Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.225
      1 /*	$NetBSD: kern_proc.c,v 1.225 2019/01/27 02:08:43 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.225 2019/01/27 02:08:43 pgoyette Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 
    110 #include <uvm/uvm_extern.h>
    111 #include <uvm/uvm.h>
    112 
    113 /*
    114  * Process lists.
    115  */
    116 
    117 struct proclist		allproc		__cacheline_aligned;
    118 struct proclist		zombproc	__cacheline_aligned;
    119 
    120 kmutex_t *		proc_lock	__cacheline_aligned;
    121 
    122 /*
    123  * pid to proc lookup is done by indexing the pid_table array.
    124  * Since pid numbers are only allocated when an empty slot
    125  * has been found, there is no need to search any lists ever.
    126  * (an orphaned pgrp will lock the slot, a session will lock
    127  * the pgrp with the same number.)
    128  * If the table is too small it is reallocated with twice the
    129  * previous size and the entries 'unzipped' into the two halves.
    130  * A linked list of free entries is passed through the pt_proc
    131  * field of 'free' items - set odd to be an invalid ptr.
    132  */
    133 
    134 struct pid_table {
    135 	struct proc	*pt_proc;
    136 	struct pgrp	*pt_pgrp;
    137 	pid_t		pt_pid;
    138 };
    139 #if 1	/* strongly typed cast - should be a noop */
    140 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    141 #else
    142 #define p2u(p) ((uint)p)
    143 #endif
    144 #define P_VALID(p) (!(p2u(p) & 1))
    145 #define P_NEXT(p) (p2u(p) >> 1)
    146 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    147 
    148 /*
    149  * Table of process IDs (PIDs).
    150  */
    151 static struct pid_table *pid_table	__read_mostly;
    152 
    153 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    154 
    155 /* Table mask, threshold for growing and number of allocated PIDs. */
    156 static u_int		pid_tbl_mask	__read_mostly;
    157 static u_int		pid_alloc_lim	__read_mostly;
    158 static u_int		pid_alloc_cnt	__cacheline_aligned;
    159 
    160 /* Next free, last free and maximum PIDs. */
    161 static u_int		next_free_pt	__cacheline_aligned;
    162 static u_int		last_free_pt	__cacheline_aligned;
    163 static pid_t		pid_max		__read_mostly;
    164 
    165 /* Components of the first process -- never freed. */
    166 
    167 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    168 
    169 struct session session0 = {
    170 	.s_count = 1,
    171 	.s_sid = 0,
    172 };
    173 struct pgrp pgrp0 = {
    174 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    175 	.pg_session = &session0,
    176 };
    177 filedesc_t filedesc0;
    178 struct cwdinfo cwdi0 = {
    179 	.cwdi_cmask = CMASK,
    180 	.cwdi_refcnt = 1,
    181 };
    182 struct plimit limit0;
    183 struct pstats pstat0;
    184 struct vmspace vmspace0;
    185 struct sigacts sigacts0;
    186 struct proc proc0 = {
    187 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    188 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    189 	.p_nlwps = 1,
    190 	.p_nrlwps = 1,
    191 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
    192 	.p_pgrp = &pgrp0,
    193 	.p_comm = "system",
    194 	/*
    195 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    196 	 * when they exit.  init(8) can easily wait them out for us.
    197 	 */
    198 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    199 	.p_stat = SACTIVE,
    200 	.p_nice = NZERO,
    201 	.p_emul = &emul_netbsd,
    202 	.p_cwdi = &cwdi0,
    203 	.p_limit = &limit0,
    204 	.p_fd = &filedesc0,
    205 	.p_vmspace = &vmspace0,
    206 	.p_stats = &pstat0,
    207 	.p_sigacts = &sigacts0,
    208 #ifdef PROC0_MD_INITIALIZERS
    209 	PROC0_MD_INITIALIZERS
    210 #endif
    211 };
    212 kauth_cred_t cred0;
    213 
    214 static const int	nofile	= NOFILE;
    215 static const int	maxuprc	= MAXUPRC;
    216 
    217 static int sysctl_doeproc(SYSCTLFN_PROTO);
    218 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    219 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    220 
    221 #ifdef KASLR
    222 static int kern_expose_address = 0;
    223 #else
    224 static int kern_expose_address = 1;
    225 #endif
    226 /*
    227  * The process list descriptors, used during pid allocation and
    228  * by sysctl.  No locking on this data structure is needed since
    229  * it is completely static.
    230  */
    231 const struct proclist_desc proclists[] = {
    232 	{ &allproc	},
    233 	{ &zombproc	},
    234 	{ NULL		},
    235 };
    236 
    237 static struct pgrp *	pg_remove(pid_t);
    238 static void		pg_delete(pid_t);
    239 static void		orphanpg(struct pgrp *);
    240 
    241 static specificdata_domain_t proc_specificdata_domain;
    242 
    243 static pool_cache_t proc_cache;
    244 
    245 static kauth_listener_t proc_listener;
    246 
    247 static void fill_proc(const struct proc *, struct proc *, bool);
    248 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    249 
    250 static int
    251 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    252     void *arg0, void *arg1, void *arg2, void *arg3)
    253 {
    254 	struct proc *p;
    255 	int result;
    256 
    257 	result = KAUTH_RESULT_DEFER;
    258 	p = arg0;
    259 
    260 	switch (action) {
    261 	case KAUTH_PROCESS_CANSEE: {
    262 		enum kauth_process_req req;
    263 
    264 		req = (enum kauth_process_req)arg1;
    265 
    266 		switch (req) {
    267 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    268 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    269 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    270 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    271 			result = KAUTH_RESULT_ALLOW;
    272 			break;
    273 
    274 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    275 			if (kauth_cred_getuid(cred) !=
    276 			    kauth_cred_getuid(p->p_cred) ||
    277 			    kauth_cred_getuid(cred) !=
    278 			    kauth_cred_getsvuid(p->p_cred))
    279 				break;
    280 
    281 			result = KAUTH_RESULT_ALLOW;
    282 
    283 			break;
    284 
    285 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    286 			if (!kern_expose_address)
    287 				break;
    288 
    289 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    290 				break;
    291 
    292 			result = KAUTH_RESULT_ALLOW;
    293 
    294 			break;
    295 
    296 		default:
    297 			break;
    298 		}
    299 
    300 		break;
    301 		}
    302 
    303 	case KAUTH_PROCESS_FORK: {
    304 		int lnprocs = (int)(unsigned long)arg2;
    305 
    306 		/*
    307 		 * Don't allow a nonprivileged user to use the last few
    308 		 * processes. The variable lnprocs is the current number of
    309 		 * processes, maxproc is the limit.
    310 		 */
    311 		if (__predict_false((lnprocs >= maxproc - 5)))
    312 			break;
    313 
    314 		result = KAUTH_RESULT_ALLOW;
    315 
    316 		break;
    317 		}
    318 
    319 	case KAUTH_PROCESS_CORENAME:
    320 	case KAUTH_PROCESS_STOPFLAG:
    321 		if (proc_uidmatch(cred, p->p_cred) == 0)
    322 			result = KAUTH_RESULT_ALLOW;
    323 
    324 		break;
    325 
    326 	default:
    327 		break;
    328 	}
    329 
    330 	return result;
    331 }
    332 
    333 static int
    334 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    335 {
    336 	memset(obj, 0, sizeof(struct proc));
    337 	return 0;
    338 }
    339 
    340 /*
    341  * Initialize global process hashing structures.
    342  */
    343 void
    344 procinit(void)
    345 {
    346 	const struct proclist_desc *pd;
    347 	u_int i;
    348 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    349 
    350 	for (pd = proclists; pd->pd_list != NULL; pd++)
    351 		LIST_INIT(pd->pd_list);
    352 
    353 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    354 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    355 	    * sizeof(struct pid_table), KM_SLEEP);
    356 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    357 	pid_max = PID_MAX;
    358 
    359 	/* Set free list running through table...
    360 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    361 	for (i = 0; i <= pid_tbl_mask; i++) {
    362 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    363 		pid_table[i].pt_pgrp = 0;
    364 		pid_table[i].pt_pid = 0;
    365 	}
    366 	/* slot 0 is just grabbed */
    367 	next_free_pt = 1;
    368 	/* Need to fix last entry. */
    369 	last_free_pt = pid_tbl_mask;
    370 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    371 	/* point at which we grow table - to avoid reusing pids too often */
    372 	pid_alloc_lim = pid_tbl_mask - 1;
    373 #undef LINK_EMPTY
    374 
    375 	proc_specificdata_domain = specificdata_domain_create();
    376 	KASSERT(proc_specificdata_domain != NULL);
    377 
    378 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
    379 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    380 
    381 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    382 	    proc_listener_cb, NULL);
    383 }
    384 
    385 void
    386 procinit_sysctl(void)
    387 {
    388 	static struct sysctllog *clog;
    389 
    390 	sysctl_createv(&clog, 0, NULL, NULL,
    391 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    392 		       CTLTYPE_INT, "expose_address",
    393 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    394 		       sysctl_security_expose_address, 0,
    395 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    396 	sysctl_createv(&clog, 0, NULL, NULL,
    397 		       CTLFLAG_PERMANENT,
    398 		       CTLTYPE_NODE, "proc",
    399 		       SYSCTL_DESCR("System-wide process information"),
    400 		       sysctl_doeproc, 0, NULL, 0,
    401 		       CTL_KERN, KERN_PROC, CTL_EOL);
    402 	sysctl_createv(&clog, 0, NULL, NULL,
    403 		       CTLFLAG_PERMANENT,
    404 		       CTLTYPE_NODE, "proc2",
    405 		       SYSCTL_DESCR("Machine-independent process information"),
    406 		       sysctl_doeproc, 0, NULL, 0,
    407 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    408 	sysctl_createv(&clog, 0, NULL, NULL,
    409 		       CTLFLAG_PERMANENT,
    410 		       CTLTYPE_NODE, "proc_args",
    411 		       SYSCTL_DESCR("Process argument information"),
    412 		       sysctl_kern_proc_args, 0, NULL, 0,
    413 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    414 
    415 	/*
    416 	  "nodes" under these:
    417 
    418 	  KERN_PROC_ALL
    419 	  KERN_PROC_PID pid
    420 	  KERN_PROC_PGRP pgrp
    421 	  KERN_PROC_SESSION sess
    422 	  KERN_PROC_TTY tty
    423 	  KERN_PROC_UID uid
    424 	  KERN_PROC_RUID uid
    425 	  KERN_PROC_GID gid
    426 	  KERN_PROC_RGID gid
    427 
    428 	  all in all, probably not worth the effort...
