033 if (pg_id != NO_PGID) {
1034 /* Releases proc_lock. */
1035 pg_delete(pg_id);
1036 } else {
1037 mutex_exit(proc_lock);
1038 }
1039 if (sess != NULL)
1040 kmem_free(sess, sizeof(*sess));
1041 if (new_pgrp != NULL)
1042 kmem_free(new_pgrp, sizeof(*new_pgrp));
1043 #ifdef DEBUG_PGRP
1044 if (__predict_false(rval))
1045 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1046 pid, pgid, mksess, curp->p_pid, rval);
1047 #endif
1048 return rval;
1049 }
1050
1051 /*
1052 * proc_leavepgrp: remove a process from its process group.
1053 * => must be called with the proc_lock held, which will be released;
1054 */
1055 void
1056 proc_leavepgrp(struct proc *p)
1057 {
1058 struct pgrp *pgrp;
1059
1060 KASSERT(mutex_owned(proc_lock));
1061
1062 /* Interlock with ttread() */
1063 mutex_spin_enter(&tty_lock);
1064 pgrp = p->p_pgrp;
1065 LIST_REMOVE(p, p_pglist);
1066 p->p_pgrp = NULL;
1067 mutex_spin_exit(&tty_lock);
1068
1069 if (LIST_EMPTY(&pgrp->pg_members)) {
1070 /* Releases proc_lock. */
1071 pg_delete(pgrp->pg_id);
1072 } else {
1073 mutex_exit(proc_lock);
1074 }
1075 }
1076
1077 /*
1078 * pg_remove: remove a process group from the table.
1079 * => must be called with the proc_lock held;
1080 * => returns process group to free;
1081 */
1082 static struct pgrp *
1083 pg_remove(pid_t pg_id)
1084 {
1085 struct pgrp *pgrp;
1086 struct pid_table *pt;
1087
1088 KASSERT(mutex_owned(proc_lock));
1089
1090 pt = &pid_table[pg_id & pid_tbl_mask];
1091 pgrp = pt->pt_pgrp;
1092
1093 KASSERT(pgrp != NULL);
1094 KASSERT(pgrp->pg_id == pg_id);
1095 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1096
1097 pt->pt_pgrp = NULL;
1098
1099 if (!P_VALID(pt->pt_proc)) {
1100 /* Orphaned pgrp, put slot onto free list. */
1101 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
1102 pg_id &= pid_tbl_mask;
1103 pt = &pid_table[last_free_pt];
1104 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
1105 KASSERT(pt->pt_pid == 0);
1106 last_free_pt = pg_id;
1107 pid_alloc_cnt--;
1108 }
1109 return pgrp;
1110 }
1111
1112 /*
1113 * pg_delete: delete and free a process group.
1114 * => must be called with the proc_lock held, which will be released.
1115 */
1116 static void
1117 pg_delete(pid_t pg_id)
1118 {
1119 struct pgrp *pg;
1120 struct tty *ttyp;
1121 struct session *ss;
1122
1123 KASSERT(mutex_owned(proc_lock));
1124
1125 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1126 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1127 mutex_exit(proc_lock);
1128 return;
1129 }
1130
1131 ss = pg->pg_session;
1132
1133 /* Remove reference (if any) from tty to this process group */
1134 mutex_spin_enter(&tty_lock);
1135 ttyp = ss->s_ttyp;
1136 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1137 ttyp->t_pgrp = NULL;
1138 KASSERT(ttyp->t_session == ss);
1139 }
1140 mutex_spin_exit(&tty_lock);
1141
1142 /*
1143 * The leading process group in a session is freed by proc_sessrele(),
1144 * if last reference. Note: proc_sessrele() releases proc_lock.
1145 */
1146 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1147 proc_sessrele(ss);
1148
1149 if (pg != NULL) {
1150 /* Free it, if was not done by proc_sessrele(). */
1151 kmem_free(pg, sizeof(struct pgrp));
1152 }
1153 }
1154
1155 /*
1156 * Adjust pgrp jobc counters when specified process changes process group.
1157 * We count the number of processes in each process group that "qualify"
1158 * the group for terminal job control (those with a parent in a different
1159 * process group of the same session). If that count reaches zero, the
1160 * process group becomes orphaned. Check both the specified process'
1161 * process group and that of its children.
1162 * entering == 0 => p is leaving specified group.
1163 * entering == 1 => p is entering specified group.
1164 *
1165 * Call with proc_lock held.
1166 */
1167 void
1168 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1169 {
1170 struct pgrp *hispgrp;
1171 struct session *mysession = pgrp->pg_session;
1172 struct proc *child;
1173
1174 KASSERT(mutex_owned(proc_lock));
1175
1176 /*
1177 * Check p's parent to see whether p qualifies its own process
1178 * group; if so, adjust count for p's process group.
1179 */
1180 hispgrp = p->p_pptr->p_pgrp;
1181 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1182 if (entering) {
1183 pgrp->pg_jobc++;
1184 p->p_lflag &= ~PL_ORPHANPG;
1185 } else {
1186 KASSERT(pgrp->pg_jobc > 0);
1187 if (--pgrp->pg_jobc == 0)
1188 orphanpg(pgrp);
1189 }
1190 }
1191
1192 /*
1193 * Check this process' children to see whether they qualify
1194 * their process groups; if so, adjust counts for children's
1195 * process groups.
1196 */
1197 LIST_FOREACH(child, &p->p_children, p_sibling) {
1198 hispgrp = child->p_pgrp;
1199 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1200 !P_ZOMBIE(child)) {
1201 if (entering) {
1202 child->p_lflag &= ~PL_ORPHANPG;
1203 hispgrp->pg_jobc++;
1204 } else {
1205 KASSERT(hispgrp->pg_jobc > 0);
1206 if (--hispgrp->pg_jobc == 0)
1207 orphanpg(hispgrp);
1208 }
1209 }
1210 }
1211 }
1212
1213 /*
1214 * A process group has become orphaned;
1215 * if there are any stopped processes in the group,
1216 * hang-up all process in that group.
1217 *
1218 * Call with proc_lock held.
