kern_proc.c revision 1.249 1 /* $NetBSD: kern_proc.c,v 1.249 2020/04/26 15:49:10 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.249 2020/04/26 15:49:10 thorpej Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm.h>
112
113 /*
114 * Process lists.
115 */
116
117 struct proclist allproc __cacheline_aligned;
118 struct proclist zombproc __cacheline_aligned;
119
120 static kmutex_t proc_lock_s __cacheline_aligned;
121 kmutex_t * proc_lock __read_mostly;
122
123 /*
124 * pid to lwp/proc lookup is done by indexing the pid_table array.
125 * Since pid numbers are only allocated when an empty slot
126 * has been found, there is no need to search any lists ever.
127 * (an orphaned pgrp will lock the slot, a session will lock
128 * the pgrp with the same number.)
129 * If the table is too small it is reallocated with twice the
130 * previous size and the entries 'unzipped' into the two halves.
131 * A linked list of free entries is passed through the pt_lwp
132 * field of 'free' items - set odd to be an invalid ptr. Two
133 * additional bits are also used to indicate if the slot is
134 * currently occupied by a proc or lwp, and if the PID is
135 * hidden from certain kinds of lookups. We thus require a
136 * minimum alignment for proc and lwp structures (LWPs are
137 * at least 32-byte aligned).
138 */
139
140 struct pid_table {
141 uintptr_t pt_slot;
142 struct pgrp *pt_pgrp;
143 pid_t pt_pid;
144 };
145
146 #define PT_F_FREE ((uintptr_t)__BIT(0))
147 #define PT_F_LWP 0 /* pseudo-flag */
148 #define PT_F_PROC ((uintptr_t)__BIT(1))
149 #define PT_F_HIDDEN ((uintptr_t)__BIT(2))
150
151 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
152 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC|PT_F_HIDDEN)
153
154 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
155 #define PT_RESERVED(s) ((s) == 0)
156 #define PT_HIDDEN(s) ((s) & PT_F_HIDDEN)
157 #define PT_NEXT(s) ((u_int)(s) >> 1)
158 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
159 #define PT_SET_HIDDEN(s) ((s) | PT_F_HIDDEN)
160 #define PT_SET_LWP(l) ((uintptr_t)(l))
161 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
162 #define PT_SET_RESERVED 0
163 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
164 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
165 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
166 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
167 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
168
169 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
170
171 /*
172 * Table of process IDs (PIDs).
173 *
174 * Locking order:
175 * proc_lock -> pid_table_lock
176 * or
177 * proc::p_lock -> pid_table_lock
178 */
179 static krwlock_t pid_table_lock __cacheline_aligned;
180 static struct pid_table *pid_table __read_mostly;
181
182 #define INITIAL_PID_TABLE_SIZE (1 << 5)
183
184 /* Table mask, threshold for growing and number of allocated PIDs. */
185 static u_int pid_tbl_mask __read_mostly;
186 static u_int pid_alloc_lim __read_mostly;
187 static u_int pid_alloc_cnt __cacheline_aligned;
188
189 /* Next free, last free and maximum PIDs. */
190 static u_int next_free_pt __cacheline_aligned;
191 static u_int last_free_pt __cacheline_aligned;
192 static pid_t pid_max __read_mostly;
193
194 /* Components of the first process -- never freed. */
195
196 extern struct emul emul_netbsd; /* defined in kern_exec.c */
197
198 struct session session0 = {
199 .s_count = 1,
200 .s_sid = 0,
201 };
202 struct pgrp pgrp0 = {
203 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
204 .pg_session = &session0,
205 };
206 filedesc_t filedesc0;
207 struct cwdinfo cwdi0 = {
208 .cwdi_cmask = CMASK,
209 .cwdi_refcnt = 1,
210 };
211 struct plimit limit0;
212 struct pstats pstat0;
213 struct vmspace vmspace0;
214 struct sigacts sigacts0;
215 struct proc proc0 = {
216 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
217 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
218 .p_nlwps = 1,
219 .p_nrlwps = 1,
220 .p_pgrp = &pgrp0,
221 .p_comm = "system",
222 /*
223 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
224 * when they exit. init(8) can easily wait them out for us.
225 */
226 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
227 .p_stat = SACTIVE,
228 .p_nice = NZERO,
229 .p_emul = &emul_netbsd,
230 .p_cwdi = &cwdi0,
231 .p_limit = &limit0,
232 .p_fd = &filedesc0,
233 .p_vmspace = &vmspace0,
234 .p_stats = &pstat0,
235 .p_sigacts = &sigacts0,
236 #ifdef PROC0_MD_INITIALIZERS
237 PROC0_MD_INITIALIZERS
238 #endif
239 };
240 kauth_cred_t cred0;
241
242 static const int nofile = NOFILE;
243 static const int maxuprc = MAXUPRC;
244
245 static int sysctl_doeproc(SYSCTLFN_PROTO);
246 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
247 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
248
249 #ifdef KASLR
250 static int kern_expose_address = 0;
251 #else
252 static int kern_expose_address = 1;
253 #endif
254 /*
255 * The process list descriptors, used during pid allocation and
256 * by sysctl. No locking on this data structure is needed since
257 * it is completely static.
258 */
259 const struct proclist_desc proclists[] = {
260 { &allproc },
261 { &zombproc },
262 { NULL },
263 };
264
265 static struct pgrp * pg_remove(pid_t);
266 static void pg_delete(pid_t);
267 static void orphanpg(struct pgrp *);
268
269 static specificdata_domain_t proc_specificdata_domain;
270
271 static pool_cache_t proc_cache;
272
273 static kauth_listener_t proc_listener;
274
275 static void fill_proc(const struct proc *, struct proc *, bool);
276 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
277 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
278
279 static int
280 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
281 void *arg0, void *arg1, void *arg2, void *arg3)
282 {
283 struct proc *p;
284 int result;
285
286 result = KAUTH_RESULT_DEFER;
287 p = arg0;
288
289 switch (action) {
290 case KAUTH_PROCESS_CANSEE: {
291 enum kauth_process_req req;
292
293 req = (enum kauth_process_req)(uintptr_t)arg1;
294
295 switch (req) {
296 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
297 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
298 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
299 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
300 result = KAUTH_RESULT_ALLOW;
301 break;
302
303 case KAUTH_REQ_PROCESS_CANSEE_ENV:
304 if (kauth_cred_getuid(cred) !=
305 kauth_cred_getuid(p->p_cred) ||
306 kauth_cred_getuid(cred) !=
307 kauth_cred_getsvuid(p->p_cred))
308 break;
309
310 result = KAUTH_RESULT_ALLOW;
311
312 break;
313
314 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
315 if (!kern_expose_address)
316 break;
317
318 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
319 break;
320
321 result = KAUTH_RESULT_ALLOW;
322
323 break;
324
325 default:
326 break;
327 }
328
329 break;
330 }
331
332 case KAUTH_PROCESS_FORK: {
333 int lnprocs = (int)(unsigned long)arg2;
334
335 /*
336 * Don't allow a nonprivileged user to use the last few
337 * processes. The variable lnprocs is the current number of
338 * processes, maxproc is the limit.
339 */
340 if (__predict_false((lnprocs >= maxproc - 5)))
341 break;
342
343 result = KAUTH_RESULT_ALLOW;
344
345 break;
346 }
347
348 case KAUTH_PROCESS_CORENAME:
349 case KAUTH_PROCESS_STOPFLAG:
350 if (proc_uidmatch(cred, p->p_cred) == 0)
351 result = KAUTH_RESULT_ALLOW;
352
353 break;
354
355 default:
356 break;
357 }
358
359 return result;
360 }
361
362 static int
363 proc_ctor(void *arg __unused, void *obj, int flags __unused)
364 {
365 memset(obj, 0, sizeof(struct proc));
366 return 0;
367 }
368
369 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
370
371 /*
372 * Initialize global process hashing structures.
373 */
374 void
375 procinit(void)
376 {
377 const struct proclist_desc *pd;
378 u_int i;
379 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
380
381 for (pd = proclists; pd->pd_list != NULL; pd++)
382 LIST_INIT(pd->pd_list);
383
384 mutex_init(&proc_lock_s, MUTEX_DEFAULT, IPL_NONE);
385 proc_lock = &proc_lock_s;
386
387 rw_init(&pid_table_lock);
388
389 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
390 * sizeof(struct pid_table), KM_SLEEP);
391 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
392 pid_max = PID_MAX;
393
394 /* Set free list running through table...
395 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
396 for (i = 0; i <= pid_tbl_mask; i++) {
397 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
398 pid_table[i].pt_pgrp = 0;
399 pid_table[i].pt_pid = 0;
400 }
401 /* slot 0 is just grabbed */
402 next_free_pt = 1;
403 /* Need to fix last entry. */
404 last_free_pt = pid_tbl_mask;
405 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
406 /* point at which we grow table - to avoid reusing pids too often */
407 pid_alloc_lim = pid_tbl_mask - 1;
408 #undef LINK_EMPTY
409
410 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
411 rw_enter(&pid_table_lock, RW_WRITER);
412 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
413 panic("failed to reserve PID 1 for init(8)");
414 rw_exit(&pid_table_lock);
415
416 proc_specificdata_domain = specificdata_domain_create();
417 KASSERT(proc_specificdata_domain != NULL);
418
419 size_t proc_alignment = coherency_unit;
420 if (proc_alignment < MIN_PROC_ALIGNMENT)
421 proc_alignment = MIN_PROC_ALIGNMENT;
422
423 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
424 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
425
426 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
427 proc_listener_cb, NULL);
428 }
429
430 void
431 procinit_sysctl(void)
432 {
433 static struct sysctllog *clog;
434
435 sysctl_createv(&clog, 0, NULL, NULL,
436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
437 CTLTYPE_INT, "expose_address",
438 SYSCTL_DESCR("Enable exposing kernel addresses"),
439 sysctl_security_expose_address, 0,
440 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
441 sysctl_createv(&clog, 0, NULL, NULL,
442 CTLFLAG_PERMANENT,
443 CTLTYPE_NODE, "proc",
444 SYSCTL_DESCR("System-wide process information"),
445 sysctl_doeproc, 0, NULL, 0,
446 CTL_KERN, KERN_PROC, CTL_EOL);
447 sysctl_createv(&clog, 0, NULL, NULL,
448 CTLFLAG_PERMANENT,
449 CTLTYPE_NODE, "proc2",
450 SYSCTL_DESCR("Machine-independent process information"),
451 sysctl_doeproc, 0, NULL, 0,
452 CTL_KERN, KERN_PROC2, CTL_EOL);
453 sysctl_createv(&clog, 0, NULL, NULL,
454 CTLFLAG_PERMANENT,
455 CTLTYPE_NODE, "proc_args",
456 SYSCTL_DESCR("Process argument information"),
457 sysctl_kern_proc_args, 0, NULL, 0,
458 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
459
460 /*
461 "nodes" under these:
462
463 KERN_PROC_ALL
464 KERN_PROC_PID pid
465 KERN_PROC_PGRP pgrp
466 KERN_PROC_SESSION sess
467 KERN_PROC_TTY tty
468 KERN_PROC_UID uid
469 KERN_PROC_RUID uid
470 KERN_PROC_GID gid
471 KERN_PROC_RGID gid
472
473 all in all, probably not worth the effort...