    429 	*/
    430 }
    431 
    432 /*
    433  * Initialize process 0.
    434  */
    435 void
    436 proc0_init(void)
    437 {
    438 	struct proc *p;
    439 	struct pgrp *pg;
    440 	struct rlimit *rlim;
    441 	rlim_t lim;
    442 	int i;
    443 
    444 	p = &proc0;
    445 	pg = &pgrp0;
    446 
    447 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    448 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    449 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    450 
    451 	rw_init(&p->p_reflock);
    452 	cv_init(&p->p_waitcv, "wait");
    453 	cv_init(&p->p_lwpcv, "lwpwait");
    454 
    455 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    456 
    457 	pid_table[0].pt_proc = p;
    458 	LIST_INSERT_HEAD(&allproc, p, p_list);
    459 
    460 	pid_table[0].pt_pgrp = pg;
    461 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    462 
    463 #ifdef __HAVE_SYSCALL_INTERN
    464 	(*p->p_emul->e_syscall_intern)(p);
    465 #endif
    466 
    467 	/* Create credentials. */
    468 	cred0 = kauth_cred_alloc();
    469 	p->p_cred = cred0;
    470 
    471 	/* Create the CWD info. */
    472 	rw_init(&cwdi0.cwdi_lock);
    473 
    474 	/* Create the limits structures. */
    475 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    476 
    477 	rlim = limit0.pl_rlimit;
    478 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    479 		rlim[i].rlim_cur = RLIM_INFINITY;
    480 		rlim[i].rlim_max = RLIM_INFINITY;
    481 	}
    482 
    483 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    484 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    485 
    486 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    487 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    488 
    489 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    490 	rlim[RLIMIT_RSS].rlim_max = lim;
    491 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    492 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    493 
    494 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    495 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    496 
    497 	/* Note that default core name has zero length. */
    498 	limit0.pl_corename = defcorename;
    499 	limit0.pl_cnlen = 0;
    500 	limit0.pl_refcnt = 1;
    501 	limit0.pl_writeable = false;
    502 	limit0.pl_sv_limit = NULL;
    503 
    504 	/* Configure virtual memory system, set vm rlimits. */
    505 	uvm_init_limits(p);
    506 
    507 	/* Initialize file descriptor table for proc0. */
    508 	fd_init(&filedesc0);
    509 
    510 	/*
    511 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    512 	 * All kernel processes (which never have user space mappings)
    513 	 * share proc0's vmspace, and thus, the kernel pmap.
    514 	 */
    515 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    516 	    trunc_page(VM_MAXUSER_ADDRESS),
    517 #ifdef __USE_TOPDOWN_VM
    518 	    true
    519 #else
    520 	    false
    521 #endif
    522 	    );
    523 
    524 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    525 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    526 	siginit(p);
    527 
    528 	proc_initspecific(p);
    529 	kdtrace_proc_ctor(NULL, p);
    530 }
    531 
    532 /*
    533  * Session reference counting.
    534  */
    535 
    536 void
    537 proc_sesshold(struct session *ss)
    538 {
    539 
    540 	KASSERT(mutex_owned(proc_lock));
    541 	ss->s_count++;
    542 }
    543 
    544 void
    545 proc_sessrele(struct session *ss)
    546 {
    547 
    548 	KASSERT(mutex_owned(proc_lock));
    549 	/*
    550 	 * We keep the pgrp with the same id as the session in order to
    551 	 * stop a process being given the same pid.  Since the pgrp holds
    552 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    553 	 */
    554 	if (--ss->s_count == 0) {
    555 		struct pgrp *pg;
    556 
    557 		pg = pg_remove(ss->s_sid);
    558 		mutex_exit(proc_lock);
    559 
    560 		kmem_free(pg, sizeof(struct pgrp));
    561 		kmem_free(ss, sizeof(struct session));
    562 	} else {
    563 		mutex_exit(proc_lock);
    564 	}
    565 }
    566 
    567 /*
    568  * Check that the specified process group is in the session of the
    569  * specified process.
    570  * Treats -ve ids as process ids.
    571  * Used to validate TIOCSPGRP requests.
    572  */
    573 int
    574 pgid_in_session(struct proc *p, pid_t pg_id)
    575 {
    576 	struct pgrp *pgrp;
    577 	struct session *session;
    578 	int error;
    579 
    580 	mutex_enter(proc_lock);
    581 	if (pg_id < 0) {
    582 		struct proc *p1 = proc_find(-pg_id);
    583 		if (p1 == NULL) {
    584 			error = EINVAL;
    585 			goto fail;
    586 		}
    587 		pgrp = p1->p_pgrp;
    588 	} else {
    589 		pgrp = pgrp_find(pg_id);
    590 		if (pgrp == NULL) {
    591 			error = EINVAL;
    592 			goto fail;
    593 		}
    594 	}
    595 	session = pgrp->pg_session;
    596 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    597 fail:
    598 	mutex_exit(proc_lock);
    599 	return error;
    600 }
    601 
    602 /*
    603  * p_inferior: is p an inferior of q?
    604  */
    605 static inline bool
    606 p_inferior(struct proc *p, struct proc *q)
    607 {
    608 
    609 	KASSERT(mutex_owned(proc_lock));
    610 
    611 	for (; p != q; p = p->p_pptr)
    612 		if (p->p_pid == 0)
    613 			return false;
    614 	return true;
    615 }
    616 
    617 /*
    618  * proc_find: locate a process by the ID.
    619  *
    620  * => Must be called with proc_lock held.
    621  */
    622 proc_t *
    623 proc_find_raw(pid_t pid)
    624 {
    625 	struct pid_table *pt;
    626 	proc_t *p;
    627 
    628 	KASSERT(mutex_owned(proc_lock));
    629 	pt = &pid_table[pid & pid_tbl_mask];
    630 	p = pt->pt_proc;
    631 	if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) {
    632 		return NULL;
    633 	}
    634 	return p;
    635 }
    636 
    637 proc_t *
    638 proc_find(pid_t pid)
    639 {
    640 	proc_t *p;
    641 
    642 	p = proc_find_raw(pid);
    643 	if (__predict_false(p == NULL)) {
    644 		return NULL;
    645 	}
    646 
    647 	/*
    648 	 * Only allow live processes to be found by PID.
    649 	 * XXX: p_stat might change, since unlocked.
    650 	 */
    651 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    652 		return p;
    653 	}
    654 	return NULL;
    655 }
    656 
    657 /*
    658  * pgrp_find: locate a process group by the ID.
    659  *
    660  * => Must be called with proc_lock held.
    661  */
    662 struct pgrp *
    663 pgrp_find(pid_t pgid)
    664 {
    665 	struct pgrp *pg;
    666 
    667 	KASSERT(mutex_owned(proc_lock));
    668 
    669 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    670 
    671 	/*
    672 	 * Cannot look up a process group that only exists because the
    673 	 * session has not died yet (traditional).
    674 	 */
    675 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    676 		return NULL;
    677 	}
    678 	return pg;
    679 }
    680 
    681 static void
    682 expand_pid_table(void)
    683 {
    684 	size_t pt_size, tsz;
    685 	struct pid_table *n_pt, *new_pt;
    686 	struct proc *proc;
    687 	struct pgrp *pgrp;
    688 	pid_t pid, rpid;
    689 	u_int i;
    690 	uint new_pt_mask;
    691 
    692 	pt_size = pid_tbl_mask + 1;
    693 	tsz = pt_size * 2 * sizeof(struct pid_table);
    694 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    695 	new_pt_mask = pt_size * 2 - 1;
    696 
    697 	mutex_enter(proc_lock);
    698 	if (pt_size != pid_tbl_mask + 1) {
    699 		/* Another process beat us to it... */
    700 		mutex_exit(proc_lock);
    701 		kmem_free(new_pt, tsz);
    702 		return;
    703 	}
    704 
    705 	/*
    706 	 * Copy entries from old table into new one.
    707 	 * If 'pid' is 'odd' we need to place in the upper half,
    708 	 * even pid's to the lower half.
    709 	 * Free items stay in the low half so we don't have to
    710 	 * fixup the reference to them.
    711 	 * We stuff free items on the front of the freelist
    712 	 * because we can't write to unmodified entries.
    713 	 * Processing the table backwards maintains a semblance
    714 	 * of issuing pid numbers that increase with time.
    715 	 */
    716 	i = pt_size - 1;
    717 	n_pt = new_pt + i;
    718 	for (; ; i--, n_pt--) {
    719 		proc = pid_table[i].pt_proc;
    720 		pgrp = pid_table[i].pt_pgrp;
    721 		if (!P_VALID(proc)) {
    722 			/* Up 'use count' so that link is valid */
    723 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    724 			rpid = 0;
    725 			proc = P_FREE(pid);
    726 			if (pgrp)
    727 				pid = pgrp->pg_id;
    728 		} else {
    729 			pid = pid_table[i].pt_pid;
    730 			rpid = pid;
    731 		}
    732 
    733 		/* Save entry in appropriate half of table */
    734 		n_pt[pid & pt_size].pt_proc = proc;
    735 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    736 		n_pt[pid & pt_size].pt_pid = rpid;
    737 
    738 		/* Put other piece on start of free list */
    739 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    740 		n_pt[pid & pt_size].pt_proc =
    741 			P_FREE((pid & ~pt_size) | next_free_pt);
    742 		n_pt[pid & pt_size].pt_pgrp = 0;
    743 		n_pt[pid & pt_size].pt_pid = 0;
    744 
    745 		next_free_pt = i | (pid & pt_size);
    746 		if (i == 0)
    747 			break;
    748 	}
    749 
    750 	/* Save old table size and switch tables */
    751 	tsz = pt_size * sizeof(struct pid_table);
    752 	n_pt = pid_table;
    753 	pid_table = new_pt;
    754 	pid_tbl_mask = new_pt_mask;
    755 
    756 	/*
    757 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    758 	 * allocated pids we need it to be larger!