1219 */
1220 static void
1221 orphanpg(struct pgrp *pg)
1222 {
1223 struct proc *p;
1224
1225 KASSERT(mutex_owned(proc_lock));
1226
1227 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1228 if (p->p_stat == SSTOP) {
1229 p->p_lflag |= PL_ORPHANPG;
1230 psignal(p, SIGHUP);
1231 psignal(p, SIGCONT);
1232 }
1233 }
1234 }
1235
1236 #ifdef DDB
1237 #include <ddb/db_output.h>
1238 void pidtbl_dump(void);
1239 void
1240 pidtbl_dump(void)
1241 {
1242 struct pid_table *pt;
1243 struct proc *p;
1244 struct pgrp *pgrp;
1245 int id;
1246
1247 db_printf("pid table %p size %x, next %x, last %x\n",
1248 pid_table, pid_tbl_mask+1,
1249 next_free_pt, last_free_pt);
1250 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1251 p = pt->pt_proc;
1252 if (!P_VALID(p) && !pt->pt_pgrp)
1253 continue;
1254 db_printf(" id %x: ", id);
1255 if (P_VALID(p))
1256 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1257 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1258 else
1259 db_printf("next %x use %x\n",
1260 P_NEXT(p) & pid_tbl_mask,
1261 P_NEXT(p) & ~pid_tbl_mask);
1262 if ((pgrp = pt->pt_pgrp)) {
1263 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1264 pgrp->pg_session, pgrp->pg_session->s_sid,
1265 pgrp->pg_session->s_count,
1266 pgrp->pg_session->s_login);
1267 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1268 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1269 LIST_FIRST(&pgrp->pg_members));
1270 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1271 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1272 p->p_pid, p, p->p_pgrp, p->p_comm);
1273 }
1274 }
1275 }
1276 }
1277 #endif /* DDB */
1278
1279 #ifdef KSTACK_CHECK_MAGIC
1280
1281 #define KSTACK_MAGIC 0xdeadbeaf
1282
1283 /* XXX should be per process basis? */
1284 static int kstackleftmin = KSTACK_SIZE;
1285 static int kstackleftthres = KSTACK_SIZE / 8;
1286
1287 void
1288 kstack_setup_magic(const struct lwp *l)
1289 {
1290 uint32_t *ip;
1291 uint32_t const *end;
1292
1293 KASSERT(l != NULL);
1294 KASSERT(l != &lwp0);
1295
1296 /*
1297 * fill all the stack with magic number
1298 * so that later modification on it can be detected.
1299 */
1300 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1301 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1302 for (; ip < end; ip++) {
1303 *ip = KSTACK_MAGIC;
1304 }
1305 }
1306
1307 void
1308 kstack_check_magic(const struct lwp *l)
1309 {
1310 uint32_t const *ip, *end;
1311 int stackleft;
1312
1313 KASSERT(l != NULL);
1314
1315 /* don't check proc0 */ /*XXX*/
1316 if (l == &lwp0)
1317 return;
1318
1319 #ifdef __MACHINE_STACK_GROWS_UP
1320 /* stack grows upwards (eg. hppa) */
1321 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1322 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1323 for (ip--; ip >= end; ip--)
1324 if (*ip != KSTACK_MAGIC)
1325 break;
1326
1327 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1328 #else /* __MACHINE_STACK_GROWS_UP */
1329 /* stack grows downwards (eg. i386) */
1330 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1331 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1332 for (; ip < end; ip++)
1333 if (*ip != KSTACK_MAGIC)
1334 break;
1335
1336 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1337 #endif /* __MACHINE_STACK_GROWS_UP */
1338
1339 if (kstackleftmin > stackleft) {
1340 kstackleftmin = stackleft;
1341 if (stackleft < kstackleftthres)
1342 printf("warning: kernel stack left %d bytes"
1343 "(pid %u:lid %u)\n", stackleft,
1344 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1345 }
1346
1347 if (stackleft <= 0) {
1348 panic("magic on the top of kernel stack changed for "
1349 "pid %u, lid %u: maybe kernel stack overflow",
1350 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1351 }
1352 }
1353 #endif /* KSTACK_CHECK_MAGIC */
1354
1355 int
1356 proclist_foreach_call(struct proclist *list,
1357 int (*callback)(struct proc *, void *arg), void *arg)
1358 {
1359 struct proc marker;
1360 struct proc *p;
1361 int ret = 0;
1362
1363 marker.p_flag = PK_MARKER;
1364 mutex_enter(proc_lock);
1365 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1366 if (p->p_flag & PK_MARKER) {
1367 p = LIST_NEXT(p, p_list);
1368 continue;
1369 }
1370 LIST_INSERT_AFTER(p, &marker, p_list);
1371 ret = (*callback)(p, arg);
1372 KASSERT(mutex_owned(proc_lock));
1373 p = LIST_NEXT(&marker, p_list);
1374 LIST_REMOVE(&marker, p_list);
1375 }
1376 mutex_exit(proc_lock);
1377
1378 return ret;
1379 }
1380
1381 int
1382 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1383 {
1384
1385 /* XXXCDC: how should locking work here? */
1386
1387 /* curproc exception is for coredump. */
1388
1389 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1390 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1391 return EFAULT;
1392 }
1393
1394 uvmspace_addref(p->p_vmspace);
1395 *vm = p->p_vmspace;
1396
1397 return 0;
1398 }
1399
1400 /*
1401 * Acquire a write lock on the process credential.
1402 */
1403 void
1404 proc_crmod_enter(void)
1405 {
1406 struct lwp *l = curlwp;
1407 struct proc *p = l->l_proc;
1408 kauth_cred_t oc;
1409
1410 /* Reset what needs to be reset in plimit. */
1411 if (p->p_limit->pl_corename != defcorename) {
1412 lim_setcorename(p, defcorename, 0);
1413 }
1414
1415 mutex_enter(p->p_lock);
1416
1417 /* Ensure the LWP cached credentials are up to date. */
1418 if ((oc = l->l_cred) != p->p_cred) {
1419 kauth_cred_hold(p->p_cred);
1420 l->l_cred = p->p_cred;
1421 kauth_cred_free(oc);
1422 }
1423 }
1424
1425 /*
1426 * Set in a new process credential, and drop the write lock. The credential
1427 * must have a reference already. Optionally, free a no-longer required
1428 * credential. The scheduler also needs to inspect p_cred, so we also
1429 * briefly acquire the sched state mutex.
