Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.251
      1 /*	$NetBSD: kern_proc.c,v 1.251 2020/04/29 01:52:26 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.251 2020/04/29 01:52:26 thorpej Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 #include <sys/futex.h>
    110 
    111 #include <uvm/uvm_extern.h>
    112 #include <uvm/uvm.h>
    113 
    114 /*
    115  * Process lists.
    116  */
    117 
    118 struct proclist		allproc		__cacheline_aligned;
    119 struct proclist		zombproc	__cacheline_aligned;
    120 
    121 static kmutex_t		proc_lock_s	__cacheline_aligned;
    122 kmutex_t *		proc_lock	__read_mostly;
    123 
    124 /*
    125  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126  * Since pid numbers are only allocated when an empty slot
    127  * has been found, there is no need to search any lists ever.
    128  * (an orphaned pgrp will lock the slot, a session will lock
    129  * the pgrp with the same number.)
    130  * If the table is too small it is reallocated with twice the
    131  * previous size and the entries 'unzipped' into the two halves.
    132  * A linked list of free entries is passed through the pt_lwp
    133  * field of 'free' items - set odd to be an invalid ptr.  Two
    134  * additional bits are also used to indicate if the slot is
    135  * currently occupied by a proc or lwp, and if the PID is
    136  * hidden from certain kinds of lookups.  We thus require a
    137  * minimum alignment for proc and lwp structures (LWPs are
    138  * at least 32-byte aligned).
    139  */
    140 
    141 struct pid_table {
    142 	uintptr_t	pt_slot;
    143 	struct pgrp	*pt_pgrp;
    144 	pid_t		pt_pid;
    145 };
    146 
    147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148 #define	PT_F_LWP		0	/* pseudo-flag */
    149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150 
    151 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    152 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
    153 
    154 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    155 #define	PT_RESERVED(s)		((s) == 0)
    156 #define	PT_NEXT(s)		((u_int)(s) >> 1)
    157 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    158 #define	PT_SET_LWP(l)		((uintptr_t)(l))
    159 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    160 #define	PT_SET_RESERVED		0
    161 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    162 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    163 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    164 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    165 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    166 
    167 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    168 
    169 /*
    170  * Table of process IDs (PIDs).
    171  *
    172  * Locking order:
    173  *	proc_lock -> pid_table_lock
    174  *  or
    175  *	proc::p_lock -> pid_table_lock
    176  */
    177 static krwlock_t pid_table_lock		__cacheline_aligned;
    178 static struct pid_table *pid_table	__read_mostly;
    179 
    180 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    181 
    182 /* Table mask, threshold for growing and number of allocated PIDs. */
    183 static u_int		pid_tbl_mask	__read_mostly;
    184 static u_int		pid_alloc_lim	__read_mostly;
    185 static u_int		pid_alloc_cnt	__cacheline_aligned;
    186 
    187 /* Next free, last free and maximum PIDs. */
    188 static u_int		next_free_pt	__cacheline_aligned;
    189 static u_int		last_free_pt	__cacheline_aligned;
    190 static pid_t		pid_max		__read_mostly;
    191 
    192 /* Components of the first process -- never freed. */
    193 
    194 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    195 
    196 struct session session0 = {
    197 	.s_count = 1,
    198 	.s_sid = 0,
    199 };
    200 struct pgrp pgrp0 = {
    201 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    202 	.pg_session = &session0,
    203 };
    204 filedesc_t filedesc0;
    205 struct cwdinfo cwdi0 = {
    206 	.cwdi_cmask = CMASK,
    207 	.cwdi_refcnt = 1,
    208 };
    209 struct plimit limit0;
    210 struct pstats pstat0;
    211 struct vmspace vmspace0;
    212 struct sigacts sigacts0;
    213 struct proc proc0 = {
    214 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    215 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    216 	.p_nlwps = 1,
    217 	.p_nrlwps = 1,
    218 	.p_pgrp = &pgrp0,
    219 	.p_comm = "system",
    220 	/*
    221 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    222 	 * when they exit.  init(8) can easily wait them out for us.
    223 	 */
    224 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    225 	.p_stat = SACTIVE,
    226 	.p_nice = NZERO,
    227 	.p_emul = &emul_netbsd,
    228 	.p_cwdi = &cwdi0,
    229 	.p_limit = &limit0,
    230 	.p_fd = &filedesc0,
    231 	.p_vmspace = &vmspace0,
    232 	.p_stats = &pstat0,
    233 	.p_sigacts = &sigacts0,
    234 #ifdef PROC0_MD_INITIALIZERS
    235 	PROC0_MD_INITIALIZERS
    236 #endif
    237 };
    238 kauth_cred_t cred0;
    239 
    240 static const int	nofile	= NOFILE;
    241 static const int	maxuprc	= MAXUPRC;
    242 
    243 static int sysctl_doeproc(SYSCTLFN_PROTO);
    244 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    245 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    246 
    247 #ifdef KASLR
    248 static int kern_expose_address = 0;
    249 #else
    250 static int kern_expose_address = 1;
    251 #endif
    252 /*
    253  * The process list descriptors, used during pid allocation and
    254  * by sysctl.  No locking on this data structure is needed since
    255  * it is completely static.
    256  */
    257 const struct proclist_desc proclists[] = {
    258 	{ &allproc	},
    259 	{ &zombproc	},
    260 	{ NULL		},
    261 };
    262 
    263 static struct pgrp *	pg_remove(pid_t);
    264 static void		pg_delete(pid_t);
    265 static void		orphanpg(struct pgrp *);
    266 
    267 static specificdata_domain_t proc_specificdata_domain;
    268 
    269 static pool_cache_t proc_cache;
    270 
    271 static kauth_listener_t proc_listener;
    272 
    273 static void fill_proc(const struct proc *, struct proc *, bool);
    274 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    275 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    276 
    277 static int
    278 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    279     void *arg0, void *arg1, void *arg2, void *arg3)
    280 {
    281 	struct proc *p;
    282 	int result;
    283 
    284 	result = KAUTH_RESULT_DEFER;
    285 	p = arg0;
    286 
    287 	switch (action) {
    288 	case KAUTH_PROCESS_CANSEE: {
    289 		enum kauth_process_req req;
    290 
    291 		req = (enum kauth_process_req)(uintptr_t)arg1;
    292 
    293 		switch (req) {
    294 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    295 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    296 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    297 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    298 			result = KAUTH_RESULT_ALLOW;
    299 			break;
    300 
    301 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    302 			if (kauth_cred_getuid(cred) !=
    303 			    kauth_cred_getuid(p->p_cred) ||
    304 			    kauth_cred_getuid(cred) !=
    305 			    kauth_cred_getsvuid(p->p_cred))
    306 				break;
    307 
    308 			result = KAUTH_RESULT_ALLOW;
    309 
    310 			break;
    311 
    312 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    313 			if (!kern_expose_address)
    314 				break;
    315 
    316 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    317 				break;
    318 
    319 			result = KAUTH_RESULT_ALLOW;
    320 
    321 			break;
    322 
    323 		default:
    324 			break;
    325 		}
    326 
    327 		break;
    328 		}
    329 
    330 	case KAUTH_PROCESS_FORK: {
    331 		int lnprocs = (int)(unsigned long)arg2;
    332 
    333 		/*
    334 		 * Don't allow a nonprivileged user to use the last few
    335 		 * processes. The variable lnprocs is the current number of
    336 		 * processes, maxproc is the limit.