    759 	 */
    760 	if (pid_tbl_mask > PID_MAX) {
    761 		pid_max = pid_tbl_mask * 2 + 1;
    762 		pid_alloc_lim |= pid_alloc_lim << 1;
    763 	} else
    764 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    765 
    766 	mutex_exit(proc_lock);
    767 	kmem_free(n_pt, tsz);
    768 }
    769 
    770 struct proc *
    771 proc_alloc(void)
    772 {
    773 	struct proc *p;
    774 
    775 	p = pool_cache_get(proc_cache, PR_WAITOK);
    776 	p->p_stat = SIDL;			/* protect against others */
    777 	proc_initspecific(p);
    778 	kdtrace_proc_ctor(NULL, p);
    779 	p->p_pid = -1;
    780 	proc_alloc_pid(p);
    781 	return p;
    782 }
    783 
    784 /*
    785  * proc_alloc_pid: allocate PID and record the given proc 'p' so that
    786  * proc_find_raw() can find it by the PID.
    787  */
    788 
    789 pid_t
    790 proc_alloc_pid(struct proc *p)
    791 {
    792 	struct pid_table *pt;
    793 	pid_t pid;
    794 	int nxt;
    795 
    796 	for (;;expand_pid_table()) {
    797 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    798 			/* ensure pids cycle through 2000+ values */
    799 			continue;
    800 		mutex_enter(proc_lock);
    801 		pt = &pid_table[next_free_pt];
    802 #ifdef DIAGNOSTIC
    803 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    804 			panic("proc_alloc: slot busy");
    805 #endif
    806 		nxt = P_NEXT(pt->pt_proc);
    807 		if (nxt & pid_tbl_mask)
    808 			break;
    809 		/* Table full - expand (NB last entry not used....) */
    810 		mutex_exit(proc_lock);
    811 	}
    812 
    813 	/* pid is 'saved use count' + 'size' + entry */
    814 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    815 	if ((uint)pid > (uint)pid_max)
    816 		pid &= pid_tbl_mask;
    817 	next_free_pt = nxt & pid_tbl_mask;
    818 
    819 	/* Grab table slot */
    820 	pt->pt_proc = p;
    821 
    822 	KASSERT(pt->pt_pid == 0);
    823 	pt->pt_pid = pid;
    824 	if (p->p_pid == -1) {
    825 		p->p_pid = pid;
    826 	}
    827 	pid_alloc_cnt++;
    828 	mutex_exit(proc_lock);
    829 
    830 	return pid;
    831 }
    832 
    833 /*
    834  * Free a process id - called from proc_free (in kern_exit.c)
    835  *
    836  * Called with the proc_lock held.
    837  */
    838 void
    839 proc_free_pid(pid_t pid)
    840 {
    841 	struct pid_table *pt;
    842 
    843 	KASSERT(mutex_owned(proc_lock));
    844 
    845 	pt = &pid_table[pid & pid_tbl_mask];
    846 
    847 	/* save pid use count in slot */
    848 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    849 	KASSERT(pt->pt_pid == pid);
    850 	pt->pt_pid = 0;
    851 
    852 	if (pt->pt_pgrp == NULL) {
    853 		/* link last freed entry onto ours */
    854 		pid &= pid_tbl_mask;
    855 		pt = &pid_table[last_free_pt];
    856 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    857 		pt->pt_pid = 0;
    858 		last_free_pt = pid;
    859 		pid_alloc_cnt--;
    860 	}
    861 
    862 	atomic_dec_uint(&nprocs);
    863 }
    864 
    865 void
    866 proc_free_mem(struct proc *p)
    867 {
    868 
    869 	kdtrace_proc_dtor(NULL, p);
    870 	pool_cache_put(proc_cache, p);
    871 }
    872 
    873 /*
    874  * proc_enterpgrp: move p to a new or existing process group (and session).
    875  *
    876  * If we are creating a new pgrp, the pgid should equal
    877  * the calling process' pid.
    878  * If is only valid to enter a process group that is in the session
    879  * of the process.
    880  * Also mksess should only be set if we are creating a process group
    881  *
    882  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
    883  */
    884 int
    885 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
    886 {
    887 	struct pgrp *new_pgrp, *pgrp;
    888 	struct session *sess;
    889 	struct proc *p;
    890 	int rval;
    891 	pid_t pg_id = NO_PGID;
    892 
    893 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
    894 
    895 	/* Allocate data areas we might need before doing any validity checks */
    896 	mutex_enter(proc_lock);		/* Because pid_table might change */
    897 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    898 		mutex_exit(proc_lock);
    899 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
    900 		mutex_enter(proc_lock);
    901 	} else
    902 		new_pgrp = NULL;
    903 	rval = EPERM;	/* most common error (to save typing) */
    904 
    905 	/* Check pgrp exists or can be created */
    906 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    907 	if (pgrp != NULL && pgrp->pg_id != pgid)
    908 		goto done;
    909 
    910 	/* Can only set another process under restricted circumstances. */
    911 	if (pid != curp->p_pid) {
    912 		/* Must exist and be one of our children... */
    913 		p = proc_find(pid);
    914 		if (p == NULL || !p_inferior(p, curp)) {
    915 			rval = ESRCH;
    916 			goto done;
    917 		}
    918 		/* ... in the same session... */
    919 		if (sess != NULL || p->p_session != curp->p_session)
    920 			goto done;
    921 		/* ... existing pgid must be in same session ... */
    922 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    923 			goto done;
    924 		/* ... and not done an exec. */
    925 		if (p->p_flag & PK_EXEC) {
    926 			rval = EACCES;
    927 			goto done;
    928 		}
    929 	} else {
    930 		/* ... setsid() cannot re-enter a pgrp */
    931 		if (mksess && (curp->p_pgid == curp->p_pid ||
    932 		    pgrp_find(curp->p_pid)))
    933 			goto done;
    934 		p = curp;
    935 	}
    936 
    937 	/* Changing the process group/session of a session
    938 	   leader is definitely off limits. */
    939 	if (SESS_LEADER(p)) {
    940 		if (sess == NULL && p->p_pgrp == pgrp)
    941 			/* unless it's a definite noop */
    942 			rval = 0;
    943 		goto done;
    944 	}
    945 
    946 	/* Can only create a process group with id of process */
    947 	if (pgrp == NULL && pgid != pid)
    948 		goto done;
    949 
    950 	/* Can only create a session if creating pgrp */
    951 	if (sess != NULL && pgrp != NULL)
    952 		goto done;
    953 
    954 	/* Check we allocated memory for a pgrp... */
    955 	if (pgrp == NULL && new_pgrp == NULL)
    956 		goto done;
    957 
    958 	/* Don't attach to 'zombie' pgrp */
    959 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    960 		goto done;
    961 
    962 	/* Expect to succeed now */
    963 	rval = 0;
    964 
    965 	if (pgrp == p->p_pgrp)
    966 		/* nothing to do */
    967 		goto done;
    968 
    969 	/* Ok all setup, link up required structures */
    970 
    971 	if (pgrp == NULL) {
    972 		pgrp = new_pgrp;
    973 		new_pgrp = NULL;
    974 		if (sess != NULL) {
    975 			sess->s_sid = p->p_pid;
    976 			sess->s_leader = p;
    977 			sess->s_count = 1;
    978 			sess->s_ttyvp = NULL;
    979 			sess->s_ttyp = NULL;
    980 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    981 			memcpy(sess->s_login, p->p_session->s_login,
    982 			    sizeof(sess->s_login));
    983 			p->p_lflag &= ~PL_CONTROLT;
    984 		} else {
    985 			sess = p->p_pgrp->pg_session;
    986 			proc_sesshold(sess);
    987 		}
    988 		pgrp->pg_session = sess;
    989 		sess = NULL;
    990 
    991 		pgrp->pg_id = pgid;
    992 		LIST_INIT(&pgrp->pg_members);
    993 #ifdef DIAGNOSTIC
    994 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    995 			panic("enterpgrp: pgrp table slot in use");
    996 		if (__predict_false(mksess && p != curp))
    997 			panic("enterpgrp: mksession and p != curproc");
    998 #endif
    999 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1000 		pgrp->pg_jobc = 0;
   1001 	}
   1002 
   1003 	/*
   1004 	 * Adjust eligibility of affected pgrps to participate in job control.
   1005 	 * Increment eligibility counts before decrementing, otherwise we
   1006 	 * could reach 0 spuriously during the first call.
   1007 	 */
   1008 	fixjobc(p, pgrp, 1);
   1009 	fixjobc(p, p->p_pgrp, 0);
   1010 
   1011 	/* Interlock with ttread(). */
   1012 	mutex_spin_enter(&tty_lock);
   1013 
   1014 	/* Move process to requested group. */
   1015 	LIST_REMOVE(p, p_pglist);
   1016 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1017 		/* defer delete until we've dumped the lock */
   1018 		pg_id = p->p_pgrp->pg_id;
   1019 	p->p_pgrp = pgrp;
   1020 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1021 
   1022 	/* Done with the swap; we can release the tty mutex. */
   1023 	mutex_spin_exit(&tty_lock);
   1024 
   1025     done:
   1026 	if (pg_id != NO_PGID) {
   1027 		/* Releases proc_lock. */
   1028 		pg_delete(pg_id);
   1029 	} else {
   1030 		mutex_exit(proc_lock);
   1031 	}
   1032 	if (sess != NULL)
   1033 		kmem_free(sess, sizeof(*sess));
   1034 	if (new_pgrp != NULL)
   1035 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1036 #ifdef DEBUG_PGRP
   1037 	if (__predict_false(rval))
   1038 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1039 			pid, pgid, mksess, curp->p_pid, rval);
   1040 #endif
   1041 	return rval;
   1042 }
   1043 
   1044 /*
   1045  * proc_leavepgrp: remove a process from its process group.
   1046  *  => must be called with the proc_lock held, which will be released;
   1047  */
   1048 void
   1049 proc_leavepgrp(struct proc *p)
   1050 {
   1051 	struct pgrp *pgrp;
   1052 
   1053 	KASSERT(mutex_owned(proc_lock));
   1054 
   1055 	/* Interlock with ttread() */
   1056 	mutex_spin_enter(&tty_lock);
   1057 	pgrp = p->p_pgrp;
   1058 	LIST_REMOVE(p, p_pglist);
   1059 	p->p_pgrp = NULL;
   1060 	mutex_spin_exit(&tty_lock);
   1061 
   1062 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1063 		/* Releases proc_lock. */
   1064 		pg_delete(pgrp->pg_id);
   1065 	} else {
   1066 		mutex_exit(proc_lock);
   1067 	}
   1068 }
   1069 
   1070 /*
   1071  * pg_remove: remove a process group from the table.