1430 */
1431 void
1432 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1433 {
1434 struct lwp *l = curlwp, *l2;
1435 struct proc *p = l->l_proc;
1436 kauth_cred_t oc;
1437
1438 KASSERT(mutex_owned(p->p_lock));
1439
1440 /* Is there a new credential to set in? */
1441 if (scred != NULL) {
1442 p->p_cred = scred;
1443 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1444 if (l2 != l)
1445 l2->l_prflag |= LPR_CRMOD;
1446 }
1447
1448 /* Ensure the LWP cached credentials are up to date. */
1449 if ((oc = l->l_cred) != scred) {
1450 kauth_cred_hold(scred);
1451 l->l_cred = scred;
1452 }
1453 } else
1454 oc = NULL; /* XXXgcc */
1455
1456 if (sugid) {
1457 /*
1458 * Mark process as having changed credentials, stops
1459 * tracing etc.
1460 */
1461 p->p_flag |= PK_SUGID;
1462 }
1463
1464 mutex_exit(p->p_lock);
1465
1466 /* If there is a credential to be released, free it now. */
1467 if (fcred != NULL) {
1468 KASSERT(scred != NULL);
1469 kauth_cred_free(fcred);
1470 if (oc != scred)
1471 kauth_cred_free(oc);
1472 }
1473 }
1474
1475 /*
1476 * proc_specific_key_create --
1477 * Create a key for subsystem proc-specific data.
1478 */
1479 int
1480 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1481 {
1482
1483 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1484 }
1485
1486 /*
1487 * proc_specific_key_delete --
1488 * Delete a key for subsystem proc-specific data.
1489 */
1490 void
1491 proc_specific_key_delete(specificdata_key_t key)
1492 {
1493
1494 specificdata_key_delete(proc_specificdata_domain, key);
1495 }
1496
1497 /*
1498 * proc_initspecific --
1499 * Initialize a proc's specificdata container.
1500 */
1501 void
1502 proc_initspecific(struct proc *p)
1503 {
1504 int error __diagused;
1505
1506 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1507 KASSERT(error == 0);
1508 }
1509
1510 /*
1511 * proc_finispecific --
1512 * Finalize a proc's specificdata container.
1513 */
1514 void
1515 proc_finispecific(struct proc *p)
1516 {
1517
1518 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1519 }
1520
1521 /*
1522 * proc_getspecific --
1523 * Return proc-specific data corresponding to the specified key.
1524 */
1525 void *
1526 proc_getspecific(struct proc *p, specificdata_key_t key)
1527 {
1528
1529 return (specificdata_getspecific(proc_specificdata_domain,
1530 &p->p_specdataref, key));
1531 }
1532
1533 /*
1534 * proc_setspecific --
1535 * Set proc-specific data corresponding to the specified key.
1536 */
1537 void
1538 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1539 {
1540
1541 specificdata_setspecific(proc_specificdata_domain,
1542 &p->p_specdataref, key, data);
1543 }
1544
1545 int
1546 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1547 {
1548 int r = 0;
1549
1550 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1551 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1552 /*
1553 * suid proc of ours or proc not ours
1554 */
1555 r = EPERM;
1556 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1557 /*
1558 * sgid proc has sgid back to us temporarily
1559 */
1560 r = EPERM;
1561 } else {
1562 /*
1563 * our rgid must be in target's group list (ie,
1564 * sub-processes started by a sgid process)
1565 */
1566 int ismember = 0;
1567
1568 if (kauth_cred_ismember_gid(cred,
1569 kauth_cred_getgid(target), &ismember) != 0 ||
1570 !ismember)
1571 r = EPERM;
1572 }
1573
1574 return (r);
1575 }
1576
1577 /*
1578 * sysctl stuff
1579 */
1580
1581 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1582
1583 static const u_int sysctl_flagmap[] = {
1584 PK_ADVLOCK, P_ADVLOCK,
1585 PK_EXEC, P_EXEC,
1586 PK_NOCLDWAIT, P_NOCLDWAIT,
1587 PK_32, P_32,
1588 PK_CLDSIGIGN, P_CLDSIGIGN,
1589 PK_SUGID, P_SUGID,
1590 0
1591 };
1592
1593 static const u_int sysctl_sflagmap[] = {
1594 PS_NOCLDSTOP, P_NOCLDSTOP,
1595 PS_WEXIT, P_WEXIT,
1596 PS_STOPFORK, P_STOPFORK,
1597 PS_STOPEXEC, P_STOPEXEC,
1598 PS_STOPEXIT, P_STOPEXIT,
1599 0
1600 };
1601
1602 static const u_int sysctl_slflagmap[] = {
1603 PSL_TRACED, P_TRACED,
1604 PSL_CHTRACED, P_CHTRACED,
1605 PSL_SYSCALL, P_SYSCALL,
1606 0
1607 };
1608
1609 static const u_int sysctl_lflagmap[] = {
1610 PL_CONTROLT, P_CONTROLT,
1611 PL_PPWAIT, P_PPWAIT,
1612 0
1613 };
1614
1615 static const u_int sysctl_stflagmap[] = {
1616 PST_PROFIL, P_PROFIL,
1617 0
1618
1619 };
1620
1621 /* used by kern_lwp also */
1622 const u_int sysctl_lwpflagmap[] = {
1623 LW_SINTR, L_SINTR,
1624 LW_SYSTEM, L_SYSTEM,
1625 0
1626 };
1627
1628 /*
1629 * Find the most ``active'' lwp of a process and return it for ps display
1630 * purposes
1631 */
1632 static struct lwp *
1633 proc_active_lwp(struct proc *p)
1634 {
1635 static const int ostat[] = {
1636 0,
1637 2, /* LSIDL */
1638 6, /* LSRUN */
1639 5, /* LSSLEEP */
1640 4, /* LSSTOP */
1641 0, /* LSZOMB */
1642 1, /* LSDEAD */
1643 7, /* LSONPROC */
1644 3 /* LSSUSPENDED */
1645 };
1646
1647 struct lwp *l, *lp = NULL;
1648 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1649 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1650 if (lp == NULL ||
1651 ostat[l->l_stat] > ostat[lp->l_stat] ||
1652 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1653 l->l_cpticks > lp->l_cpticks)) {
1654 lp = l;
1655 continue;
1656 }
1657 }
1658 return lp;
1659 }
1660
1661 static int
1662 sysctl_doeproc(SYSCTLFN_ARGS)
1663 {
1664 union {
1665 struct kinfo_proc kproc;
1666 struct kinfo_proc2 kproc2;
1667 } *kbuf;
1668 struct proc *p, *next, *marker;
1669 char *where, *dp;
1670 int type, op, arg, error;
1671 u_int elem_size, kelem_size, elem_count;
1672 size_t buflen, needed;
1673 bool match, zombie, mmmbrains;
1674 const bool allowaddr = get_expose_address(curproc);
1675
1676 if (namelen == 1 && name[0] == CTL_QUERY)
1677 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1678
1679 dp = where = oldp;
1680 buflen = where != NULL ? *oldlenp : 0;
1681 error = 0;
1682 needed = 0;
1683 type = rnode->sysctl_num;
1684
1685 if (type == KERN_PROC) {
1686 if (namelen == 0)
1687 return EINVAL;
1688 switch (op = name[0]) {
1689 case KERN_PROC_ALL:
1690 if (namelen != 1)
1691 return EINVAL;
1692 arg = 0;
1693 break;
1694 default:
1695 if (namelen != 2)
1696 return EINVAL;
1697 arg = name[1];
1698 break;
1699 }
1700 elem_count = 0; /* Hush little compiler, don't you cry */
1701 kelem_size = elem_size = sizeof(kbuf->kproc);
1702 } else {
1703 if (namelen != 4)
1704 return EINVAL;
1705 op = name[0];
1706 arg = name[1];
1707 elem_size = name[2];
1708 elem_count = name[3];
1709 kelem_size = sizeof(kbuf->kproc2);
1710 }
1711
1712 sysctl_unlock();
1713
1714 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
1715 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
1716 marker->p_flag = PK_MARKER;
1717
1718 mutex_enter(proc_lock);
1719 /*
1720 * Start with zombies to prevent reporting processes twice, in case they
1721 * are dying and being moved from the list of alive processes to zombies.