474 */
475 }
476
477 /*
478 * Initialize process 0.
479 */
480 void
481 proc0_init(void)
482 {
483 struct proc *p;
484 struct pgrp *pg;
485 struct rlimit *rlim;
486 rlim_t lim;
487 int i;
488
489 p = &proc0;
490 pg = &pgrp0;
491
492 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
493 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
494 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
495
496 rw_init(&p->p_reflock);
497 cv_init(&p->p_waitcv, "wait");
498 cv_init(&p->p_lwpcv, "lwpwait");
499
500 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
501
502 KASSERT(lwp0.l_lid == 0);
503 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
504 LIST_INSERT_HEAD(&allproc, p, p_list);
505
506 pid_table[lwp0.l_lid].pt_pgrp = pg;
507 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
508
509 #ifdef __HAVE_SYSCALL_INTERN
510 (*p->p_emul->e_syscall_intern)(p);
511 #endif
512
513 /* Create credentials. */
514 cred0 = kauth_cred_alloc();
515 p->p_cred = cred0;
516
517 /* Create the CWD info. */
518 rw_init(&cwdi0.cwdi_lock);
519
520 /* Create the limits structures. */
521 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
522
523 rlim = limit0.pl_rlimit;
524 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
525 rlim[i].rlim_cur = RLIM_INFINITY;
526 rlim[i].rlim_max = RLIM_INFINITY;
527 }
528
529 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
530 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
531
532 rlim[RLIMIT_NPROC].rlim_max = maxproc;
533 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
534
535 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem()));
536 rlim[RLIMIT_RSS].rlim_max = lim;
537 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
538 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
539
540 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
541 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
542
543 /* Note that default core name has zero length. */
544 limit0.pl_corename = defcorename;
545 limit0.pl_cnlen = 0;
546 limit0.pl_refcnt = 1;
547 limit0.pl_writeable = false;
548 limit0.pl_sv_limit = NULL;
549
550 /* Configure virtual memory system, set vm rlimits. */
551 uvm_init_limits(p);
552
553 /* Initialize file descriptor table for proc0. */
554 fd_init(&filedesc0);
555
556 /*
557 * Initialize proc0's vmspace, which uses the kernel pmap.
558 * All kernel processes (which never have user space mappings)
559 * share proc0's vmspace, and thus, the kernel pmap.
560 */
561 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
562 trunc_page(VM_MAXUSER_ADDRESS),
563 #ifdef __USE_TOPDOWN_VM
564 true
565 #else
566 false
567 #endif
568 );
569
570 /* Initialize signal state for proc0. XXX IPL_SCHED */
571 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
572 siginit(p);
573
574 proc_initspecific(p);
575 kdtrace_proc_ctor(NULL, p);
576 }
577
578 /*
579 * Session reference counting.
580 */
581
582 void
583 proc_sesshold(struct session *ss)
584 {
585
586 KASSERT(mutex_owned(proc_lock));
587 ss->s_count++;
588 }
589
590 static void
591 proc_sessrele_pid_table_write_locked(struct session *ss)
592 {
593 struct pgrp *pg;
594
595 KASSERT(mutex_owned(proc_lock));
596 KASSERT(rw_write_held(&pid_table_lock));
597 KASSERT(ss->s_count > 0);
598
599 /*
600 * We keep the pgrp with the same id as the session in order to
601 * stop a process being given the same pid. Since the pgrp holds
602 * a reference to the session, it must be a 'zombie' pgrp by now.
603 */
604 if (--ss->s_count == 0) {
605 pg = pg_remove(ss->s_sid);
606 } else {
607 pg = NULL;
608 ss = NULL;
609 }
610
611 rw_exit(&pid_table_lock);
612 mutex_exit(proc_lock);
613
614 if (pg)
615 kmem_free(pg, sizeof(struct pgrp));
616 if (ss)
617 kmem_free(ss, sizeof(struct session));
618 }
619
620 void
621 proc_sessrele(struct session *ss)
622 {
623 rw_enter(&pid_table_lock, RW_WRITER);
624 proc_sessrele_pid_table_write_locked(ss);
625 }
626
627 /*
628 * Check that the specified process group is in the session of the
629 * specified process.
630 * Treats -ve ids as process ids.
631 * Used to validate TIOCSPGRP requests.
632 */
633 int
634 pgid_in_session(struct proc *p, pid_t pg_id)
635 {
636 struct pgrp *pgrp;
637 struct session *session;
638 int error;
639
640 mutex_enter(proc_lock);
641 if (pg_id < 0) {
642 struct proc *p1 = proc_find(-pg_id);
643 if (p1 == NULL) {
644 error = EINVAL;
645 goto fail;
646 }
647 pgrp = p1->p_pgrp;
648 } else {
649 pgrp = pgrp_find(pg_id);
650 if (pgrp == NULL) {
651 error = EINVAL;
652 goto fail;
653 }
654 }
655 session = pgrp->pg_session;
656 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
657 fail:
658 mutex_exit(proc_lock);
659 return error;
660 }
661
662 /*
663 * p_inferior: is p an inferior of q?
664 */
665 static inline bool
666 p_inferior(struct proc *p, struct proc *q)
667 {
668
669 KASSERT(mutex_owned(proc_lock));
670
671 for (; p != q; p = p->p_pptr)
672 if (p->p_pid == 0)
673 return false;
674 return true;
675 }
676
677 /*
678 * proc_find_lwp: locate an lwp in said proc by the ID.
679 *
680 * => Must be called with p::p_lock held.
681 * => LARVAL lwps are not returned because they are only partially
682 * constructed while occupying the slot.
683 * => Callers need to be careful about lwp::l_stat of the returned
684 * lwp.
685 */
686 struct lwp *
687 proc_find_lwp(proc_t *p, pid_t pid)
688 {
689 struct pid_table *pt;
690 struct lwp *l = NULL;
691 uintptr_t slot;
692
693 KASSERT(mutex_owned(p->p_lock));
694 rw_enter(&pid_table_lock, RW_READER);
695 pt = &pid_table[pid & pid_tbl_mask];
696
697 slot = pt->pt_slot;
698 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
699 l = PT_GET_LWP(slot);
700 if (__predict_false(l->l_proc != p || l->l_stat == LSLARVAL)) {
701 l = NULL;
702 }
703 }
704 rw_exit(&pid_table_lock);
705
706 return l;
707 }
708
709 /*
710 * proc_seek_lwpid: locate an lwp by only the ID.
711 *
712 * => This is a specialized interface used for looking up an LWP
713 * without holding a lock on its owner process.
714 * => Callers of this interface MUST provide a separate synchronization
715 * mechanism to ensure the validity of the returned LWP. LARVAL LWPs
716 * are found there, so callers must check for them!
717 * => Only returns LWPs whose ID has not been hidden from us.
718 */
719 struct lwp *
720 proc_seek_lwpid(pid_t pid)
721 {
722 struct pid_table *pt;
723 struct lwp *l = NULL;
724 uintptr_t slot;
725
726 rw_enter(&pid_table_lock, RW_READER);
727 pt = &pid_table[pid & pid_tbl_mask];
728
729 slot = pt->pt_slot;
730 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid &&
731 !PT_HIDDEN(slot))) {
732 l = PT_GET_LWP(slot);
733 }
734 rw_exit(&pid_table_lock);
735
736 return l;
737 }
738
739 /*
740 * proc_hide_lwpid: hide an lwp ID from seekers.
741 */
742 void
743 proc_hide_lwpid(pid_t pid)
744 {
745 struct pid_table *pt;
746 uintptr_t slot;
747
748 rw_enter(&pid_table_lock, RW_WRITER);
749 pt = &pid_table[pid & pid_tbl_mask];
750
751 slot = pt->pt_slot;
752 KASSERT(PT_IS_LWP(slot));
753 KASSERT(pt->pt_pid == pid);
754 pt->pt_slot = PT_SET_HIDDEN(slot);
755
756 rw_exit(&pid_table_lock);
757 }
758
759 /*
760 * proc_find_raw_pid_table_locked: locate a process by the ID.
761 *
762 * => Must be called with proc_lock held and the pid_table_lock
763 * at least held for reading.
764 */
765 static proc_t *
766 proc_find_raw_pid_table_locked(pid_t pid)
767 {
768 struct pid_table *pt;
769 proc_t *p = NULL;
770 uintptr_t slot;
771
772 KASSERT(mutex_owned(proc_lock));
773 pt = &pid_table[pid & pid_tbl_mask];
774
775 slot = pt->pt_slot;
776 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
777 /*
778 * When looking up processes, require a direct match
779 * on the PID assigned to the proc, not just one of
780 * its LWPs.
781 *
782 * N.B. We require lwp::l_proc of LARVAL LWPs to be
783 * valid here.
784 */
785 p = PT_GET_LWP(slot)->l_proc;
786 if (__predict_false(p->p_pid != pid))
787 p = NULL;
788 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
789 p = PT_GET_PROC(slot);
790 }
791 return p;
792 }
793
794 proc_t *
795 proc_find_raw(pid_t pid)
796 {
797 KASSERT(mutex_owned(proc_lock));
798 rw_enter(&pid_table_lock, RW_READER);
799 proc_t *p = proc_find_raw_pid_table_locked(pid);
800 rw_exit(&pid_table_lock);
801 return p;
802 }
803
804 static proc_t *
805 proc_find_pid_table_locked(pid_t pid)
806 {
807 proc_t *p;
808
809 KASSERT(mutex_owned(proc_lock));
810
811 p = proc_find_raw_pid_table_locked(pid);
812 if (__predict_false(p == NULL)) {
813 return NULL;
814 }
815
816 /*
817 * Only allow live processes to be found by PID.
818 * XXX: p_stat might change, since proc unlocked.
819 */
820 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
821 return p;
822 }
823 return NULL;
824 }
825
826 proc_t *
827 proc_find(pid_t pid)
828 {
829 KASSERT(mutex_owned(proc_lock));
830 rw_enter(&pid_table_lock, RW_READER);
831 proc_t *p = proc_find_pid_table_locked(pid);
832 rw_exit(&pid_table_lock);
833 return p;
834 }
835
836 /*
837 * pgrp_find_pid_table_locked: locate a process group by the ID.
838 *
839 * => Must be called with proc_lock held and the pid_table_lock
840 * held at least for reading.
841 */
842 static struct pgrp *
843 pgrp_find_pid_table_locked(pid_t pgid)
844 {
845 struct pgrp *pg;
846
847 KASSERT(mutex_owned(proc_lock));
848
849 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
850
851 /*
852 * Cannot look up a process group that only exists because the
853 * session has not died yet (traditional).