   1072  *  => must be called with the proc_lock held;
   1073  *  => returns process group to free;
   1074  */
   1075 static struct pgrp *
   1076 pg_remove(pid_t pg_id)
   1077 {
   1078 	struct pgrp *pgrp;
   1079 	struct pid_table *pt;
   1080 
   1081 	KASSERT(mutex_owned(proc_lock));
   1082 
   1083 	pt = &pid_table[pg_id & pid_tbl_mask];
   1084 	pgrp = pt->pt_pgrp;
   1085 
   1086 	KASSERT(pgrp != NULL);
   1087 	KASSERT(pgrp->pg_id == pg_id);
   1088 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1089 
   1090 	pt->pt_pgrp = NULL;
   1091 
   1092 	if (!P_VALID(pt->pt_proc)) {
   1093 		/* Orphaned pgrp, put slot onto free list. */
   1094 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
   1095 		pg_id &= pid_tbl_mask;
   1096 		pt = &pid_table[last_free_pt];
   1097 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
   1098 		KASSERT(pt->pt_pid == 0);
   1099 		last_free_pt = pg_id;
   1100 		pid_alloc_cnt--;
   1101 	}
   1102 	return pgrp;
   1103 }
   1104 
   1105 /*
   1106  * pg_delete: delete and free a process group.
   1107  *  => must be called with the proc_lock held, which will be released.
   1108  */
   1109 static void
   1110 pg_delete(pid_t pg_id)
   1111 {
   1112 	struct pgrp *pg;
   1113 	struct tty *ttyp;
   1114 	struct session *ss;
   1115 
   1116 	KASSERT(mutex_owned(proc_lock));
   1117 
   1118 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1119 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1120 		mutex_exit(proc_lock);
   1121 		return;
   1122 	}
   1123 
   1124 	ss = pg->pg_session;
   1125 
   1126 	/* Remove reference (if any) from tty to this process group */
   1127 	mutex_spin_enter(&tty_lock);
   1128 	ttyp = ss->s_ttyp;
   1129 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1130 		ttyp->t_pgrp = NULL;
   1131 		KASSERT(ttyp->t_session == ss);
   1132 	}
   1133 	mutex_spin_exit(&tty_lock);
   1134 
   1135 	/*
   1136 	 * The leading process group in a session is freed by proc_sessrele(),
   1137 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
   1138 	 */
   1139 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1140 	proc_sessrele(ss);
   1141 
   1142 	if (pg != NULL) {
   1143 		/* Free it, if was not done by proc_sessrele(). */
   1144 		kmem_free(pg, sizeof(struct pgrp));
   1145 	}
   1146 }
   1147 
   1148 /*
   1149  * Adjust pgrp jobc counters when specified process changes process group.
   1150  * We count the number of processes in each process group that "qualify"
   1151  * the group for terminal job control (those with a parent in a different
   1152  * process group of the same session).  If that count reaches zero, the
   1153  * process group becomes orphaned.  Check both the specified process'
   1154  * process group and that of its children.
   1155  * entering == 0 => p is leaving specified group.
   1156  * entering == 1 => p is entering specified group.
   1157  *
   1158  * Call with proc_lock held.
   1159  */
   1160 void
   1161 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1162 {
   1163 	struct pgrp *hispgrp;
   1164 	struct session *mysession = pgrp->pg_session;
   1165 	struct proc *child;
   1166 
   1167 	KASSERT(mutex_owned(proc_lock));
   1168 
   1169 	/*
   1170 	 * Check p's parent to see whether p qualifies its own process
   1171 	 * group; if so, adjust count for p's process group.
   1172 	 */
   1173 	hispgrp = p->p_pptr->p_pgrp;
   1174 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1175 		if (entering) {
   1176 			pgrp->pg_jobc++;
   1177 			p->p_lflag &= ~PL_ORPHANPG;
   1178 		} else if (--pgrp->pg_jobc == 0)
   1179 			orphanpg(pgrp);
   1180 	}
   1181 
   1182 	/*
   1183 	 * Check this process' children to see whether they qualify
   1184 	 * their process groups; if so, adjust counts for children's
   1185 	 * process groups.
   1186 	 */
   1187 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1188 		hispgrp = child->p_pgrp;
   1189 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1190 		    !P_ZOMBIE(child)) {
   1191 			if (entering) {
   1192 				child->p_lflag &= ~PL_ORPHANPG;
   1193 				hispgrp->pg_jobc++;
   1194 			} else if (--hispgrp->pg_jobc == 0)
   1195 				orphanpg(hispgrp);
   1196 		}
   1197 	}
   1198 }
   1199 
   1200 /*
   1201  * A process group has become orphaned;
   1202  * if there are any stopped processes in the group,
   1203  * hang-up all process in that group.
   1204  *
   1205  * Call with proc_lock held.
   1206  */
   1207 static void
   1208 orphanpg(struct pgrp *pg)
   1209 {
   1210 	struct proc *p;
   1211 
   1212 	KASSERT(mutex_owned(proc_lock));
   1213 
   1214 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1215 		if (p->p_stat == SSTOP) {
   1216 			p->p_lflag |= PL_ORPHANPG;
   1217 			psignal(p, SIGHUP);
   1218 			psignal(p, SIGCONT);
   1219 		}
   1220 	}
   1221 }
   1222 
   1223 #ifdef DDB
   1224 #include <ddb/db_output.h>
   1225 void pidtbl_dump(void);
   1226 void
   1227 pidtbl_dump(void)
   1228 {
   1229 	struct pid_table *pt;
   1230 	struct proc *p;
   1231 	struct pgrp *pgrp;
   1232 	int id;
   1233 
   1234 	db_printf("pid table %p size %x, next %x, last %x\n",
   1235 		pid_table, pid_tbl_mask+1,
   1236 		next_free_pt, last_free_pt);
   1237 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1238 		p = pt->pt_proc;
   1239 		if (!P_VALID(p) && !pt->pt_pgrp)
   1240 			continue;
   1241 		db_printf("  id %x: ", id);
   1242 		if (P_VALID(p))
   1243 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1244 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1245 		else
   1246 			db_printf("next %x use %x\n",
   1247 				P_NEXT(p) & pid_tbl_mask,
   1248 				P_NEXT(p) & ~pid_tbl_mask);
   1249 		if ((pgrp = pt->pt_pgrp)) {
   1250 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1251 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1252 			    pgrp->pg_session->s_count,
   1253 			    pgrp->pg_session->s_login);
   1254 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1255 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1256 			    LIST_FIRST(&pgrp->pg_members));
   1257 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1258 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1259 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1260 			}
   1261 		}
   1262 	}
   1263 }
   1264 #endif /* DDB */
   1265 
   1266 #ifdef KSTACK_CHECK_MAGIC
   1267 
   1268 #define	KSTACK_MAGIC	0xdeadbeaf
   1269 
   1270 /* XXX should be per process basis? */
   1271 static int	kstackleftmin = KSTACK_SIZE;
   1272 static int	kstackleftthres = KSTACK_SIZE / 8;
   1273 
   1274 void
   1275 kstack_setup_magic(const struct lwp *l)
   1276 {
   1277 	uint32_t *ip;
   1278 	uint32_t const *end;
   1279 
   1280 	KASSERT(l != NULL);
   1281 	KASSERT(l != &lwp0);
   1282 
   1283 	/*
   1284 	 * fill all the stack with magic number
   1285 	 * so that later modification on it can be detected.
   1286 	 */
   1287 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1288 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1289 	for (; ip < end; ip++) {
   1290 		*ip = KSTACK_MAGIC;
   1291 	}
   1292 }
   1293 
   1294 void
   1295 kstack_check_magic(const struct lwp *l)
   1296 {
   1297 	uint32_t const *ip, *end;
   1298 	int stackleft;
   1299 
   1300 	KASSERT(l != NULL);
   1301 
   1302 	/* don't check proc0 */ /*XXX*/
   1303 	if (l == &lwp0)
   1304 		return;
   1305 
   1306 #ifdef __MACHINE_STACK_GROWS_UP
   1307 	/* stack grows upwards (eg. hppa) */
   1308 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1309 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1310 	for (ip--; ip >= end; ip--)
   1311 		if (*ip != KSTACK_MAGIC)
   1312 			break;
   1313 
   1314 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1315 #else /* __MACHINE_STACK_GROWS_UP */
   1316 	/* stack grows downwards (eg. i386) */
   1317 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1318 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1319 	for (; ip < end; ip++)
   1320 		if (*ip != KSTACK_MAGIC)
   1321 			break;
   1322 
   1323 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1324 #endif /* __MACHINE_STACK_GROWS_UP */
   1325 
   1326 	if (kstackleftmin > stackleft) {
   1327 		kstackleftmin = stackleft;
   1328 		if (stackleft < kstackleftthres)
   1329 			printf("warning: kernel stack left %d bytes"
   1330 			    "(pid %u:lid %u)\n", stackleft,
   1331 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1332 	}
   1333 
   1334 	if (stackleft <= 0) {
   1335 		panic("magic on the top of kernel stack changed for "
   1336 		    "pid %u, lid %u: maybe kernel stack overflow",
   1337 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1338 	}
   1339 }
   1340 #endif /* KSTACK_CHECK_MAGIC */
   1341 
   1342 int
   1343 proclist_foreach_call(struct proclist *list,
   1344     int (*callback)(struct proc *, void *arg), void *arg)
   1345 {
   1346 	struct proc marker;
   1347 	struct proc *p;
   1348 	int ret = 0;
   1349 
   1350 	marker.p_flag = PK_MARKER;
   1351 	mutex_enter(proc_lock);
   1352 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1353 		if (p->p_flag & PK_MARKER) {
   1354 			p = LIST_NEXT(p, p_list);
   1355 			continue;
   1356 		}
   1357 		LIST_INSERT_AFTER(p, &marker, p_list);
   1358 		ret = (*callback)(p, arg);
   1359 		KASSERT(mutex_owned(proc_lock));
   1360 		p = LIST_NEXT(&marker, p_list);
   1361 		LIST_REMOVE(&marker, p_list);
   1362 	}
   1363 	mutex_exit(proc_lock);
   1364 
   1365 	return ret;
   1366 }
   1367 
   1368 int
   1369 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1370 {
   1371 
   1372 	/* XXXCDC: how should locking work here? */
   1373 
   1374 	/* curproc exception is for coredump. */
   1375 
   1376 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1377 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1378 		return EFAULT;
   1379 	}
   1380 
   1381 	uvmspace_addref(p->p_vmspace);
   1382 	*vm = p->p_vmspace;
   1383 
   1384 	return 0;
   1385 }
   1386 
   1387 /*
   1388  * Acquire a write lock on the process credential.
