Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.250
      1 /*	$NetBSD: kern_proc.c,v 1.250 2020/04/26 18:53:33 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.250 2020/04/26 18:53:33 thorpej Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 #include <sys/futex.h>
    110 
    111 #include <uvm/uvm_extern.h>
    112 #include <uvm/uvm.h>
    113 
    114 /*
    115  * Process lists.
    116  */
    117 
    118 struct proclist		allproc		__cacheline_aligned;
    119 struct proclist		zombproc	__cacheline_aligned;
    120 
    121 static kmutex_t		proc_lock_s	__cacheline_aligned;
    122 kmutex_t *		proc_lock	__read_mostly;
    123 
    124 /*
    125  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126  * Since pid numbers are only allocated when an empty slot
    127  * has been found, there is no need to search any lists ever.
    128  * (an orphaned pgrp will lock the slot, a session will lock
    129  * the pgrp with the same number.)
    130  * If the table is too small it is reallocated with twice the
    131  * previous size and the entries 'unzipped' into the two halves.
    132  * A linked list of free entries is passed through the pt_lwp
    133  * field of 'free' items - set odd to be an invalid ptr.  Two
    134  * additional bits are also used to indicate if the slot is
    135  * currently occupied by a proc or lwp, and if the PID is
    136  * hidden from certain kinds of lookups.  We thus require a
    137  * minimum alignment for proc and lwp structures (LWPs are
    138  * at least 32-byte aligned).
    139  */
    140 
    141 struct pid_table {
    142 	uintptr_t	pt_slot;
    143 	struct pgrp	*pt_pgrp;
    144 	pid_t		pt_pid;
    145 };
    146 
    147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148 #define	PT_F_LWP		0	/* pseudo-flag */
    149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150 #define	PT_F_HIDDEN		((uintptr_t)__BIT(2))
    151 
    152 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    153 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC|PT_F_HIDDEN)
    154 
    155 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    156 #define	PT_RESERVED(s)		((s) == 0)
    157 #define	PT_HIDDEN(s)		((s) & PT_F_HIDDEN)
    158 #define	PT_NEXT(s)		((u_int)(s) >> 1)
    159 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    160 #define	PT_SET_HIDDEN(s)	((s) | PT_F_HIDDEN)
    161 #define	PT_SET_LWP(l)		((uintptr_t)(l))
    162 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    163 #define	PT_SET_RESERVED		0
    164 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    165 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    166 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    167 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    168 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    169 
    170 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    171 
    172 /*
    173  * Table of process IDs (PIDs).
    174  *
    175  * Locking order:
    176  *	proc_lock -> pid_table_lock
    177  *  or
    178  *	proc::p_lock -> pid_table_lock
    179  */
    180 static krwlock_t pid_table_lock		__cacheline_aligned;
    181 static struct pid_table *pid_table	__read_mostly;
    182 
    183 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    184 
    185 /* Table mask, threshold for growing and number of allocated PIDs. */
    186 static u_int		pid_tbl_mask	__read_mostly;
    187 static u_int		pid_alloc_lim	__read_mostly;
    188 static u_int		pid_alloc_cnt	__cacheline_aligned;
    189 
    190 /* Next free, last free and maximum PIDs. */
    191 static u_int		next_free_pt	__cacheline_aligned;
    192 static u_int		last_free_pt	__cacheline_aligned;
    193 static pid_t		pid_max		__read_mostly;
    194 
    195 /* Components of the first process -- never freed. */
    196 
    197 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    198 
    199 struct session session0 = {
    200 	.s_count = 1,
    201 	.s_sid = 0,
    202 };
    203 struct pgrp pgrp0 = {
    204 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    205 	.pg_session = &session0,
    206 };
    207 filedesc_t filedesc0;
    208 struct cwdinfo cwdi0 = {
    209 	.cwdi_cmask = CMASK,
    210 	.cwdi_refcnt = 1,
    211 };
    212 struct plimit limit0;
    213 struct pstats pstat0;
    214 struct vmspace vmspace0;
    215 struct sigacts sigacts0;
    216 struct proc proc0 = {
    217 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    218 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    219 	.p_nlwps = 1,
    220 	.p_nrlwps = 1,
    221 	.p_pgrp = &pgrp0,
    222 	.p_comm = "system",
    223 	/*
    224 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    225 	 * when they exit.  init(8) can easily wait them out for us.
    226 	 */
    227 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    228 	.p_stat = SACTIVE,
    229 	.p_nice = NZERO,
    230 	.p_emul = &emul_netbsd,
    231 	.p_cwdi = &cwdi0,
    232 	.p_limit = &limit0,
    233 	.p_fd = &filedesc0,
    234 	.p_vmspace = &vmspace0,
    235 	.p_stats = &pstat0,
    236 	.p_sigacts = &sigacts0,
    237 #ifdef PROC0_MD_INITIALIZERS
    238 	PROC0_MD_INITIALIZERS
    239 #endif
    240 };
    241 kauth_cred_t cred0;
    242 
    243 static const int	nofile	= NOFILE;
    244 static const int	maxuprc	= MAXUPRC;
    245 
    246 static int sysctl_doeproc(SYSCTLFN_PROTO);
    247 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    248 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    249 
    250 #ifdef KASLR
    251 static int kern_expose_address = 0;
    252 #else
    253 static int kern_expose_address = 1;
    254 #endif
    255 /*
    256  * The process list descriptors, used during pid allocation and
    257  * by sysctl.  No locking on this data structure is needed since
    258  * it is completely static.
    259  */
    260 const struct proclist_desc proclists[] = {
    261 	{ &allproc	},
    262 	{ &zombproc	},
    263 	{ NULL		},
    264 };
    265 
    266 static struct pgrp *	pg_remove(pid_t);
    267 static void		pg_delete(pid_t);
    268 static void		orphanpg(struct pgrp *);
    269 
    270 static specificdata_domain_t proc_specificdata_domain;
    271 
    272 static pool_cache_t proc_cache;
    273 
    274 static kauth_listener_t proc_listener;
    275 
    276 static void fill_proc(const struct proc *, struct proc *, bool);
    277 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    278 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    279 
    280 static int
    281 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    282     void *arg0, void *arg1, void *arg2, void *arg3)
    283 {
    284 	struct proc *p;
    285 	int result;
    286 
    287 	result = KAUTH_RESULT_DEFER;
    288 	p = arg0;
    289 
    290 	switch (action) {
    291 	case KAUTH_PROCESS_CANSEE: {
    292 		enum kauth_process_req req;
    293 
    294 		req = (enum kauth_process_req)(uintptr_t)arg1;
    295 
    296 		switch (req) {
    297 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    298 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    299 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    300 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    301 			result = KAUTH_RESULT_ALLOW;
    302 			break;
    303 
    304 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    305 			if (kauth_cred_getuid(cred) !=
    306 			    kauth_cred_getuid(p->p_cred) ||
    307 			    kauth_cred_getuid(cred) !=
    308 			    kauth_cred_getsvuid(p->p_cred))
    309 				break;
    310 
    311 			result = KAUTH_RESULT_ALLOW;
    312 
    313 			break;
    314 
    315 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    316 			if (!kern_expose_address)
    317 				break;
    318 
    319 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    320 				break;
    321 
    322 			result = KAUTH_RESULT_ALLOW;
    323 
    324 			break;
    325 
    326 		default:
    327 			break;
    328 		}
    329 
    330 		break;
    331 		}
    332 
    333 	case KAUTH_PROCESS_FORK: {
    334 		int lnprocs = (int)(unsigned long)arg2;
    335 
    336 		/*
    337 		 * Don't allow a nonprivileged user to use the last few
    338 		 * processes. The variable lnprocs is the current number of
    339 		 * processes, maxproc is the limit.
    340 		 */
    341 		if (__predict_false((lnprocs >= maxproc - 5)))
    342 			break;
    343 
    344 		result = KAUTH_RESULT_ALLOW;
    345 
    346 		break;
    347 		}
    348 
    349 	case KAUTH_PROCESS_CORENAME:
    350 	case KAUTH_PROCESS_STOPFLAG:
    351 		if (proc_uidmatch(cred, p->p_cred) == 0)
    352 			result = KAUTH_RESULT_ALLOW;
    353 
    354 		break;
    355 
    356 	default:
    357 		break;
    358 	}
    359 
    360 	return result;
    361 }
    362 
    363 static int
    364 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    365 {
    366 	memset(obj, 0, sizeof(struct proc));
    367 	return 0;
    368 }
    369 
    370 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    371 
    372 /*
    373  * Initialize global process hashing structures.
    374  */
    375 void
    376 procinit(void)
    377 {
    378 	const struct proclist_desc *pd;
    379 	u_int i;
    380 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    381 
    382 	for (pd = proclists; pd->pd_list != NULL; pd++)
    383 		LIST_INIT(pd->pd_list);
    384 
    385 	mutex_init(&proc_lock_s, MUTEX_DEFAULT, IPL_NONE);
    386 	proc_lock = &proc_lock_s;
    387 
    388 	rw_init(&pid_table_lock);
    389 
    390 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    391 	    * sizeof(struct pid_table), KM_SLEEP);
    392 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    393 	pid_max = PID_MAX;
    394 
    395 	/* Set free list running through table...
    396 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    397 	for (i = 0; i <= pid_tbl_mask; i++) {
    398 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    399 		pid_table[i].pt_pgrp = 0;
    400 		pid_table[i].pt_pid = 0;
    401 	}
    402 	/* slot 0 is just grabbed */
    403 	next_free_pt = 1;
    404 	/* Need to fix last entry. */
    405 	last_free_pt = pid_tbl_mask;
    406 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    407 	/* point at which we grow table - to avoid reusing pids too often */
    408 	pid_alloc_lim = pid_tbl_mask - 1;
    409 #undef LINK_EMPTY
    410 
    411 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    412 	rw_enter(&pid_table_lock, RW_WRITER);
    413 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    414 		panic("failed to reserve PID 1 for init(8)");
    415 	rw_exit(&pid_table_lock);
    416 
    417 	proc_specificdata_domain = specificdata_domain_create();
    418 	KASSERT(proc_specificdata_domain != NULL);
    419 
    420 	size_t proc_alignment = coherency_unit;
    421 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    422 		proc_alignment = MIN_PROC_ALIGNMENT;
    423 
    424 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    425 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    426 
    427 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    428 	    proc_listener_cb, NULL);
    429 }
    430 
    431 void
    432 procinit_sysctl(void)
    433 {
    434 	static struct sysctllog *clog;
    435 
    436 	sysctl_createv(&clog, 0, NULL, NULL,
    437 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    438 		       CTLTYPE_INT, "expose_address",
    439 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    440 		       sysctl_security_expose_address, 0,
    441 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    442 	sysctl_createv(&clog, 0, NULL, NULL,
    443 		       CTLFLAG_PERMANENT,
    444 		       CTLTYPE_NODE, "proc",
    445 		       SYSCTL_DESCR("System-wide process information"),
    446 		       sysctl_doeproc, 0, NULL, 0,
    447 		       CTL_KERN, KERN_PROC, CTL_EOL);
    448 	sysctl_createv(&clog, 0, NULL, NULL,
    449 		       CTLFLAG_PERMANENT,
    450 		       CTLTYPE_NODE, "proc2",
    451 		       SYSCTL_DESCR("Machine-independent process information"),
    452 		       sysctl_doeproc, 0, NULL, 0,
    453 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    454 	sysctl_createv(&clog, 0, NULL, NULL,
    455 		       CTLFLAG_PERMANENT,
    456 		       CTLTYPE_NODE, "proc_args",
    457 		       SYSCTL_DESCR("Process argument information"),
    458 		       sysctl_kern_proc_args, 0, NULL, 0,
    459 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    460 
    461 	/*
    462 	  "nodes" under these:
    463 
    464 	  KERN_PROC_ALL
    465 	  KERN_PROC_PID pid
    466 	  KERN_PROC_PGRP pgrp
    467 	  KERN_PROC_SESSION sess
    468 	  KERN_PROC_TTY tty
    469 	  KERN_PROC_UID uid
    470 	  KERN_PROC_RUID uid
    471 	  KERN_PROC_GID gid
    472 	  KERN_PROC_RGID gid
    473 
    474 	  all in all, probably not worth the effort...