854 */
855 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
856 return NULL;
857 }
858 return pg;
859 }
860
861 struct pgrp *
862 pgrp_find(pid_t pgid)
863 {
864 KASSERT(mutex_owned(proc_lock));
865 rw_enter(&pid_table_lock, RW_READER);
866 struct pgrp *pg = pgrp_find_pid_table_locked(pgid);
867 rw_exit(&pid_table_lock);
868 return pg;
869 }
870
871 static void
872 expand_pid_table(void)
873 {
874 size_t pt_size, tsz;
875 struct pid_table *n_pt, *new_pt;
876 uintptr_t slot;
877 struct pgrp *pgrp;
878 pid_t pid, rpid;
879 u_int i;
880 uint new_pt_mask;
881
882 KASSERT(rw_write_held(&pid_table_lock));
883
884 /* Unlock the pid_table briefly to allocate memory. */
885 pt_size = pid_tbl_mask + 1;
886 rw_exit(&pid_table_lock);
887
888 tsz = pt_size * 2 * sizeof(struct pid_table);
889 new_pt = kmem_alloc(tsz, KM_SLEEP);
890 new_pt_mask = pt_size * 2 - 1;
891
892 rw_enter(&pid_table_lock, RW_WRITER);
893 if (pt_size != pid_tbl_mask + 1) {
894 /* Another process beat us to it... */
895 rw_exit(&pid_table_lock);
896 kmem_free(new_pt, tsz);
897 goto out;
898 }
899
900 /*
901 * Copy entries from old table into new one.
902 * If 'pid' is 'odd' we need to place in the upper half,
903 * even pid's to the lower half.
904 * Free items stay in the low half so we don't have to
905 * fixup the reference to them.
906 * We stuff free items on the front of the freelist
907 * because we can't write to unmodified entries.
908 * Processing the table backwards maintains a semblance
909 * of issuing pid numbers that increase with time.
910 */
911 i = pt_size - 1;
912 n_pt = new_pt + i;
913 for (; ; i--, n_pt--) {
914 slot = pid_table[i].pt_slot;
915 pgrp = pid_table[i].pt_pgrp;
916 if (!PT_VALID(slot)) {
917 /* Up 'use count' so that link is valid */
918 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
919 rpid = 0;
920 slot = PT_SET_FREE(pid);
921 if (pgrp)
922 pid = pgrp->pg_id;
923 } else {
924 pid = pid_table[i].pt_pid;
925 rpid = pid;
926 }
927
928 /* Save entry in appropriate half of table */
929 n_pt[pid & pt_size].pt_slot = slot;
930 n_pt[pid & pt_size].pt_pgrp = pgrp;
931 n_pt[pid & pt_size].pt_pid = rpid;
932
933 /* Put other piece on start of free list */
934 pid = (pid ^ pt_size) & ~pid_tbl_mask;
935 n_pt[pid & pt_size].pt_slot =
936 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
937 n_pt[pid & pt_size].pt_pgrp = 0;
938 n_pt[pid & pt_size].pt_pid = 0;
939
940 next_free_pt = i | (pid & pt_size);
941 if (i == 0)
942 break;
943 }
944
945 /* Save old table size and switch tables */
946 tsz = pt_size * sizeof(struct pid_table);
947 n_pt = pid_table;
948 pid_table = new_pt;
949 pid_tbl_mask = new_pt_mask;
950
951 /*
952 * pid_max starts as PID_MAX (= 30000), once we have 16384
953 * allocated pids we need it to be larger!
954 */
955 if (pid_tbl_mask > PID_MAX) {
956 pid_max = pid_tbl_mask * 2 + 1;
957 pid_alloc_lim |= pid_alloc_lim << 1;
958 } else
959 pid_alloc_lim <<= 1; /* doubles number of free slots... */
960
961 rw_exit(&pid_table_lock);
962 kmem_free(n_pt, tsz);
963
964 out: /* Return with the pid_table_lock held again. */
965 rw_enter(&pid_table_lock, RW_WRITER);
966 }
967
968 struct proc *
969 proc_alloc(void)
970 {
971 struct proc *p;
972
973 p = pool_cache_get(proc_cache, PR_WAITOK);
974 p->p_stat = SIDL; /* protect against others */
975 proc_initspecific(p);
976 kdtrace_proc_ctor(NULL, p);
977
978 /*
979 * Allocate a placeholder in the pid_table. When we create the
980 * first LWP for this process, it will take ownership of the
981 * slot.
982 */
983 if (__predict_false(proc_alloc_pid(p) == -1)) {
984 /* Allocating the PID failed; unwind. */
985 proc_finispecific(p);
986 proc_free_mem(p);
987 p = NULL;
988 }
989 return p;
990 }
991
992 /*
993 * proc_alloc_pid_slot: allocate PID and record the occcupant so that
994 * proc_find_raw() can find it by the PID.
995 */
996 static pid_t __noinline
997 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
998 {
999 struct pid_table *pt;
1000 pid_t pid;
1001 int nxt;
1002
1003 KASSERT(rw_write_held(&pid_table_lock));
1004
1005 for (;;expand_pid_table()) {
1006 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1007 /* ensure pids cycle through 2000+ values */
1008 continue;
1009 }
1010 /*
1011 * The first user process *must* be given PID 1.
1012 * it has already been reserved for us. This
1013 * will be coming in from the proc_alloc() call
1014 * above, and the entry will be usurped later when
1015 * the first user LWP is created.
1016 * XXX this is slightly gross.
1017 */
1018 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1019 p != &proc0)) {
1020 KASSERT(PT_IS_PROC(slot));
1021 pt = &pid_table[1];
1022 pt->pt_slot = slot;
1023 return 1;
1024 }
1025 pt = &pid_table[next_free_pt];
1026 #ifdef DIAGNOSTIC
1027 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1028 panic("proc_alloc: slot busy");
1029 #endif
1030 nxt = PT_NEXT(pt->pt_slot);
1031 if (nxt & pid_tbl_mask)
1032 break;
1033 /* Table full - expand (NB last entry not used....) */
1034 }
1035
1036 /* pid is 'saved use count' + 'size' + entry */
1037 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1038 if ((uint)pid > (uint)pid_max)
1039 pid &= pid_tbl_mask;
1040 next_free_pt = nxt & pid_tbl_mask;
1041
1042 /* Grab table slot */
1043 pt->pt_slot = slot;
1044
1045 KASSERT(pt->pt_pid == 0);
1046 pt->pt_pid = pid;
1047 pid_alloc_cnt++;
1048
1049 return pid;
1050 }
1051
1052 pid_t
1053 proc_alloc_pid(struct proc *p)
1054 {
1055 pid_t pid;
1056
1057 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1058
1059 rw_enter(&pid_table_lock, RW_WRITER);
1060 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1061 if (pid != -1)
1062 p->p_pid = pid;
1063 rw_exit(&pid_table_lock);
1064
1065 return pid;
1066 }
1067
1068 pid_t
1069 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1070 {
1071 struct pid_table *pt;
1072 pid_t pid;
1073
1074 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1075
1076 /*
1077 * If the slot for p->p_pid currently points to the proc,
1078 * then we should usurp this ID for the LWP. This happens
1079 * at least once per process (for the first LWP), and can
1080 * happen again if the first LWP for a process exits and
1081 * before the process creates another.
1082 */
1083 rw_enter(&pid_table_lock, RW_WRITER);
1084 pid = p->p_pid;
1085 pt = &pid_table[pid & pid_tbl_mask];
1086 KASSERT(pt->pt_pid == pid);
1087 if (PT_IS_PROC(pt->pt_slot)) {
1088 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1089 l->l_lid = pid;
1090 pt->pt_slot = PT_SET_LWP(l);
1091 } else {
1092 /* Need to allocate a new slot. */
1093 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1094 if (pid != -1)
1095 l->l_lid = pid;
1096 }
1097 rw_exit(&pid_table_lock);
1098
1099 return pid;
1100 }
1101
1102 static void __noinline
1103 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1104 {
1105 struct pid_table *pt;
1106
1107 rw_enter(&pid_table_lock, RW_WRITER);
1108 pt = &pid_table[pid & pid_tbl_mask];
1109
1110 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1111 KASSERT(pt->pt_pid == pid);
1112
1113 /* save pid use count in slot */
1114 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1115 pt->pt_pid = 0;
1116
1117 if (pt->pt_pgrp == NULL) {
1118 /* link last freed entry onto ours */
1119 pid &= pid_tbl_mask;
1120 pt = &pid_table[last_free_pt];
1121 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1122 pt->pt_pid = 0;
1123 last_free_pt = pid;
1124 pid_alloc_cnt--;
1125 }
1126 rw_exit(&pid_table_lock);
1127 }
1128
1129 /*
1130 * Free a process id - called from proc_free (in kern_exit.c)
1131 *
1132 * Called with the proc_lock held.
1133 */
1134 void
1135 proc_free_pid(pid_t pid)
1136 {
1137 KASSERT(mutex_owned(proc_lock));
1138 proc_free_pid_internal(pid, PT_F_PROC);
1139 }
1140
1141 /*
1142 * Free a process id used by an LWP. If this was the process's
1143 * first LWP, we convert the slot to point to the process; the
1144 * entry will get cleaned up later when the process finishes exiting.
1145 *
1146 * If not, then it's the same as proc_free_pid().
1147 */
1148 void
1149 proc_free_lwpid(struct proc *p, pid_t pid)
1150 {
1151
1152 KASSERT(mutex_owned(p->p_lock));
1153
1154 if (__predict_true(p->p_pid == pid)) {
1155 struct pid_table *pt;
1156
1157 rw_enter(&pid_table_lock, RW_WRITER);
1158 pt = &pid_table[pid & pid_tbl_mask];
1159
1160 KASSERT(pt->pt_pid == pid);
1161 KASSERT(PT_IS_LWP(pt->pt_slot));
1162 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1163
1164 pt->pt_slot = PT_SET_PROC(p);
1165
1166 rw_exit(&pid_table_lock);
1167 return;
1168 }
1169 proc_free_pid_internal(pid, PT_F_LWP);
1170 }
1171
1172 void
1173 proc_free_mem(struct proc *p)
1174 {
1175
1176 kdtrace_proc_dtor(NULL, p);
1177 pool_cache_put(proc_cache, p);
1178 }
1179
1180 /*
1181 * proc_enterpgrp: move p to a new or existing process group (and session).
1182 *
1183 * If we are creating a new pgrp, the pgid should equal
1184 * the calling process' pid.
1185 * If is only valid to enter a process group that is in the session
1186 * of the process.