   1389  */
   1390 void
   1391 proc_crmod_enter(void)
   1392 {
   1393 	struct lwp *l = curlwp;
   1394 	struct proc *p = l->l_proc;
   1395 	kauth_cred_t oc;
   1396 
   1397 	/* Reset what needs to be reset in plimit. */
   1398 	if (p->p_limit->pl_corename != defcorename) {
   1399 		lim_setcorename(p, defcorename, 0);
   1400 	}
   1401 
   1402 	mutex_enter(p->p_lock);
   1403 
   1404 	/* Ensure the LWP cached credentials are up to date. */
   1405 	if ((oc = l->l_cred) != p->p_cred) {
   1406 		kauth_cred_hold(p->p_cred);
   1407 		l->l_cred = p->p_cred;
   1408 		kauth_cred_free(oc);
   1409 	}
   1410 }
   1411 
   1412 /*
   1413  * Set in a new process credential, and drop the write lock.  The credential
   1414  * must have a reference already.  Optionally, free a no-longer required
   1415  * credential.  The scheduler also needs to inspect p_cred, so we also
   1416  * briefly acquire the sched state mutex.
   1417  */
   1418 void
   1419 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1420 {
   1421 	struct lwp *l = curlwp, *l2;
   1422 	struct proc *p = l->l_proc;
   1423 	kauth_cred_t oc;
   1424 
   1425 	KASSERT(mutex_owned(p->p_lock));
   1426 
   1427 	/* Is there a new credential to set in? */
   1428 	if (scred != NULL) {
   1429 		p->p_cred = scred;
   1430 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1431 			if (l2 != l)
   1432 				l2->l_prflag |= LPR_CRMOD;
   1433 		}
   1434 
   1435 		/* Ensure the LWP cached credentials are up to date. */
   1436 		if ((oc = l->l_cred) != scred) {
   1437 			kauth_cred_hold(scred);
   1438 			l->l_cred = scred;
   1439 		}
   1440 	} else
   1441 		oc = NULL;	/* XXXgcc */
   1442 
   1443 	if (sugid) {
   1444 		/*
   1445 		 * Mark process as having changed credentials, stops
   1446 		 * tracing etc.
   1447 		 */
   1448 		p->p_flag |= PK_SUGID;
   1449 	}
   1450 
   1451 	mutex_exit(p->p_lock);
   1452 
   1453 	/* If there is a credential to be released, free it now. */
   1454 	if (fcred != NULL) {
   1455 		KASSERT(scred != NULL);
   1456 		kauth_cred_free(fcred);
   1457 		if (oc != scred)
   1458 			kauth_cred_free(oc);
   1459 	}
   1460 }
   1461 
   1462 /*
   1463  * proc_specific_key_create --
   1464  *	Create a key for subsystem proc-specific data.
   1465  */
   1466 int
   1467 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1468 {
   1469 
   1470 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1471 }
   1472 
   1473 /*
   1474  * proc_specific_key_delete --
   1475  *	Delete a key for subsystem proc-specific data.
   1476  */
   1477 void
   1478 proc_specific_key_delete(specificdata_key_t key)
   1479 {
   1480 
   1481 	specificdata_key_delete(proc_specificdata_domain, key);
   1482 }
   1483 
   1484 /*
   1485  * proc_initspecific --
   1486  *	Initialize a proc's specificdata container.
   1487  */
   1488 void
   1489 proc_initspecific(struct proc *p)
   1490 {
   1491 	int error __diagused;
   1492 
   1493 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1494 	KASSERT(error == 0);
   1495 }
   1496 
   1497 /*
   1498  * proc_finispecific --
   1499  *	Finalize a proc's specificdata container.
   1500  */
   1501 void
   1502 proc_finispecific(struct proc *p)
   1503 {
   1504 
   1505 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1506 }
   1507 
   1508 /*
   1509  * proc_getspecific --
   1510  *	Return proc-specific data corresponding to the specified key.
   1511  */
   1512 void *
   1513 proc_getspecific(struct proc *p, specificdata_key_t key)
   1514 {
   1515 
   1516 	return (specificdata_getspecific(proc_specificdata_domain,
   1517 					 &p->p_specdataref, key));
   1518 }
   1519 
   1520 /*
   1521  * proc_setspecific --
   1522  *	Set proc-specific data corresponding to the specified key.
   1523  */
   1524 void
   1525 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1526 {
   1527 
   1528 	specificdata_setspecific(proc_specificdata_domain,
   1529 				 &p->p_specdataref, key, data);
   1530 }
   1531 
   1532 int
   1533 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1534 {
   1535 	int r = 0;
   1536 
   1537 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1538 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1539 		/*
   1540 		 * suid proc of ours or proc not ours
   1541 		 */
   1542 		r = EPERM;
   1543 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1544 		/*
   1545 		 * sgid proc has sgid back to us temporarily
   1546 		 */
   1547 		r = EPERM;
   1548 	} else {
   1549 		/*
   1550 		 * our rgid must be in target's group list (ie,
   1551 		 * sub-processes started by a sgid process)
   1552 		 */
   1553 		int ismember = 0;
   1554 
   1555 		if (kauth_cred_ismember_gid(cred,
   1556 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1557 		    !ismember)
   1558 			r = EPERM;
   1559 	}
   1560 
   1561 	return (r);
   1562 }
   1563 
   1564 /*
   1565  * sysctl stuff
   1566  */
   1567 
   1568 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1569 
   1570 static const u_int sysctl_flagmap[] = {
   1571 	PK_ADVLOCK, P_ADVLOCK,
   1572 	PK_EXEC, P_EXEC,
   1573 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1574 	PK_32, P_32,
   1575 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1576 	PK_SUGID, P_SUGID,
   1577 	0
   1578 };
   1579 
   1580 static const u_int sysctl_sflagmap[] = {
   1581 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1582 	PS_WEXIT, P_WEXIT,
   1583 	PS_STOPFORK, P_STOPFORK,
   1584 	PS_STOPEXEC, P_STOPEXEC,
   1585 	PS_STOPEXIT, P_STOPEXIT,
   1586 	0
   1587 };
   1588 
   1589 static const u_int sysctl_slflagmap[] = {
   1590 	PSL_TRACED, P_TRACED,
   1591 	PSL_CHTRACED, P_CHTRACED,
   1592 	PSL_SYSCALL, P_SYSCALL,
   1593 	0
   1594 };
   1595 
   1596 static const u_int sysctl_lflagmap[] = {
   1597 	PL_CONTROLT, P_CONTROLT,
   1598 	PL_PPWAIT, P_PPWAIT,
   1599 	0
   1600 };
   1601 
   1602 static const u_int sysctl_stflagmap[] = {
   1603 	PST_PROFIL, P_PROFIL,
   1604 	0
   1605 
   1606 };
   1607 
   1608 /* used by kern_lwp also */
   1609 const u_int sysctl_lwpflagmap[] = {
   1610 	LW_SINTR, L_SINTR,
   1611 	LW_SYSTEM, L_SYSTEM,
   1612 	0
   1613 };
   1614 
   1615 /*
   1616  * Find the most ``active'' lwp of a process and return it for ps display
   1617  * purposes
   1618  */
   1619 static struct lwp *
   1620 proc_active_lwp(struct proc *p)
   1621 {
   1622 	static const int ostat[] = {
   1623 		0,
   1624 		2,	/* LSIDL */
   1625 		6,	/* LSRUN */
   1626 		5,	/* LSSLEEP */
   1627 		4,	/* LSSTOP */
   1628 		0,	/* LSZOMB */
   1629 		1,	/* LSDEAD */
   1630 		7,	/* LSONPROC */
   1631 		3	/* LSSUSPENDED */
   1632 	};
   1633 
   1634 	struct lwp *l, *lp = NULL;
   1635 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1636 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1637 		if (lp == NULL ||
   1638 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1639 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1640 		    l->l_cpticks > lp->l_cpticks)) {
   1641 			lp = l;
   1642 			continue;
   1643 		}
   1644 	}
   1645 	return lp;
   1646 }
   1647 
   1648 static int
   1649 sysctl_doeproc(SYSCTLFN_ARGS)
   1650 {
   1651 	union {
   1652 		struct kinfo_proc kproc;
   1653 		struct kinfo_proc2 kproc2;
   1654 	} *kbuf;
   1655 	struct proc *p, *next, *marker;
   1656 	char *where, *dp;
   1657 	int type, op, arg, error;
   1658 	u_int elem_size, kelem_size, elem_count;
   1659 	size_t buflen, needed;
   1660 	bool match, zombie, mmmbrains;
   1661 	const bool allowaddr = get_expose_address(curproc);
   1662 
   1663 	if (namelen == 1 && name[0] == CTL_QUERY)
   1664 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1665 
   1666 	dp = where = oldp;
   1667 	buflen = where != NULL ? *oldlenp : 0;
   1668 	error = 0;
   1669 	needed = 0;
   1670 	type = rnode->sysctl_num;
   1671 
   1672 	if (type == KERN_PROC) {
   1673 		if (namelen == 0)
   1674 			return EINVAL;
   1675 		switch (op = name[0]) {
   1676 		case KERN_PROC_ALL:
   1677 			if (namelen != 1)
   1678 				return EINVAL;
   1679 			arg = 0;
   1680 			break;
   1681 		default:
   1682 			if (namelen != 2)
   1683 				return EINVAL;
   1684 			arg = name[1];
   1685 			break;
   1686 		}
   1687 		elem_count = 0;	/* Hush little compiler, don't you cry */
   1688 		kelem_size = elem_size = sizeof(kbuf->kproc);
   1689 	} else {
   1690 		if (namelen != 4)
   1691 			return EINVAL;
   1692 		op = name[0];
   1693 		arg = name[1];
   1694 		elem_size = name[2];
   1695 		elem_count = name[3];
   1696 		kelem_size = sizeof(kbuf->kproc2);
   1697 	}
   1698 
   1699 	sysctl_unlock();
   1700 
   1701 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   1702 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   1703 	marker->p_flag = PK_MARKER;
   1704 
   1705 	mutex_enter(proc_lock);
   1706 	/*
   1707 	 * Start with zombies to prevent reporting processes twice, in case they
   1708 	 * are dying and being moved from the list of alive processes to zombies.