    475 	*/
    476 }
    477 
    478 /*
    479  * Initialize process 0.
    480  */
    481 void
    482 proc0_init(void)
    483 {
    484 	struct proc *p;
    485 	struct pgrp *pg;
    486 	struct rlimit *rlim;
    487 	rlim_t lim;
    488 	int i;
    489 
    490 	p = &proc0;
    491 	pg = &pgrp0;
    492 
    493 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    494 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    495 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    496 
    497 	rw_init(&p->p_reflock);
    498 	cv_init(&p->p_waitcv, "wait");
    499 	cv_init(&p->p_lwpcv, "lwpwait");
    500 
    501 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    502 
    503 	KASSERT(lwp0.l_lid == 0);
    504 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    505 	LIST_INSERT_HEAD(&allproc, p, p_list);
    506 
    507 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    508 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    509 
    510 #ifdef __HAVE_SYSCALL_INTERN
    511 	(*p->p_emul->e_syscall_intern)(p);
    512 #endif
    513 
    514 	/* Create credentials. */
    515 	cred0 = kauth_cred_alloc();
    516 	p->p_cred = cred0;
    517 
    518 	/* Create the CWD info. */
    519 	rw_init(&cwdi0.cwdi_lock);
    520 
    521 	/* Create the limits structures. */
    522 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    523 
    524 	rlim = limit0.pl_rlimit;
    525 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    526 		rlim[i].rlim_cur = RLIM_INFINITY;
    527 		rlim[i].rlim_max = RLIM_INFINITY;
    528 	}
    529 
    530 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    531 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    532 
    533 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    534 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    535 
    536 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem()));
    537 	rlim[RLIMIT_RSS].rlim_max = lim;
    538 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    539 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    540 
    541 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    542 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    543 
    544 	/* Note that default core name has zero length. */
    545 	limit0.pl_corename = defcorename;
    546 	limit0.pl_cnlen = 0;
    547 	limit0.pl_refcnt = 1;
    548 	limit0.pl_writeable = false;
    549 	limit0.pl_sv_limit = NULL;
    550 
    551 	/* Configure virtual memory system, set vm rlimits. */
    552 	uvm_init_limits(p);
    553 
    554 	/* Initialize file descriptor table for proc0. */
    555 	fd_init(&filedesc0);
    556 
    557 	/*
    558 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    559 	 * All kernel processes (which never have user space mappings)
    560 	 * share proc0's vmspace, and thus, the kernel pmap.
    561 	 */
    562 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    563 	    trunc_page(VM_MAXUSER_ADDRESS),
    564 #ifdef __USE_TOPDOWN_VM
    565 	    true
    566 #else
    567 	    false
    568 #endif
    569 	    );
    570 
    571 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    572 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    573 	siginit(p);
    574 
    575 	proc_initspecific(p);
    576 	kdtrace_proc_ctor(NULL, p);
    577 }
    578 
    579 /*
    580  * Session reference counting.
    581  */
    582 
    583 void
    584 proc_sesshold(struct session *ss)
    585 {
    586 
    587 	KASSERT(mutex_owned(proc_lock));
    588 	ss->s_count++;
    589 }
    590 
    591 static void
    592 proc_sessrele_pid_table_write_locked(struct session *ss)
    593 {
    594 	struct pgrp *pg;
    595 
    596 	KASSERT(mutex_owned(proc_lock));
    597 	KASSERT(rw_write_held(&pid_table_lock));
    598 	KASSERT(ss->s_count > 0);
    599 
    600 	/*
    601 	 * We keep the pgrp with the same id as the session in order to
    602 	 * stop a process being given the same pid.  Since the pgrp holds
    603 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    604 	 */
    605 	if (--ss->s_count == 0) {
    606 		pg = pg_remove(ss->s_sid);
    607 	} else {
    608 		pg = NULL;
    609 		ss = NULL;
    610 	}
    611 
    612 	rw_exit(&pid_table_lock);
    613 	mutex_exit(proc_lock);
    614 
    615 	if (pg)
    616 		kmem_free(pg, sizeof(struct pgrp));
    617 	if (ss)
    618 		kmem_free(ss, sizeof(struct session));
    619 }
    620 
    621 void
    622 proc_sessrele(struct session *ss)
    623 {
    624 	rw_enter(&pid_table_lock, RW_WRITER);
    625 	proc_sessrele_pid_table_write_locked(ss);
    626 }
    627 
    628 /*
    629  * Check that the specified process group is in the session of the
    630  * specified process.
    631  * Treats -ve ids as process ids.
    632  * Used to validate TIOCSPGRP requests.
    633  */
    634 int
    635 pgid_in_session(struct proc *p, pid_t pg_id)
    636 {
    637 	struct pgrp *pgrp;
    638 	struct session *session;
    639 	int error;
    640 
    641 	mutex_enter(proc_lock);
    642 	if (pg_id < 0) {
    643 		struct proc *p1 = proc_find(-pg_id);
    644 		if (p1 == NULL) {
    645 			error = EINVAL;
    646 			goto fail;
    647 		}
    648 		pgrp = p1->p_pgrp;
    649 	} else {
    650 		pgrp = pgrp_find(pg_id);
    651 		if (pgrp == NULL) {
    652 			error = EINVAL;
    653 			goto fail;
    654 		}
    655 	}
    656 	session = pgrp->pg_session;
    657 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    658 fail:
    659 	mutex_exit(proc_lock);
    660 	return error;
    661 }
    662 
    663 /*
    664  * p_inferior: is p an inferior of q?
    665  */
    666 static inline bool
    667 p_inferior(struct proc *p, struct proc *q)
    668 {
    669 
    670 	KASSERT(mutex_owned(proc_lock));
    671 
    672 	for (; p != q; p = p->p_pptr)
    673 		if (p->p_pid == 0)
    674 			return false;
    675 	return true;
    676 }
    677 
    678 /*
    679  * proc_find_lwp: locate an lwp in said proc by the ID.
    680  *
    681  * => Must be called with p::p_lock held.
    682  * => LARVAL lwps are not returned because they are only partially
    683  *    constructed while occupying the slot.
    684  * => Callers need to be careful about lwp::l_stat of the returned
    685  *    lwp.
    686  */
    687 struct lwp *
    688 proc_find_lwp(proc_t *p, pid_t pid)
    689 {
    690 	struct pid_table *pt;
    691 	struct lwp *l = NULL;
    692 	uintptr_t slot;
    693 
    694 	KASSERT(mutex_owned(p->p_lock));
    695 	rw_enter(&pid_table_lock, RW_READER);
    696 	pt = &pid_table[pid & pid_tbl_mask];
    697 
    698 	slot = pt->pt_slot;
    699 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    700 		l = PT_GET_LWP(slot);
    701 		if (__predict_false(l->l_proc != p || l->l_stat == LSLARVAL)) {
    702 			l = NULL;
    703 		}
    704 	}
    705 	rw_exit(&pid_table_lock);
    706 
    707 	return l;
    708 }
    709 
    710 /*
    711  * proc_seek_lwpid: locate an lwp by only the ID.
    712  *
    713  * => This is a specialized interface used for looking up an LWP
    714  *    without holding a lock on its owner process.
    715  * => Callers of this interface MUST provide a separate synchronization
    716  *    mechanism to ensure the validity of the returned LWP.  LARVAL LWPs
    717  *    are found there, so callers must check for them!
    718  * => Only returns LWPs whose ID has not been hidden from us.
    719  */
    720 struct lwp *
    721 proc_seek_lwpid(pid_t pid)
    722 {
    723 	struct pid_table *pt;
    724 	struct lwp *l = NULL;
    725 	uintptr_t slot;
    726 
    727 	rw_enter(&pid_table_lock, RW_READER);
    728 	pt = &pid_table[pid & pid_tbl_mask];
    729 
    730 	slot = pt->pt_slot;
    731 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid &&
    732 			   !PT_HIDDEN(slot))) {
    733 		l = PT_GET_LWP(slot);
    734 	}
    735 	rw_exit(&pid_table_lock);
    736 
    737 	return l;
    738 }
    739 
    740 /*
    741  * proc_hide_lwpid: hide an lwp ID from seekers.
    742  */
    743 void
    744 proc_hide_lwpid(pid_t pid)
    745 {
    746 	struct pid_table *pt;
    747 	uintptr_t slot;
    748 
    749 	rw_enter(&pid_table_lock, RW_WRITER);
    750 	pt = &pid_table[pid & pid_tbl_mask];
    751 
    752 	slot = pt->pt_slot;
    753 	KASSERT(PT_IS_LWP(slot));
    754 	KASSERT(pt->pt_pid == pid);
    755 	pt->pt_slot = PT_SET_HIDDEN(slot);
    756 
    757 	rw_exit(&pid_table_lock);
    758 }
    759 
    760 /*
    761  * proc_find_raw_pid_table_locked: locate a process by the ID.
    762  *
    763  * => Must be called with proc_lock held and the pid_table_lock
    764  *    at least held for reading.
    765  */
    766 static proc_t *
    767 proc_find_raw_pid_table_locked(pid_t pid)
    768 {
    769 	struct pid_table *pt;
    770 	proc_t *p = NULL;
    771 	uintptr_t slot;
    772 
    773 	KASSERT(mutex_owned(proc_lock));
    774 	pt = &pid_table[pid & pid_tbl_mask];
    775 
    776 	slot = pt->pt_slot;
    777 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    778 		/*
    779 		 * When looking up processes, require a direct match
    780 		 * on the PID assigned to the proc, not just one of
    781 		 * its LWPs.
    782 		 *
    783 		 * N.B. We require lwp::l_proc of LARVAL LWPs to be
    784 		 * valid here.
    785 		 */
    786 		p = PT_GET_LWP(slot)->l_proc;
    787 		if (__predict_false(p->p_pid != pid))
    788 			p = NULL;
    789 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    790 		p = PT_GET_PROC(slot);
    791 	}
    792 	return p;
    793 }
    794 
    795 proc_t *
    796 proc_find_raw(pid_t pid)
    797 {
    798 	KASSERT(mutex_owned(proc_lock));
    799 	rw_enter(&pid_table_lock, RW_READER);
    800 	proc_t *p = proc_find_raw_pid_table_locked(pid);
    801 	rw_exit(&pid_table_lock);
    802 	return p;
    803 }
    804 
    805 static proc_t *
    806 proc_find_pid_table_locked(pid_t pid)
    807 {
    808 	proc_t *p;
    809 
    810 	KASSERT(mutex_owned(proc_lock));
    811 
    812 	p = proc_find_raw_pid_table_locked(pid);
    813 	if (__predict_false(p == NULL)) {
    814 		return NULL;
    815 	}
    816 
    817 	/*
    818 	 * Only allow live processes to be found by PID.
    819 	 * XXX: p_stat might change, since proc unlocked.
    820 	 */
    821 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    822 		return p;
    823 	}
    824 	return NULL;
    825 }
    826 
    827 proc_t *
    828 proc_find(pid_t pid)
    829 {
    830 	KASSERT(mutex_owned(proc_lock));
    831 	rw_enter(&pid_table_lock, RW_READER);
    832 	proc_t *p = proc_find_pid_table_locked(pid);
    833 	rw_exit(&pid_table_lock);
    834 	return p;
    835 }
    836 
    837 /*
    838  * pgrp_find_pid_table_locked: locate a process group by the ID.
    839  *
    840  * => Must be called with proc_lock held and the pid_table_lock
    841  *    held at least for reading.
    842  */
    843 static struct pgrp *
    844 pgrp_find_pid_table_locked(pid_t pgid)
    845 {
    846 	struct pgrp *pg;
    847 
    848 	KASSERT(mutex_owned(proc_lock));
    849 
    850 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    851 
    852 	/*
    853 	 * Cannot look up a process group that only exists because the
    854 	 * session has not died yet (traditional).