    337 		 */
    338 		if (__predict_false((lnprocs >= maxproc - 5)))
    339 			break;
    340 
    341 		result = KAUTH_RESULT_ALLOW;
    342 
    343 		break;
    344 		}
    345 
    346 	case KAUTH_PROCESS_CORENAME:
    347 	case KAUTH_PROCESS_STOPFLAG:
    348 		if (proc_uidmatch(cred, p->p_cred) == 0)
    349 			result = KAUTH_RESULT_ALLOW;
    350 
    351 		break;
    352 
    353 	default:
    354 		break;
    355 	}
    356 
    357 	return result;
    358 }
    359 
    360 static int
    361 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    362 {
    363 	memset(obj, 0, sizeof(struct proc));
    364 	return 0;
    365 }
    366 
    367 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    368 
    369 /*
    370  * Initialize global process hashing structures.
    371  */
    372 void
    373 procinit(void)
    374 {
    375 	const struct proclist_desc *pd;
    376 	u_int i;
    377 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    378 
    379 	for (pd = proclists; pd->pd_list != NULL; pd++)
    380 		LIST_INIT(pd->pd_list);
    381 
    382 	mutex_init(&proc_lock_s, MUTEX_DEFAULT, IPL_NONE);
    383 	proc_lock = &proc_lock_s;
    384 
    385 	rw_init(&pid_table_lock);
    386 
    387 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    388 	    * sizeof(struct pid_table), KM_SLEEP);
    389 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    390 	pid_max = PID_MAX;
    391 
    392 	/* Set free list running through table...
    393 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    394 	for (i = 0; i <= pid_tbl_mask; i++) {
    395 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    396 		pid_table[i].pt_pgrp = 0;
    397 		pid_table[i].pt_pid = 0;
    398 	}
    399 	/* slot 0 is just grabbed */
    400 	next_free_pt = 1;
    401 	/* Need to fix last entry. */
    402 	last_free_pt = pid_tbl_mask;
    403 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    404 	/* point at which we grow table - to avoid reusing pids too often */
    405 	pid_alloc_lim = pid_tbl_mask - 1;
    406 #undef LINK_EMPTY
    407 
    408 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    409 	rw_enter(&pid_table_lock, RW_WRITER);
    410 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    411 		panic("failed to reserve PID 1 for init(8)");
    412 	rw_exit(&pid_table_lock);
    413 
    414 	proc_specificdata_domain = specificdata_domain_create();
    415 	KASSERT(proc_specificdata_domain != NULL);
    416 
    417 	size_t proc_alignment = coherency_unit;
    418 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    419 		proc_alignment = MIN_PROC_ALIGNMENT;
    420 
    421 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    422 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    423 
    424 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    425 	    proc_listener_cb, NULL);
    426 }
    427 
    428 void
    429 procinit_sysctl(void)
    430 {
    431 	static struct sysctllog *clog;
    432 
    433 	sysctl_createv(&clog, 0, NULL, NULL,
    434 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    435 		       CTLTYPE_INT, "expose_address",
    436 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    437 		       sysctl_security_expose_address, 0,
    438 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    439 	sysctl_createv(&clog, 0, NULL, NULL,
    440 		       CTLFLAG_PERMANENT,
    441 		       CTLTYPE_NODE, "proc",
    442 		       SYSCTL_DESCR("System-wide process information"),
    443 		       sysctl_doeproc, 0, NULL, 0,
    444 		       CTL_KERN, KERN_PROC, CTL_EOL);
    445 	sysctl_createv(&clog, 0, NULL, NULL,
    446 		       CTLFLAG_PERMANENT,
    447 		       CTLTYPE_NODE, "proc2",
    448 		       SYSCTL_DESCR("Machine-independent process information"),
    449 		       sysctl_doeproc, 0, NULL, 0,
    450 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    451 	sysctl_createv(&clog, 0, NULL, NULL,
    452 		       CTLFLAG_PERMANENT,
    453 		       CTLTYPE_NODE, "proc_args",
    454 		       SYSCTL_DESCR("Process argument information"),
    455 		       sysctl_kern_proc_args, 0, NULL, 0,
    456 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    457 
    458 	/*
    459 	  "nodes" under these:
    460 
    461 	  KERN_PROC_ALL
    462 	  KERN_PROC_PID pid
    463 	  KERN_PROC_PGRP pgrp
    464 	  KERN_PROC_SESSION sess
    465 	  KERN_PROC_TTY tty
    466 	  KERN_PROC_UID uid
    467 	  KERN_PROC_RUID uid
    468 	  KERN_PROC_GID gid
    469 	  KERN_PROC_RGID gid
    470 
    471 	  all in all, probably not worth the effort...
    472 	*/
    473 }
    474 
    475 /*
    476  * Initialize process 0.
    477  */
    478 void
    479 proc0_init(void)
    480 {
    481 	struct proc *p;
    482 	struct pgrp *pg;
    483 	struct rlimit *rlim;
    484 	rlim_t lim;
    485 	int i;
    486 
    487 	p = &proc0;
    488 	pg = &pgrp0;
    489 
    490 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    491 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    492 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    493 
    494 	rw_init(&p->p_reflock);
    495 	cv_init(&p->p_waitcv, "wait");
    496 	cv_init(&p->p_lwpcv, "lwpwait");
    497 
    498 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    499 
    500 	KASSERT(lwp0.l_lid == 0);
    501 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    502 	LIST_INSERT_HEAD(&allproc, p, p_list);
    503 
    504 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    505 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    506 
    507 #ifdef __HAVE_SYSCALL_INTERN
    508 	(*p->p_emul->e_syscall_intern)(p);
    509 #endif
    510 
    511 	/* Create credentials. */
    512 	cred0 = kauth_cred_alloc();
    513 	p->p_cred = cred0;
    514 
    515 	/* Create the CWD info. */
    516 	rw_init(&cwdi0.cwdi_lock);
    517 
    518 	/* Create the limits structures. */
    519 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    520 
    521 	rlim = limit0.pl_rlimit;
    522 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    523 		rlim[i].rlim_cur = RLIM_INFINITY;
    524 		rlim[i].rlim_max = RLIM_INFINITY;
    525 	}
    526 
    527 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    528 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    529 
    530 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    531 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    532 
    533 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem()));
    534 	rlim[RLIMIT_RSS].rlim_max = lim;
    535 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    536 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    537 
    538 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    539 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    540 
    541 	/* Note that default core name has zero length. */
    542 	limit0.pl_corename = defcorename;
    543 	limit0.pl_cnlen = 0;
    544 	limit0.pl_refcnt = 1;
    545 	limit0.pl_writeable = false;
    546 	limit0.pl_sv_limit = NULL;
    547 
    548 	/* Configure virtual memory system, set vm rlimits. */
    549 	uvm_init_limits(p);
    550 
    551 	/* Initialize file descriptor table for proc0. */
    552 	fd_init(&filedesc0);
    553 
    554 	/*
    555 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    556 	 * All kernel processes (which never have user space mappings)
    557 	 * share proc0's vmspace, and thus, the kernel pmap.