   1709 	 */
   1710 	mmmbrains = true;
   1711 	for (p = LIST_FIRST(&zombproc);; p = next) {
   1712 		if (p == NULL) {
   1713 			if (mmmbrains) {
   1714 				p = LIST_FIRST(&allproc);
   1715 				mmmbrains = false;
   1716 			}
   1717 			if (p == NULL)
   1718 				break;
   1719 		}
   1720 		next = LIST_NEXT(p, p_list);
   1721 		if ((p->p_flag & PK_MARKER) != 0)
   1722 			continue;
   1723 
   1724 		/*
   1725 		 * Skip embryonic processes.
   1726 		 */
   1727 		if (p->p_stat == SIDL)
   1728 			continue;
   1729 
   1730 		mutex_enter(p->p_lock);
   1731 		error = kauth_authorize_process(l->l_cred,
   1732 		    KAUTH_PROCESS_CANSEE, p,
   1733 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   1734 		if (error != 0) {
   1735 			mutex_exit(p->p_lock);
   1736 			continue;
   1737 		}
   1738 
   1739 		/*
   1740 		 * Hande all the operations in one switch on the cost of
   1741 		 * algorithm complexity is on purpose. The win splitting this
   1742 		 * function into several similar copies makes maintenance burden
   1743 		 * burden, code grow and boost is neglible in practical systems.
   1744 		 */
   1745 		switch (op) {
   1746 		case KERN_PROC_PID:
   1747 			match = (p->p_pid == (pid_t)arg);
   1748 			break;
   1749 
   1750 		case KERN_PROC_PGRP:
   1751 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   1752 			break;
   1753 
   1754 		case KERN_PROC_SESSION:
   1755 			match = (p->p_session->s_sid == (pid_t)arg);
   1756 			break;
   1757 
   1758 		case KERN_PROC_TTY:
   1759 			match = true;
   1760 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   1761 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1762 				    p->p_session->s_ttyp == NULL ||
   1763 				    p->p_session->s_ttyvp != NULL) {
   1764 				    	match = false;
   1765 				}
   1766 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   1767 			    p->p_session->s_ttyp == NULL) {
   1768 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   1769 					match = false;
   1770 				}
   1771 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   1772 				match = false;
   1773 			}
   1774 			break;
   1775 
   1776 		case KERN_PROC_UID:
   1777 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   1778 			break;
   1779 
   1780 		case KERN_PROC_RUID:
   1781 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   1782 			break;
   1783 
   1784 		case KERN_PROC_GID:
   1785 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   1786 			break;
   1787 
   1788 		case KERN_PROC_RGID:
   1789 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   1790 			break;
   1791 
   1792 		case KERN_PROC_ALL:
   1793 			match = true;
   1794 			/* allow everything */
   1795 			break;
   1796 
   1797 		default:
   1798 			error = EINVAL;
   1799 			mutex_exit(p->p_lock);
   1800 			goto cleanup;
   1801 		}
   1802 		if (!match) {
   1803 			mutex_exit(p->p_lock);
   1804 			continue;
   1805 		}
   1806 
   1807 		/*
   1808 		 * Grab a hold on the process.
   1809 		 */
   1810 		if (mmmbrains) {
   1811 			zombie = true;
   1812 		} else {
   1813 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   1814 		}
   1815 		if (zombie) {
   1816 			LIST_INSERT_AFTER(p, marker, p_list);
   1817 		}
   1818 
   1819 		if (buflen >= elem_size &&
   1820 		    (type == KERN_PROC || elem_count > 0)) {
   1821 			if (type == KERN_PROC) {
   1822 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   1823 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   1824 				    allowaddr);
   1825 			} else {
   1826 				fill_kproc2(p, &kbuf->kproc2, zombie,
   1827 				    allowaddr);
   1828 				elem_count--;
   1829 			}
   1830 			mutex_exit(p->p_lock);
   1831 			mutex_exit(proc_lock);
   1832 			/*
   1833 			 * Copy out elem_size, but not larger than kelem_size
   1834 			 */
   1835 			error = sysctl_copyout(l, kbuf, dp,
   1836 			    uimin(kelem_size, elem_size));
   1837 			mutex_enter(proc_lock);
   1838 			if (error) {
   1839 				goto bah;
   1840 			}
   1841 			dp += elem_size;
   1842 			buflen -= elem_size;
   1843 		} else {
   1844 			mutex_exit(p->p_lock);
   1845 		}
   1846 		needed += elem_size;
   1847 
   1848 		/*
   1849 		 * Release reference to process.
   1850 		 */
   1851 	 	if (zombie) {
   1852 			next = LIST_NEXT(marker, p_list);
   1853  			LIST_REMOVE(marker, p_list);
   1854 		} else {
   1855 			rw_exit(&p->p_reflock);
   1856 			next = LIST_NEXT(p, p_list);
   1857 		}
   1858 
   1859 		/*
   1860 		 * Short-circuit break quickly!
   1861 		 */
   1862 		if (op == KERN_PROC_PID)
   1863                 	break;
   1864 	}
   1865 	mutex_exit(proc_lock);
   1866 
   1867 	if (where != NULL) {
   1868 		*oldlenp = dp - where;
   1869 		if (needed > *oldlenp) {
   1870 			error = ENOMEM;
   1871 			goto out;
   1872 		}
   1873 	} else {
   1874 		needed += KERN_PROCSLOP;
   1875 		*oldlenp = needed;
   1876 	}
   1877 	kmem_free(kbuf, sizeof(*kbuf));
   1878 	kmem_free(marker, sizeof(*marker));
   1879 	sysctl_relock();
   1880 	return 0;
   1881  bah:
   1882  	if (zombie)
   1883  		LIST_REMOVE(marker, p_list);
   1884 	else
   1885 		rw_exit(&p->p_reflock);
   1886  cleanup:
   1887 	mutex_exit(proc_lock);
   1888  out:
   1889 	kmem_free(kbuf, sizeof(*kbuf));
   1890 	kmem_free(marker, sizeof(*marker));
   1891 	sysctl_relock();
   1892 	return error;
   1893 }
   1894 
   1895 int
   1896 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   1897 {
   1898 #if !defined(_RUMPKERNEL)
   1899 	int retval;
   1900 
   1901 	if (p->p_flag & PK_32) {
   1902 		MODULE_CALL_HOOK(kern_proc_32_copyin_hook, (p, arginfo),
   1903 		    enosys(), retval);
   1904 		return retval;
   1905 	}
   1906 #endif /* !defined(_RUMPKERNEL) */
   1907 
   1908 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   1909 }
   1910 
   1911 static int
   1912 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   1913 {
   1914 	void **cookie = cookie_;
   1915 	struct lwp *l = cookie[0];
   1916 	char *dst = cookie[1];
   1917 
   1918 	return sysctl_copyout(l, src, dst + off, len);
   1919 }
   1920 
   1921 /*
   1922  * sysctl helper routine for kern.proc_args pseudo-subtree.
   1923  */
   1924 static int
   1925 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   1926 {
   1927 	struct ps_strings pss;
   1928 	struct proc *p;
   1929 	pid_t pid;
   1930 	int type, error;
   1931 	void *cookie[2];
   1932 
   1933 	if (namelen == 1 && name[0] == CTL_QUERY)
   1934 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1935 
   1936 	if (newp != NULL || namelen != 2)
   1937 		return (EINVAL);
   1938 	pid = name[0];
   1939 	type = name[1];
   1940 
   1941 	switch (type) {
   1942 	case KERN_PROC_PATHNAME:
   1943 		sysctl_unlock();
   1944 		error = fill_pathname(l, pid, oldp, oldlenp);
   1945 		sysctl_relock();
   1946 		return error;
   1947 
   1948 	case KERN_PROC_ARGV:
   1949 	case KERN_PROC_NARGV:
   1950 	case KERN_PROC_ENV:
   1951 	case KERN_PROC_NENV:
   1952 		/* ok */
   1953 		break;
   1954 	default:
   1955 		return (EINVAL);
   1956 	}
   1957 
   1958 	sysctl_unlock();
   1959 
   1960 	/* check pid */
   1961 	mutex_enter(proc_lock);
   1962 	if ((p = proc_find(pid)) == NULL) {
   1963 		error = EINVAL;
   1964 		goto out_locked;
   1965 	}
   1966 	mutex_enter(p->p_lock);
   1967 
   1968 	/* Check permission. */
   1969 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   1970 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1971 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   1972 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   1973 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   1974 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   1975 	else
   1976 		error = EINVAL; /* XXXGCC */
   1977 	if (error) {
   1978 		mutex_exit(p->p_lock);
   1979 		goto out_locked;
   1980 	}
   1981 
   1982 	if (oldp == NULL) {
   1983 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   1984 			*oldlenp = sizeof (int);
   1985 		else
   1986 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   1987 		error = 0;
   1988 		mutex_exit(p->p_lock);
   1989 		goto out_locked;
   1990 	}
   1991 
   1992 	/*
   1993 	 * Zombies don't have a stack, so we can't read their psstrings.
   1994 	 * System processes also don't have a user stack.
   1995 	 */
   1996 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   1997 		error = EINVAL;
   1998 		mutex_exit(p->p_lock);
   1999 		goto out_locked;
   2000 	}
   2001 
   2002 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2003 	mutex_exit(p->p_lock);
   2004 	if (error) {
   2005 		goto out_locked;
   2006 	}
   2007 	mutex_exit(proc_lock);
   2008 
   2009 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2010 		int value;
   2011 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2012 			if (type == KERN_PROC_NARGV)
   2013 				value = pss.ps_nargvstr;
   2014 			else
   2015 				value = pss.ps_nenvstr;
   2016 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2017 			*oldlenp = sizeof(value);
   2018 		}
   2019 	} else {
   2020 		cookie[0] = l;
   2021 		cookie[1] = oldp;
   2022 		error = copy_procargs(p, type, oldlenp,
   2023 		    copy_procargs_sysctl_cb, cookie);
   2024 	}
   2025 	rw_exit(&p->p_reflock);
   2026 	sysctl_relock();
   2027 	return error;
   2028 
   2029 out_locked:
   2030 	mutex_exit(proc_lock);
   2031 	sysctl_relock();
   2032 	return error;
   2033 }
   2034 
   2035 int
   2036 copy_procargs(struct proc *p, int oid, size_t *limit,
   2037     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2038 {
   2039 	struct ps_strings pss;
   2040 	size_t len, i, loaded, entry_len;
   2041 	struct uio auio;
   2042 	struct iovec aiov;
   2043 	int error, argvlen;
   2044 	char *arg;
   2045 	char **argv;
   2046 	vaddr_t user_argv;
   2047 	struct vmspace *vmspace;
   2048 
   2049 	/*
   2050 	 * Allocate a temporary buffer to hold the argument vector and
   2051 	 * the arguments themselve.