    855 	 */
    856 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    857 		return NULL;
    858 	}
    859 	return pg;
    860 }
    861 
    862 struct pgrp *
    863 pgrp_find(pid_t pgid)
    864 {
    865 	KASSERT(mutex_owned(proc_lock));
    866 	rw_enter(&pid_table_lock, RW_READER);
    867 	struct pgrp *pg = pgrp_find_pid_table_locked(pgid);
    868 	rw_exit(&pid_table_lock);
    869 	return pg;
    870 }
    871 
    872 static void
    873 expand_pid_table(void)
    874 {
    875 	size_t pt_size, tsz;
    876 	struct pid_table *n_pt, *new_pt;
    877 	uintptr_t slot;
    878 	struct pgrp *pgrp;
    879 	pid_t pid, rpid;
    880 	u_int i;
    881 	uint new_pt_mask;
    882 
    883 	KASSERT(rw_write_held(&pid_table_lock));
    884 
    885 	/* Unlock the pid_table briefly to allocate memory. */
    886 	pt_size = pid_tbl_mask + 1;
    887 	rw_exit(&pid_table_lock);
    888 
    889 	tsz = pt_size * 2 * sizeof(struct pid_table);
    890 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    891 	new_pt_mask = pt_size * 2 - 1;
    892 
    893 	/* XXX For now.  The pratical limit is much lower anyway. */
    894 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    895 
    896 	rw_enter(&pid_table_lock, RW_WRITER);
    897 	if (pt_size != pid_tbl_mask + 1) {
    898 		/* Another process beat us to it... */
    899 		rw_exit(&pid_table_lock);
    900 		kmem_free(new_pt, tsz);
    901 		goto out;
    902 	}
    903 
    904 	/*
    905 	 * Copy entries from old table into new one.
    906 	 * If 'pid' is 'odd' we need to place in the upper half,
    907 	 * even pid's to the lower half.
    908 	 * Free items stay in the low half so we don't have to
    909 	 * fixup the reference to them.
    910 	 * We stuff free items on the front of the freelist
    911 	 * because we can't write to unmodified entries.
    912 	 * Processing the table backwards maintains a semblance
    913 	 * of issuing pid numbers that increase with time.
    914 	 */
    915 	i = pt_size - 1;
    916 	n_pt = new_pt + i;
    917 	for (; ; i--, n_pt--) {
    918 		slot = pid_table[i].pt_slot;
    919 		pgrp = pid_table[i].pt_pgrp;
    920 		if (!PT_VALID(slot)) {
    921 			/* Up 'use count' so that link is valid */
    922 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    923 			rpid = 0;
    924 			slot = PT_SET_FREE(pid);
    925 			if (pgrp)
    926 				pid = pgrp->pg_id;
    927 		} else {
    928 			pid = pid_table[i].pt_pid;
    929 			rpid = pid;
    930 		}
    931 
    932 		/* Save entry in appropriate half of table */
    933 		n_pt[pid & pt_size].pt_slot = slot;
    934 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    935 		n_pt[pid & pt_size].pt_pid = rpid;
    936 
    937 		/* Put other piece on start of free list */
    938 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    939 		n_pt[pid & pt_size].pt_slot =
    940 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
    941 		n_pt[pid & pt_size].pt_pgrp = 0;
    942 		n_pt[pid & pt_size].pt_pid = 0;
    943 
    944 		next_free_pt = i | (pid & pt_size);
    945 		if (i == 0)
    946 			break;
    947 	}
    948 
    949 	/* Save old table size and switch tables */
    950 	tsz = pt_size * sizeof(struct pid_table);
    951 	n_pt = pid_table;
    952 	pid_table = new_pt;
    953 	pid_tbl_mask = new_pt_mask;
    954 
    955 	/*
    956 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    957 	 * allocated pids we need it to be larger!
    958 	 */
    959 	if (pid_tbl_mask > PID_MAX) {
    960 		pid_max = pid_tbl_mask * 2 + 1;
    961 		pid_alloc_lim |= pid_alloc_lim << 1;
    962 	} else
    963 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    964 
    965 	rw_exit(&pid_table_lock);
    966 	kmem_free(n_pt, tsz);
    967 
    968  out:	/* Return with the pid_table_lock held again. */
    969 	rw_enter(&pid_table_lock, RW_WRITER);
    970 }
    971 
    972 struct proc *
    973 proc_alloc(void)
    974 {
    975 	struct proc *p;
    976 
    977 	p = pool_cache_get(proc_cache, PR_WAITOK);
    978 	p->p_stat = SIDL;			/* protect against others */
    979 	proc_initspecific(p);
    980 	kdtrace_proc_ctor(NULL, p);
    981 
    982 	/*
    983 	 * Allocate a placeholder in the pid_table.  When we create the
    984 	 * first LWP for this process, it will take ownership of the
    985 	 * slot.
    986 	 */
    987 	if (__predict_false(proc_alloc_pid(p) == -1)) {
    988 		/* Allocating the PID failed; unwind. */
    989 		proc_finispecific(p);
    990 		proc_free_mem(p);
    991 		p = NULL;
    992 	}
    993 	return p;
    994 }
    995 
    996 /*
    997  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
    998  * proc_find_raw() can find it by the PID.
    999  */
   1000 static pid_t __noinline
   1001 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1002 {
   1003 	struct pid_table *pt;
   1004 	pid_t pid;
   1005 	int nxt;
   1006 
   1007 	KASSERT(rw_write_held(&pid_table_lock));
   1008 
   1009 	for (;;expand_pid_table()) {
   1010 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1011 			/* ensure pids cycle through 2000+ values */
   1012 			continue;
   1013 		}
   1014 		/*
   1015 		 * The first user process *must* be given PID 1.
   1016 		 * it has already been reserved for us.  This
   1017 		 * will be coming in from the proc_alloc() call
   1018 		 * above, and the entry will be usurped later when
   1019 		 * the first user LWP is created.
   1020 		 * XXX this is slightly gross.
   1021 		 */
   1022 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1023 				    p != &proc0)) {
   1024 			KASSERT(PT_IS_PROC(slot));
   1025 			pt = &pid_table[1];
   1026 			pt->pt_slot = slot;
   1027 			return 1;
   1028 		}
   1029 		pt = &pid_table[next_free_pt];
   1030 #ifdef DIAGNOSTIC
   1031 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1032 			panic("proc_alloc: slot busy");
   1033 #endif
   1034 		nxt = PT_NEXT(pt->pt_slot);
   1035 		if (nxt & pid_tbl_mask)
   1036 			break;
   1037 		/* Table full - expand (NB last entry not used....) */
   1038 	}
   1039 
   1040 	/* pid is 'saved use count' + 'size' + entry */
   1041 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1042 	if ((uint)pid > (uint)pid_max)
   1043 		pid &= pid_tbl_mask;
   1044 	next_free_pt = nxt & pid_tbl_mask;
   1045 
   1046 	/* XXX For now.  The pratical limit is much lower anyway. */
   1047 	KASSERT(pid <= FUTEX_TID_MASK);
   1048 
   1049 	/* Grab table slot */
   1050 	pt->pt_slot = slot;
   1051 
   1052 	KASSERT(pt->pt_pid == 0);
   1053 	pt->pt_pid = pid;
   1054 	pid_alloc_cnt++;
   1055 
   1056 	return pid;
   1057 }
   1058 
   1059 pid_t
   1060 proc_alloc_pid(struct proc *p)
   1061 {
   1062 	pid_t pid;
   1063 
   1064 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1065 
   1066 	rw_enter(&pid_table_lock, RW_WRITER);
   1067 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1068 	if (pid != -1)
   1069 		p->p_pid = pid;
   1070 	rw_exit(&pid_table_lock);
   1071 
   1072 	return pid;
   1073 }
   1074 
   1075 pid_t
   1076 proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1077 {
   1078 	struct pid_table *pt;
   1079 	pid_t pid;
   1080 
   1081 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1082 
   1083 	/*
   1084 	 * If the slot for p->p_pid currently points to the proc,
   1085 	 * then we should usurp this ID for the LWP.  This happens
   1086 	 * at least once per process (for the first LWP), and can
   1087 	 * happen again if the first LWP for a process exits and
   1088 	 * before the process creates another.
   1089 	 */
   1090 	rw_enter(&pid_table_lock, RW_WRITER);
   1091 	pid = p->p_pid;
   1092 	pt = &pid_table[pid & pid_tbl_mask];
   1093 	KASSERT(pt->pt_pid == pid);
   1094 	if (PT_IS_PROC(pt->pt_slot)) {
   1095 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1096 		l->l_lid = pid;
   1097 		pt->pt_slot = PT_SET_LWP(l);
   1098 	} else {
   1099 		/* Need to allocate a new slot. */
   1100 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1101 		if (pid != -1)
   1102 			l->l_lid = pid;
   1103 	}
   1104 	rw_exit(&pid_table_lock);
   1105 
   1106 	return pid;
   1107 }
   1108 
   1109 static void __noinline
   1110 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1111 {
   1112 	struct pid_table *pt;
   1113 
   1114 	rw_enter(&pid_table_lock, RW_WRITER);
   1115 	pt = &pid_table[pid & pid_tbl_mask];
   1116 
   1117 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1118 	KASSERT(pt->pt_pid == pid);
   1119 
   1120 	/* save pid use count in slot */
   1121 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1122 	pt->pt_pid = 0;
   1123 
   1124 	if (pt->pt_pgrp == NULL) {
   1125 		/* link last freed entry onto ours */
   1126 		pid &= pid_tbl_mask;
   1127 		pt = &pid_table[last_free_pt];
   1128 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1129 		pt->pt_pid = 0;
   1130 		last_free_pt = pid;
   1131 		pid_alloc_cnt--;
   1132 	}
   1133 	rw_exit(&pid_table_lock);
   1134 }
   1135 
   1136 /*
   1137  * Free a process id - called from proc_free (in kern_exit.c)
   1138  *
   1139  * Called with the proc_lock held.
   1140  */
   1141 void
   1142 proc_free_pid(pid_t pid)
   1143 {
   1144 	KASSERT(mutex_owned(proc_lock));
   1145 	proc_free_pid_internal(pid, PT_F_PROC);
   1146 }
   1147 
   1148 /*
   1149  * Free a process id used by an LWP.  If this was the process's
   1150  * first LWP, we convert the slot to point to the process; the
   1151  * entry will get cleaned up later when the process finishes exiting.
   1152  *
   1153  * If not, then it's the same as proc_free_pid().
   1154  */
   1155 void
   1156 proc_free_lwpid(struct proc *p, pid_t pid)
   1157 {
   1158 
   1159 	KASSERT(mutex_owned(p->p_lock));
   1160 
   1161 	if (__predict_true(p->p_pid == pid)) {
   1162 		struct pid_table *pt;
   1163 
   1164 		rw_enter(&pid_table_lock, RW_WRITER);
   1165 		pt = &pid_table[pid & pid_tbl_mask];
   1166 
   1167 		KASSERT(pt->pt_pid == pid);
   1168 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1169 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1170 
   1171 		pt->pt_slot = PT_SET_PROC(p);
   1172 
   1173 		rw_exit(&pid_table_lock);
   1174 		return;
   1175 	}
   1176 	proc_free_pid_internal(pid, PT_F_LWP);
   1177 }
   1178 
   1179 void
   1180 proc_free_mem(struct proc *p)
   1181 {
   1182 
   1183 	kdtrace_proc_dtor(NULL, p);
   1184 	pool_cache_put(proc_cache, p);
   1185 }
   1186 
   1187 /*
   1188  * proc_enterpgrp: move p to a new or existing process group (and session).
   1189  *
   1190  * If we are creating a new pgrp, the pgid should equal
   1191  * the calling process' pid.
   1192  * If is only valid to enter a process group that is in the session
   1193  * of the process.