1722 */
1723 mmmbrains = true;
1724 for (p = LIST_FIRST(&zombproc);; p = next) {
1725 if (p == NULL) {
1726 if (mmmbrains) {
1727 p = LIST_FIRST(&allproc);
1728 mmmbrains = false;
1729 }
1730 if (p == NULL)
1731 break;
1732 }
1733 next = LIST_NEXT(p, p_list);
1734 if ((p->p_flag & PK_MARKER) != 0)
1735 continue;
1736
1737 /*
1738 * Skip embryonic processes.
1739 */
1740 if (p->p_stat == SIDL)
1741 continue;
1742
1743 mutex_enter(p->p_lock);
1744 error = kauth_authorize_process(l->l_cred,
1745 KAUTH_PROCESS_CANSEE, p,
1746 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
1747 if (error != 0) {
1748 mutex_exit(p->p_lock);
1749 continue;
1750 }
1751
1752 /*
1753 * Hande all the operations in one switch on the cost of
1754 * algorithm complexity is on purpose. The win splitting this
1755 * function into several similar copies makes maintenance burden
1756 * burden, code grow and boost is neglible in practical systems.
1757 */
1758 switch (op) {
1759 case KERN_PROC_PID:
1760 match = (p->p_pid == (pid_t)arg);
1761 break;
1762
1763 case KERN_PROC_PGRP:
1764 match = (p->p_pgrp->pg_id == (pid_t)arg);
1765 break;
1766
1767 case KERN_PROC_SESSION:
1768 match = (p->p_session->s_sid == (pid_t)arg);
1769 break;
1770
1771 case KERN_PROC_TTY:
1772 match = true;
1773 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1774 if ((p->p_lflag & PL_CONTROLT) == 0 ||
1775 p->p_session->s_ttyp == NULL ||
1776 p->p_session->s_ttyvp != NULL) {
1777 match = false;
1778 }
1779 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
1780 p->p_session->s_ttyp == NULL) {
1781 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
1782 match = false;
1783 }
1784 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
1785 match = false;
1786 }
1787 break;
1788
1789 case KERN_PROC_UID:
1790 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
1791 break;
1792
1793 case KERN_PROC_RUID:
1794 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
1795 break;
1796
1797 case KERN_PROC_GID:
1798 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
1799 break;
1800
1801 case KERN_PROC_RGID:
1802 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
1803 break;
1804
1805 case KERN_PROC_ALL:
1806 match = true;
1807 /* allow everything */
1808 break;
1809
1810 default:
1811 error = EINVAL;
1812 mutex_exit(p->p_lock);
1813 goto cleanup;
1814 }
1815 if (!match) {
1816 mutex_exit(p->p_lock);
1817 continue;
1818 }
1819
1820 /*
1821 * Grab a hold on the process.
1822 */
1823 if (mmmbrains) {
1824 zombie = true;
1825 } else {
1826 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
1827 }
1828 if (zombie) {
1829 LIST_INSERT_AFTER(p, marker, p_list);
1830 }
1831
1832 if (buflen >= elem_size &&
1833 (type == KERN_PROC || elem_count > 0)) {
1834 ruspace(p); /* Update process vm resource use */
1835
1836 if (type == KERN_PROC) {
1837 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
1838 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
1839 allowaddr);
1840 } else {
1841 fill_kproc2(p, &kbuf->kproc2, zombie,
1842 allowaddr);
1843 elem_count--;
1844 }
1845 mutex_exit(p->p_lock);
1846 mutex_exit(proc_lock);
1847 /*
1848 * Copy out elem_size, but not larger than kelem_size
1849 */
1850 error = sysctl_copyout(l, kbuf, dp,
1851 uimin(kelem_size, elem_size));
1852 mutex_enter(proc_lock);
1853 if (error) {
1854 goto bah;
1855 }
1856 dp += elem_size;
1857 buflen -= elem_size;
1858 } else {
1859 mutex_exit(p->p_lock);
1860 }
1861 needed += elem_size;
1862
1863 /*
1864 * Release reference to process.
1865 */
1866 if (zombie) {
1867 next = LIST_NEXT(marker, p_list);
1868 LIST_REMOVE(marker, p_list);
1869 } else {
1870 rw_exit(&p->p_reflock);
1871 next = LIST_NEXT(p, p_list);
1872 }
1873
1874 /*
1875 * Short-circuit break quickly!