1187 * Also mksess should only be set if we are creating a process group
1188 *
1189 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1190 */
1191 int
1192 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1193 {
1194 struct pgrp *new_pgrp, *pgrp;
1195 struct session *sess;
1196 struct proc *p;
1197 int rval;
1198 pid_t pg_id = NO_PGID;
1199
1200 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1201
1202 /* Allocate data areas we might need before doing any validity checks */
1203 rw_enter(&pid_table_lock, RW_READER);/* Because pid_table might change */
1204 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
1205 rw_exit(&pid_table_lock);
1206 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1207 } else {
1208 rw_exit(&pid_table_lock);
1209 new_pgrp = NULL;
1210 }
1211 mutex_enter(proc_lock);
1212 rw_enter(&pid_table_lock, RW_WRITER);
1213 rval = EPERM; /* most common error (to save typing) */
1214
1215 /* Check pgrp exists or can be created */
1216 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1217 if (pgrp != NULL && pgrp->pg_id != pgid)
1218 goto done;
1219
1220 /* Can only set another process under restricted circumstances. */
1221 if (pid != curp->p_pid) {
1222 /* Must exist and be one of our children... */
1223 p = proc_find_pid_table_locked(pid);
1224 if (p == NULL || !p_inferior(p, curp)) {
1225 rval = ESRCH;
1226 goto done;
1227 }
1228 /* ... in the same session... */
1229 if (sess != NULL || p->p_session != curp->p_session)
1230 goto done;
1231 /* ... existing pgid must be in same session ... */
1232 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1233 goto done;
1234 /* ... and not done an exec. */
1235 if (p->p_flag & PK_EXEC) {
1236 rval = EACCES;
1237 goto done;
1238 }
1239 } else {
1240 /* ... setsid() cannot re-enter a pgrp */
1241 if (mksess && (curp->p_pgid == curp->p_pid ||
1242 pgrp_find_pid_table_locked(curp->p_pid)))
1243 goto done;
1244 p = curp;
1245 }
1246
1247 /* Changing the process group/session of a session
1248 leader is definitely off limits. */
1249 if (SESS_LEADER(p)) {
1250 if (sess == NULL && p->p_pgrp == pgrp)
1251 /* unless it's a definite noop */
1252 rval = 0;
1253 goto done;
1254 }
1255
1256 /* Can only create a process group with id of process */
1257 if (pgrp == NULL && pgid != pid)
1258 goto done;
1259
1260 /* Can only create a session if creating pgrp */
1261 if (sess != NULL && pgrp != NULL)
1262 goto done;
1263
1264 /* Check we allocated memory for a pgrp... */
1265 if (pgrp == NULL && new_pgrp == NULL)
1266 goto done;
1267
1268 /* Don't attach to 'zombie' pgrp */
1269 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1270 goto done;
1271
1272 /* Expect to succeed now */
1273 rval = 0;
1274
1275 if (pgrp == p->p_pgrp)
1276 /* nothing to do */
1277 goto done;
1278
1279 /* Ok all setup, link up required structures */
1280
1281 if (pgrp == NULL) {
1282 pgrp = new_pgrp;
1283 new_pgrp = NULL;
1284 if (sess != NULL) {
1285 sess->s_sid = p->p_pid;
1286 sess->s_leader = p;
1287 sess->s_count = 1;
1288 sess->s_ttyvp = NULL;
1289 sess->s_ttyp = NULL;
1290 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1291 memcpy(sess->s_login, p->p_session->s_login,
1292 sizeof(sess->s_login));
1293 p->p_lflag &= ~PL_CONTROLT;
1294 } else {
1295 sess = p->p_pgrp->pg_session;
1296 proc_sesshold(sess);
1297 }
1298 pgrp->pg_session = sess;
1299 sess = NULL;
1300
1301 pgrp->pg_id = pgid;
1302 LIST_INIT(&pgrp->pg_members);
1303 #ifdef DIAGNOSTIC
1304 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1305 panic("enterpgrp: pgrp table slot in use");
1306 if (__predict_false(mksess && p != curp))
1307 panic("enterpgrp: mksession and p != curproc");
1308 #endif
1309 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1310 pgrp->pg_jobc = 0;
1311 }
1312
1313 /*
1314 * Adjust eligibility of affected pgrps to participate in job control.
1315 * Increment eligibility counts before decrementing, otherwise we
1316 * could reach 0 spuriously during the first call.
1317 */
1318 fixjobc(p, pgrp, 1);
1319 fixjobc(p, p->p_pgrp, 0);
1320
1321 /* Interlock with ttread(). */
1322 mutex_spin_enter(&tty_lock);
1323
1324 /* Move process to requested group. */
1325 LIST_REMOVE(p, p_pglist);
1326 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1327 /* defer delete until we've dumped the lock */
1328 pg_id = p->p_pgrp->pg_id;
1329 p->p_pgrp = pgrp;
1330 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1331
1332 /* Done with the swap; we can release the tty mutex. */
1333 mutex_spin_exit(&tty_lock);
1334
1335 done:
1336 rw_exit(&pid_table_lock);
1337 if (pg_id != NO_PGID) {
1338 /* Releases proc_lock. */
1339 pg_delete(pg_id);
1340 } else {
1341 mutex_exit(proc_lock);
1342 }
1343 if (sess != NULL)
1344 kmem_free(sess, sizeof(*sess));
1345 if (new_pgrp != NULL)
1346 kmem_free(new_pgrp, sizeof(*new_pgrp));
1347 #ifdef DEBUG_PGRP
1348 if (__predict_false(rval))
1349 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1350 pid, pgid, mksess, curp->p_pid, rval);
1351 #endif
1352 return rval;
1353 }
1354
1355 /*
1356 * proc_leavepgrp: remove a process from its process group.
1357 * => must be called with the proc_lock held, which will be released;
1358 */
1359 void
1360 proc_leavepgrp(struct proc *p)
1361 {
1362 struct pgrp *pgrp;
1363
1364 KASSERT(mutex_owned(proc_lock));
1365
1366 /* Interlock with ttread() */
1367 mutex_spin_enter(&tty_lock);
1368 pgrp = p->p_pgrp;
1369 LIST_REMOVE(p, p_pglist);
1370 p->p_pgrp = NULL;
1371 mutex_spin_exit(&tty_lock);
1372
1373 if (LIST_EMPTY(&pgrp->pg_members)) {
1374 /* Releases proc_lock. */
1375 pg_delete(pgrp->pg_id);
1376 } else {
1377 mutex_exit(proc_lock);
1378 }
1379 }
1380
1381 /*
1382 * pg_remove: remove a process group from the table.
1383 * => must be called with the proc_lock held;
1384 * => returns process group to free;
1385 */
1386 static struct pgrp *
1387 pg_remove(pid_t pg_id)
1388 {
1389 struct pgrp *pgrp;
1390 struct pid_table *pt;
1391
1392 KASSERT(mutex_owned(proc_lock));
1393 KASSERT(rw_write_held(&pid_table_lock));
1394
1395 pt = &pid_table[pg_id & pid_tbl_mask];
1396 pgrp = pt->pt_pgrp;
1397
1398 KASSERT(pgrp != NULL);
1399 KASSERT(pgrp->pg_id == pg_id);
1400 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1401
1402 pt->pt_pgrp = NULL;
1403
1404 if (!PT_VALID(pt->pt_slot)) {
1405 /* Orphaned pgrp, put slot onto free list. */
1406 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1407 pg_id &= pid_tbl_mask;
1408 pt = &pid_table[last_free_pt];
1409 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1410 KASSERT(pt->pt_pid == 0);
1411 last_free_pt = pg_id;
1412 pid_alloc_cnt--;
1413 }
1414 return pgrp;
1415 }
1416
1417 /*
1418 * pg_delete: delete and free a process group.
1419 * => must be called with the proc_lock held, which will be released.
1420 */
1421 static void
1422 pg_delete(pid_t pg_id)
1423 {
1424 struct pgrp *pg;
1425 struct tty *ttyp;
1426 struct session *ss;
1427
1428 KASSERT(mutex_owned(proc_lock));
1429
1430 rw_enter(&pid_table_lock, RW_WRITER);
1431 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1432 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1433 rw_exit(&pid_table_lock);
1434 mutex_exit(proc_lock);
1435 return;
1436 }
1437
1438 ss = pg->pg_session;
1439
1440 /* Remove reference (if any) from tty to this process group */
1441 mutex_spin_enter(&tty_lock);
1442 ttyp = ss->s_ttyp;
1443 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1444 ttyp->t_pgrp = NULL;
1445 KASSERT(ttyp->t_session == ss);
1446 }
1447 mutex_spin_exit(&tty_lock);
1448
1449 /*
1450 * The leading process group in a session is freed by
1451 * proc_sessrele_pid_table_write_locked(), if last
1452 * reference. It will also release the locks.
1453 */
1454 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1455 proc_sessrele_pid_table_write_locked(ss);
1456
1457 if (pg != NULL) {
1458 /* Free it, if was not done above. */
1459 kmem_free(pg, sizeof(struct pgrp));
1460 }
1461 }
1462
1463 /*
1464 * Adjust pgrp jobc counters when specified process changes process group.
1465 * We count the number of processes in each process group that "qualify"
1466 * the group for terminal job control (those with a parent in a different
1467 * process group of the same session). If that count reaches zero, the
1468 * process group becomes orphaned. Check both the specified process'
1469 * process group and that of its children.
1470 * entering == 0 => p is leaving specified group.
1471 * entering == 1 => p is entering specified group.
1472 *
1473 * Call with proc_lock held.
1474 */
1475 void
1476 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1477 {
1478 struct pgrp *hispgrp;
1479 struct session *mysession = pgrp->pg_session;
1480 struct proc *child;
1481
1482 KASSERT(mutex_owned(proc_lock));
1483
1484 /*
1485 * Check p's parent to see whether p qualifies its own process
1486 * group; if so, adjust count for p's process group.
1487 */
1488 hispgrp = p->p_pptr->p_pgrp;
1489 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1490 if (entering) {
1491 pgrp->pg_jobc++;
1492 p->p_lflag &= ~PL_ORPHANPG;
1493 } else {
1494 KASSERT(pgrp->pg_jobc > 0);
1495 if (--pgrp->pg_jobc == 0)
1496 orphanpg(pgrp);
1497 }
1498 }
1499
1500 /*
1501 * Check this process' children to see whether they qualify
1502 * their process groups; if so, adjust counts for children's
1503 * process groups.
1504 */
1505 LIST_FOREACH(child, &p->p_children, p_sibling) {
1506 hispgrp = child->p_pgrp;
1507 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1508 !P_ZOMBIE(child)) {
1509 if (entering) {
1510 child->p_lflag &= ~PL_ORPHANPG;
1511 hispgrp->pg_jobc++;
1512 } else {
1513 KASSERT(hispgrp->pg_jobc > 0);
1514 if (--hispgrp->pg_jobc == 0)
1515 orphanpg(hispgrp);
1516 }
1517 }
1518 }
1519 }
1520
1521 /*
1522 * A process group has become orphaned;
1523 * if there are any stopped processes in the group,
1524 * hang-up all process in that group.
1525 *
1526 * Call with proc_lock held.