   1194  * Also mksess should only be set if we are creating a process group
   1195  *
   1196  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1197  */
   1198 int
   1199 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1200 {
   1201 	struct pgrp *new_pgrp, *pgrp;
   1202 	struct session *sess;
   1203 	struct proc *p;
   1204 	int rval;
   1205 	pid_t pg_id = NO_PGID;
   1206 
   1207 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1208 
   1209 	/* Allocate data areas we might need before doing any validity checks */
   1210 	rw_enter(&pid_table_lock, RW_READER);/* Because pid_table might change */
   1211 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
   1212 		rw_exit(&pid_table_lock);
   1213 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1214 	} else {
   1215 		rw_exit(&pid_table_lock);
   1216 		new_pgrp = NULL;
   1217 	}
   1218 	mutex_enter(proc_lock);
   1219 	rw_enter(&pid_table_lock, RW_WRITER);
   1220 	rval = EPERM;	/* most common error (to save typing) */
   1221 
   1222 	/* Check pgrp exists or can be created */
   1223 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1224 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1225 		goto done;
   1226 
   1227 	/* Can only set another process under restricted circumstances. */
   1228 	if (pid != curp->p_pid) {
   1229 		/* Must exist and be one of our children... */
   1230 		p = proc_find_pid_table_locked(pid);
   1231 		if (p == NULL || !p_inferior(p, curp)) {
   1232 			rval = ESRCH;
   1233 			goto done;
   1234 		}
   1235 		/* ... in the same session... */
   1236 		if (sess != NULL || p->p_session != curp->p_session)
   1237 			goto done;
   1238 		/* ... existing pgid must be in same session ... */
   1239 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1240 			goto done;
   1241 		/* ... and not done an exec. */
   1242 		if (p->p_flag & PK_EXEC) {
   1243 			rval = EACCES;
   1244 			goto done;
   1245 		}
   1246 	} else {
   1247 		/* ... setsid() cannot re-enter a pgrp */
   1248 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1249 		    pgrp_find_pid_table_locked(curp->p_pid)))
   1250 			goto done;
   1251 		p = curp;
   1252 	}
   1253 
   1254 	/* Changing the process group/session of a session
   1255 	   leader is definitely off limits. */
   1256 	if (SESS_LEADER(p)) {
   1257 		if (sess == NULL && p->p_pgrp == pgrp)
   1258 			/* unless it's a definite noop */
   1259 			rval = 0;
   1260 		goto done;
   1261 	}
   1262 
   1263 	/* Can only create a process group with id of process */
   1264 	if (pgrp == NULL && pgid != pid)
   1265 		goto done;
   1266 
   1267 	/* Can only create a session if creating pgrp */
   1268 	if (sess != NULL && pgrp != NULL)
   1269 		goto done;
   1270 
   1271 	/* Check we allocated memory for a pgrp... */
   1272 	if (pgrp == NULL && new_pgrp == NULL)
   1273 		goto done;
   1274 
   1275 	/* Don't attach to 'zombie' pgrp */
   1276 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1277 		goto done;
   1278 
   1279 	/* Expect to succeed now */
   1280 	rval = 0;
   1281 
   1282 	if (pgrp == p->p_pgrp)
   1283 		/* nothing to do */
   1284 		goto done;
   1285 
   1286 	/* Ok all setup, link up required structures */
   1287 
   1288 	if (pgrp == NULL) {
   1289 		pgrp = new_pgrp;
   1290 		new_pgrp = NULL;
   1291 		if (sess != NULL) {
   1292 			sess->s_sid = p->p_pid;
   1293 			sess->s_leader = p;
   1294 			sess->s_count = 1;
   1295 			sess->s_ttyvp = NULL;
   1296 			sess->s_ttyp = NULL;
   1297 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1298 			memcpy(sess->s_login, p->p_session->s_login,
   1299 			    sizeof(sess->s_login));
   1300 			p->p_lflag &= ~PL_CONTROLT;
   1301 		} else {
   1302 			sess = p->p_pgrp->pg_session;
   1303 			proc_sesshold(sess);
   1304 		}
   1305 		pgrp->pg_session = sess;
   1306 		sess = NULL;
   1307 
   1308 		pgrp->pg_id = pgid;
   1309 		LIST_INIT(&pgrp->pg_members);
   1310 #ifdef DIAGNOSTIC
   1311 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1312 			panic("enterpgrp: pgrp table slot in use");
   1313 		if (__predict_false(mksess && p != curp))
   1314 			panic("enterpgrp: mksession and p != curproc");
   1315 #endif
   1316 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1317 		pgrp->pg_jobc = 0;
   1318 	}
   1319 
   1320 	/*
   1321 	 * Adjust eligibility of affected pgrps to participate in job control.
   1322 	 * Increment eligibility counts before decrementing, otherwise we
   1323 	 * could reach 0 spuriously during the first call.
   1324 	 */
   1325 	fixjobc(p, pgrp, 1);
   1326 	fixjobc(p, p->p_pgrp, 0);
   1327 
   1328 	/* Interlock with ttread(). */
   1329 	mutex_spin_enter(&tty_lock);
   1330 
   1331 	/* Move process to requested group. */
   1332 	LIST_REMOVE(p, p_pglist);
   1333 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1334 		/* defer delete until we've dumped the lock */
   1335 		pg_id = p->p_pgrp->pg_id;
   1336 	p->p_pgrp = pgrp;
   1337 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1338 
   1339 	/* Done with the swap; we can release the tty mutex. */
   1340 	mutex_spin_exit(&tty_lock);
   1341 
   1342     done:
   1343 	rw_exit(&pid_table_lock);
   1344 	if (pg_id != NO_PGID) {
   1345 		/* Releases proc_lock. */
   1346 		pg_delete(pg_id);
   1347 	} else {
   1348 		mutex_exit(proc_lock);
   1349 	}
   1350 	if (sess != NULL)
   1351 		kmem_free(sess, sizeof(*sess));
   1352 	if (new_pgrp != NULL)
   1353 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1354 #ifdef DEBUG_PGRP
   1355 	if (__predict_false(rval))
   1356 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1357 			pid, pgid, mksess, curp->p_pid, rval);
   1358 #endif
   1359 	return rval;
   1360 }
   1361 
   1362 /*
   1363  * proc_leavepgrp: remove a process from its process group.
   1364  *  => must be called with the proc_lock held, which will be released;
   1365  */
   1366 void
   1367 proc_leavepgrp(struct proc *p)
   1368 {
   1369 	struct pgrp *pgrp;
   1370 
   1371 	KASSERT(mutex_owned(proc_lock));
   1372 
   1373 	/* Interlock with ttread() */
   1374 	mutex_spin_enter(&tty_lock);
   1375 	pgrp = p->p_pgrp;
   1376 	LIST_REMOVE(p, p_pglist);
   1377 	p->p_pgrp = NULL;
   1378 	mutex_spin_exit(&tty_lock);
   1379 
   1380 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1381 		/* Releases proc_lock. */
   1382 		pg_delete(pgrp->pg_id);
   1383 	} else {
   1384 		mutex_exit(proc_lock);
   1385 	}
   1386 }
   1387 
   1388 /*
   1389  * pg_remove: remove a process group from the table.
   1390  *  => must be called with the proc_lock held;
   1391  *  => returns process group to free;
   1392  */
   1393 static struct pgrp *
   1394 pg_remove(pid_t pg_id)
   1395 {
   1396 	struct pgrp *pgrp;
   1397 	struct pid_table *pt;
   1398 
   1399 	KASSERT(mutex_owned(proc_lock));
   1400 	KASSERT(rw_write_held(&pid_table_lock));
   1401 
   1402 	pt = &pid_table[pg_id & pid_tbl_mask];
   1403 	pgrp = pt->pt_pgrp;
   1404 
   1405 	KASSERT(pgrp != NULL);
   1406 	KASSERT(pgrp->pg_id == pg_id);
   1407 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1408 
   1409 	pt->pt_pgrp = NULL;
   1410 
   1411 	if (!PT_VALID(pt->pt_slot)) {
   1412 		/* Orphaned pgrp, put slot onto free list. */
   1413 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1414 		pg_id &= pid_tbl_mask;
   1415 		pt = &pid_table[last_free_pt];
   1416 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1417 		KASSERT(pt->pt_pid == 0);
   1418 		last_free_pt = pg_id;
   1419 		pid_alloc_cnt--;
   1420 	}
   1421 	return pgrp;
   1422 }
   1423 
   1424 /*
   1425  * pg_delete: delete and free a process group.
   1426  *  => must be called with the proc_lock held, which will be released.
   1427  */
   1428 static void
   1429 pg_delete(pid_t pg_id)
   1430 {
   1431 	struct pgrp *pg;
   1432 	struct tty *ttyp;
   1433 	struct session *ss;
   1434 
   1435 	KASSERT(mutex_owned(proc_lock));
   1436 
   1437 	rw_enter(&pid_table_lock, RW_WRITER);
   1438 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1439 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1440 		rw_exit(&pid_table_lock);
   1441 		mutex_exit(proc_lock);
   1442 		return;
   1443 	}
   1444 
   1445 	ss = pg->pg_session;
   1446 
   1447 	/* Remove reference (if any) from tty to this process group */
   1448 	mutex_spin_enter(&tty_lock);
   1449 	ttyp = ss->s_ttyp;
   1450 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1451 		ttyp->t_pgrp = NULL;
   1452 		KASSERT(ttyp->t_session == ss);
   1453 	}
   1454 	mutex_spin_exit(&tty_lock);
   1455 
   1456 	/*
   1457 	 * The leading process group in a session is freed by
   1458 	 * proc_sessrele_pid_table_write_locked(), if last
   1459 	 * reference.  It will also release the locks.
   1460 	 */
   1461 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1462 	proc_sessrele_pid_table_write_locked(ss);
   1463 
   1464 	if (pg != NULL) {
   1465 		/* Free it, if was not done above. */
   1466 		kmem_free(pg, sizeof(struct pgrp));
   1467 	}
   1468 }
   1469 
   1470 /*
   1471  * Adjust pgrp jobc counters when specified process changes process group.
   1472  * We count the number of processes in each process group that "qualify"
   1473  * the group for terminal job control (those with a parent in a different
   1474  * process group of the same session).  If that count reaches zero, the
   1475  * process group becomes orphaned.  Check both the specified process'
   1476  * process group and that of its children.
   1477  * entering == 0 => p is leaving specified group.
   1478  * entering == 1 => p is entering specified group.
   1479  *
   1480  * Call with proc_lock held.
   1481  */
   1482 void
   1483 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1484 {
   1485 	struct pgrp *hispgrp;
   1486 	struct session *mysession = pgrp->pg_session;
   1487 	struct proc *child;
   1488 
   1489 	KASSERT(mutex_owned(proc_lock));
   1490 
   1491 	/*
   1492 	 * Check p's parent to see whether p qualifies its own process
   1493 	 * group; if so, adjust count for p's process group.
   1494 	 */
   1495 	hispgrp = p->p_pptr->p_pgrp;
   1496 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1497 		if (entering) {
   1498 			pgrp->pg_jobc++;
   1499 			p->p_lflag &= ~PL_ORPHANPG;
   1500 		} else {
   1501 			KASSERT(pgrp->pg_jobc > 0);
   1502 			if (--pgrp->pg_jobc == 0)
   1503 				orphanpg(pgrp);
   1504 		}
   1505 	}
   1506 
   1507 	/*
   1508 	 * Check this process' children to see whether they qualify
   1509 	 * their process groups; if so, adjust counts for children's
   1510 	 * process groups.
   1511 	 */
   1512 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1513 		hispgrp = child->p_pgrp;
   1514 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1515 		    !P_ZOMBIE(child)) {
   1516 			if (entering) {
   1517 				child->p_lflag &= ~PL_ORPHANPG;
   1518 				hispgrp->pg_jobc++;
   1519 			} else {
   1520 				KASSERT(hispgrp->pg_jobc > 0);
   1521 				if (--hispgrp->pg_jobc == 0)
   1522 					orphanpg(hispgrp);
   1523 			}
   1524 		}
   1525 	}
   1526 }
   1527 
   1528 /*
   1529  * A process group has become orphaned;
   1530  * if there are any stopped processes in the group,
   1531  * hang-up all process in that group.
   1532  *
   1533  * Call with proc_lock held.