1876 */
1877 if (op == KERN_PROC_PID)
1878 break;
1879 }
1880 mutex_exit(proc_lock);
1881
1882 if (where != NULL) {
1883 *oldlenp = dp - where;
1884 if (needed > *oldlenp) {
1885 error = ENOMEM;
1886 goto out;
1887 }
1888 } else {
1889 needed += KERN_PROCSLOP;
1890 *oldlenp = needed;
1891 }
1892 kmem_free(kbuf, sizeof(*kbuf));
1893 kmem_free(marker, sizeof(*marker));
1894 sysctl_relock();
1895 return 0;
1896 bah:
1897 if (zombie)
1898 LIST_REMOVE(marker, p_list);
1899 else
1900 rw_exit(&p->p_reflock);
1901 cleanup:
1902 mutex_exit(proc_lock);
1903 out:
1904 kmem_free(kbuf, sizeof(*kbuf));
1905 kmem_free(marker, sizeof(*marker));
1906 sysctl_relock();
1907 return error;
1908 }
1909
1910 int
1911 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
1912 {
1913 #if !defined(_RUMPKERNEL)
1914 int retval;
1915
1916 if (p->p_flag & PK_32) {
1917 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
1918 enosys(), retval);
1919 return retval;
1920 }
1921 #endif /* !defined(_RUMPKERNEL) */
1922
1923 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
1924 }
1925
1926 static int
1927 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
1928 {
1929 void **cookie = cookie_;
1930 struct lwp *l = cookie[0];
1931 char *dst = cookie[1];
1932
1933 return sysctl_copyout(l, src, dst + off, len);
1934 }
1935
1936 /*
1937 * sysctl helper routine for kern.proc_args pseudo-subtree.
1938 */
1939 static int
1940 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1941 {
1942 struct ps_strings pss;
1943 struct proc *p;
1944 pid_t pid;
1945 int type, error;
1946 void *cookie[2];
1947
1948 if (namelen == 1 && name[0] == CTL_QUERY)
1949 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1950
1951 if (newp != NULL || namelen != 2)
1952 return (EINVAL);
1953 pid = name[0];
1954 type = name[1];
1955
1956 switch (type) {
1957 case KERN_PROC_PATHNAME:
1958 sysctl_unlock();
1959 error = fill_pathname(l, pid, oldp, oldlenp);
1960 sysctl_relock();
1961 return error;
1962
1963 case KERN_PROC_CWD:
1964 sysctl_unlock();
1965 error = fill_cwd(l, pid, oldp, oldlenp);
1966 sysctl_relock();
1967 return error;
1968
1969 case KERN_PROC_ARGV:
1970 case KERN_PROC_NARGV:
1971 case KERN_PROC_ENV:
1972 case KERN_PROC_NENV:
1973 /* ok */
1974 break;
1975 default:
1976 return (EINVAL);
1977 }
1978
1979 sysctl_unlock();
1980
1981 /* check pid */
1982 mutex_enter(proc_lock);
1983 if ((p = proc_find(pid)) == NULL) {
1984 error = EINVAL;
1985 goto out_locked;
1986 }
1987 mutex_enter(p->p_lock);
1988
1989 /* Check permission. */
1990 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1991 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1992 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
1993 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
1994 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
1995 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
1996 else
1997 error = EINVAL; /* XXXGCC */
1998 if (error) {
1999 mutex_exit(p->p_lock);
2000 goto out_locked;
2001 }
2002
2003 if (oldp == NULL) {
2004 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2005 *oldlenp = sizeof (int);
2006 else
2007 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2008 error = 0;
2009 mutex_exit(p->p_lock);
2010 goto out_locked;
2011 }
2012
2013 /*
2014 * Zombies don't have a stack, so we can't read their psstrings.
2015 * System processes also don't have a user stack.
2016 */
2017 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2018 error = EINVAL;
2019 mutex_exit(p->p_lock);
2020 goto out_locked;
2021 }
2022
2023 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2024 mutex_exit(p->p_lock);
2025 if (error) {
2026 goto out_locked;
2027 }
2028 mutex_exit(proc_lock);
2029
2030 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2031 int value;
2032 if ((error = copyin_psstrings(p, &pss)) == 0) {
2033 if (type == KERN_PROC_NARGV)
2034 value = pss.ps_nargvstr;
2035 else
2036 value = pss.ps_nenvstr;
2037 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2038 *oldlenp = sizeof(value);
2039 }
2040 } else {
2041 cookie[0] = l;
2042 cookie[1] = oldp;
2043 error = copy_procargs(p, type, oldlenp,
2044 copy_procargs_sysctl_cb, cookie);
2045 }
2046 rw_exit(&p->p_reflock);
2047 sysctl_relock();
2048 return error;
2049
2050 out_locked:
2051 mutex_exit(proc_lock);
2052 sysctl_relock();
2053 return error;
2054 }
2055
2056 int
2057 copy_procargs(struct proc *p, int oid, size_t *limit,
2058 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2059 {
2060 struct ps_strings pss;
2061 size_t len, i, loaded, entry_len;
2062 struct uio auio;
2063 struct iovec aiov;
2064 int error, argvlen;
2065 char *arg;
2066 char **argv;
2067 vaddr_t user_argv;
2068 struct vmspace *vmspace;
2069
2070 /*
2071 * Allocate a temporary buffer to hold the argument vector and
2072 * the arguments themselve.
2073 */
2074 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2075 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2076
2077 /*
2078 * Lock the process down in memory.
2079 */
2080 vmspace = p->p_vmspace;
2081 uvmspace_addref(vmspace);
2082
2083 /*
2084 * Read in the ps_strings structure.
2085 */
2086 if ((error = copyin_psstrings(p, &pss)) != 0)
2087 goto done;
2088
2089 /*
2090 * Now read the address of the argument vector.
2091 */
2092 switch (oid) {
2093 case KERN_PROC_ARGV:
2094 user_argv = (uintptr_t)pss.ps_argvstr;
2095 argvlen = pss.ps_nargvstr;
2096 break;
2097 case KERN_PROC_ENV:
2098 user_argv = (uintptr_t)pss.ps_envstr;
2099 argvlen = pss.ps_nenvstr;
2100 break;
2101 default:
2102 error = EINVAL;
2103 goto done;
2104 }
2105
2106 if (argvlen < 0) {
2107 error = EIO;
2108 goto done;
2109 }
2110
2111
2112 /*
2113 * Now copy each string.