1527 */
1528 static void
1529 orphanpg(struct pgrp *pg)
1530 {
1531 struct proc *p;
1532
1533 KASSERT(mutex_owned(proc_lock));
1534
1535 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1536 if (p->p_stat == SSTOP) {
1537 p->p_lflag |= PL_ORPHANPG;
1538 psignal(p, SIGHUP);
1539 psignal(p, SIGCONT);
1540 }
1541 }
1542 }
1543
1544 #ifdef DDB
1545 #include <ddb/db_output.h>
1546 void pidtbl_dump(void);
1547 void
1548 pidtbl_dump(void)
1549 {
1550 struct pid_table *pt;
1551 struct proc *p;
1552 struct pgrp *pgrp;
1553 uintptr_t slot;
1554 int id;
1555
1556 db_printf("pid table %p size %x, next %x, last %x\n",
1557 pid_table, pid_tbl_mask+1,
1558 next_free_pt, last_free_pt);
1559 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1560 slot = pt->pt_slot;
1561 if (!PT_VALID(slot) && !pt->pt_pgrp)
1562 continue;
1563 if (PT_IS_LWP(slot)) {
1564 p = PT_GET_LWP(slot)->l_proc;
1565 } else if (PT_IS_PROC(slot)) {
1566 p = PT_GET_PROC(slot);
1567 } else {
1568 p = NULL;
1569 }
1570 db_printf(" id %x: ", id);
1571 if (p != NULL)
1572 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1573 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1574 else
1575 db_printf("next %x use %x\n",
1576 PT_NEXT(slot) & pid_tbl_mask,
1577 PT_NEXT(slot) & ~pid_tbl_mask);
1578 if ((pgrp = pt->pt_pgrp)) {
1579 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1580 pgrp->pg_session, pgrp->pg_session->s_sid,
1581 pgrp->pg_session->s_count,
1582 pgrp->pg_session->s_login);
1583 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1584 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1585 LIST_FIRST(&pgrp->pg_members));
1586 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1587 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1588 p->p_pid, p, p->p_pgrp, p->p_comm);
1589 }
1590 }
1591 }
1592 }
1593 #endif /* DDB */
1594
1595 #ifdef KSTACK_CHECK_MAGIC
1596
1597 #define KSTACK_MAGIC 0xdeadbeaf
1598
1599 /* XXX should be per process basis? */
1600 static int kstackleftmin = KSTACK_SIZE;
1601 static int kstackleftthres = KSTACK_SIZE / 8;
1602
1603 void
1604 kstack_setup_magic(const struct lwp *l)
1605 {
1606 uint32_t *ip;
1607 uint32_t const *end;
1608
1609 KASSERT(l != NULL);
1610 KASSERT(l != &lwp0);
1611
1612 /*
1613 * fill all the stack with magic number
1614 * so that later modification on it can be detected.
1615 */
1616 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1617 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1618 for (; ip < end; ip++) {
1619 *ip = KSTACK_MAGIC;
1620 }
1621 }
1622
1623 void
1624 kstack_check_magic(const struct lwp *l)
1625 {
1626 uint32_t const *ip, *end;
1627 int stackleft;
1628
1629 KASSERT(l != NULL);
1630
1631 /* don't check proc0 */ /*XXX*/
1632 if (l == &lwp0)
1633 return;
1634
1635 #ifdef __MACHINE_STACK_GROWS_UP
1636 /* stack grows upwards (eg. hppa) */
1637 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1638 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1639 for (ip--; ip >= end; ip--)
1640 if (*ip != KSTACK_MAGIC)
1641 break;
1642
1643 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1644 #else /* __MACHINE_STACK_GROWS_UP */
1645 /* stack grows downwards (eg. i386) */
1646 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1647 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1648 for (; ip < end; ip++)
1649 if (*ip != KSTACK_MAGIC)
1650 break;
1651
1652 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1653 #endif /* __MACHINE_STACK_GROWS_UP */
1654
1655 if (kstackleftmin > stackleft) {
1656 kstackleftmin = stackleft;
1657 if (stackleft < kstackleftthres)
1658 printf("warning: kernel stack left %d bytes"
1659 "(pid %u:lid %u)\n", stackleft,
1660 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1661 }
1662
1663 if (stackleft <= 0) {
1664 panic("magic on the top of kernel stack changed for "
1665 "pid %u, lid %u: maybe kernel stack overflow",
1666 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1667 }
1668 }
1669 #endif /* KSTACK_CHECK_MAGIC */
1670
1671 int
1672 proclist_foreach_call(struct proclist *list,
1673 int (*callback)(struct proc *, void *arg), void *arg)
1674 {
1675 struct proc marker;
1676 struct proc *p;
1677 int ret = 0;
1678
1679 marker.p_flag = PK_MARKER;
1680 mutex_enter(proc_lock);
1681 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1682 if (p->p_flag & PK_MARKER) {
1683 p = LIST_NEXT(p, p_list);
1684 continue;
1685 }
1686 LIST_INSERT_AFTER(p, &marker, p_list);
1687 ret = (*callback)(p, arg);
1688 KASSERT(mutex_owned(proc_lock));
1689 p = LIST_NEXT(&marker, p_list);
1690 LIST_REMOVE(&marker, p_list);
1691 }
1692 mutex_exit(proc_lock);
1693
1694 return ret;
1695 }
1696
1697 int
1698 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1699 {
1700
1701 /* XXXCDC: how should locking work here? */
1702
1703 /* curproc exception is for coredump. */
1704
1705 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1706 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1707 return EFAULT;
1708 }
1709
1710 uvmspace_addref(p->p_vmspace);
1711 *vm = p->p_vmspace;
1712
1713 return 0;
1714 }
1715
1716 /*
1717 * Acquire a write lock on the process credential.
1718 */
1719 void
1720 proc_crmod_enter(void)
1721 {
1722 struct lwp *l = curlwp;
1723 struct proc *p = l->l_proc;
1724 kauth_cred_t oc;
1725
1726 /* Reset what needs to be reset in plimit. */
1727 if (p->p_limit->pl_corename != defcorename) {
1728 lim_setcorename(p, defcorename, 0);
1729 }
1730
1731 mutex_enter(p->p_lock);
1732
1733 /* Ensure the LWP cached credentials are up to date. */
1734 if ((oc = l->l_cred) != p->p_cred) {
1735 kauth_cred_hold(p->p_cred);
1736 l->l_cred = p->p_cred;
1737 kauth_cred_free(oc);
1738 }
1739 }
1740
1741 /*
1742 * Set in a new process credential, and drop the write lock. The credential
1743 * must have a reference already. Optionally, free a no-longer required
1744 * credential. The scheduler also needs to inspect p_cred, so we also
1745 * briefly acquire the sched state mutex.
1746 */
1747 void
1748 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1749 {
1750 struct lwp *l = curlwp, *l2;
1751 struct proc *p = l->l_proc;
1752 kauth_cred_t oc;
1753
1754 KASSERT(mutex_owned(p->p_lock));
1755
1756 /* Is there a new credential to set in? */
1757 if (scred != NULL) {
1758 p->p_cred = scred;
1759 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1760 if (l2 != l)
1761 l2->l_prflag |= LPR_CRMOD;
1762 }
1763
1764 /* Ensure the LWP cached credentials are up to date. */
1765 if ((oc = l->l_cred) != scred) {
1766 kauth_cred_hold(scred);
1767 l->l_cred = scred;
1768 }
1769 } else
1770 oc = NULL; /* XXXgcc */
1771
1772 if (sugid) {
1773 /*
1774 * Mark process as having changed credentials, stops
1775 * tracing etc.
1776 */
1777 p->p_flag |= PK_SUGID;
1778 }
1779
1780 mutex_exit(p->p_lock);
1781
1782 /* If there is a credential to be released, free it now. */
1783 if (fcred != NULL) {
1784 KASSERT(scred != NULL);
1785 kauth_cred_free(fcred);
1786 if (oc != scred)
1787 kauth_cred_free(oc);
1788 }
1789 }
1790
1791 /*
1792 * proc_specific_key_create --
1793 * Create a key for subsystem proc-specific data.
1794 */
1795 int
1796 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1797 {
1798
1799 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1800 }
1801
1802 /*
1803 * proc_specific_key_delete --
1804 * Delete a key for subsystem proc-specific data.
1805 */
1806 void
1807 proc_specific_key_delete(specificdata_key_t key)
1808 {
1809
1810 specificdata_key_delete(proc_specificdata_domain, key);
1811 }
1812
1813 /*
1814 * proc_initspecific --
1815 * Initialize a proc's specificdata container.
1816 */
1817 void
1818 proc_initspecific(struct proc *p)
1819 {
1820 int error __diagused;
1821
1822 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1823 KASSERT(error == 0);
1824 }
1825
1826 /*
1827 * proc_finispecific --
1828 * Finalize a proc's specificdata container.
1829 */
1830 void
1831 proc_finispecific(struct proc *p)
1832 {
1833
1834 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1835 }
1836
1837 /*
1838 * proc_getspecific --
1839 * Return proc-specific data corresponding to the specified key.
1840 */
1841 void *
1842 proc_getspecific(struct proc *p, specificdata_key_t key)
1843 {
1844
1845 return (specificdata_getspecific(proc_specificdata_domain,
1846 &p->p_specdataref, key));
1847 }
1848
1849 /*
1850 * proc_setspecific --
1851 * Set proc-specific data corresponding to the specified key.