   1534  */
   1535 static void
   1536 orphanpg(struct pgrp *pg)
   1537 {
   1538 	struct proc *p;
   1539 
   1540 	KASSERT(mutex_owned(proc_lock));
   1541 
   1542 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1543 		if (p->p_stat == SSTOP) {
   1544 			p->p_lflag |= PL_ORPHANPG;
   1545 			psignal(p, SIGHUP);
   1546 			psignal(p, SIGCONT);
   1547 		}
   1548 	}
   1549 }
   1550 
   1551 #ifdef DDB
   1552 #include <ddb/db_output.h>
   1553 void pidtbl_dump(void);
   1554 void
   1555 pidtbl_dump(void)
   1556 {
   1557 	struct pid_table *pt;
   1558 	struct proc *p;
   1559 	struct pgrp *pgrp;
   1560 	uintptr_t slot;
   1561 	int id;
   1562 
   1563 	db_printf("pid table %p size %x, next %x, last %x\n",
   1564 		pid_table, pid_tbl_mask+1,
   1565 		next_free_pt, last_free_pt);
   1566 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1567 		slot = pt->pt_slot;
   1568 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1569 			continue;
   1570 		if (PT_IS_LWP(slot)) {
   1571 			p = PT_GET_LWP(slot)->l_proc;
   1572 		} else if (PT_IS_PROC(slot)) {
   1573 			p = PT_GET_PROC(slot);
   1574 		} else {
   1575 			p = NULL;
   1576 		}
   1577 		db_printf("  id %x: ", id);
   1578 		if (p != NULL)
   1579 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1580 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1581 		else
   1582 			db_printf("next %x use %x\n",
   1583 				PT_NEXT(slot) & pid_tbl_mask,
   1584 				PT_NEXT(slot) & ~pid_tbl_mask);
   1585 		if ((pgrp = pt->pt_pgrp)) {
   1586 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1587 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1588 			    pgrp->pg_session->s_count,
   1589 			    pgrp->pg_session->s_login);
   1590 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1591 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1592 			    LIST_FIRST(&pgrp->pg_members));
   1593 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1594 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1595 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1596 			}
   1597 		}
   1598 	}
   1599 }
   1600 #endif /* DDB */
   1601 
   1602 #ifdef KSTACK_CHECK_MAGIC
   1603 
   1604 #define	KSTACK_MAGIC	0xdeadbeaf
   1605 
   1606 /* XXX should be per process basis? */
   1607 static int	kstackleftmin = KSTACK_SIZE;
   1608 static int	kstackleftthres = KSTACK_SIZE / 8;
   1609 
   1610 void
   1611 kstack_setup_magic(const struct lwp *l)
   1612 {
   1613 	uint32_t *ip;
   1614 	uint32_t const *end;
   1615 
   1616 	KASSERT(l != NULL);
   1617 	KASSERT(l != &lwp0);
   1618 
   1619 	/*
   1620 	 * fill all the stack with magic number
   1621 	 * so that later modification on it can be detected.
   1622 	 */
   1623 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1624 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1625 	for (; ip < end; ip++) {
   1626 		*ip = KSTACK_MAGIC;
   1627 	}
   1628 }
   1629 
   1630 void
   1631 kstack_check_magic(const struct lwp *l)
   1632 {
   1633 	uint32_t const *ip, *end;
   1634 	int stackleft;
   1635 
   1636 	KASSERT(l != NULL);
   1637 
   1638 	/* don't check proc0 */ /*XXX*/
   1639 	if (l == &lwp0)
   1640 		return;
   1641 
   1642 #ifdef __MACHINE_STACK_GROWS_UP
   1643 	/* stack grows upwards (eg. hppa) */
   1644 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1645 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1646 	for (ip--; ip >= end; ip--)
   1647 		if (*ip != KSTACK_MAGIC)
   1648 			break;
   1649 
   1650 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1651 #else /* __MACHINE_STACK_GROWS_UP */
   1652 	/* stack grows downwards (eg. i386) */
   1653 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1654 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1655 	for (; ip < end; ip++)
   1656 		if (*ip != KSTACK_MAGIC)
   1657 			break;
   1658 
   1659 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1660 #endif /* __MACHINE_STACK_GROWS_UP */
   1661 
   1662 	if (kstackleftmin > stackleft) {
   1663 		kstackleftmin = stackleft;
   1664 		if (stackleft < kstackleftthres)
   1665 			printf("warning: kernel stack left %d bytes"
   1666 			    "(pid %u:lid %u)\n", stackleft,
   1667 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1668 	}
   1669 
   1670 	if (stackleft <= 0) {
   1671 		panic("magic on the top of kernel stack changed for "
   1672 		    "pid %u, lid %u: maybe kernel stack overflow",
   1673 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1674 	}
   1675 }
   1676 #endif /* KSTACK_CHECK_MAGIC */
   1677 
   1678 int
   1679 proclist_foreach_call(struct proclist *list,
   1680     int (*callback)(struct proc *, void *arg), void *arg)
   1681 {
   1682 	struct proc marker;
   1683 	struct proc *p;
   1684 	int ret = 0;
   1685 
   1686 	marker.p_flag = PK_MARKER;
   1687 	mutex_enter(proc_lock);
   1688 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1689 		if (p->p_flag & PK_MARKER) {
   1690 			p = LIST_NEXT(p, p_list);
   1691 			continue;
   1692 		}
   1693 		LIST_INSERT_AFTER(p, &marker, p_list);
   1694 		ret = (*callback)(p, arg);
   1695 		KASSERT(mutex_owned(proc_lock));
   1696 		p = LIST_NEXT(&marker, p_list);
   1697 		LIST_REMOVE(&marker, p_list);
   1698 	}
   1699 	mutex_exit(proc_lock);
   1700 
   1701 	return ret;
   1702 }
   1703 
   1704 int
   1705 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1706 {
   1707 
   1708 	/* XXXCDC: how should locking work here? */
   1709 
   1710 	/* curproc exception is for coredump. */
   1711 
   1712 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1713 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1714 		return EFAULT;
   1715 	}
   1716 
   1717 	uvmspace_addref(p->p_vmspace);
   1718 	*vm = p->p_vmspace;
   1719 
   1720 	return 0;
   1721 }
   1722 
   1723 /*
   1724  * Acquire a write lock on the process credential.
   1725  */
   1726 void
   1727 proc_crmod_enter(void)
   1728 {
   1729 	struct lwp *l = curlwp;
   1730 	struct proc *p = l->l_proc;
   1731 	kauth_cred_t oc;
   1732 
   1733 	/* Reset what needs to be reset in plimit. */
   1734 	if (p->p_limit->pl_corename != defcorename) {
   1735 		lim_setcorename(p, defcorename, 0);
   1736 	}
   1737 
   1738 	mutex_enter(p->p_lock);
   1739 
   1740 	/* Ensure the LWP cached credentials are up to date. */
   1741 	if ((oc = l->l_cred) != p->p_cred) {
   1742 		kauth_cred_hold(p->p_cred);
   1743 		l->l_cred = p->p_cred;
   1744 		kauth_cred_free(oc);
   1745 	}
   1746 }
   1747 
   1748 /*
   1749  * Set in a new process credential, and drop the write lock.  The credential
   1750  * must have a reference already.  Optionally, free a no-longer required
   1751  * credential.  The scheduler also needs to inspect p_cred, so we also
   1752  * briefly acquire the sched state mutex.
   1753  */
   1754 void
   1755 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1756 {
   1757 	struct lwp *l = curlwp, *l2;
   1758 	struct proc *p = l->l_proc;
   1759 	kauth_cred_t oc;
   1760 
   1761 	KASSERT(mutex_owned(p->p_lock));
   1762 
   1763 	/* Is there a new credential to set in? */
   1764 	if (scred != NULL) {
   1765 		p->p_cred = scred;
   1766 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1767 			if (l2 != l)
   1768 				l2->l_prflag |= LPR_CRMOD;
   1769 		}
   1770 
   1771 		/* Ensure the LWP cached credentials are up to date. */
   1772 		if ((oc = l->l_cred) != scred) {
   1773 			kauth_cred_hold(scred);
   1774 			l->l_cred = scred;
   1775 		}
   1776 	} else
   1777 		oc = NULL;	/* XXXgcc */
   1778 
   1779 	if (sugid) {
   1780 		/*
   1781 		 * Mark process as having changed credentials, stops
   1782 		 * tracing etc.
   1783 		 */
   1784 		p->p_flag |= PK_SUGID;
   1785 	}
   1786 
   1787 	mutex_exit(p->p_lock);
   1788 
   1789 	/* If there is a credential to be released, free it now. */
   1790 	if (fcred != NULL) {
   1791 		KASSERT(scred != NULL);
   1792 		kauth_cred_free(fcred);
   1793 		if (oc != scred)
   1794 			kauth_cred_free(oc);
   1795 	}
   1796 }
   1797 
   1798 /*
   1799  * proc_specific_key_create --
   1800  *	Create a key for subsystem proc-specific data.
   1801  */
   1802 int
   1803 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1804 {
   1805 
   1806 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1807 }
   1808 
   1809 /*
   1810  * proc_specific_key_delete --
   1811  *	Delete a key for subsystem proc-specific data.
   1812  */
   1813 void
   1814 proc_specific_key_delete(specificdata_key_t key)
   1815 {
   1816 
   1817 	specificdata_key_delete(proc_specificdata_domain, key);
   1818 }
   1819 
   1820 /*
   1821  * proc_initspecific --
   1822  *	Initialize a proc's specificdata container.
   1823  */
   1824 void
   1825 proc_initspecific(struct proc *p)
   1826 {
   1827 	int error __diagused;
   1828 
   1829 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1830 	KASSERT(error == 0);
   1831 }
   1832 
   1833 /*
   1834  * proc_finispecific --
   1835  *	Finalize a proc's specificdata container.
   1836  */
   1837 void
   1838 proc_finispecific(struct proc *p)
   1839 {
   1840 
   1841 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1842 }
   1843 
   1844 /*
   1845  * proc_getspecific --
   1846  *	Return proc-specific data corresponding to the specified key.
   1847  */
   1848 void *
   1849 proc_getspecific(struct proc *p, specificdata_key_t key)
   1850 {
   1851 
   1852 	return (specificdata_getspecific(proc_specificdata_domain,
   1853 					 &p->p_specdataref, key));
   1854 }
   1855 
   1856 /*
   1857  * proc_setspecific --
   1858  *	Set proc-specific data corresponding to the specified key.