   2052 	 */
   2053 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2054 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2055 
   2056 	/*
   2057 	 * Lock the process down in memory.
   2058 	 */
   2059 	vmspace = p->p_vmspace;
   2060 	uvmspace_addref(vmspace);
   2061 
   2062 	/*
   2063 	 * Read in the ps_strings structure.
   2064 	 */
   2065 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2066 		goto done;
   2067 
   2068 	/*
   2069 	 * Now read the address of the argument vector.
   2070 	 */
   2071 	switch (oid) {
   2072 	case KERN_PROC_ARGV:
   2073 		user_argv = (uintptr_t)pss.ps_argvstr;
   2074 		argvlen = pss.ps_nargvstr;
   2075 		break;
   2076 	case KERN_PROC_ENV:
   2077 		user_argv = (uintptr_t)pss.ps_envstr;
   2078 		argvlen = pss.ps_nenvstr;
   2079 		break;
   2080 	default:
   2081 		error = EINVAL;
   2082 		goto done;
   2083 	}
   2084 
   2085 	if (argvlen < 0) {
   2086 		error = EIO;
   2087 		goto done;
   2088 	}
   2089 
   2090 
   2091 	/*
   2092 	 * Now copy each string.
   2093 	 */
   2094 	len = 0; /* bytes written to user buffer */
   2095 	loaded = 0; /* bytes from argv already processed */
   2096 	i = 0; /* To make compiler happy */
   2097 	entry_len = PROC_PTRSZ(p);
   2098 
   2099 	for (; argvlen; --argvlen) {
   2100 		int finished = 0;
   2101 		vaddr_t base;
   2102 		size_t xlen;
   2103 		int j;
   2104 
   2105 		if (loaded == 0) {
   2106 			size_t rem = entry_len * argvlen;
   2107 			loaded = MIN(rem, PAGE_SIZE);
   2108 			error = copyin_vmspace(vmspace,
   2109 			    (const void *)user_argv, argv, loaded);
   2110 			if (error)
   2111 				break;
   2112 			user_argv += loaded;
   2113 			i = 0;
   2114 		}
   2115 
   2116 #if !defined(_RUMPKERNEL)
   2117 		if (p->p_flag & PK_32)
   2118 			MODULE_CALL_HOOK(kern_proc_32_base_hook,
   2119 			    (argv, i++), 0, base);
   2120 		else
   2121 #endif /* !defined(_RUMPKERNEL) */
   2122 			base = (vaddr_t)argv[i++];
   2123 		loaded -= entry_len;
   2124 
   2125 		/*
   2126 		 * The program has messed around with its arguments,
   2127 		 * possibly deleting some, and replacing them with
   2128 		 * NULL's. Treat this as the last argument and not
   2129 		 * a failure.
   2130 		 */
   2131 		if (base == 0)
   2132 			break;
   2133 
   2134 		while (!finished) {
   2135 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2136 
   2137 			aiov.iov_base = arg;
   2138 			aiov.iov_len = PAGE_SIZE;
   2139 			auio.uio_iov = &aiov;
   2140 			auio.uio_iovcnt = 1;
   2141 			auio.uio_offset = base;
   2142 			auio.uio_resid = xlen;
   2143 			auio.uio_rw = UIO_READ;
   2144 			UIO_SETUP_SYSSPACE(&auio);
   2145 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2146 			if (error)
   2147 				goto done;
   2148 
   2149 			/* Look for the end of the string */
   2150 			for (j = 0; j < xlen; j++) {
   2151 				if (arg[j] == '\0') {
   2152 					xlen = j + 1;
   2153 					finished = 1;
   2154 					break;
   2155 				}
   2156 			}
   2157 
   2158 			/* Check for user buffer overflow */
   2159 			if (len + xlen > *limit) {
   2160 				finished = 1;
   2161 				if (len > *limit)
   2162 					xlen = 0;
   2163 				else
   2164 					xlen = *limit - len;
   2165 			}
   2166 
   2167 			/* Copyout the page */
   2168 			error = (*cb)(cookie, arg, len, xlen);
   2169 			if (error)
   2170 				goto done;
   2171 
   2172 			len += xlen;
   2173 			base += xlen;
   2174 		}
   2175 	}
   2176 	*limit = len;
   2177 
   2178 done:
   2179 	kmem_free(argv, PAGE_SIZE);
   2180 	kmem_free(arg, PAGE_SIZE);
   2181 	uvmspace_free(vmspace);
   2182 	return error;
   2183 }
   2184 
   2185 /*
   2186  * Fill in a proc structure for the specified process.
   2187  */
   2188 static void
   2189 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2190 {
   2191 	COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
   2192 	COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
   2193 	COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
   2194 	COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
   2195 	COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
   2196 	COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2197 	COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2198 	COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
   2199 	COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
   2200 	COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2201 	COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
   2202 	COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
   2203 	COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2204 	COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2205 	COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
   2206 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2207 	COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
   2208 	p->p_exitsig = psrc->p_exitsig;
   2209 	p->p_flag = psrc->p_flag;
   2210 	p->p_sflag = psrc->p_sflag;
   2211 	p->p_slflag = psrc->p_slflag;
   2212 	p->p_lflag = psrc->p_lflag;
   2213 	p->p_stflag = psrc->p_stflag;
   2214 	p->p_stat = psrc->p_stat;
   2215 	p->p_trace_enabled = psrc->p_trace_enabled;
   2216 	p->p_pid = psrc->p_pid;
   2217 	COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
   2218 	COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
   2219 	COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
   2220 	COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
   2221 	COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
   2222 	COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
   2223 	p->p_nlwps = psrc->p_nlwps;
   2224 	p->p_nzlwps = psrc->p_nzlwps;
   2225 	p->p_nrlwps = psrc->p_nrlwps;
   2226 	p->p_nlwpwait = psrc->p_nlwpwait;
   2227 	p->p_ndlwps = psrc->p_ndlwps;
   2228 	p->p_nlwpid = psrc->p_nlwpid;
   2229 	p->p_nstopchild = psrc->p_nstopchild;
   2230 	p->p_waited = psrc->p_waited;
   2231 	COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2232 	COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2233 	COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2234 	p->p_estcpu = psrc->p_estcpu;
   2235 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2236 	p->p_forktime = psrc->p_forktime;
   2237 	p->p_pctcpu = psrc->p_pctcpu;
   2238 	COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
   2239 	COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
   2240 	p->p_rtime = psrc->p_rtime;
   2241 	p->p_uticks = psrc->p_uticks;
   2242 	p->p_sticks = psrc->p_sticks;
   2243 	p->p_iticks = psrc->p_iticks;
   2244 	p->p_xutime = psrc->p_xutime;
   2245 	p->p_xstime = psrc->p_xstime;
   2246 	p->p_traceflag = psrc->p_traceflag;
   2247 	COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
   2248 	COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
   2249 	COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
   2250 	COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2251 	COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
   2252 	COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
   2253 	COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2254 	COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
   2255 	COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2256 	p->p_ppid = psrc->p_ppid;
   2257 	p->p_fpid = psrc->p_fpid;
   2258 	p->p_vfpid = psrc->p_vfpid;
   2259 	p->p_vfpid_done = psrc->p_vfpid_done;
   2260 	p->p_lwp_created = psrc->p_lwp_created;
   2261 	p->p_lwp_exited = psrc->p_lwp_exited;
   2262 	p->p_nsems = psrc->p_nsems;
   2263 	COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
   2264 	COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
   2265 	p->p_nice = psrc->p_nice;
   2266 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2267 	COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2268 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2269 	p->p_pax = psrc->p_pax;
   2270 	p->p_xexit = psrc->p_xexit;
   2271 	p->p_xsig = psrc->p_xsig;
   2272 	p->p_acflag = psrc->p_acflag;
   2273 	COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
   2274 	p->p_stackbase = psrc->p_stackbase;
   2275 	COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2276 }
   2277 
   2278 /*
   2279  * Fill in an eproc structure for the specified process.
   2280  */
   2281 void
   2282 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2283 {
   2284 	struct tty *tp;
   2285 	struct lwp *l;
   2286 
   2287 	KASSERT(mutex_owned(proc_lock));
   2288 	KASSERT(mutex_owned(p->p_lock));
   2289 
   2290 	COND_SET_VALUE(ep->e_paddr, p, allowaddr);
   2291 	COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
   2292 	if (p->p_cred) {
   2293 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2294 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2295 	}
   2296 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2297 		struct vmspace *vm = p->p_vmspace;
   2298 
   2299 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2300 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2301 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2302 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2303 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2304 
   2305 		/* Pick the primary (first) LWP */
   2306 		l = proc_active_lwp(p);
   2307 		KASSERT(l != NULL);
   2308 		lwp_lock(l);
   2309 		if (l->l_wchan)
   2310 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2311 		lwp_unlock(l);
   2312 	}
   2313 	ep->e_ppid = p->p_ppid;
   2314 	if (p->p_pgrp && p->p_session) {
   2315 		ep->e_pgid = p->p_pgrp->pg_id;
   2316 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2317 		ep->e_sid = p->p_session->s_sid;
   2318 		if ((p->p_lflag & PL_CONTROLT) &&
   2319 		    (tp = p->p_session->s_ttyp)) {
   2320 			ep->e_tdev = tp->t_dev;
   2321 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2322 			COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
   2323 		} else
   2324 			ep->e_tdev = (uint32_t)NODEV;
   2325 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2326 		if (SESS_LEADER(p))
   2327 			ep->e_flag |= EPROC_SLEADER;
   2328 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2329 	}
   2330 	ep->e_xsize = ep->e_xrssize = 0;
   2331 	ep->e_xccount = ep->e_xswrss = 0;
   2332 }
   2333 
   2334 /*
   2335  * Fill in a kinfo_proc2 structure for the specified process.