    558 	 */
    559 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    560 	    trunc_page(VM_MAXUSER_ADDRESS),
    561 #ifdef __USE_TOPDOWN_VM
    562 	    true
    563 #else
    564 	    false
    565 #endif
    566 	    );
    567 
    568 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    569 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    570 	siginit(p);
    571 
    572 	proc_initspecific(p);
    573 	kdtrace_proc_ctor(NULL, p);
    574 }
    575 
    576 /*
    577  * Session reference counting.
    578  */
    579 
    580 void
    581 proc_sesshold(struct session *ss)
    582 {
    583 
    584 	KASSERT(mutex_owned(proc_lock));
    585 	ss->s_count++;
    586 }
    587 
    588 static void
    589 proc_sessrele_pid_table_write_locked(struct session *ss)
    590 {
    591 	struct pgrp *pg;
    592 
    593 	KASSERT(mutex_owned(proc_lock));
    594 	KASSERT(rw_write_held(&pid_table_lock));
    595 	KASSERT(ss->s_count > 0);
    596 
    597 	/*
    598 	 * We keep the pgrp with the same id as the session in order to
    599 	 * stop a process being given the same pid.  Since the pgrp holds
    600 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    601 	 */
    602 	if (--ss->s_count == 0) {
    603 		pg = pg_remove(ss->s_sid);
    604 	} else {
    605 		pg = NULL;
    606 		ss = NULL;
    607 	}
    608 
    609 	rw_exit(&pid_table_lock);
    610 	mutex_exit(proc_lock);
    611 
    612 	if (pg)
    613 		kmem_free(pg, sizeof(struct pgrp));
    614 	if (ss)
    615 		kmem_free(ss, sizeof(struct session));
    616 }
    617 
    618 void
    619 proc_sessrele(struct session *ss)
    620 {
    621 	rw_enter(&pid_table_lock, RW_WRITER);
    622 	proc_sessrele_pid_table_write_locked(ss);
    623 }
    624 
    625 /*
    626  * Check that the specified process group is in the session of the
    627  * specified process.
    628  * Treats -ve ids as process ids.
    629  * Used to validate TIOCSPGRP requests.
    630  */
    631 int
    632 pgid_in_session(struct proc *p, pid_t pg_id)
    633 {
    634 	struct pgrp *pgrp;
    635 	struct session *session;
    636 	int error;
    637 
    638 	mutex_enter(proc_lock);
    639 	if (pg_id < 0) {
    640 		struct proc *p1 = proc_find(-pg_id);
    641 		if (p1 == NULL) {
    642 			error = EINVAL;
    643 			goto fail;
    644 		}
    645 		pgrp = p1->p_pgrp;
    646 	} else {
    647 		pgrp = pgrp_find(pg_id);
    648 		if (pgrp == NULL) {
    649 			error = EINVAL;
    650 			goto fail;
    651 		}
    652 	}
    653 	session = pgrp->pg_session;
    654 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    655 fail:
    656 	mutex_exit(proc_lock);
    657 	return error;
    658 }
    659 
    660 /*
    661  * p_inferior: is p an inferior of q?
    662  */
    663 static inline bool
    664 p_inferior(struct proc *p, struct proc *q)
    665 {
    666 
    667 	KASSERT(mutex_owned(proc_lock));
    668 
    669 	for (; p != q; p = p->p_pptr)
    670 		if (p->p_pid == 0)
    671 			return false;
    672 	return true;
    673 }
    674 
    675 /*
    676  * proc_find_lwp: locate an lwp in said proc by the ID.
    677  *
    678  * => Must be called with p::p_lock held.
    679  * => LARVAL lwps are not returned because they are only partially
    680  *    constructed while occupying the slot.
    681  * => Callers need to be careful about lwp::l_stat of the returned
    682  *    lwp.
    683  */
    684 struct lwp *
    685 proc_find_lwp(proc_t *p, pid_t pid)
    686 {
    687 	struct pid_table *pt;
    688 	struct lwp *l = NULL;
    689 	uintptr_t slot;
    690 
    691 	KASSERT(mutex_owned(p->p_lock));
    692 	rw_enter(&pid_table_lock, RW_READER);
    693 	pt = &pid_table[pid & pid_tbl_mask];
    694 
    695 	slot = pt->pt_slot;
    696 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    697 		l = PT_GET_LWP(slot);
    698 		if (__predict_false(l->l_proc != p || l->l_stat == LSLARVAL)) {
    699 			l = NULL;
    700 		}
    701 	}
    702 	rw_exit(&pid_table_lock);
    703 
    704 	return l;
    705 }
    706 
    707 /*
    708  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
    709  * on its containing proc.
    710  *
    711  * => Similar to proc_find_lwp(), but does not require you to have
    712  *    the proc a priori.
    713  * => Also returns proc * to caller, with p::p_lock held.
    714  * => Same caveats apply.
    715  */
    716 struct lwp *
    717 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
    718 {
    719 	struct pid_table *pt;
    720 	struct proc *p = NULL;
    721 	struct lwp *l = NULL;
    722 	uintptr_t slot;
    723 
    724 	KASSERT(pp != NULL);
    725 	mutex_enter(proc_lock);
    726 	rw_enter(&pid_table_lock, RW_READER);
    727 	pt = &pid_table[pid & pid_tbl_mask];
    728 
    729 	slot = pt->pt_slot;
    730 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    731 		/*
    732 		 * Locking order is p::p_lock -> pid_table_lock, but
    733 		 * we're already holding pid_table_lock; we need to
    734 		 * release it before acquiring p::p_lock.  This is
    735 		 * safe because p will be stable by virtue of holding
    736 		 * proc_lock.
    737 		 */
    738 		l = PT_GET_LWP(slot);
    739 		p = l->l_proc;
    740 		rw_exit(&pid_table_lock);
    741 		mutex_enter(p->p_lock);
    742 		if (__predict_false(l->l_stat == LSLARVAL)) {
    743 			mutex_exit(p->p_lock);
    744 			l = NULL;
    745 			p = NULL;
    746 		}
    747 	} else {
    748 		rw_exit(&pid_table_lock);
    749 	}
    750 	mutex_exit(proc_lock);
    751 
    752 	KASSERT(p == NULL || mutex_owned(p->p_lock));
    753 	*pp = p;
    754 	return l;
    755 }
    756 
    757 /*
    758  * proc_find_raw_pid_table_locked: locate a process by the ID.
    759  *
    760  * => Must be called with proc_lock held and the pid_table_lock
    761  *    at least held for reading.
    762  */
    763 static proc_t *
    764 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
    765 {
    766 	struct pid_table *pt;
    767 	proc_t *p = NULL;
    768 	uintptr_t slot;
    769 
    770 	KASSERT(mutex_owned(proc_lock));
    771 	pt = &pid_table[pid & pid_tbl_mask];
    772 
    773 	slot = pt->pt_slot;
    774 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    775 		/*
    776 		 * When looking up processes, require a direct match
    777 		 * on the PID assigned to the proc, not just one of
    778 		 * its LWPs.