2114 */
2115 len = 0; /* bytes written to user buffer */
2116 loaded = 0; /* bytes from argv already processed */
2117 i = 0; /* To make compiler happy */
2118 entry_len = PROC_PTRSZ(p);
2119
2120 for (; argvlen; --argvlen) {
2121 int finished = 0;
2122 vaddr_t base;
2123 size_t xlen;
2124 int j;
2125
2126 if (loaded == 0) {
2127 size_t rem = entry_len * argvlen;
2128 loaded = MIN(rem, PAGE_SIZE);
2129 error = copyin_vmspace(vmspace,
2130 (const void *)user_argv, argv, loaded);
2131 if (error)
2132 break;
2133 user_argv += loaded;
2134 i = 0;
2135 }
2136
2137 #if !defined(_RUMPKERNEL)
2138 if (p->p_flag & PK_32)
2139 MODULE_HOOK_CALL(kern_proc32_base_hook,
2140 (argv, i++), 0, base);
2141 else
2142 #endif /* !defined(_RUMPKERNEL) */
2143 base = (vaddr_t)argv[i++];
2144 loaded -= entry_len;
2145
2146 /*
2147 * The program has messed around with its arguments,
2148 * possibly deleting some, and replacing them with
2149 * NULL's. Treat this as the last argument and not
2150 * a failure.
2151 */
2152 if (base == 0)
2153 break;
2154
2155 while (!finished) {
2156 xlen = PAGE_SIZE - (base & PAGE_MASK);
2157
2158 aiov.iov_base = arg;
2159 aiov.iov_len = PAGE_SIZE;
2160 auio.uio_iov = &aiov;
2161 auio.uio_iovcnt = 1;
2162 auio.uio_offset = base;
2163 auio.uio_resid = xlen;
2164 auio.uio_rw = UIO_READ;
2165 UIO_SETUP_SYSSPACE(&auio);
2166 error = uvm_io(&vmspace->vm_map, &auio, 0);
2167 if (error)
2168 goto done;
2169
2170 /* Look for the end of the string */
2171 for (j = 0; j < xlen; j++) {
2172 if (arg[j] == '\0') {
2173 xlen = j + 1;
2174 finished = 1;
2175 break;
2176 }
2177 }
2178
2179 /* Check for user buffer overflow */
2180 if (len + xlen > *limit) {
2181 finished = 1;
2182 if (len > *limit)
2183 xlen = 0;
2184 else
2185 xlen = *limit - len;
2186 }
2187
2188 /* Copyout the page */
2189 error = (*cb)(cookie, arg, len, xlen);
2190 if (error)
2191 goto done;
2192
2193 len += xlen;
2194 base += xlen;
2195 }
2196 }
2197 *limit = len;
2198
2199 done:
2200 kmem_free(argv, PAGE_SIZE);
2201 kmem_free(arg, PAGE_SIZE);
2202 uvmspace_free(vmspace);
2203 return error;
2204 }
2205
2206 /*
2207 * Fill in a proc structure for the specified process.
2208 */
2209 static void
2210 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2211 {
2212 COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
2213 COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
2214 COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
2215 COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
2216 COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
2217 COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
2218 COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2219 COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
2220 COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
2221 COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
2222 COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
2223 COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
2224 COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
2225 COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
2226 COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
2227 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2228 COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
2229 p->p_exitsig = psrc->p_exitsig;
2230 p->p_flag = psrc->p_flag;
2231 p->p_sflag = psrc->p_sflag;
2232 p->p_slflag = psrc->p_slflag;
2233 p->p_lflag = psrc->p_lflag;
2234 p->p_stflag = psrc->p_stflag;
2235 p->p_stat = psrc->p_stat;
2236 p->p_trace_enabled = psrc->p_trace_enabled;
2237 p->p_pid = psrc->p_pid;
2238 COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
2239 COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
2240 COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
2241 COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
2242 COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
2243 COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
2244 p->p_nlwps = psrc->p_nlwps;
2245 p->p_nzlwps = psrc->p_nzlwps;
2246 p->p_nrlwps = psrc->p_nrlwps;
2247 p->p_nlwpwait = psrc->p_nlwpwait;
2248 p->p_ndlwps = psrc->p_ndlwps;
2249 p->p_nlwpid = psrc->p_nlwpid;
2250 p->p_nstopchild = psrc->p_nstopchild;
2251 p->p_waited = psrc->p_waited;
2252 COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2253 COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2254 COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
2255 p->p_estcpu = psrc->p_estcpu;
2256 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2257 p->p_forktime = psrc->p_forktime;
2258 p->p_pctcpu = psrc->p_pctcpu;
2259 COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
2260 COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
2261 p->p_rtime = psrc->p_rtime;
2262 p->p_uticks = psrc->p_uticks;
2263 p->p_sticks = psrc->p_sticks;
2264 p->p_iticks = psrc->p_iticks;
2265 p->p_xutime = psrc->p_xutime;
2266 p->p_xstime = psrc->p_xstime;
2267 p->p_traceflag = psrc->p_traceflag;
2268 COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
2269 COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
2270 COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
2271 COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
2272 COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
2273 COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
2274 COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2275 COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
2276 COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2277 p->p_ppid = psrc->p_ppid;
2278 p->p_oppid = psrc->p_oppid;
2279 COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
2280 COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
2281 p->p_nice = psrc->p_nice;
2282 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2283 COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
2284 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2285 p->p_pax = psrc->p_pax;
2286 p->p_xexit = psrc->p_xexit;
2287 p->p_xsig = psrc->p_xsig;
2288 p->p_acflag = psrc->p_acflag;
2289 COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
2290 p->p_stackbase = psrc->p_stackbase;
2291 COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
2292 }
2293
2294 /*
2295 * Fill in an eproc structure for the specified process.