1852 */
1853 void
1854 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1855 {
1856
1857 specificdata_setspecific(proc_specificdata_domain,
1858 &p->p_specdataref, key, data);
1859 }
1860
1861 int
1862 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1863 {
1864 int r = 0;
1865
1866 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1867 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1868 /*
1869 * suid proc of ours or proc not ours
1870 */
1871 r = EPERM;
1872 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1873 /*
1874 * sgid proc has sgid back to us temporarily
1875 */
1876 r = EPERM;
1877 } else {
1878 /*
1879 * our rgid must be in target's group list (ie,
1880 * sub-processes started by a sgid process)
1881 */
1882 int ismember = 0;
1883
1884 if (kauth_cred_ismember_gid(cred,
1885 kauth_cred_getgid(target), &ismember) != 0 ||
1886 !ismember)
1887 r = EPERM;
1888 }
1889
1890 return (r);
1891 }
1892
1893 /*
1894 * sysctl stuff
1895 */
1896
1897 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1898
1899 static const u_int sysctl_flagmap[] = {
1900 PK_ADVLOCK, P_ADVLOCK,
1901 PK_EXEC, P_EXEC,
1902 PK_NOCLDWAIT, P_NOCLDWAIT,
1903 PK_32, P_32,
1904 PK_CLDSIGIGN, P_CLDSIGIGN,
1905 PK_SUGID, P_SUGID,
1906 0
1907 };
1908
1909 static const u_int sysctl_sflagmap[] = {
1910 PS_NOCLDSTOP, P_NOCLDSTOP,
1911 PS_WEXIT, P_WEXIT,
1912 PS_STOPFORK, P_STOPFORK,
1913 PS_STOPEXEC, P_STOPEXEC,
1914 PS_STOPEXIT, P_STOPEXIT,
1915 0
1916 };
1917
1918 static const u_int sysctl_slflagmap[] = {
1919 PSL_TRACED, P_TRACED,
1920 PSL_CHTRACED, P_CHTRACED,
1921 PSL_SYSCALL, P_SYSCALL,
1922 0
1923 };
1924
1925 static const u_int sysctl_lflagmap[] = {
1926 PL_CONTROLT, P_CONTROLT,
1927 PL_PPWAIT, P_PPWAIT,
1928 0
1929 };
1930
1931 static const u_int sysctl_stflagmap[] = {
1932 PST_PROFIL, P_PROFIL,
1933 0
1934
1935 };
1936
1937 /* used by kern_lwp also */
1938 const u_int sysctl_lwpflagmap[] = {
1939 LW_SINTR, L_SINTR,
1940 LW_SYSTEM, L_SYSTEM,
1941 0
1942 };
1943
1944 /*
1945 * Find the most ``active'' lwp of a process and return it for ps display
1946 * purposes
1947 */
1948 static struct lwp *
1949 proc_active_lwp(struct proc *p)
1950 {
1951 static const int ostat[] = {
1952 0,
1953 2, /* LSIDL */
1954 6, /* LSRUN */
1955 5, /* LSSLEEP */
1956 4, /* LSSTOP */
1957 0, /* LSZOMB */
1958 1, /* LSDEAD */
1959 7, /* LSONPROC */
1960 3 /* LSSUSPENDED */
1961 };
1962
1963 struct lwp *l, *lp = NULL;
1964 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1965 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
1966 if (lp == NULL ||
1967 ostat[l->l_stat] > ostat[lp->l_stat] ||
1968 (ostat[l->l_stat] == ostat[lp->l_stat] &&
1969 l->l_cpticks > lp->l_cpticks)) {
1970 lp = l;
1971 continue;
1972 }
1973 }
1974 return lp;
1975 }
1976
1977 static int
1978 sysctl_doeproc(SYSCTLFN_ARGS)
1979 {
1980 union {
1981 struct kinfo_proc kproc;
1982 struct kinfo_proc2 kproc2;
1983 } *kbuf;
1984 struct proc *p, *next, *marker;
1985 char *where, *dp;
1986 int type, op, arg, error;
1987 u_int elem_size, kelem_size, elem_count;
1988 size_t buflen, needed;
1989 bool match, zombie, mmmbrains;
1990 const bool allowaddr = get_expose_address(curproc);
1991
1992 if (namelen == 1 && name[0] == CTL_QUERY)
1993 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1994
1995 dp = where = oldp;
1996 buflen = where != NULL ? *oldlenp : 0;
1997 error = 0;
1998 needed = 0;
1999 type = rnode->sysctl_num;
2000
2001 if (type == KERN_PROC) {
2002 if (namelen == 0)
2003 return EINVAL;
2004 switch (op = name[0]) {
2005 case KERN_PROC_ALL:
2006 if (namelen != 1)
2007 return EINVAL;
2008 arg = 0;
2009 break;
2010 default:
2011 if (namelen != 2)
2012 return EINVAL;
2013 arg = name[1];
2014 break;
2015 }
2016 elem_count = 0; /* Hush little compiler, don't you cry */
2017 kelem_size = elem_size = sizeof(kbuf->kproc);
2018 } else {
2019 if (namelen != 4)
2020 return EINVAL;
2021 op = name[0];
2022 arg = name[1];
2023 elem_size = name[2];
2024 elem_count = name[3];
2025 kelem_size = sizeof(kbuf->kproc2);
2026 }
2027
2028 sysctl_unlock();
2029
2030 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2031 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2032 marker->p_flag = PK_MARKER;
2033
2034 mutex_enter(proc_lock);
2035 /*
2036 * Start with zombies to prevent reporting processes twice, in case they
2037 * are dying and being moved from the list of alive processes to zombies.
2038 */
2039 mmmbrains = true;
2040 for (p = LIST_FIRST(&zombproc);; p = next) {
2041 if (p == NULL) {
2042 if (mmmbrains) {
2043 p = LIST_FIRST(&allproc);
2044 mmmbrains = false;
2045 }
2046 if (p == NULL)
2047 break;
2048 }
2049 next = LIST_NEXT(p, p_list);
2050 if ((p->p_flag & PK_MARKER) != 0)
2051 continue;
2052
2053 /*
2054 * Skip embryonic processes.
2055 */
2056 if (p->p_stat == SIDL)
2057 continue;
2058
2059 mutex_enter(p->p_lock);
2060 error = kauth_authorize_process(l->l_cred,
2061 KAUTH_PROCESS_CANSEE, p,
2062 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2063 if (error != 0) {
2064 mutex_exit(p->p_lock);
2065 continue;
2066 }
2067
2068 /*
2069 * Hande all the operations in one switch on the cost of
2070 * algorithm complexity is on purpose. The win splitting this
2071 * function into several similar copies makes maintenance burden
2072 * burden, code grow and boost is neglible in practical systems.
2073 */
2074 switch (op) {
2075 case KERN_PROC_PID:
2076 match = (p->p_pid == (pid_t)arg);
2077 break;
2078
2079 case KERN_PROC_PGRP:
2080 match = (p->p_pgrp->pg_id == (pid_t)arg);
2081 break;
2082
2083 case KERN_PROC_SESSION:
2084 match = (p->p_session->s_sid == (pid_t)arg);
2085 break;
2086
2087 case KERN_PROC_TTY:
2088 match = true;
2089 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2090 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2091 p->p_session->s_ttyp == NULL ||
2092 p->p_session->s_ttyvp != NULL) {
2093 match = false;
2094 }
2095 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2096 p->p_session->s_ttyp == NULL) {
2097 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2098 match = false;
2099 }
2100 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2101 match = false;
2102 }
2103 break;
2104
2105 case KERN_PROC_UID:
2106 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2107 break;
2108
2109 case KERN_PROC_RUID:
2110 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2111 break;
2112
2113 case KERN_PROC_GID:
2114 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2115 break;
2116
2117 case KERN_PROC_RGID:
2118 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2119 break;
2120
2121 case KERN_PROC_ALL:
2122 match = true;
2123 /* allow everything */
2124 break;
2125
2126 default:
2127 error = EINVAL;
2128 mutex_exit(p->p_lock);
2129 goto cleanup;
2130 }
2131 if (!match) {
2132 mutex_exit(p->p_lock);
2133 continue;
2134 }
2135
2136 /*
2137 * Grab a hold on the process.
2138 */
2139 if (mmmbrains) {
2140 zombie = true;
2141 } else {
2142 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2143 }
2144 if (zombie) {
2145 LIST_INSERT_AFTER(p, marker, p_list);
2146 }
2147
2148 if (buflen >= elem_size &&
2149 (type == KERN_PROC || elem_count > 0)) {
2150 ruspace(p); /* Update process vm resource use */
2151
2152 if (type == KERN_PROC) {
2153 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2154 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2155 allowaddr);
2156 } else {
2157 fill_kproc2(p, &kbuf->kproc2, zombie,
2158 allowaddr);
2159 elem_count--;
2160 }
2161 mutex_exit(p->p_lock);
2162 mutex_exit(proc_lock);
2163 /*
2164 * Copy out elem_size, but not larger than kelem_size
2165 */
2166 error = sysctl_copyout(l, kbuf, dp,
2167 uimin(kelem_size, elem_size));
2168 mutex_enter(proc_lock);
2169 if (error) {
2170 goto bah;
2171 }
2172 dp += elem_size;
2173 buflen -= elem_size;
2174 } else {
2175 mutex_exit(p->p_lock);
2176 }
2177 needed += elem_size;
2178
2179 /*
2180 * Release reference to process.
2181 */
2182 if (zombie) {
2183 next = LIST_NEXT(marker, p_list);
2184 LIST_REMOVE(marker, p_list);
2185 } else {
2186 rw_exit(&p->p_reflock);
2187 next = LIST_NEXT(p, p_list);
2188 }
2189
2190 /*
2191 * Short-circuit break quickly!
2192 */
2193 if (op == KERN_PROC_PID)
2194 break;
2195 }
2196 mutex_exit(proc_lock);
2197
2198 if (where != NULL) {
2199 *oldlenp = dp - where;
2200 if (needed > *oldlenp) {
2201 error = ENOMEM;
2202 goto out;
2203 }
2204 } else {
2205 needed += KERN_PROCSLOP;
2206 *oldlenp = needed;
2207 }
2208 kmem_free(kbuf, sizeof(*kbuf));
2209 kmem_free(marker, sizeof(*marker));
2210 sysctl_relock();
2211 return 0;
2212 bah:
2213 if (zombie)
2214 LIST_REMOVE(marker, p_list);
2215 else
2216 rw_exit(&p->p_reflock);
2217 cleanup:
2218 mutex_exit(proc_lock);
2219 out:
2220 kmem_free(kbuf, sizeof(*kbuf));
2221 kmem_free(marker, sizeof(*marker));
2222 sysctl_relock();
2223 return error;
2224 }
2225
2226 int
2227 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2228 {
2229 #if !defined(_RUMPKERNEL)
2230 int retval;
2231
2232 if (p->p_flag & PK_32) {
2233 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2234 enosys(), retval);
2235 return retval;
2236 }
2237 #endif /* !defined(_RUMPKERNEL) */
2238
2239 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2240 }
2241
2242 static int
2243 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2244 {
2245 void **cookie = cookie_;
2246 struct lwp *l = cookie[0];
2247 char *dst = cookie[1];
2248
2249 return sysctl_copyout(l, src, dst + off, len);
2250 }
2251
2252 /*
2253 * sysctl helper routine for kern.proc_args pseudo-subtree.
2254 */
2255 static int
2256 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2257 {
2258 struct ps_strings pss;
2259 struct proc *p;
2260 pid_t pid;
2261 int type, error;
2262 void *cookie[2];
2263
2264 if (namelen == 1 && name[0] == CTL_QUERY)
2265 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2266
2267 if (newp != NULL || namelen != 2)
2268 return (EINVAL);
2269 pid = name[0];
2270 type = name[1];
2271
2272 switch (type) {
2273 case KERN_PROC_PATHNAME:
2274 sysctl_unlock();
2275 error = fill_pathname(l, pid, oldp, oldlenp);
2276 sysctl_relock();
2277 return error;
2278
2279 case KERN_PROC_CWD:
2280 sysctl_unlock();
2281 error = fill_cwd(l, pid, oldp, oldlenp);
2282 sysctl_relock();
2283 return error;
2284
2285 case KERN_PROC_ARGV:
2286 case KERN_PROC_NARGV:
2287 case KERN_PROC_ENV:
2288 case KERN_PROC_NENV:
2289 /* ok */
2290 break;
2291 default:
2292 return (EINVAL);
2293 }
2294
2295 sysctl_unlock();
2296
2297 /* check pid */
2298 mutex_enter(proc_lock);
2299 if ((p = proc_find(pid)) == NULL) {
2300 error = EINVAL;
2301 goto out_locked;
2302 }
2303 mutex_enter(p->p_lock);
2304
2305 /* Check permission. */
2306 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2307 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2308 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2309 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2310 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2311 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2312 else
2313 error = EINVAL; /* XXXGCC */
2314 if (error) {
2315 mutex_exit(p->p_lock);
2316 goto out_locked;
2317 }
2318
2319 if (oldp == NULL) {
2320 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2321 *oldlenp = sizeof (int);
2322 else
2323 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2324 error = 0;
2325 mutex_exit(p->p_lock);
2326 goto out_locked;
2327 }
2328
2329 /*
2330 * Zombies don't have a stack, so we can't read their psstrings.