    779 		 *
    780 		 * N.B. We require lwp::l_proc of LARVAL LWPs to be
    781 		 * valid here.
    782 		 */
    783 		p = PT_GET_LWP(slot)->l_proc;
    784 		if (__predict_false(p->p_pid != pid && !any_lwpid))
    785 			p = NULL;
    786 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    787 		p = PT_GET_PROC(slot);
    788 	}
    789 	return p;
    790 }
    791 
    792 proc_t *
    793 proc_find_raw(pid_t pid)
    794 {
    795 	KASSERT(mutex_owned(proc_lock));
    796 	rw_enter(&pid_table_lock, RW_READER);
    797 	proc_t *p = proc_find_raw_pid_table_locked(pid, false);
    798 	rw_exit(&pid_table_lock);
    799 	return p;
    800 }
    801 
    802 static proc_t *
    803 proc_find_pid_table_locked(pid_t pid, bool any_lwpid)
    804 {
    805 	proc_t *p;
    806 
    807 	KASSERT(mutex_owned(proc_lock));
    808 
    809 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
    810 	if (__predict_false(p == NULL)) {
    811 		return NULL;
    812 	}
    813 
    814 	/*
    815 	 * Only allow live processes to be found by PID.
    816 	 * XXX: p_stat might change, since proc unlocked.
    817 	 */
    818 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    819 		return p;
    820 	}
    821 	return NULL;
    822 }
    823 
    824 static proc_t *
    825 proc_find_internal(pid_t pid, bool any_lwpid)
    826 {
    827 	KASSERT(mutex_owned(proc_lock));
    828 	rw_enter(&pid_table_lock, RW_READER);
    829 	proc_t *p = proc_find_pid_table_locked(pid, any_lwpid);
    830 	rw_exit(&pid_table_lock);
    831 	return p;
    832 }
    833 
    834 proc_t *
    835 proc_find(pid_t pid)
    836 {
    837 	return proc_find_internal(pid, false);
    838 }
    839 
    840 proc_t *
    841 proc_find_lwpid(pid_t pid)
    842 {
    843 	return proc_find_internal(pid, true);
    844 }
    845 
    846 /*
    847  * pgrp_find_pid_table_locked: locate a process group by the ID.
    848  *
    849  * => Must be called with proc_lock held and the pid_table_lock
    850  *    held at least for reading.
    851  */
    852 static struct pgrp *
    853 pgrp_find_pid_table_locked(pid_t pgid)
    854 {
    855 	struct pgrp *pg;
    856 
    857 	KASSERT(mutex_owned(proc_lock));
    858 
    859 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    860 
    861 	/*
    862 	 * Cannot look up a process group that only exists because the
    863 	 * session has not died yet (traditional).
    864 	 */
    865 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    866 		return NULL;
    867 	}
    868 	return pg;
    869 }
    870 
    871 struct pgrp *
    872 pgrp_find(pid_t pgid)
    873 {
    874 	KASSERT(mutex_owned(proc_lock));
    875 	rw_enter(&pid_table_lock, RW_READER);
    876 	struct pgrp *pg = pgrp_find_pid_table_locked(pgid);
    877 	rw_exit(&pid_table_lock);
    878 	return pg;
    879 }
    880 
    881 static void
    882 expand_pid_table(void)
    883 {
    884 	size_t pt_size, tsz;
    885 	struct pid_table *n_pt, *new_pt;
    886 	uintptr_t slot;
    887 	struct pgrp *pgrp;
    888 	pid_t pid, rpid;
    889 	u_int i;
    890 	uint new_pt_mask;
    891 
    892 	KASSERT(rw_write_held(&pid_table_lock));
    893 
    894 	/* Unlock the pid_table briefly to allocate memory. */
    895 	pt_size = pid_tbl_mask + 1;
    896 	rw_exit(&pid_table_lock);
    897 
    898 	tsz = pt_size * 2 * sizeof(struct pid_table);
    899 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    900 	new_pt_mask = pt_size * 2 - 1;
    901 
    902 	/* XXX For now.  The pratical limit is much lower anyway. */
    903 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    904 
    905 	rw_enter(&pid_table_lock, RW_WRITER);
    906 	if (pt_size != pid_tbl_mask + 1) {
    907 		/* Another process beat us to it... */
    908 		rw_exit(&pid_table_lock);
    909 		kmem_free(new_pt, tsz);
    910 		goto out;
    911 	}
    912 
    913 	/*
    914 	 * Copy entries from old table into new one.
    915 	 * If 'pid' is 'odd' we need to place in the upper half,
    916 	 * even pid's to the lower half.
    917 	 * Free items stay in the low half so we don't have to
    918 	 * fixup the reference to them.
    919 	 * We stuff free items on the front of the freelist
    920 	 * because we can't write to unmodified entries.
    921 	 * Processing the table backwards maintains a semblance
    922 	 * of issuing pid numbers that increase with time.
    923 	 */
    924 	i = pt_size - 1;
    925 	n_pt = new_pt + i;
    926 	for (; ; i--, n_pt--) {
    927 		slot = pid_table[i].pt_slot;
    928 		pgrp = pid_table[i].pt_pgrp;
    929 		if (!PT_VALID(slot)) {
    930 			/* Up 'use count' so that link is valid */
    931 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    932 			rpid = 0;
    933 			slot = PT_SET_FREE(pid);
    934 			if (pgrp)
    935 				pid = pgrp->pg_id;
    936 		} else {
    937 			pid = pid_table[i].pt_pid;
    938 			rpid = pid;
    939 		}
    940 
    941 		/* Save entry in appropriate half of table */
    942 		n_pt[pid & pt_size].pt_slot = slot;
    943 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    944 		n_pt[pid & pt_size].pt_pid = rpid;
    945 
    946 		/* Put other piece on start of free list */
    947 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    948 		n_pt[pid & pt_size].pt_slot =
    949 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
    950 		n_pt[pid & pt_size].pt_pgrp = 0;
    951 		n_pt[pid & pt_size].pt_pid = 0;
    952 
    953 		next_free_pt = i | (pid & pt_size);
    954 		if (i == 0)
    955 			break;
    956 	}
    957 
    958 	/* Save old table size and switch tables */
    959 	tsz = pt_size * sizeof(struct pid_table);
    960 	n_pt = pid_table;
    961 	pid_table = new_pt;
    962 	pid_tbl_mask = new_pt_mask;
    963 
    964 	/*
    965 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    966 	 * allocated pids we need it to be larger!