2296 */
2297 void
2298 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2299 {
2300 struct tty *tp;
2301 struct lwp *l;
2302
2303 KASSERT(mutex_owned(proc_lock));
2304 KASSERT(mutex_owned(p->p_lock));
2305
2306 COND_SET_VALUE(ep->e_paddr, p, allowaddr);
2307 COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
2308 if (p->p_cred) {
2309 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2310 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2311 }
2312 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2313 struct vmspace *vm = p->p_vmspace;
2314
2315 ep->e_vm.vm_rssize = vm_resident_count(vm);
2316 ep->e_vm.vm_tsize = vm->vm_tsize;
2317 ep->e_vm.vm_dsize = vm->vm_dsize;
2318 ep->e_vm.vm_ssize = vm->vm_ssize;
2319 ep->e_vm.vm_map.size = vm->vm_map.size;
2320
2321 /* Pick the primary (first) LWP */
2322 l = proc_active_lwp(p);
2323 KASSERT(l != NULL);
2324 lwp_lock(l);
2325 if (l->l_wchan)
2326 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2327 lwp_unlock(l);
2328 }
2329 ep->e_ppid = p->p_ppid;
2330 if (p->p_pgrp && p->p_session) {
2331 ep->e_pgid = p->p_pgrp->pg_id;
2332 ep->e_jobc = p->p_pgrp->pg_jobc;
2333 ep->e_sid = p->p_session->s_sid;
2334 if ((p->p_lflag & PL_CONTROLT) &&
2335 (tp = p->p_session->s_ttyp)) {
2336 ep->e_tdev = tp->t_dev;
2337 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2338 COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
2339 } else
2340 ep->e_tdev = (uint32_t)NODEV;
2341 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2342 if (SESS_LEADER(p))
2343 ep->e_flag |= EPROC_SLEADER;
2344 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2345 }
2346 ep->e_xsize = ep->e_xrssize = 0;
2347 ep->e_xccount = ep->e_xswrss = 0;
2348 }
2349
2350 /*
2351 * Fill in a kinfo_proc2 structure for the specified process.
2352 */
2353 void
2354 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2355 {
2356 struct tty *tp;
2357 struct lwp *l, *l2;
2358 struct timeval ut, st, rt;
2359 sigset_t ss1, ss2;
2360 struct rusage ru;
2361 struct vmspace *vm;
2362
2363 KASSERT(mutex_owned(proc_lock));
2364 KASSERT(mutex_owned(p->p_lock));
2365
2366 sigemptyset(&ss1);
2367 sigemptyset(&ss2);
2368
2369 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2370 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2371 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2372 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2373 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2374 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2375 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2376 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2377 ki->p_tsess = 0; /* may be changed if controlling tty below */
2378 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2379 ki->p_eflag = 0;
2380 ki->p_exitsig = p->p_exitsig;
2381 ki->p_flag = L_INMEM; /* Process never swapped out */
2382 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2383 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2384 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2385 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2386 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2387 ki->p_pid = p->p_pid;
2388 ki->p_ppid = p->p_ppid;
2389 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2390 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2391 ki->p_gid = kauth_cred_getegid(p->p_cred);
2392 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2393 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2394 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2395 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2396 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2397 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2398 UIO_SYSSPACE);
2399
2400 ki->p_uticks = p->p_uticks;
2401 ki->p_sticks = p->p_sticks;
2402 ki->p_iticks = p->p_iticks;
2403 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2404 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2405 ki->p_traceflag = p->p_traceflag;
2406
2407 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2408 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2409
2410 ki->p_cpticks = 0;
2411 ki->p_pctcpu = p->p_pctcpu;
2412 ki->p_estcpu = 0;
2413 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2414 ki->p_realstat = p->p_stat;
2415 ki->p_nice = p->p_nice;
2416 ki->p_xstat = P_WAITSTATUS(p);
2417 ki->p_acflag = p->p_acflag;
2418
2419 strncpy(ki->p_comm, p->p_comm,
2420 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2421 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2422
2423 ki->p_nlwps = p->p_nlwps;
2424 ki->p_realflag = ki->p_flag;
2425
2426 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2427 vm = p->p_vmspace;
2428 ki->p_vm_rssize = vm_resident_count(vm);
2429 ki->p_vm_tsize = vm->vm_tsize;
2430 ki->p_vm_dsize = vm->vm_dsize;
2431 ki->p_vm_ssize = vm->vm_ssize;
2432 ki->p_vm_vsize = atop(vm->vm_map.size);
2433 /*
2434 * Since the stack is initially mapped mostly with
2435 * PROT_NONE and grown as needed, adjust the "mapped size"
2436 * to skip the unused stack portion.
2437 */
2438 ki->p_vm_msize =
2439 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2440
2441 /* Pick the primary (first) LWP */
2442 l = proc_active_lwp(p);
2443 KASSERT(l != NULL);
2444 lwp_lock(l);
2445 ki->p_nrlwps = p->p_nrlwps;
2446 ki->p_forw = 0;
2447 ki->p_back = 0;
2448 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2449 ki->p_stat = l->l_stat;
2450 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2451 ki->p_swtime = l->l_swtime;
2452 ki->p_slptime = l->l_slptime;
2453 if (l->l_stat == LSONPROC)
2454 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2455 else
2456 ki->p_schedflags = 0;
2457 ki->p_priority = lwp_eprio(l);
2458 ki->p_usrpri = l->l_priority;
2459 if (l->l_wchan)
2460 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2461 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2462 ki->p_cpuid = cpu_index(l->l_cpu);
2463 lwp_unlock(l);
2464 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2465 /* This is hardly correct, but... */
2466 sigplusset(&l->l_sigpend.sp_set, &ss1);
2467 sigplusset(&l->l_sigmask, &ss2);
2468 ki->p_cpticks += l->l_cpticks;
2469 ki->p_pctcpu += l->l_pctcpu;