2331 * System processes also don't have a user stack.
2332 */
2333 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2334 error = EINVAL;
2335 mutex_exit(p->p_lock);
2336 goto out_locked;
2337 }
2338
2339 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2340 mutex_exit(p->p_lock);
2341 if (error) {
2342 goto out_locked;
2343 }
2344 mutex_exit(proc_lock);
2345
2346 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2347 int value;
2348 if ((error = copyin_psstrings(p, &pss)) == 0) {
2349 if (type == KERN_PROC_NARGV)
2350 value = pss.ps_nargvstr;
2351 else
2352 value = pss.ps_nenvstr;
2353 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2354 *oldlenp = sizeof(value);
2355 }
2356 } else {
2357 cookie[0] = l;
2358 cookie[1] = oldp;
2359 error = copy_procargs(p, type, oldlenp,
2360 copy_procargs_sysctl_cb, cookie);
2361 }
2362 rw_exit(&p->p_reflock);
2363 sysctl_relock();
2364 return error;
2365
2366 out_locked:
2367 mutex_exit(proc_lock);
2368 sysctl_relock();
2369 return error;
2370 }
2371
2372 int
2373 copy_procargs(struct proc *p, int oid, size_t *limit,
2374 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2375 {
2376 struct ps_strings pss;
2377 size_t len, i, loaded, entry_len;
2378 struct uio auio;
2379 struct iovec aiov;
2380 int error, argvlen;
2381 char *arg;
2382 char **argv;
2383 vaddr_t user_argv;
2384 struct vmspace *vmspace;
2385
2386 /*
2387 * Allocate a temporary buffer to hold the argument vector and
2388 * the arguments themselve.
2389 */
2390 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2391 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2392
2393 /*
2394 * Lock the process down in memory.
2395 */
2396 vmspace = p->p_vmspace;
2397 uvmspace_addref(vmspace);
2398
2399 /*
2400 * Read in the ps_strings structure.
2401 */
2402 if ((error = copyin_psstrings(p, &pss)) != 0)
2403 goto done;
2404
2405 /*
2406 * Now read the address of the argument vector.
2407 */
2408 switch (oid) {
2409 case KERN_PROC_ARGV:
2410 user_argv = (uintptr_t)pss.ps_argvstr;
2411 argvlen = pss.ps_nargvstr;
2412 break;
2413 case KERN_PROC_ENV:
2414 user_argv = (uintptr_t)pss.ps_envstr;
2415 argvlen = pss.ps_nenvstr;
2416 break;
2417 default:
2418 error = EINVAL;
2419 goto done;
2420 }
2421
2422 if (argvlen < 0) {
2423 error = EIO;
2424 goto done;
2425 }
2426
2427
2428 /*
2429 * Now copy each string.
2430 */
2431 len = 0; /* bytes written to user buffer */
2432 loaded = 0; /* bytes from argv already processed */
2433 i = 0; /* To make compiler happy */
2434 entry_len = PROC_PTRSZ(p);
2435
2436 for (; argvlen; --argvlen) {
2437 int finished = 0;
2438 vaddr_t base;
2439 size_t xlen;
2440 int j;
2441
2442 if (loaded == 0) {
2443 size_t rem = entry_len * argvlen;
2444 loaded = MIN(rem, PAGE_SIZE);
2445 error = copyin_vmspace(vmspace,
2446 (const void *)user_argv, argv, loaded);
2447 if (error)
2448 break;
2449 user_argv += loaded;
2450 i = 0;
2451 }
2452
2453 #if !defined(_RUMPKERNEL)
2454 if (p->p_flag & PK_32)
2455 MODULE_HOOK_CALL(kern_proc32_base_hook,
2456 (argv, i++), 0, base);
2457 else
2458 #endif /* !defined(_RUMPKERNEL) */
2459 base = (vaddr_t)argv[i++];
2460 loaded -= entry_len;
2461
2462 /*
2463 * The program has messed around with its arguments,
2464 * possibly deleting some, and replacing them with
2465 * NULL's. Treat this as the last argument and not
2466 * a failure.
2467 */
2468 if (base == 0)
2469 break;
2470
2471 while (!finished) {
2472 xlen = PAGE_SIZE - (base & PAGE_MASK);
2473
2474 aiov.iov_base = arg;
2475 aiov.iov_len = PAGE_SIZE;
2476 auio.uio_iov = &aiov;
2477 auio.uio_iovcnt = 1;
2478 auio.uio_offset = base;
2479 auio.uio_resid = xlen;
2480 auio.uio_rw = UIO_READ;
2481 UIO_SETUP_SYSSPACE(&auio);
2482 error = uvm_io(&vmspace->vm_map, &auio, 0);
2483 if (error)
2484 goto done;
2485
2486 /* Look for the end of the string */
2487 for (j = 0; j < xlen; j++) {
2488 if (arg[j] == '\0') {
2489 xlen = j + 1;
2490 finished = 1;
2491 break;
2492 }
2493 }
2494
2495 /* Check for user buffer overflow */
2496 if (len + xlen > *limit) {
2497 finished = 1;
2498 if (len > *limit)
2499 xlen = 0;
2500 else
2501 xlen = *limit - len;
2502 }
2503
2504 /* Copyout the page */
2505 error = (*cb)(cookie, arg, len, xlen);
2506 if (error)
2507 goto done;
2508
2509 len += xlen;
2510 base += xlen;
2511 }
2512 }
2513 *limit = len;
2514
2515 done:
2516 kmem_free(argv, PAGE_SIZE);
2517 kmem_free(arg, PAGE_SIZE);
2518 uvmspace_free(vmspace);
2519 return error;
2520 }
2521
2522 /*
2523 * Fill in a proc structure for the specified process.
2524 */
2525 static void
2526 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2527 {
2528 COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
2529 COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
2530 COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
2531 COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
2532 COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
2533 COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
2534 COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2535 COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
2536 COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
2537 COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
2538 COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
2539 COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
2540 COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
2541 COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
2542 COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
2543 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2544 COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
2545 p->p_exitsig = psrc->p_exitsig;
2546 p->p_flag = psrc->p_flag;
2547 p->p_sflag = psrc->p_sflag;
2548 p->p_slflag = psrc->p_slflag;
2549 p->p_lflag = psrc->p_lflag;
2550 p->p_stflag = psrc->p_stflag;
2551 p->p_stat = psrc->p_stat;
2552 p->p_trace_enabled = psrc->p_trace_enabled;
2553 p->p_pid = psrc->p_pid;
2554 COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
2555 COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
2556 COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
2557 COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
2558 COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
2559 COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
2560 p->p_nlwps = psrc->p_nlwps;
2561 p->p_nzlwps = psrc->p_nzlwps;
2562 p->p_nrlwps = psrc->p_nrlwps;
2563 p->p_nlwpwait = psrc->p_nlwpwait;
2564 p->p_ndlwps = psrc->p_ndlwps;
2565 p->p_nstopchild = psrc->p_nstopchild;
2566 p->p_waited = psrc->p_waited;
2567 COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2568 COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2569 COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
2570 p->p_estcpu = psrc->p_estcpu;
2571 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2572 p->p_forktime = psrc->p_forktime;
2573 p->p_pctcpu = psrc->p_pctcpu;
2574 COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
2575 COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
2576 p->p_rtime = psrc->p_rtime;
2577 p->p_uticks = psrc->p_uticks;
2578 p->p_sticks = psrc->p_sticks;
2579 p->p_iticks = psrc->p_iticks;
2580 p->p_xutime = psrc->p_xutime;
2581 p->p_xstime = psrc->p_xstime;
2582 p->p_traceflag = psrc->p_traceflag;
2583 COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
2584 COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
2585 COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
2586 COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
2587 COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
2588 COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
2589 COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2590 COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
2591 COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2592 p->p_ppid = psrc->p_ppid;
2593 p->p_oppid = psrc->p_oppid;
2594 COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
2595 COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
2596 p->p_nice = psrc->p_nice;
2597 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2598 COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
2599 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2600 p->p_pax = psrc->p_pax;
2601 p->p_xexit = psrc->p_xexit;
2602 p->p_xsig = psrc->p_xsig;
2603 p->p_acflag = psrc->p_acflag;
2604 COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
2605 p->p_stackbase = psrc->p_stackbase;
2606 COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
2607 }
2608
2609 /*
2610 * Fill in an eproc structure for the specified process.
2611 */
2612 void
2613 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2614 {
2615 struct tty *tp;
2616 struct lwp *l;
2617
2618 KASSERT(mutex_owned(proc_lock));
2619 KASSERT(mutex_owned(p->p_lock));
2620
2621 COND_SET_VALUE(ep->e_paddr, p, allowaddr);
2622 COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
2623 if (p->p_cred) {
2624 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2625 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2626 }
2627 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2628 struct vmspace *vm = p->p_vmspace;
2629
2630 ep->e_vm.vm_rssize = vm_resident_count(vm);
2631 ep->e_vm.vm_tsize = vm->vm_tsize;
2632 ep->e_vm.vm_dsize = vm->vm_dsize;
2633 ep->e_vm.vm_ssize = vm->vm_ssize;
2634 ep->e_vm.vm_map.size = vm->vm_map.size;
2635
2636 /* Pick the primary (first) LWP */
2637 l = proc_active_lwp(p);
2638 KASSERT(l != NULL);
2639 lwp_lock(l);
2640 if (l->l_wchan)
2641 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2642 lwp_unlock(l);
2643 }
2644 ep->e_ppid = p->p_ppid;
2645 if (p->p_pgrp && p->p_session) {
2646 ep->e_pgid = p->p_pgrp->pg_id;
2647 ep->e_jobc = p->p_pgrp->pg_jobc;
2648 ep->e_sid = p->p_session->s_sid;
2649 if ((p->p_lflag & PL_CONTROLT) &&
2650 (tp = p->p_session->s_ttyp)) {
2651 ep->e_tdev = tp->t_dev;
2652 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2653 COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
2654 } else
2655 ep->e_tdev = (uint32_t)NODEV;
2656 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2657 if (SESS_LEADER(p))
2658 ep->e_flag |= EPROC_SLEADER;
2659 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2660 }
2661 ep->e_xsize = ep->e_xrssize = 0;
2662 ep->e_xccount = ep->e_xswrss = 0;
2663 }
2664
2665 /*
2666 * Fill in a kinfo_proc2 structure for the specified process.