    967 	 */
    968 	if (pid_tbl_mask > PID_MAX) {
    969 		pid_max = pid_tbl_mask * 2 + 1;
    970 		pid_alloc_lim |= pid_alloc_lim << 1;
    971 	} else
    972 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    973 
    974 	rw_exit(&pid_table_lock);
    975 	kmem_free(n_pt, tsz);
    976 
    977  out:	/* Return with the pid_table_lock held again. */
    978 	rw_enter(&pid_table_lock, RW_WRITER);
    979 }
    980 
    981 struct proc *
    982 proc_alloc(void)
    983 {
    984 	struct proc *p;
    985 
    986 	p = pool_cache_get(proc_cache, PR_WAITOK);
    987 	p->p_stat = SIDL;			/* protect against others */
    988 	proc_initspecific(p);
    989 	kdtrace_proc_ctor(NULL, p);
    990 
    991 	/*
    992 	 * Allocate a placeholder in the pid_table.  When we create the
    993 	 * first LWP for this process, it will take ownership of the
    994 	 * slot.
    995 	 */
    996 	if (__predict_false(proc_alloc_pid(p) == -1)) {
    997 		/* Allocating the PID failed; unwind. */
    998 		proc_finispecific(p);
    999 		proc_free_mem(p);
   1000 		p = NULL;
   1001 	}
   1002 	return p;
   1003 }
   1004 
   1005 /*
   1006  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
   1007  * proc_find_raw() can find it by the PID.
   1008  */
   1009 static pid_t __noinline
   1010 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1011 {
   1012 	struct pid_table *pt;
   1013 	pid_t pid;
   1014 	int nxt;
   1015 
   1016 	KASSERT(rw_write_held(&pid_table_lock));
   1017 
   1018 	for (;;expand_pid_table()) {
   1019 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1020 			/* ensure pids cycle through 2000+ values */
   1021 			continue;
   1022 		}
   1023 		/*
   1024 		 * The first user process *must* be given PID 1.
   1025 		 * it has already been reserved for us.  This
   1026 		 * will be coming in from the proc_alloc() call
   1027 		 * above, and the entry will be usurped later when
   1028 		 * the first user LWP is created.
   1029 		 * XXX this is slightly gross.
   1030 		 */
   1031 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1032 				    p != &proc0)) {
   1033 			KASSERT(PT_IS_PROC(slot));
   1034 			pt = &pid_table[1];
   1035 			pt->pt_slot = slot;
   1036 			return 1;
   1037 		}
   1038 		pt = &pid_table[next_free_pt];
   1039 #ifdef DIAGNOSTIC
   1040 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1041 			panic("proc_alloc: slot busy");
   1042 #endif
   1043 		nxt = PT_NEXT(pt->pt_slot);
   1044 		if (nxt & pid_tbl_mask)
   1045 			break;
   1046 		/* Table full - expand (NB last entry not used....) */
   1047 	}
   1048 
   1049 	/* pid is 'saved use count' + 'size' + entry */
   1050 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1051 	if ((uint)pid > (uint)pid_max)
   1052 		pid &= pid_tbl_mask;
   1053 	next_free_pt = nxt & pid_tbl_mask;
   1054 
   1055 	/* XXX For now.  The pratical limit is much lower anyway. */
   1056 	KASSERT(pid <= FUTEX_TID_MASK);
   1057 
   1058 	/* Grab table slot */
   1059 	pt->pt_slot = slot;
   1060 
   1061 	KASSERT(pt->pt_pid == 0);
   1062 	pt->pt_pid = pid;
   1063 	pid_alloc_cnt++;
   1064 
   1065 	return pid;
   1066 }
   1067 
   1068 pid_t
   1069 proc_alloc_pid(struct proc *p)
   1070 {
   1071 	pid_t pid;
   1072 
   1073 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1074 
   1075 	rw_enter(&pid_table_lock, RW_WRITER);
   1076 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1077 	if (pid != -1)
   1078 		p->p_pid = pid;
   1079 	rw_exit(&pid_table_lock);
   1080 
   1081 	return pid;
   1082 }
   1083 
   1084 pid_t
   1085 proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1086 {
   1087 	struct pid_table *pt;
   1088 	pid_t pid;
   1089 
   1090 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1091 
   1092 	/*
   1093 	 * If the slot for p->p_pid currently points to the proc,
   1094 	 * then we should usurp this ID for the LWP.  This happens
   1095 	 * at least once per process (for the first LWP), and can
   1096 	 * happen again if the first LWP for a process exits and
   1097 	 * before the process creates another.
   1098 	 */
   1099 	rw_enter(&pid_table_lock, RW_WRITER);
   1100 	pid = p->p_pid;
   1101 	pt = &pid_table[pid & pid_tbl_mask];
   1102 	KASSERT(pt->pt_pid == pid);
   1103 	if (PT_IS_PROC(pt->pt_slot)) {
   1104 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1105 		l->l_lid = pid;
   1106 		pt->pt_slot = PT_SET_LWP(l);
   1107 	} else {
   1108 		/* Need to allocate a new slot. */
   1109 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1110 		if (pid != -1)
   1111 			l->l_lid = pid;
   1112 	}
   1113 	rw_exit(&pid_table_lock);
   1114 
   1115 	return pid;
   1116 }
   1117 
   1118 static void __noinline
   1119 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1120 {
   1121 	struct pid_table *pt;
   1122 
   1123 	rw_enter(&pid_table_lock, RW_WRITER);
   1124 	pt = &pid_table[pid & pid_tbl_mask];
   1125 
   1126 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1127 	KASSERT(pt->pt_pid == pid);
   1128 
   1129 	/* save pid use count in slot */
   1130 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1131 	pt->pt_pid = 0;
   1132 
   1133 	if (pt->pt_pgrp == NULL) {
   1134 		/* link last freed entry onto ours */
   1135 		pid &= pid_tbl_mask;
   1136 		pt = &pid_table[last_free_pt];
   1137 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1138 		pt->pt_pid = 0;
   1139 		last_free_pt = pid;
   1140 		pid_alloc_cnt--;
   1141 	}
   1142 	rw_exit(&pid_table_lock);
   1143 }
   1144 
   1145 /*
   1146  * Free a process id - called from proc_free (in kern_exit.c)
   1147  *
   1148  * Called with the proc_lock held.
   1149  */
   1150 void
   1151 proc_free_pid(pid_t pid)
   1152 {
   1153 	KASSERT(mutex_owned(proc_lock));
   1154 	proc_free_pid_internal(pid, PT_F_PROC);
   1155 }
   1156 
   1157 /*
   1158  * Free a process id used by an LWP.  If this was the process's
   1159  * first LWP, we convert the slot to point to the process; the
   1160  * entry will get cleaned up later when the process finishes exiting.
   1161  *
   1162  * If not, then it's the same as proc_free_pid().
   1163  */
   1164 void
   1165 proc_free_lwpid(struct proc *p, pid_t pid)
   1166 {
   1167 
   1168 	KASSERT(mutex_owned(p->p_lock));
   1169 
   1170 	if (__predict_true(p->p_pid == pid)) {
   1171 		struct pid_table *pt;
   1172 
   1173 		rw_enter(&pid_table_lock, RW_WRITER);
   1174 		pt = &pid_table[pid & pid_tbl_mask];
   1175 
   1176 		KASSERT(pt->pt_pid == pid);
   1177 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1178 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1179 
   1180 		pt->pt_slot = PT_SET_PROC(p);
   1181 
   1182 		rw_exit(&pid_table_lock);
   1183 		return;
   1184 	}
   1185 	proc_free_pid_internal(pid, PT_F_LWP);
   1186 }
   1187 
   1188 void
   1189 proc_free_mem(struct proc *p)
   1190 {
   1191 
   1192 	kdtrace_proc_dtor(NULL, p);
   1193 	pool_cache_put(proc_cache, p);
   1194 }
   1195 
   1196 /*
   1197  * proc_enterpgrp: move p to a new or existing process group (and session).