   1859  */
   1860 void
   1861 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1862 {
   1863 
   1864 	specificdata_setspecific(proc_specificdata_domain,
   1865 				 &p->p_specdataref, key, data);
   1866 }
   1867 
   1868 int
   1869 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1870 {
   1871 	int r = 0;
   1872 
   1873 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1874 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1875 		/*
   1876 		 * suid proc of ours or proc not ours
   1877 		 */
   1878 		r = EPERM;
   1879 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1880 		/*
   1881 		 * sgid proc has sgid back to us temporarily
   1882 		 */
   1883 		r = EPERM;
   1884 	} else {
   1885 		/*
   1886 		 * our rgid must be in target's group list (ie,
   1887 		 * sub-processes started by a sgid process)
   1888 		 */
   1889 		int ismember = 0;
   1890 
   1891 		if (kauth_cred_ismember_gid(cred,
   1892 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1893 		    !ismember)
   1894 			r = EPERM;
   1895 	}
   1896 
   1897 	return (r);
   1898 }
   1899 
   1900 /*
   1901  * sysctl stuff
   1902  */
   1903 
   1904 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1905 
   1906 static const u_int sysctl_flagmap[] = {
   1907 	PK_ADVLOCK, P_ADVLOCK,
   1908 	PK_EXEC, P_EXEC,
   1909 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1910 	PK_32, P_32,
   1911 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1912 	PK_SUGID, P_SUGID,
   1913 	0
   1914 };
   1915 
   1916 static const u_int sysctl_sflagmap[] = {
   1917 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1918 	PS_WEXIT, P_WEXIT,
   1919 	PS_STOPFORK, P_STOPFORK,
   1920 	PS_STOPEXEC, P_STOPEXEC,
   1921 	PS_STOPEXIT, P_STOPEXIT,
   1922 	0
   1923 };
   1924 
   1925 static const u_int sysctl_slflagmap[] = {
   1926 	PSL_TRACED, P_TRACED,
   1927 	PSL_CHTRACED, P_CHTRACED,
   1928 	PSL_SYSCALL, P_SYSCALL,
   1929 	0
   1930 };
   1931 
   1932 static const u_int sysctl_lflagmap[] = {
   1933 	PL_CONTROLT, P_CONTROLT,
   1934 	PL_PPWAIT, P_PPWAIT,
   1935 	0
   1936 };
   1937 
   1938 static const u_int sysctl_stflagmap[] = {
   1939 	PST_PROFIL, P_PROFIL,
   1940 	0
   1941 
   1942 };
   1943 
   1944 /* used by kern_lwp also */
   1945 const u_int sysctl_lwpflagmap[] = {
   1946 	LW_SINTR, L_SINTR,
   1947 	LW_SYSTEM, L_SYSTEM,
   1948 	0
   1949 };
   1950 
   1951 /*
   1952  * Find the most ``active'' lwp of a process and return it for ps display
   1953  * purposes
   1954  */
   1955 static struct lwp *
   1956 proc_active_lwp(struct proc *p)
   1957 {
   1958 	static const int ostat[] = {
   1959 		0,
   1960 		2,	/* LSIDL */
   1961 		6,	/* LSRUN */
   1962 		5,	/* LSSLEEP */
   1963 		4,	/* LSSTOP */
   1964 		0,	/* LSZOMB */
   1965 		1,	/* LSDEAD */
   1966 		7,	/* LSONPROC */
   1967 		3	/* LSSUSPENDED */
   1968 	};
   1969 
   1970 	struct lwp *l, *lp = NULL;
   1971 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1972 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1973 		if (lp == NULL ||
   1974 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1975 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1976 		    l->l_cpticks > lp->l_cpticks)) {
   1977 			lp = l;
   1978 			continue;
   1979 		}
   1980 	}
   1981 	return lp;
   1982 }
   1983 
   1984 static int
   1985 sysctl_doeproc(SYSCTLFN_ARGS)
   1986 {
   1987 	union {
   1988 		struct kinfo_proc kproc;
   1989 		struct kinfo_proc2 kproc2;
   1990 	} *kbuf;
   1991 	struct proc *p, *next, *marker;
   1992 	char *where, *dp;
   1993 	int type, op, arg, error;
   1994 	u_int elem_size, kelem_size, elem_count;
   1995 	size_t buflen, needed;
   1996 	bool match, zombie, mmmbrains;
   1997 	const bool allowaddr = get_expose_address(curproc);
   1998 
   1999 	if (namelen == 1 && name[0] == CTL_QUERY)
   2000 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2001 
   2002 	dp = where = oldp;
   2003 	buflen = where != NULL ? *oldlenp : 0;
   2004 	error = 0;
   2005 	needed = 0;
   2006 	type = rnode->sysctl_num;
   2007 
   2008 	if (type == KERN_PROC) {
   2009 		if (namelen == 0)
   2010 			return EINVAL;
   2011 		switch (op = name[0]) {
   2012 		case KERN_PROC_ALL:
   2013 			if (namelen != 1)
   2014 				return EINVAL;
   2015 			arg = 0;
   2016 			break;
   2017 		default:
   2018 			if (namelen != 2)
   2019 				return EINVAL;
   2020 			arg = name[1];
   2021 			break;
   2022 		}
   2023 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2024 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2025 	} else {
   2026 		if (namelen != 4)
   2027 			return EINVAL;
   2028 		op = name[0];
   2029 		arg = name[1];
   2030 		elem_size = name[2];
   2031 		elem_count = name[3];
   2032 		kelem_size = sizeof(kbuf->kproc2);
   2033 	}
   2034 
   2035 	sysctl_unlock();
   2036 
   2037 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2038 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2039 	marker->p_flag = PK_MARKER;
   2040 
   2041 	mutex_enter(proc_lock);
   2042 	/*
   2043 	 * Start with zombies to prevent reporting processes twice, in case they
   2044 	 * are dying and being moved from the list of alive processes to zombies.
   2045 	 */
   2046 	mmmbrains = true;
   2047 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2048 		if (p == NULL) {
   2049 			if (mmmbrains) {
   2050 				p = LIST_FIRST(&allproc);
   2051 				mmmbrains = false;
   2052 			}
   2053 			if (p == NULL)
   2054 				break;
   2055 		}
   2056 		next = LIST_NEXT(p, p_list);
   2057 		if ((p->p_flag & PK_MARKER) != 0)
   2058 			continue;
   2059 
   2060 		/*
   2061 		 * Skip embryonic processes.
   2062 		 */
   2063 		if (p->p_stat == SIDL)
   2064 			continue;
   2065 
   2066 		mutex_enter(p->p_lock);
   2067 		error = kauth_authorize_process(l->l_cred,
   2068 		    KAUTH_PROCESS_CANSEE, p,
   2069 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2070 		if (error != 0) {
   2071 			mutex_exit(p->p_lock);
   2072 			continue;
   2073 		}
   2074 
   2075 		/*
   2076 		 * Hande all the operations in one switch on the cost of
   2077 		 * algorithm complexity is on purpose. The win splitting this
   2078 		 * function into several similar copies makes maintenance burden
   2079 		 * burden, code grow and boost is neglible in practical systems.
   2080 		 */
   2081 		switch (op) {
   2082 		case KERN_PROC_PID:
   2083 			match = (p->p_pid == (pid_t)arg);
   2084 			break;
   2085 
   2086 		case KERN_PROC_PGRP:
   2087 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2088 			break;
   2089 
   2090 		case KERN_PROC_SESSION:
   2091 			match = (p->p_session->s_sid == (pid_t)arg);
   2092 			break;
   2093 
   2094 		case KERN_PROC_TTY:
   2095 			match = true;
   2096 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2097 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2098 				    p->p_session->s_ttyp == NULL ||
   2099 				    p->p_session->s_ttyvp != NULL) {
   2100 				    	match = false;
   2101 				}
   2102 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2103 			    p->p_session->s_ttyp == NULL) {
   2104 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2105 					match = false;
   2106 				}
   2107 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2108 				match = false;
   2109 			}
   2110 			break;
   2111 
   2112 		case KERN_PROC_UID:
   2113 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2114 			break;
   2115 
   2116 		case KERN_PROC_RUID:
   2117 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2118 			break;
   2119 
   2120 		case KERN_PROC_GID:
   2121 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2122 			break;
   2123 
   2124 		case KERN_PROC_RGID:
   2125 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2126 			break;
   2127 
   2128 		case KERN_PROC_ALL:
   2129 			match = true;
   2130 			/* allow everything */
   2131 			break;
   2132 
   2133 		default:
   2134 			error = EINVAL;
   2135 			mutex_exit(p->p_lock);
   2136 			goto cleanup;
   2137 		}
   2138 		if (!match) {
   2139 			mutex_exit(p->p_lock);
   2140 			continue;
   2141 		}
   2142 
   2143 		/*
   2144 		 * Grab a hold on the process.
   2145 		 */
   2146 		if (mmmbrains) {
   2147 			zombie = true;
   2148 		} else {
   2149 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2150 		}
   2151 		if (zombie) {
   2152 			LIST_INSERT_AFTER(p, marker, p_list);
   2153 		}
   2154 
   2155 		if (buflen >= elem_size &&
   2156 		    (type == KERN_PROC || elem_count > 0)) {
   2157 			ruspace(p);	/* Update process vm resource use */
   2158 
   2159 			if (type == KERN_PROC) {
   2160 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2161 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2162 				    allowaddr);
   2163 			} else {
   2164 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2165 				    allowaddr);
   2166 				elem_count--;
   2167 			}
   2168 			mutex_exit(p->p_lock);
   2169 			mutex_exit(proc_lock);
   2170 			/*
   2171 			 * Copy out elem_size, but not larger than kelem_size
   2172 			 */
   2173 			error = sysctl_copyout(l, kbuf, dp,
   2174 			    uimin(kelem_size, elem_size));
   2175 			mutex_enter(proc_lock);
   2176 			if (error) {
   2177 				goto bah;
   2178 			}
   2179 			dp += elem_size;
   2180 			buflen -= elem_size;
   2181 		} else {
   2182 			mutex_exit(p->p_lock);
   2183 		}
   2184 		needed += elem_size;
   2185 
   2186 		/*
   2187 		 * Release reference to process.
   2188 		 */
   2189 	 	if (zombie) {
   2190 			next = LIST_NEXT(marker, p_list);
   2191  			LIST_REMOVE(marker, p_list);
   2192 		} else {
   2193 			rw_exit(&p->p_reflock);
   2194 			next = LIST_NEXT(p, p_list);
   2195 		}
   2196 
   2197 		/*
   2198 		 * Short-circuit break quickly!
   2199 		 */
   2200 		if (op == KERN_PROC_PID)
   2201                 	break;
   2202 	}
   2203 	mutex_exit(proc_lock);
   2204 
   2205 	if (where != NULL) {
   2206 		*oldlenp = dp - where;
   2207 		if (needed > *oldlenp) {
   2208 			error = ENOMEM;
   2209 			goto out;
   2210 		}
   2211 	} else {
   2212 		needed += KERN_PROCSLOP;
   2213 		*oldlenp = needed;
   2214 	}
   2215 	kmem_free(kbuf, sizeof(*kbuf));
   2216 	kmem_free(marker, sizeof(*marker));
   2217 	sysctl_relock();
   2218 	return 0;
   2219  bah:
   2220  	if (zombie)
   2221  		LIST_REMOVE(marker, p_list);
   2222 	else
   2223 		rw_exit(&p->p_reflock);
   2224  cleanup:
   2225 	mutex_exit(proc_lock);
   2226  out:
   2227 	kmem_free(kbuf, sizeof(*kbuf));
   2228 	kmem_free(marker, sizeof(*marker));
   2229 	sysctl_relock();
   2230 	return error;
   2231 }
   2232 
   2233 int
   2234 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2235 {
   2236 #if !defined(_RUMPKERNEL)
   2237 	int retval;
   2238 
   2239 	if (p->p_flag & PK_32) {
   2240 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2241 		    enosys(), retval);
   2242 		return retval;
   2243 	}
   2244 #endif /* !defined(_RUMPKERNEL) */
   2245 
   2246 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2247 }
   2248 
   2249 static int
   2250 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2251 {
   2252 	void **cookie = cookie_;
   2253 	struct lwp *l = cookie[0];
   2254 	char *dst = cookie[1];
   2255 
   2256 	return sysctl_copyout(l, src, dst + off, len);
   2257 }
   2258 
   2259 /*
   2260  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2261  */
   2262 static int
   2263 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2264 {
   2265 	struct ps_strings pss;
   2266 	struct proc *p;
   2267 	pid_t pid;
   2268 	int type, error;
   2269 	void *cookie[2];
   2270 
   2271 	if (namelen == 1 && name[0] == CTL_QUERY)
   2272 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2273 
   2274 	if (newp != NULL || namelen != 2)
   2275 		return (EINVAL);
   2276 	pid = name[0];
   2277 	type = name[1];
   2278 
   2279 	switch (type) {
   2280 	case KERN_PROC_PATHNAME:
   2281 		sysctl_unlock();
   2282 		error = fill_pathname(l, pid, oldp, oldlenp);
   2283 		sysctl_relock();
   2284 		return error;
   2285 
   2286 	case KERN_PROC_CWD:
   2287 		sysctl_unlock();
   2288 		error = fill_cwd(l, pid, oldp, oldlenp);
   2289 		sysctl_relock();
   2290 		return error;
   2291 
   2292 	case KERN_PROC_ARGV:
   2293 	case KERN_PROC_NARGV:
   2294 	case KERN_PROC_ENV:
   2295 	case KERN_PROC_NENV:
   2296 		/* ok */
   2297 		break;
   2298 	default:
   2299 		return (EINVAL);
   2300 	}
   2301 
   2302 	sysctl_unlock();
   2303 
   2304 	/* check pid */
   2305 	mutex_enter(proc_lock);
   2306 	if ((p = proc_find(pid)) == NULL) {
   2307 		error = EINVAL;
   2308 		goto out_locked;
   2309 	}
   2310 	mutex_enter(p->p_lock);
   2311 
   2312 	/* Check permission. */
   2313 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2314 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2315 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2316 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2317 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2318 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2319 	else
   2320 		error = EINVAL; /* XXXGCC */
   2321 	if (error) {
   2322 		mutex_exit(p->p_lock);
   2323 		goto out_locked;
   2324 	}
   2325 
   2326 	if (oldp == NULL) {
   2327 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2328 			*oldlenp = sizeof (int);
   2329 		else
   2330 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2331 		error = 0;
   2332 		mutex_exit(p->p_lock);
   2333 		goto out_locked;
   2334 	}
   2335 
   2336 	/*
   2337 	 * Zombies don't have a stack, so we can't read their psstrings.