2667 */
2668 void
2669 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2670 {
2671 struct tty *tp;
2672 struct lwp *l, *l2;
2673 struct timeval ut, st, rt;
2674 sigset_t ss1, ss2;
2675 struct rusage ru;
2676 struct vmspace *vm;
2677
2678 KASSERT(mutex_owned(proc_lock));
2679 KASSERT(mutex_owned(p->p_lock));
2680
2681 sigemptyset(&ss1);
2682 sigemptyset(&ss2);
2683
2684 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2685 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2686 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2687 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2688 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2689 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2690 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2691 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2692 ki->p_tsess = 0; /* may be changed if controlling tty below */
2693 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2694 ki->p_eflag = 0;
2695 ki->p_exitsig = p->p_exitsig;
2696 ki->p_flag = L_INMEM; /* Process never swapped out */
2697 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2698 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2699 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2700 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2701 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2702 ki->p_pid = p->p_pid;
2703 ki->p_ppid = p->p_ppid;
2704 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2705 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2706 ki->p_gid = kauth_cred_getegid(p->p_cred);
2707 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2708 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2709 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2710 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2711 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2712 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2713 UIO_SYSSPACE);
2714
2715 ki->p_uticks = p->p_uticks;
2716 ki->p_sticks = p->p_sticks;
2717 ki->p_iticks = p->p_iticks;
2718 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2719 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2720 ki->p_traceflag = p->p_traceflag;
2721
2722 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2723 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2724
2725 ki->p_cpticks = 0;
2726 ki->p_pctcpu = p->p_pctcpu;
2727 ki->p_estcpu = 0;
2728 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2729 ki->p_realstat = p->p_stat;
2730 ki->p_nice = p->p_nice;
2731 ki->p_xstat = P_WAITSTATUS(p);
2732 ki->p_acflag = p->p_acflag;
2733
2734 strncpy(ki->p_comm, p->p_comm,
2735 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2736 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2737
2738 ki->p_nlwps = p->p_nlwps;
2739 ki->p_realflag = ki->p_flag;
2740
2741 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2742 vm = p->p_vmspace;
2743 ki->p_vm_rssize = vm_resident_count(vm);
2744 ki->p_vm_tsize = vm->vm_tsize;
2745 ki->p_vm_dsize = vm->vm_dsize;
2746 ki->p_vm_ssize = vm->vm_ssize;
2747 ki->p_vm_vsize = atop(vm->vm_map.size);
2748 /*
2749 * Since the stack is initially mapped mostly with
2750 * PROT_NONE and grown as needed, adjust the "mapped size"
2751 * to skip the unused stack portion.
2752 */
2753 ki->p_vm_msize =
2754 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2755
2756 /* Pick the primary (first) LWP */
2757 l = proc_active_lwp(p);
2758 KASSERT(l != NULL);
2759 lwp_lock(l);
2760 ki->p_nrlwps = p->p_nrlwps;
2761 ki->p_forw = 0;
2762 ki->p_back = 0;
2763 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2764 ki->p_stat = l->l_stat;
2765 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2766 ki->p_swtime = l->l_swtime;
2767 ki->p_slptime = l->l_slptime;
2768 if (l->l_stat == LSONPROC)
2769 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2770 else
2771 ki->p_schedflags = 0;
2772 ki->p_priority = lwp_eprio(l);
2773 ki->p_usrpri = l->l_priority;
2774 if (l->l_wchan)
2775 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2776 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2777 ki->p_cpuid = cpu_index(l->l_cpu);
2778 lwp_unlock(l);
2779 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2780 /* This is hardly correct, but... */
2781 sigplusset(&l->l_sigpend.sp_set, &ss1);
2782 sigplusset(&l->l_sigmask, &ss2);
2783 ki->p_cpticks += l->l_cpticks;
2784 ki->p_pctcpu += l->l_pctcpu;
2785 ki->p_estcpu += l->l_estcpu;
2786 }
2787 }
2788 sigplusset(&p->p_sigpend.sp_set, &ss1);
2789 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2790 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2791
2792 if (p->p_session != NULL) {
2793 ki->p_sid = p->p_session->s_sid;
2794 ki->p__pgid = p->p_pgrp->pg_id;
2795 if (p->p_session->s_ttyvp)
2796 ki->p_eflag |= EPROC_CTTY;
2797 if (SESS_LEADER(p))
2798 ki->p_eflag |= EPROC_SLEADER;
2799 strncpy(ki->p_login, p->p_session->s_login,
2800 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2801 ki->p_jobc = p->p_pgrp->pg_jobc;
2802 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2803 ki->p_tdev = tp->t_dev;
2804 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2805 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2806 allowaddr);
2807 } else {
2808 ki->p_tdev = (int32_t)NODEV;
2809 }
2810 }
2811
2812 if (!P_ZOMBIE(p) && !zombie) {
2813 ki->p_uvalid = 1;
2814 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2815 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2816
2817 calcru(p, &ut, &st, NULL, &rt);
2818 ki->p_rtime_sec = rt.tv_sec;
2819 ki->p_rtime_usec = rt.tv_usec;
2820 ki->p_uutime_sec = ut.tv_sec;
2821 ki->p_uutime_usec = ut.tv_usec;
2822 ki->p_ustime_sec = st.tv_sec;
2823 ki->p_ustime_usec = st.tv_usec;
2824
2825 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2826 ki->p_uru_nvcsw = 0;
2827 ki->p_uru_nivcsw = 0;
2828 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2829 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2830 ki->p_uru_nivcsw += l2->l_nivcsw;
2831 ruadd(&ru, &l2->l_ru);
2832 }
2833 ki->p_uru_maxrss = ru.ru_maxrss;
2834 ki->p_uru_ixrss = ru.ru_ixrss;
2835 ki->p_uru_idrss = ru.ru_idrss;
2836 ki->p_uru_isrss = ru.ru_isrss;
2837 ki->p_uru_minflt = ru.ru_minflt;
2838 ki->p_uru_majflt = ru.ru_majflt;
2839 ki->p_uru_nswap = ru.ru_nswap;
2840 ki->p_uru_inblock = ru.ru_inblock;
2841 ki->p_uru_oublock = ru.ru_oublock;
2842 ki->p_uru_msgsnd = ru.ru_msgsnd;
2843 ki->p_uru_msgrcv = ru.ru_msgrcv;
2844 ki->p_uru_nsignals = ru.ru_nsignals;
2845
2846 timeradd(&p->p_stats->p_cru.ru_utime,
2847 &p->p_stats->p_cru.ru_stime, &ut);
2848 ki->p_uctime_sec = ut.tv_sec;
2849 ki->p_uctime_usec = ut.tv_usec;
2850 }
2851 }
2852
2853
2854 int
2855 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2856 {
2857 int error;
2858
2859 mutex_enter(proc_lock);
2860 if (pid == -1)
2861 *p = l->l_proc;
2862 else
2863 *p = proc_find(pid);
2864
2865 if (*p == NULL) {
2866 if (pid != -1)
2867 mutex_exit(proc_lock);
2868 return ESRCH;
2869 }
2870 if (pid != -1)
2871 mutex_enter((*p)->p_lock);
2872 mutex_exit(proc_lock);
2873
2874 error = kauth_authorize_process(l->l_cred,
2875 KAUTH_PROCESS_CANSEE, *p,
2876 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2877 if (error) {
2878 if (pid != -1)
2879 mutex_exit((*p)->p_lock);
2880 }
2881 return error;
2882 }
2883
2884 static int
2885 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2886 {
2887 int error;
2888 struct proc *p;
2889
2890 if ((error = proc_find_locked(l, &p, pid)) != 0)
2891 return error;
2892
2893 if (p->p_path == NULL) {
2894 if (pid != -1)
2895 mutex_exit(p->p_lock);
2896 return ENOENT;
2897 }
2898
2899 size_t len = strlen(p->p_path) + 1;
2900 if (oldp != NULL) {
2901 size_t copylen = uimin(len, *oldlenp);
2902 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2903 if (error == 0 && *oldlenp < len)
2904 error = ENOSPC;
2905 }
2906 *oldlenp = len;
2907 if (pid != -1)
2908 mutex_exit(p->p_lock);
2909 return error;
2910 }
2911
2912 static int
2913 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2914 {
2915 int error;
2916 struct proc *p;
2917 char *path;
2918 char *bp, *bend;
2919 struct cwdinfo *cwdi;
2920 struct vnode *vp;
2921 size_t len, lenused;
2922
2923 if ((error = proc_find_locked(l, &p, pid)) != 0)
2924 return error;
2925
2926 len = MAXPATHLEN * 4;
2927
2928 path = kmem_alloc(len, KM_SLEEP);
2929
2930 bp = &path[len];
2931 bend = bp;
2932 *(--bp) = '\0';
2933
2934 cwdi = p->p_cwdi;
2935 rw_enter(&cwdi->cwdi_lock, RW_READER);
2936 vp = cwdi->cwdi_cdir;
2937 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
2938 rw_exit(&cwdi->cwdi_lock);
2939
2940 if (error)
2941 goto out;
2942
2943 lenused = bend - bp;
2944
2945 if (oldp != NULL) {
2946 size_t copylen = uimin(lenused, *oldlenp);
2947 error = sysctl_copyout(l, bp, oldp, copylen);
2948 if (error == 0 && *oldlenp < lenused)
2949 error = ENOSPC;
2950 }
2951 *oldlenp = lenused;
2952 out:
2953 if (pid != -1)
2954 mutex_exit(p->p_lock);
2955 kmem_free(path, len);
2956 return error;
2957 }
2958
2959 int
2960 proc_getauxv(struct proc *p, void **buf, size_t *len)
2961 {
2962 struct ps_strings pss;
2963 int error;
2964 void *uauxv, *kauxv;
2965 size_t size;
2966
2967 if ((error = copyin_psstrings(p, &pss)) != 0)
2968 return error;
2969 if (pss.ps_envstr == NULL)
2970 return EIO;
2971
2972 size = p->p_execsw->es_arglen;
2973 if (size == 0)
2974 return EIO;
2975
2976 size_t ptrsz = PROC_PTRSZ(p);
2977 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
2978
2979 kauxv = kmem_alloc(size, KM_SLEEP);
2980
2981 error = copyin_proc(p, uauxv, kauxv, size);
2982 if (error) {
2983 kmem_free(kauxv, size);
2984 return error;
2985 }
2986
2987 *buf = kauxv;
2988 *len = size;
2989
2990 return 0;
2991 }
2992
2993
2994 static int
2995 sysctl_security_expose_address(SYSCTLFN_ARGS)
2996 {
2997 int expose_address, error;
2998 struct sysctlnode node;
2999
3000 node = *rnode;
3001 node.sysctl_data = &expose_address;
3002 expose_address = *(int *)rnode->sysctl_data;
3003 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3004 if (error || newp == NULL)
3005 return error;
3006
3007 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3008 0, NULL, NULL, NULL))
3009 return EPERM;
3010
3011 switch (expose_address) {
3012 case 0:
3013 case 1:
3014 case 2:
3015 break;
3016 default:
3017 return EINVAL;
3018 }
3019
3020 *(int *)rnode->sysctl_data = expose_address;
3021
3022 return 0;
3023 }
3024
3025 bool
3026 get_expose_address(struct proc *p)
3027 {
3028 /* allow only if sysctl variable is set or privileged */
3029 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3030 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3031 }
3032