   1198  *
   1199  * If we are creating a new pgrp, the pgid should equal
   1200  * the calling process' pid.
   1201  * If is only valid to enter a process group that is in the session
   1202  * of the process.
   1203  * Also mksess should only be set if we are creating a process group
   1204  *
   1205  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1206  */
   1207 int
   1208 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1209 {
   1210 	struct pgrp *new_pgrp, *pgrp;
   1211 	struct session *sess;
   1212 	struct proc *p;
   1213 	int rval;
   1214 	pid_t pg_id = NO_PGID;
   1215 
   1216 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1217 
   1218 	/* Allocate data areas we might need before doing any validity checks */
   1219 	rw_enter(&pid_table_lock, RW_READER);/* Because pid_table might change */
   1220 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
   1221 		rw_exit(&pid_table_lock);
   1222 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1223 	} else {
   1224 		rw_exit(&pid_table_lock);
   1225 		new_pgrp = NULL;
   1226 	}
   1227 	mutex_enter(proc_lock);
   1228 	rw_enter(&pid_table_lock, RW_WRITER);
   1229 	rval = EPERM;	/* most common error (to save typing) */
   1230 
   1231 	/* Check pgrp exists or can be created */
   1232 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1233 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1234 		goto done;
   1235 
   1236 	/* Can only set another process under restricted circumstances. */
   1237 	if (pid != curp->p_pid) {
   1238 		/* Must exist and be one of our children... */
   1239 		p = proc_find_pid_table_locked(pid, false);
   1240 		if (p == NULL || !p_inferior(p, curp)) {
   1241 			rval = ESRCH;
   1242 			goto done;
   1243 		}
   1244 		/* ... in the same session... */
   1245 		if (sess != NULL || p->p_session != curp->p_session)
   1246 			goto done;
   1247 		/* ... existing pgid must be in same session ... */
   1248 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1249 			goto done;
   1250 		/* ... and not done an exec. */
   1251 		if (p->p_flag & PK_EXEC) {
   1252 			rval = EACCES;
   1253 			goto done;
   1254 		}
   1255 	} else {
   1256 		/* ... setsid() cannot re-enter a pgrp */
   1257 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1258 		    pgrp_find_pid_table_locked(curp->p_pid)))
   1259 			goto done;
   1260 		p = curp;
   1261 	}
   1262 
   1263 	/* Changing the process group/session of a session
   1264 	   leader is definitely off limits. */
   1265 	if (SESS_LEADER(p)) {
   1266 		if (sess == NULL && p->p_pgrp == pgrp)
   1267 			/* unless it's a definite noop */
   1268 			rval = 0;
   1269 		goto done;
   1270 	}
   1271 
   1272 	/* Can only create a process group with id of process */
   1273 	if (pgrp == NULL && pgid != pid)
   1274 		goto done;
   1275 
   1276 	/* Can only create a session if creating pgrp */
   1277 	if (sess != NULL && pgrp != NULL)
   1278 		goto done;
   1279 
   1280 	/* Check we allocated memory for a pgrp... */
   1281 	if (pgrp == NULL && new_pgrp == NULL)
   1282 		goto done;
   1283 
   1284 	/* Don't attach to 'zombie' pgrp */
   1285 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1286 		goto done;
   1287 
   1288 	/* Expect to succeed now */
   1289 	rval = 0;
   1290 
   1291 	if (pgrp == p->p_pgrp)
   1292 		/* nothing to do */
   1293 		goto done;
   1294 
   1295 	/* Ok all setup, link up required structures */
   1296 
   1297 	if (pgrp == NULL) {
   1298 		pgrp = new_pgrp;
   1299 		new_pgrp = NULL;
   1300 		if (sess != NULL) {
   1301 			sess->s_sid = p->p_pid;
   1302 			sess->s_leader = p;
   1303 			sess->s_count = 1;
   1304 			sess->s_ttyvp = NULL;
   1305 			sess->s_ttyp = NULL;
   1306 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1307 			memcpy(sess->s_login, p->p_session->s_login,
   1308 			    sizeof(sess->s_login));
   1309 			p->p_lflag &= ~PL_CONTROLT;
   1310 		} else {
   1311 			sess = p->p_pgrp->pg_session;
   1312 			proc_sesshold(sess);
   1313 		}
   1314 		pgrp->pg_session = sess;
   1315 		sess = NULL;
   1316 
   1317 		pgrp->pg_id = pgid;
   1318 		LIST_INIT(&pgrp->pg_members);
   1319 #ifdef DIAGNOSTIC
   1320 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1321 			panic("enterpgrp: pgrp table slot in use");
   1322 		if (__predict_false(mksess && p != curp))
   1323 			panic("enterpgrp: mksession and p != curproc");
   1324 #endif
   1325 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1326 		pgrp->pg_jobc = 0;
   1327 	}
   1328 
   1329 	/*
   1330 	 * Adjust eligibility of affected pgrps to participate in job control.
   1331 	 * Increment eligibility counts before decrementing, otherwise we
   1332 	 * could reach 0 spuriously during the first call.
   1333 	 */
   1334 	fixjobc(p, pgrp, 1);
   1335 	fixjobc(p, p->p_pgrp, 0);
   1336 
   1337 	/* Interlock with ttread(). */
   1338 	mutex_spin_enter(&tty_lock);
   1339 
   1340 	/* Move process to requested group. */
   1341 	LIST_REMOVE(p, p_pglist);
   1342 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1343 		/* defer delete until we've dumped the lock */
   1344 		pg_id = p->p_pgrp->pg_id;
   1345 	p->p_pgrp = pgrp;
   1346 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1347 
   1348 	/* Done with the swap; we can release the tty mutex. */
   1349 	mutex_spin_exit(&tty_lock);
   1350 
   1351     done:
   1352 	rw_exit(&pid_table_lock);
   1353 	if (pg_id != NO_PGID) {
   1354 		/* Releases proc_lock. */
   1355 		pg_delete(pg_id);
   1356 	} else {
   1357 		mutex_exit(proc_lock);
   1358 	}
   1359 	if (sess != NULL)
   1360 		kmem_free(sess, sizeof(*sess));
   1361 	if (new_pgrp != NULL)
   1362 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1363 #ifdef DEBUG_PGRP
   1364 	if (__predict_false(rval))
   1365 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1366 			pid, pgid, mksess, curp->p_pid, rval);
   1367 #endif
   1368 	return rval;
   1369 }
   1370 
   1371 /*
   1372  * proc_leavepgrp: remove a process from its process group.