   2338 	 * System processes also don't have a user stack.
   2339 	 */
   2340 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2341 		error = EINVAL;
   2342 		mutex_exit(p->p_lock);
   2343 		goto out_locked;
   2344 	}
   2345 
   2346 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2347 	mutex_exit(p->p_lock);
   2348 	if (error) {
   2349 		goto out_locked;
   2350 	}
   2351 	mutex_exit(proc_lock);
   2352 
   2353 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2354 		int value;
   2355 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2356 			if (type == KERN_PROC_NARGV)
   2357 				value = pss.ps_nargvstr;
   2358 			else
   2359 				value = pss.ps_nenvstr;
   2360 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2361 			*oldlenp = sizeof(value);
   2362 		}
   2363 	} else {
   2364 		cookie[0] = l;
   2365 		cookie[1] = oldp;
   2366 		error = copy_procargs(p, type, oldlenp,
   2367 		    copy_procargs_sysctl_cb, cookie);
   2368 	}
   2369 	rw_exit(&p->p_reflock);
   2370 	sysctl_relock();
   2371 	return error;
   2372 
   2373 out_locked:
   2374 	mutex_exit(proc_lock);
   2375 	sysctl_relock();
   2376 	return error;
   2377 }
   2378 
   2379 int
   2380 copy_procargs(struct proc *p, int oid, size_t *limit,
   2381     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2382 {
   2383 	struct ps_strings pss;
   2384 	size_t len, i, loaded, entry_len;
   2385 	struct uio auio;
   2386 	struct iovec aiov;
   2387 	int error, argvlen;
   2388 	char *arg;
   2389 	char **argv;
   2390 	vaddr_t user_argv;
   2391 	struct vmspace *vmspace;
   2392 
   2393 	/*
   2394 	 * Allocate a temporary buffer to hold the argument vector and
   2395 	 * the arguments themselve.
   2396 	 */
   2397 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2398 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2399 
   2400 	/*
   2401 	 * Lock the process down in memory.
   2402 	 */
   2403 	vmspace = p->p_vmspace;
   2404 	uvmspace_addref(vmspace);
   2405 
   2406 	/*
   2407 	 * Read in the ps_strings structure.
   2408 	 */
   2409 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2410 		goto done;
   2411 
   2412 	/*
   2413 	 * Now read the address of the argument vector.
   2414 	 */
   2415 	switch (oid) {
   2416 	case KERN_PROC_ARGV:
   2417 		user_argv = (uintptr_t)pss.ps_argvstr;
   2418 		argvlen = pss.ps_nargvstr;
   2419 		break;
   2420 	case KERN_PROC_ENV:
   2421 		user_argv = (uintptr_t)pss.ps_envstr;
   2422 		argvlen = pss.ps_nenvstr;
   2423 		break;
   2424 	default:
   2425 		error = EINVAL;
   2426 		goto done;
   2427 	}
   2428 
   2429 	if (argvlen < 0) {
   2430 		error = EIO;
   2431 		goto done;
   2432 	}
   2433 
   2434 
   2435 	/*
   2436 	 * Now copy each string.
   2437 	 */
   2438 	len = 0; /* bytes written to user buffer */
   2439 	loaded = 0; /* bytes from argv already processed */
   2440 	i = 0; /* To make compiler happy */
   2441 	entry_len = PROC_PTRSZ(p);
   2442 
   2443 	for (; argvlen; --argvlen) {
   2444 		int finished = 0;
   2445 		vaddr_t base;
   2446 		size_t xlen;
   2447 		int j;
   2448 
   2449 		if (loaded == 0) {
   2450 			size_t rem = entry_len * argvlen;
   2451 			loaded = MIN(rem, PAGE_SIZE);
   2452 			error = copyin_vmspace(vmspace,
   2453 			    (const void *)user_argv, argv, loaded);
   2454 			if (error)
   2455 				break;
   2456 			user_argv += loaded;
   2457 			i = 0;
   2458 		}
   2459 
   2460 #if !defined(_RUMPKERNEL)
   2461 		if (p->p_flag & PK_32)
   2462 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2463 			    (argv, i++), 0, base);
   2464 		else
   2465 #endif /* !defined(_RUMPKERNEL) */
   2466 			base = (vaddr_t)argv[i++];
   2467 		loaded -= entry_len;
   2468 
   2469 		/*
   2470 		 * The program has messed around with its arguments,
   2471 		 * possibly deleting some, and replacing them with
   2472 		 * NULL's. Treat this as the last argument and not
   2473 		 * a failure.
   2474 		 */
   2475 		if (base == 0)
   2476 			break;
   2477 
   2478 		while (!finished) {
   2479 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2480 
   2481 			aiov.iov_base = arg;
   2482 			aiov.iov_len = PAGE_SIZE;
   2483 			auio.uio_iov = &aiov;
   2484 			auio.uio_iovcnt = 1;
   2485 			auio.uio_offset = base;
   2486 			auio.uio_resid = xlen;
   2487 			auio.uio_rw = UIO_READ;
   2488 			UIO_SETUP_SYSSPACE(&auio);
   2489 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2490 			if (error)
   2491 				goto done;
   2492 
   2493 			/* Look for the end of the string */
   2494 			for (j = 0; j < xlen; j++) {
   2495 				if (arg[j] == '\0') {
   2496 					xlen = j + 1;
   2497 					finished = 1;
   2498 					break;
   2499 				}
   2500 			}
   2501 
   2502 			/* Check for user buffer overflow */
   2503 			if (len + xlen > *limit) {
   2504 				finished = 1;
   2505 				if (len > *limit)
   2506 					xlen = 0;
   2507 				else
   2508 					xlen = *limit - len;
   2509 			}
   2510 
   2511 			/* Copyout the page */
   2512 			error = (*cb)(cookie, arg, len, xlen);
   2513 			if (error)
   2514 				goto done;
   2515 
   2516 			len += xlen;
   2517 			base += xlen;
   2518 		}
   2519 	}
   2520 	*limit = len;
   2521 
   2522 done:
   2523 	kmem_free(argv, PAGE_SIZE);
   2524 	kmem_free(arg, PAGE_SIZE);
   2525 	uvmspace_free(vmspace);
   2526 	return error;
   2527 }
   2528 
   2529 /*
   2530  * Fill in a proc structure for the specified process.
   2531  */
   2532 static void
   2533 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2534 {
   2535 	COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
   2536 	COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
   2537 	COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
   2538 	COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
   2539 	COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
   2540 	COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2541 	COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2542 	COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
   2543 	COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
   2544 	COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2545 	COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
   2546 	COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
   2547 	COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2548 	COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2549 	COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
   2550 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2551 	COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
   2552 	p->p_exitsig = psrc->p_exitsig;
   2553 	p->p_flag = psrc->p_flag;
   2554 	p->p_sflag = psrc->p_sflag;
   2555 	p->p_slflag = psrc->p_slflag;
   2556 	p->p_lflag = psrc->p_lflag;
   2557 	p->p_stflag = psrc->p_stflag;
   2558 	p->p_stat = psrc->p_stat;
   2559 	p->p_trace_enabled = psrc->p_trace_enabled;
   2560 	p->p_pid = psrc->p_pid;
   2561 	COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
   2562 	COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
   2563 	COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
   2564 	COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
   2565 	COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
   2566 	COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
   2567 	p->p_nlwps = psrc->p_nlwps;
   2568 	p->p_nzlwps = psrc->p_nzlwps;
   2569 	p->p_nrlwps = psrc->p_nrlwps;
   2570 	p->p_nlwpwait = psrc->p_nlwpwait;
   2571 	p->p_ndlwps = psrc->p_ndlwps;
   2572 	p->p_nstopchild = psrc->p_nstopchild;
   2573 	p->p_waited = psrc->p_waited;
   2574 	COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2575 	COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2576 	COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2577 	p->p_estcpu = psrc->p_estcpu;
   2578 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2579 	p->p_forktime = psrc->p_forktime;
   2580 	p->p_pctcpu = psrc->p_pctcpu;
   2581 	COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
   2582 	COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
   2583 	p->p_rtime = psrc->p_rtime;
   2584 	p->p_uticks = psrc->p_uticks;
   2585 	p->p_sticks = psrc->p_sticks;
   2586 	p->p_iticks = psrc->p_iticks;
   2587 	p->p_xutime = psrc->p_xutime;
   2588 	p->p_xstime = psrc->p_xstime;
   2589 	p->p_traceflag = psrc->p_traceflag;
   2590 	COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
   2591 	COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
   2592 	COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
   2593 	COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2594 	COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
   2595 	COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
   2596 	COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2597 	COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
   2598 	COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2599 	p->p_ppid = psrc->p_ppid;
   2600 	p->p_oppid = psrc->p_oppid;
   2601 	COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
   2602 	COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
   2603 	p->p_nice = psrc->p_nice;
   2604 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2605 	COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2606 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2607 	p->p_pax = psrc->p_pax;
   2608 	p->p_xexit = psrc->p_xexit;
   2609 	p->p_xsig = psrc->p_xsig;
   2610 	p->p_acflag = psrc->p_acflag;
   2611 	COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
   2612 	p->p_stackbase = psrc->p_stackbase;
   2613 	COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2614 }
   2615 
   2616 /*
   2617  * Fill in an eproc structure for the specified process.
   2618  */
   2619 void
   2620 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2621 {
   2622 	struct tty *tp;
   2623 	struct lwp *l;
   2624 
   2625 	KASSERT(mutex_owned(proc_lock));
   2626 	KASSERT(mutex_owned(p->p_lock));
   2627 
   2628 	COND_SET_VALUE(ep->e_paddr, p, allowaddr);
   2629 	COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
   2630 	if (p->p_cred) {
   2631 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2632 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2633 	}
   2634 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2635 		struct vmspace *vm = p->p_vmspace;
   2636 
   2637 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2638 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2639 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2640 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2641 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2642 
   2643 		/* Pick the primary (first) LWP */
   2644 		l = proc_active_lwp(p);
   2645 		KASSERT(l != NULL);
   2646 		lwp_lock(l);
   2647 		if (l->l_wchan)
   2648 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2649 		lwp_unlock(l);
   2650 	}
   2651 	ep->e_ppid = p->p_ppid;
   2652 	if (p->p_pgrp && p->p_session) {
   2653 		ep->e_pgid = p->p_pgrp->pg_id;
   2654 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2655 		ep->e_sid = p->p_session->s_sid;
   2656 		if ((p->p_lflag & PL_CONTROLT) &&
   2657 		    (tp = p->p_session->s_ttyp)) {
   2658 			ep->e_tdev = tp->t_dev;
   2659 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2660 			COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
   2661 		} else
   2662 			ep->e_tdev = (uint32_t)NODEV;
   2663 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2664 		if (SESS_LEADER(p))
   2665 			ep->e_flag |= EPROC_SLEADER;
   2666 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2667 	}
   2668 	ep->e_xsize = ep->e_xrssize = 0;
   2669 	ep->e_xccount = ep->e_xswrss = 0;
   2670 }
   2671 
   2672 /*
   2673  * Fill in a kinfo_proc2 structure for the specified process.