2470 ki->p_estcpu += l->l_estcpu;
2471 }
2472 }
2473 sigplusset(&p->p_sigpend.sp_set, &ss1);
2474 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2475 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2476
2477 if (p->p_session != NULL) {
2478 ki->p_sid = p->p_session->s_sid;
2479 ki->p__pgid = p->p_pgrp->pg_id;
2480 if (p->p_session->s_ttyvp)
2481 ki->p_eflag |= EPROC_CTTY;
2482 if (SESS_LEADER(p))
2483 ki->p_eflag |= EPROC_SLEADER;
2484 strncpy(ki->p_login, p->p_session->s_login,
2485 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2486 ki->p_jobc = p->p_pgrp->pg_jobc;
2487 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2488 ki->p_tdev = tp->t_dev;
2489 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2490 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2491 allowaddr);
2492 } else {
2493 ki->p_tdev = (int32_t)NODEV;
2494 }
2495 }
2496
2497 if (!P_ZOMBIE(p) && !zombie) {
2498 ki->p_uvalid = 1;
2499 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2500 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2501
2502 calcru(p, &ut, &st, NULL, &rt);
2503 ki->p_rtime_sec = rt.tv_sec;
2504 ki->p_rtime_usec = rt.tv_usec;
2505 ki->p_uutime_sec = ut.tv_sec;
2506 ki->p_uutime_usec = ut.tv_usec;
2507 ki->p_ustime_sec = st.tv_sec;
2508 ki->p_ustime_usec = st.tv_usec;
2509
2510 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2511 ki->p_uru_nvcsw = 0;
2512 ki->p_uru_nivcsw = 0;
2513 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2514 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2515 ki->p_uru_nivcsw += l2->l_nivcsw;
2516 ruadd(&ru, &l2->l_ru);
2517 }
2518 ki->p_uru_maxrss = ru.ru_maxrss;
2519 ki->p_uru_ixrss = ru.ru_ixrss;
2520 ki->p_uru_idrss = ru.ru_idrss;
2521 ki->p_uru_isrss = ru.ru_isrss;
2522 ki->p_uru_minflt = ru.ru_minflt;
2523 ki->p_uru_majflt = ru.ru_majflt;
2524 ki->p_uru_nswap = ru.ru_nswap;
2525 ki->p_uru_inblock = ru.ru_inblock;
2526 ki->p_uru_oublock = ru.ru_oublock;
2527 ki->p_uru_msgsnd = ru.ru_msgsnd;
2528 ki->p_uru_msgrcv = ru.ru_msgrcv;
2529 ki->p_uru_nsignals = ru.ru_nsignals;
2530
2531 timeradd(&p->p_stats->p_cru.ru_utime,
2532 &p->p_stats->p_cru.ru_stime, &ut);
2533 ki->p_uctime_sec = ut.tv_sec;
2534 ki->p_uctime_usec = ut.tv_usec;
2535 }
2536 }
2537
2538
2539 int
2540 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2541 {
2542 int error;
2543
2544 mutex_enter(proc_lock);
2545 if (pid == -1)
2546 *p = l->l_proc;
2547 else
2548 *p = proc_find(pid);
2549
2550 if (*p == NULL) {
2551 if (pid != -1)
2552 mutex_exit(proc_lock);
2553 return ESRCH;
2554 }
2555 if (pid != -1)
2556 mutex_enter((*p)->p_lock);
2557 mutex_exit(proc_lock);
2558
2559 error = kauth_authorize_process(l->l_cred,
2560 KAUTH_PROCESS_CANSEE, *p,
2561 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2562 if (error) {
2563 if (pid != -1)
2564 mutex_exit((*p)->p_lock);
2565 }
2566 return error;
2567 }
2568
2569 static int
2570 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2571 {
2572 int error;
2573 struct proc *p;
2574
2575 if ((error = proc_find_locked(l, &p, pid)) != 0)
2576 return error;
2577
2578 if (p->p_path == NULL) {
2579 if (pid != -1)
2580 mutex_exit(p->p_lock);
2581 return ENOENT;
2582 }
2583
2584 size_t len = strlen(p->p_path) + 1;
2585 if (oldp != NULL) {
2586 size_t copylen = uimin(len, *oldlenp);
2587 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2588 if (error == 0 && *oldlenp < len)
2589 error = ENOSPC;
2590 }
2591 *oldlenp = len;
2592 if (pid != -1)
2593 mutex_exit(p->p_lock);
2594 return error;
2595 }
2596
2597 static int
2598 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2599 {
2600 int error;
2601 struct proc *p;
2602 char *path;
2603 char *bp, *bend;
2604 const struct cwdinfo *cwdi;
2605 struct vnode *vp;
2606 size_t len, lenused;
2607
2608 if ((error = proc_find_locked(l, &p, pid)) != 0)
2609 return error;
2610
2611 len = MAXPATHLEN * 4;
2612
2613 path = kmem_alloc(len, KM_SLEEP);
2614
2615 bp = &path[len];
2616 bend = bp;
2617 *(--bp) = '\0';
2618
2619 cwdi = cwdlock(p);
2620 vp = cwdi->cwdi_cdir;
2621 vref(vp);
2622 cwdunlock(p);
2623 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
2624 vrele(vp);
2625
2626 if (error)
2627 goto out;
2628
2629 lenused = bend - bp;
2630
2631 if (oldp != NULL) {
2632 size_t copylen = uimin(lenused, *oldlenp);
2633 error = sysctl_copyout(l, bp, oldp, copylen);
2634 if (error == 0 && *oldlenp < lenused)
2635 error = ENOSPC;
2636 }
2637 *oldlenp = lenused;
2638 out:
2639 if (pid != -1)
2640 mutex_exit(p->p_lock);
2641 kmem_free(path, len);
2642 return error;
2643 }
2644
2645 int
2646 proc_getauxv(struct proc *p, void **buf, size_t *len)
2647 {
2648 struct ps_strings pss;
2649 int error;
2650 void *uauxv, *kauxv;
2651 size_t size;
2652
2653 if ((error = copyin_psstrings(p, &pss)) != 0)
2654 return error;
2655 if (pss.ps_envstr == NULL)
2656 return EIO;
2657
2658 size = p->p_execsw->es_arglen;
2659 if (size == 0)
2660 return EIO;
2661
2662 size_t ptrsz = PROC_PTRSZ(p);
2663 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
2664
2665 kauxv = kmem_alloc(size, KM_SLEEP);
2666
2667 error = copyin_proc(p, uauxv, kauxv, size);
2668 if (error) {
2669 kmem_free(kauxv, size);
2670 return error;
2671 }
2672
2673 *buf = kauxv;
2674 *len = size;
2675
2676 return 0;
2677 }
2678
2679
2680 static int
2681 sysctl_security_expose_address(SYSCTLFN_ARGS)
2682 {
2683 int expose_address, error;
2684 struct sysctlnode node;
2685
2686 node = *rnode;
2687 node.sysctl_data = &expose_address;
2688 expose_address = *(int *)rnode->sysctl_data;
2689 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2690 if (error || newp == NULL)
2691 return error;
2692
2693 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
2694 0, NULL, NULL, NULL))
2695 return EPERM;
2696
2697 switch (expose_address) {
2698 case 0:
2699 case 1:
2700 case 2:
2701 break;
2702 default:
2703 return EINVAL;
2704 }
2705
2706 *(int *)rnode->sysctl_data = expose_address;
2707
2708 return 0;
2709 }
2710
2711 bool
2712 get_expose_address(struct proc *p)
2713 {
2714 /* allow only if sysctl variable is set or privileged */
2715 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
2716 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
2717 }
2718