   1373  *  => must be called with the proc_lock held, which will be released;
   1374  */
   1375 void
   1376 proc_leavepgrp(struct proc *p)
   1377 {
   1378 	struct pgrp *pgrp;
   1379 
   1380 	KASSERT(mutex_owned(proc_lock));
   1381 
   1382 	/* Interlock with ttread() */
   1383 	mutex_spin_enter(&tty_lock);
   1384 	pgrp = p->p_pgrp;
   1385 	LIST_REMOVE(p, p_pglist);
   1386 	p->p_pgrp = NULL;
   1387 	mutex_spin_exit(&tty_lock);
   1388 
   1389 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1390 		/* Releases proc_lock. */
   1391 		pg_delete(pgrp->pg_id);
   1392 	} else {
   1393 		mutex_exit(proc_lock);
   1394 	}
   1395 }
   1396 
   1397 /*
   1398  * pg_remove: remove a process group from the table.
   1399  *  => must be called with the proc_lock held;
   1400  *  => returns process group to free;
   1401  */
   1402 static struct pgrp *
   1403 pg_remove(pid_t pg_id)
   1404 {
   1405 	struct pgrp *pgrp;
   1406 	struct pid_table *pt;
   1407 
   1408 	KASSERT(mutex_owned(proc_lock));
   1409 	KASSERT(rw_write_held(&pid_table_lock));
   1410 
   1411 	pt = &pid_table[pg_id & pid_tbl_mask];
   1412 	pgrp = pt->pt_pgrp;
   1413 
   1414 	KASSERT(pgrp != NULL);
   1415 	KASSERT(pgrp->pg_id == pg_id);
   1416 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1417 
   1418 	pt->pt_pgrp = NULL;
   1419 
   1420 	if (!PT_VALID(pt->pt_slot)) {
   1421 		/* Orphaned pgrp, put slot onto free list. */
   1422 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1423 		pg_id &= pid_tbl_mask;
   1424 		pt = &pid_table[last_free_pt];
   1425 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1426 		KASSERT(pt->pt_pid == 0);
   1427 		last_free_pt = pg_id;
   1428 		pid_alloc_cnt--;
   1429 	}
   1430 	return pgrp;
   1431 }
   1432 
   1433 /*
   1434  * pg_delete: delete and free a process group.
   1435  *  => must be called with the proc_lock held, which will be released.
   1436  */
   1437 static void
   1438 pg_delete(pid_t pg_id)
   1439 {
   1440 	struct pgrp *pg;
   1441 	struct tty *ttyp;
   1442 	struct session *ss;
   1443 
   1444 	KASSERT(mutex_owned(proc_lock));
   1445 
   1446 	rw_enter(&pid_table_lock, RW_WRITER);
   1447 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1448 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1449 		rw_exit(&pid_table_lock);
   1450 		mutex_exit(proc_lock);
   1451 		return;
   1452 	}
   1453 
   1454 	ss = pg->pg_session;
   1455 
   1456 	/* Remove reference (if any) from tty to this process group */
   1457 	mutex_spin_enter(&tty_lock);
   1458 	ttyp = ss->s_ttyp;
   1459 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1460 		ttyp->t_pgrp = NULL;
   1461 		KASSERT(ttyp->t_session == ss);
   1462 	}
   1463 	mutex_spin_exit(&tty_lock);
   1464 
   1465 	/*
   1466 	 * The leading process group in a session is freed by
   1467 	 * proc_sessrele_pid_table_write_locked(), if last
   1468 	 * reference.  It will also release the locks.
   1469 	 */
   1470 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1471 	proc_sessrele_pid_table_write_locked(ss);
   1472 
   1473 	if (pg != NULL) {
   1474 		/* Free it, if was not done above. */
   1475 		kmem_free(pg, sizeof(struct pgrp));
   1476 	}
   1477 }
   1478 
   1479 /*
   1480  * Adjust pgrp jobc counters when specified process changes process group.
   1481  * We count the number of processes in each process group that "qualify"
   1482  * the group for terminal job control (those with a parent in a different
   1483  * process group of the same session).  If that count reaches zero, the
   1484  * process group becomes orphaned.  Check both the specified process'
   1485  * process group and that of its children.
   1486  * entering == 0 => p is leaving specified group.
   1487  * entering == 1 => p is entering specified group.
   1488  *
   1489  * Call with proc_lock held.
   1490  */
   1491 void
   1492 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1493 {
   1494 	struct pgrp *hispgrp;
   1495 	struct session *mysession = pgrp->pg_session;
   1496 	struct proc *child;
   1497 
   1498 	KASSERT(mutex_owned(proc_lock));
   1499 
   1500 	/*
   1501 	 * Check p's parent to see whether p qualifies its own process
   1502 	 * group; if so, adjust count for p's process group.
   1503 	 */
   1504 	hispgrp = p->p_pptr->p_pgrp;
   1505 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1506 		if (entering) {
   1507 			pgrp->pg_jobc++;
   1508 			p->p_lflag &= ~PL_ORPHANPG;
   1509 		} else {
   1510 			KASSERT(pgrp->pg_jobc > 0);
   1511 			if (--pgrp->pg_jobc == 0)
   1512 				orphanpg(pgrp);
   1513 		}
   1514 	}
   1515 
   1516 	/*
   1517 	 * Check this process' children to see whether they qualify
   1518 	 * their process groups; if so, adjust counts for children's
   1519 	 * process groups.
   1520 	 */
   1521 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1522 		hispgrp = child->p_pgrp;
   1523 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1524 		    !P_ZOMBIE(child)) {
   1525 			if (entering) {
   1526 				child->p_lflag &= ~PL_ORPHANPG;
   1527 				hispgrp->pg_jobc++;
   1528 			} else {
   1529 				KASSERT(hispgrp->pg_jobc > 0);
   1530 				if (--hispgrp->pg_jobc == 0)
   1531 					orphanpg(hispgrp);
   1532 			}
   1533 		}
   1534 	}
   1535 }
   1536 
   1537 /*
   1538  * A process group has become orphaned;
   1539  * if there are any stopped processes in the group,
   1540  * hang-up all process in that group.
   1541  *
   1542  * Call with proc_lock held.