   2336  */
   2337 void
   2338 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2339 {
   2340 	struct tty *tp;
   2341 	struct lwp *l, *l2;
   2342 	struct timeval ut, st, rt;
   2343 	sigset_t ss1, ss2;
   2344 	struct rusage ru;
   2345 	struct vmspace *vm;
   2346 
   2347 	KASSERT(mutex_owned(proc_lock));
   2348 	KASSERT(mutex_owned(p->p_lock));
   2349 
   2350 	sigemptyset(&ss1);
   2351 	sigemptyset(&ss2);
   2352 
   2353 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2354 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2355 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2356 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2357 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2358 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2359 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2360 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2361 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2362 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2363 	ki->p_eflag = 0;
   2364 	ki->p_exitsig = p->p_exitsig;
   2365 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2366 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2367 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2368 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2369 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2370 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2371 	ki->p_pid = p->p_pid;
   2372 	ki->p_ppid = p->p_ppid;
   2373 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2374 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2375 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2376 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2377 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2378 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2379 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2380 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2381 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2382 	    UIO_SYSSPACE);
   2383 
   2384 	ki->p_uticks = p->p_uticks;
   2385 	ki->p_sticks = p->p_sticks;
   2386 	ki->p_iticks = p->p_iticks;
   2387 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2388 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2389 	ki->p_traceflag = p->p_traceflag;
   2390 
   2391 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2392 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2393 
   2394 	ki->p_cpticks = 0;
   2395 	ki->p_pctcpu = p->p_pctcpu;
   2396 	ki->p_estcpu = 0;
   2397 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2398 	ki->p_realstat = p->p_stat;
   2399 	ki->p_nice = p->p_nice;
   2400 	ki->p_xstat = P_WAITSTATUS(p);
   2401 	ki->p_acflag = p->p_acflag;
   2402 
   2403 	strncpy(ki->p_comm, p->p_comm,
   2404 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2405 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2406 
   2407 	ki->p_nlwps = p->p_nlwps;
   2408 	ki->p_realflag = ki->p_flag;
   2409 
   2410 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2411 		vm = p->p_vmspace;
   2412 		ki->p_vm_rssize = vm_resident_count(vm);
   2413 		ki->p_vm_tsize = vm->vm_tsize;
   2414 		ki->p_vm_dsize = vm->vm_dsize;
   2415 		ki->p_vm_ssize = vm->vm_ssize;
   2416 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2417 		/*
   2418 		 * Since the stack is initially mapped mostly with
   2419 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2420 		 * to skip the unused stack portion.
   2421 		 */
   2422 		ki->p_vm_msize =
   2423 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2424 
   2425 		/* Pick the primary (first) LWP */
   2426 		l = proc_active_lwp(p);
   2427 		KASSERT(l != NULL);
   2428 		lwp_lock(l);
   2429 		ki->p_nrlwps = p->p_nrlwps;
   2430 		ki->p_forw = 0;
   2431 		ki->p_back = 0;
   2432 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2433 		ki->p_stat = l->l_stat;
   2434 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2435 		ki->p_swtime = l->l_swtime;
   2436 		ki->p_slptime = l->l_slptime;
   2437 		if (l->l_stat == LSONPROC)
   2438 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2439 		else
   2440 			ki->p_schedflags = 0;
   2441 		ki->p_priority = lwp_eprio(l);
   2442 		ki->p_usrpri = l->l_priority;
   2443 		if (l->l_wchan)
   2444 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2445 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2446 		ki->p_cpuid = cpu_index(l->l_cpu);
   2447 		lwp_unlock(l);
   2448 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2449 			/* This is hardly correct, but... */
   2450 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2451 			sigplusset(&l->l_sigmask, &ss2);
   2452 			ki->p_cpticks += l->l_cpticks;
   2453 			ki->p_pctcpu += l->l_pctcpu;
   2454 			ki->p_estcpu += l->l_estcpu;
   2455 		}
   2456 	}
   2457 	sigplusset(&p->p_sigpend.sp_set, &ss2);
   2458 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2459 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2460 
   2461 	if (p->p_session != NULL) {
   2462 		ki->p_sid = p->p_session->s_sid;
   2463 		ki->p__pgid = p->p_pgrp->pg_id;
   2464 		if (p->p_session->s_ttyvp)
   2465 			ki->p_eflag |= EPROC_CTTY;
   2466 		if (SESS_LEADER(p))
   2467 			ki->p_eflag |= EPROC_SLEADER;
   2468 		strncpy(ki->p_login, p->p_session->s_login,
   2469 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2470 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2471 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2472 			ki->p_tdev = tp->t_dev;
   2473 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2474 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2475 			    allowaddr);
   2476 		} else {
   2477 			ki->p_tdev = (int32_t)NODEV;
   2478 		}
   2479 	}
   2480 
   2481 	if (!P_ZOMBIE(p) && !zombie) {
   2482 		ki->p_uvalid = 1;
   2483 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2484 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2485 
   2486 		calcru(p, &ut, &st, NULL, &rt);
   2487 		ki->p_rtime_sec = rt.tv_sec;
   2488 		ki->p_rtime_usec = rt.tv_usec;
   2489 		ki->p_uutime_sec = ut.tv_sec;
   2490 		ki->p_uutime_usec = ut.tv_usec;
   2491 		ki->p_ustime_sec = st.tv_sec;
   2492 		ki->p_ustime_usec = st.tv_usec;
   2493 
   2494 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2495 		ki->p_uru_nvcsw = 0;
   2496 		ki->p_uru_nivcsw = 0;
   2497 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2498 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2499 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2500 			ruadd(&ru, &l2->l_ru);
   2501 		}
   2502 		ki->p_uru_maxrss = ru.ru_maxrss;
   2503 		ki->p_uru_ixrss = ru.ru_ixrss;
   2504 		ki->p_uru_idrss = ru.ru_idrss;
   2505 		ki->p_uru_isrss = ru.ru_isrss;
   2506 		ki->p_uru_minflt = ru.ru_minflt;
   2507 		ki->p_uru_majflt = ru.ru_majflt;
   2508 		ki->p_uru_nswap = ru.ru_nswap;
   2509 		ki->p_uru_inblock = ru.ru_inblock;
   2510 		ki->p_uru_oublock = ru.ru_oublock;
   2511 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2512 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2513 		ki->p_uru_nsignals = ru.ru_nsignals;
   2514 
   2515 		timeradd(&p->p_stats->p_cru.ru_utime,
   2516 			 &p->p_stats->p_cru.ru_stime, &ut);
   2517 		ki->p_uctime_sec = ut.tv_sec;
   2518 		ki->p_uctime_usec = ut.tv_usec;
   2519 	}
   2520 }
   2521 
   2522 
   2523 int
   2524 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2525 {
   2526 	int error;
   2527 
   2528 	mutex_enter(proc_lock);
   2529 	if (pid == -1)
   2530 		*p = l->l_proc;
   2531 	else
   2532 		*p = proc_find(pid);
   2533 
   2534 	if (*p == NULL) {
   2535 		if (pid != -1)
   2536 			mutex_exit(proc_lock);
   2537 		return ESRCH;
   2538 	}
   2539 	if (pid != -1)
   2540 		mutex_enter((*p)->p_lock);
   2541 	mutex_exit(proc_lock);
   2542 
   2543 	error = kauth_authorize_process(l->l_cred,
   2544 	    KAUTH_PROCESS_CANSEE, *p,
   2545 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2546 	if (error) {
   2547 		if (pid != -1)
   2548 			mutex_exit((*p)->p_lock);
   2549 	}
   2550 	return error;
   2551 }
   2552 
   2553 static int
   2554 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2555 {
   2556 	int error;
   2557 	struct proc *p;
   2558 
   2559 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2560 		return error;
   2561 
   2562 	if (p->p_path == NULL) {
   2563 		if (pid != -1)
   2564 			mutex_exit(p->p_lock);
   2565 		return ENOENT;
   2566 	}
   2567 
   2568 	size_t len = strlen(p->p_path) + 1;
   2569 	if (oldp != NULL) {
   2570 		size_t copylen = uimin(len, *oldlenp);
   2571 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2572 		if (error == 0 && *oldlenp < len)
   2573 			error = ENOSPC;
   2574 	}
   2575 	*oldlenp = len;
   2576 	if (pid != -1)
   2577 		mutex_exit(p->p_lock);
   2578 	return error;
   2579 }
   2580 
   2581 int
   2582 proc_getauxv(struct proc *p, void **buf, size_t *len)
   2583 {
   2584 	struct ps_strings pss;
   2585 	int error;
   2586 	void *uauxv, *kauxv;
   2587 	size_t size;
   2588 
   2589 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2590 		return error;
   2591 	if (pss.ps_envstr == NULL)
   2592 		return EIO;
   2593 
   2594 	size = p->p_execsw->es_arglen;
   2595 	if (size == 0)
   2596 		return EIO;
   2597 
   2598 	size_t ptrsz = PROC_PTRSZ(p);
   2599 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   2600 
   2601 	kauxv = kmem_alloc(size, KM_SLEEP);
   2602 
   2603 	error = copyin_proc(p, uauxv, kauxv, size);
   2604 	if (error) {
   2605 		kmem_free(kauxv, size);
   2606 		return error;
   2607 	}
   2608 
   2609 	*buf = kauxv;
   2610 	*len = size;
   2611 
   2612 	return 0;
   2613 }
   2614 
   2615 
   2616 static int
   2617 sysctl_security_expose_address(SYSCTLFN_ARGS)
   2618 {
   2619 	int expose_address, error;
   2620 	struct sysctlnode node;
   2621 
   2622 	node = *rnode;
   2623 	node.sysctl_data = &expose_address;
   2624 	expose_address = *(int *)rnode->sysctl_data;
   2625 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2626 	if (error || newp == NULL)
   2627 		return error;
   2628 
   2629 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   2630 	    0, NULL, NULL, NULL))
   2631 		return EPERM;
   2632 
   2633 	switch (expose_address) {
   2634 	case 0:
   2635 	case 1:
   2636 	case 2:
   2637 		break;
   2638 	default:
   2639 		return EINVAL;
   2640 	}
   2641 
   2642 	*(int *)rnode->sysctl_data = expose_address;
   2643 
   2644 	return 0;
   2645 }
   2646 
   2647 bool
   2648 get_expose_address(struct proc *p)
   2649 {
   2650 	/* allow only if sysctl variable is set or privileged */
   2651 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   2652 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   2653 }
   2654