   2674  */
   2675 void
   2676 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2677 {
   2678 	struct tty *tp;
   2679 	struct lwp *l, *l2;
   2680 	struct timeval ut, st, rt;
   2681 	sigset_t ss1, ss2;
   2682 	struct rusage ru;
   2683 	struct vmspace *vm;
   2684 
   2685 	KASSERT(mutex_owned(proc_lock));
   2686 	KASSERT(mutex_owned(p->p_lock));
   2687 
   2688 	sigemptyset(&ss1);
   2689 	sigemptyset(&ss2);
   2690 
   2691 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2692 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2693 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2694 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2695 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2696 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2697 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2698 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2699 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2700 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2701 	ki->p_eflag = 0;
   2702 	ki->p_exitsig = p->p_exitsig;
   2703 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2704 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2705 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2706 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2707 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2708 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2709 	ki->p_pid = p->p_pid;
   2710 	ki->p_ppid = p->p_ppid;
   2711 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2712 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2713 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2714 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2715 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2716 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2717 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2718 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2719 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2720 	    UIO_SYSSPACE);
   2721 
   2722 	ki->p_uticks = p->p_uticks;
   2723 	ki->p_sticks = p->p_sticks;
   2724 	ki->p_iticks = p->p_iticks;
   2725 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2726 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2727 	ki->p_traceflag = p->p_traceflag;
   2728 
   2729 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2730 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2731 
   2732 	ki->p_cpticks = 0;
   2733 	ki->p_pctcpu = p->p_pctcpu;
   2734 	ki->p_estcpu = 0;
   2735 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2736 	ki->p_realstat = p->p_stat;
   2737 	ki->p_nice = p->p_nice;
   2738 	ki->p_xstat = P_WAITSTATUS(p);
   2739 	ki->p_acflag = p->p_acflag;
   2740 
   2741 	strncpy(ki->p_comm, p->p_comm,
   2742 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2743 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2744 
   2745 	ki->p_nlwps = p->p_nlwps;
   2746 	ki->p_realflag = ki->p_flag;
   2747 
   2748 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2749 		vm = p->p_vmspace;
   2750 		ki->p_vm_rssize = vm_resident_count(vm);
   2751 		ki->p_vm_tsize = vm->vm_tsize;
   2752 		ki->p_vm_dsize = vm->vm_dsize;
   2753 		ki->p_vm_ssize = vm->vm_ssize;
   2754 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2755 		/*
   2756 		 * Since the stack is initially mapped mostly with
   2757 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2758 		 * to skip the unused stack portion.
   2759 		 */
   2760 		ki->p_vm_msize =
   2761 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2762 
   2763 		/* Pick the primary (first) LWP */
   2764 		l = proc_active_lwp(p);
   2765 		KASSERT(l != NULL);
   2766 		lwp_lock(l);
   2767 		ki->p_nrlwps = p->p_nrlwps;
   2768 		ki->p_forw = 0;
   2769 		ki->p_back = 0;
   2770 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2771 		ki->p_stat = l->l_stat;
   2772 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2773 		ki->p_swtime = l->l_swtime;
   2774 		ki->p_slptime = l->l_slptime;
   2775 		if (l->l_stat == LSONPROC)
   2776 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2777 		else
   2778 			ki->p_schedflags = 0;
   2779 		ki->p_priority = lwp_eprio(l);
   2780 		ki->p_usrpri = l->l_priority;
   2781 		if (l->l_wchan)
   2782 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2783 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2784 		ki->p_cpuid = cpu_index(l->l_cpu);
   2785 		lwp_unlock(l);
   2786 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2787 			/* This is hardly correct, but... */
   2788 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2789 			sigplusset(&l->l_sigmask, &ss2);
   2790 			ki->p_cpticks += l->l_cpticks;
   2791 			ki->p_pctcpu += l->l_pctcpu;
   2792 			ki->p_estcpu += l->l_estcpu;
   2793 		}
   2794 	}
   2795 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2796 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2797 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2798 
   2799 	if (p->p_session != NULL) {
   2800 		ki->p_sid = p->p_session->s_sid;
   2801 		ki->p__pgid = p->p_pgrp->pg_id;
   2802 		if (p->p_session->s_ttyvp)
   2803 			ki->p_eflag |= EPROC_CTTY;
   2804 		if (SESS_LEADER(p))
   2805 			ki->p_eflag |= EPROC_SLEADER;
   2806 		strncpy(ki->p_login, p->p_session->s_login,
   2807 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2808 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2809 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2810 			ki->p_tdev = tp->t_dev;
   2811 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2812 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2813 			    allowaddr);
   2814 		} else {
   2815 			ki->p_tdev = (int32_t)NODEV;
   2816 		}
   2817 	}
   2818 
   2819 	if (!P_ZOMBIE(p) && !zombie) {
   2820 		ki->p_uvalid = 1;
   2821 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2822 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2823 
   2824 		calcru(p, &ut, &st, NULL, &rt);
   2825 		ki->p_rtime_sec = rt.tv_sec;
   2826 		ki->p_rtime_usec = rt.tv_usec;
   2827 		ki->p_uutime_sec = ut.tv_sec;
   2828 		ki->p_uutime_usec = ut.tv_usec;
   2829 		ki->p_ustime_sec = st.tv_sec;
   2830 		ki->p_ustime_usec = st.tv_usec;
   2831 
   2832 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2833 		ki->p_uru_nvcsw = 0;
   2834 		ki->p_uru_nivcsw = 0;
   2835 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2836 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2837 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2838 			ruadd(&ru, &l2->l_ru);
   2839 		}
   2840 		ki->p_uru_maxrss = ru.ru_maxrss;
   2841 		ki->p_uru_ixrss = ru.ru_ixrss;
   2842 		ki->p_uru_idrss = ru.ru_idrss;
   2843 		ki->p_uru_isrss = ru.ru_isrss;
   2844 		ki->p_uru_minflt = ru.ru_minflt;
   2845 		ki->p_uru_majflt = ru.ru_majflt;
   2846 		ki->p_uru_nswap = ru.ru_nswap;
   2847 		ki->p_uru_inblock = ru.ru_inblock;
   2848 		ki->p_uru_oublock = ru.ru_oublock;
   2849 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2850 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2851 		ki->p_uru_nsignals = ru.ru_nsignals;
   2852 
   2853 		timeradd(&p->p_stats->p_cru.ru_utime,
   2854 			 &p->p_stats->p_cru.ru_stime, &ut);
   2855 		ki->p_uctime_sec = ut.tv_sec;
   2856 		ki->p_uctime_usec = ut.tv_usec;
   2857 	}
   2858 }
   2859 
   2860 
   2861 int
   2862 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2863 {
   2864 	int error;
   2865 
   2866 	mutex_enter(proc_lock);
   2867 	if (pid == -1)
   2868 		*p = l->l_proc;
   2869 	else
   2870 		*p = proc_find(pid);
   2871 
   2872 	if (*p == NULL) {
   2873 		if (pid != -1)
   2874 			mutex_exit(proc_lock);
   2875 		return ESRCH;
   2876 	}
   2877 	if (pid != -1)
   2878 		mutex_enter((*p)->p_lock);
   2879 	mutex_exit(proc_lock);
   2880 
   2881 	error = kauth_authorize_process(l->l_cred,
   2882 	    KAUTH_PROCESS_CANSEE, *p,
   2883 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2884 	if (error) {
   2885 		if (pid != -1)
   2886 			mutex_exit((*p)->p_lock);
   2887 	}
   2888 	return error;
   2889 }
   2890 
   2891 static int
   2892 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2893 {
   2894 	int error;
   2895 	struct proc *p;
   2896 
   2897 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2898 		return error;
   2899 
   2900 	if (p->p_path == NULL) {
   2901 		if (pid != -1)
   2902 			mutex_exit(p->p_lock);
   2903 		return ENOENT;
   2904 	}
   2905 
   2906 	size_t len = strlen(p->p_path) + 1;
   2907 	if (oldp != NULL) {
   2908 		size_t copylen = uimin(len, *oldlenp);
   2909 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2910 		if (error == 0 && *oldlenp < len)
   2911 			error = ENOSPC;
   2912 	}
   2913 	*oldlenp = len;
   2914 	if (pid != -1)
   2915 		mutex_exit(p->p_lock);
   2916 	return error;
   2917 }
   2918 
   2919 static int
   2920 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2921 {
   2922 	int error;
   2923 	struct proc *p;
   2924 	char *path;
   2925 	char *bp, *bend;
   2926 	struct cwdinfo *cwdi;
   2927 	struct vnode *vp;
   2928 	size_t len, lenused;
   2929 
   2930 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2931 		return error;
   2932 
   2933 	len = MAXPATHLEN * 4;
   2934 
   2935 	path = kmem_alloc(len, KM_SLEEP);
   2936 
   2937 	bp = &path[len];
   2938 	bend = bp;
   2939 	*(--bp) = '\0';
   2940 
   2941 	cwdi = p->p_cwdi;
   2942 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   2943 	vp = cwdi->cwdi_cdir;
   2944 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   2945 	rw_exit(&cwdi->cwdi_lock);
   2946 
   2947 	if (error)
   2948 		goto out;
   2949 
   2950 	lenused = bend - bp;
   2951 
   2952 	if (oldp != NULL) {
   2953 		size_t copylen = uimin(lenused, *oldlenp);
   2954 		error = sysctl_copyout(l, bp, oldp, copylen);
   2955 		if (error == 0 && *oldlenp < lenused)
   2956 			error = ENOSPC;
   2957 	}
   2958 	*oldlenp = lenused;
   2959 out:
   2960 	if (pid != -1)
   2961 		mutex_exit(p->p_lock);
   2962 	kmem_free(path, len);
   2963 	return error;
   2964 }
   2965 
   2966 int
   2967 proc_getauxv(struct proc *p, void **buf, size_t *len)
   2968 {
   2969 	struct ps_strings pss;
   2970 	int error;
   2971 	void *uauxv, *kauxv;
   2972 	size_t size;
   2973 
   2974 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2975 		return error;
   2976 	if (pss.ps_envstr == NULL)
   2977 		return EIO;
   2978 
   2979 	size = p->p_execsw->es_arglen;
   2980 	if (size == 0)
   2981 		return EIO;
   2982 
   2983 	size_t ptrsz = PROC_PTRSZ(p);
   2984 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   2985 
   2986 	kauxv = kmem_alloc(size, KM_SLEEP);
   2987 
   2988 	error = copyin_proc(p, uauxv, kauxv, size);
   2989 	if (error) {
   2990 		kmem_free(kauxv, size);
   2991 		return error;
   2992 	}
   2993 
   2994 	*buf = kauxv;
   2995 	*len = size;
   2996 
   2997 	return 0;
   2998 }
   2999 
   3000 
   3001 static int
   3002 sysctl_security_expose_address(SYSCTLFN_ARGS)
   3003 {
   3004 	int expose_address, error;
   3005 	struct sysctlnode node;
   3006 
   3007 	node = *rnode;
   3008 	node.sysctl_data = &expose_address;
   3009 	expose_address = *(int *)rnode->sysctl_data;
   3010 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3011 	if (error || newp == NULL)
   3012 		return error;
   3013 
   3014 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3015 	    0, NULL, NULL, NULL))
   3016 		return EPERM;
   3017 
   3018 	switch (expose_address) {
   3019 	case 0:
   3020 	case 1:
   3021 	case 2:
   3022 		break;
   3023 	default:
   3024 		return EINVAL;
   3025 	}
   3026 
   3027 	*(int *)rnode->sysctl_data = expose_address;
   3028 
   3029 	return 0;
   3030 }
   3031 
   3032 bool
   3033 get_expose_address(struct proc *p)
   3034 {
   3035 	/* allow only if sysctl variable is set or privileged */
   3036 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3037 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3038 }
   3039