   1543  */
   1544 static void
   1545 orphanpg(struct pgrp *pg)
   1546 {
   1547 	struct proc *p;
   1548 
   1549 	KASSERT(mutex_owned(proc_lock));
   1550 
   1551 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1552 		if (p->p_stat == SSTOP) {
   1553 			p->p_lflag |= PL_ORPHANPG;
   1554 			psignal(p, SIGHUP);
   1555 			psignal(p, SIGCONT);
   1556 		}
   1557 	}
   1558 }
   1559 
   1560 #ifdef DDB
   1561 #include <ddb/db_output.h>
   1562 void pidtbl_dump(void);
   1563 void
   1564 pidtbl_dump(void)
   1565 {
   1566 	struct pid_table *pt;
   1567 	struct proc *p;
   1568 	struct pgrp *pgrp;
   1569 	uintptr_t slot;
   1570 	int id;
   1571 
   1572 	db_printf("pid table %p size %x, next %x, last %x\n",
   1573 		pid_table, pid_tbl_mask+1,
   1574 		next_free_pt, last_free_pt);
   1575 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1576 		slot = pt->pt_slot;
   1577 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1578 			continue;
   1579 		if (PT_IS_LWP(slot)) {
   1580 			p = PT_GET_LWP(slot)->l_proc;
   1581 		} else if (PT_IS_PROC(slot)) {
   1582 			p = PT_GET_PROC(slot);
   1583 		} else {
   1584 			p = NULL;
   1585 		}
   1586 		db_printf("  id %x: ", id);
   1587 		if (p != NULL)
   1588 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1589 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1590 		else
   1591 			db_printf("next %x use %x\n",
   1592 				PT_NEXT(slot) & pid_tbl_mask,
   1593 				PT_NEXT(slot) & ~pid_tbl_mask);
   1594 		if ((pgrp = pt->pt_pgrp)) {
   1595 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1596 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1597 			    pgrp->pg_session->s_count,
   1598 			    pgrp->pg_session->s_login);
   1599 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1600 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1601 			    LIST_FIRST(&pgrp->pg_members));
   1602 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1603 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1604 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1605 			}
   1606 		}
   1607 	}
   1608 }
   1609 #endif /* DDB */
   1610 
   1611 #ifdef KSTACK_CHECK_MAGIC
   1612 
   1613 #define	KSTACK_MAGIC	0xdeadbeaf
   1614 
   1615 /* XXX should be per process basis? */
   1616 static int	kstackleftmin = KSTACK_SIZE;
   1617 static int	kstackleftthres = KSTACK_SIZE / 8;
   1618 
   1619 void
   1620 kstack_setup_magic(const struct lwp *l)
   1621 {
   1622 	uint32_t *ip;
   1623 	uint32_t const *end;
   1624 
   1625 	KASSERT(l != NULL);
   1626 	KASSERT(l != &lwp0);
   1627 
   1628 	/*
   1629 	 * fill all the stack with magic number
   1630 	 * so that later modification on it can be detected.
   1631 	 */
   1632 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1633 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1634 	for (; ip < end; ip++) {
   1635 		*ip = KSTACK_MAGIC;
   1636 	}
   1637 }
   1638 
   1639 void
   1640 kstack_check_magic(const struct lwp *l)
   1641 {
   1642 	uint32_t const *ip, *end;
   1643 	int stackleft;
   1644 
   1645 	KASSERT(l != NULL);
   1646 
   1647 	/* don't check proc0 */ /*XXX*/
   1648 	if (l == &lwp0)
   1649 		return;
   1650 
   1651 #ifdef __MACHINE_STACK_GROWS_UP
   1652 	/* stack grows upwards (eg. hppa) */
   1653 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1654 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1655 	for (ip--; ip >= end; ip--)
   1656 		if (*ip != KSTACK_MAGIC)
   1657 			break;
   1658 
   1659 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1660 #else /* __MACHINE_STACK_GROWS_UP */
   1661 	/* stack grows downwards (eg. i386) */
   1662 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1663 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1664 	for (; ip < end; ip++)
   1665 		if (*ip != KSTACK_MAGIC)
   1666 			break;
   1667 
   1668 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1669 #endif /* __MACHINE_STACK_GROWS_UP */
   1670 
   1671 	if (kstackleftmin > stackleft) {
   1672 		kstackleftmin = stackleft;
   1673 		if (stackleft < kstackleftthres)
   1674 			printf("warning: kernel stack left %d bytes"
   1675 			    "(pid %u:lid %u)\n", stackleft,
   1676 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1677 	}
   1678 
   1679 	if (stackleft <= 0) {
   1680 		panic("magic on the top of kernel stack changed for "
   1681 		    "pid %u, lid %u: maybe kernel stack overflow",
   1682 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1683 	}
   1684 }
   1685 #endif /* KSTACK_CHECK_MAGIC */
   1686 
   1687 int
   1688 proclist_foreach_call(struct proclist *list,
   1689     int (*callback)(struct proc *, void *arg), void *arg)
   1690 {
   1691 	struct proc marker;
   1692 	struct proc *p;
   1693 	int ret = 0;
   1694 
   1695 	marker.p_flag = PK_MARKER;
   1696 	mutex_enter(proc_lock);
   1697 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1698 		if (p->p_flag & PK_MARKER) {
   1699 			p = LIST_NEXT(p, p_list);
   1700 			continue;
   1701 		}
   1702 		LIST_INSERT_AFTER(p, &marker, p_list);
   1703 		ret = (*callback)(p, arg);
   1704 		KASSERT(mutex_owned(proc_lock));
   1705 		p = LIST_NEXT(&marker, p_list);
   1706 		LIST_REMOVE(&marker, p_list);
   1707 	}
   1708 	mutex_exit(proc_lock);
   1709 
   1710 	return ret;
   1711 }
   1712 
   1713 int
   1714 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1715 {
   1716 
   1717 	/* XXXCDC: how should locking work here? */
   1718 
   1719 	/* curproc exception is for coredump. */
   1720 
   1721 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1722 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1723 		return EFAULT;
   1724 	}
   1725 
   1726 	uvmspace_addref(p->p_vmspace);
   1727 	*vm = p->p_vmspace;
   1728 
   1729 	return 0;
   1730 }
   1731 
   1732 /*
   1733  * Acquire a write lock on the process credential.
   1734  */
   1735 void
   1736 proc_crmod_enter(void)
   1737 {
   1738 	struct lwp *l = curlwp;
   1739 	struct proc *p = l->l_proc;
   1740 	kauth_cred_t oc;
   1741 
   1742 	/* Reset what needs to be reset in plimit. */
   1743 	if (p->p_limit->pl_corename != defcorename) {
   1744 		lim_setcorename(p, defcorename, 0);
   1745 	}
   1746 
   1747 	mutex_enter(p->p_lock);
   1748 
   1749 	/* Ensure the LWP cached credentials are up to date. */
   1750 	if ((oc = l->l_cred) != p->p_cred) {
   1751 		kauth_cred_hold(p->p_cred);
   1752 		l->l_cred = p->p_cred;
   1753 		kauth_cred_free(oc);
   1754 	}
   1755 }
   1756 
   1757 /*
   1758  * Set in a new process credential, and drop the write lock.  The credential
   1759  * must have a reference already.  Optionally, free a no-longer required
   1760  * credential.  The scheduler also needs to inspect p_cred, so we also
   1761  * briefly acquire the sched state mutex.
   1762  */
   1763 void
   1764 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1765 {
   1766 	struct lwp *l = curlwp, *l2;
   1767 	struct proc *p = l->l_proc;
   1768 	kauth_cred_t oc;
   1769 
   1770 	KASSERT(mutex_owned(p->p_lock));
   1771 
   1772 	/* Is there a new credential to set in? */
   1773 	if (scred != NULL) {
   1774 		p->p_cred = scred;
   1775 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1776 			if (l2 != l)
   1777 				l2->l_prflag |= LPR_CRMOD;
   1778 		}
   1779 
   1780 		/* Ensure the LWP cached credentials are up to date. */
   1781 		if ((oc = l->l_cred) != scred) {
   1782 			kauth_cred_hold(scred);
   1783 			l->l_cred = scred;
   1784 		}
   1785 	} else
   1786 		oc = NULL;	/* XXXgcc */
   1787 
   1788 	if (sugid) {
   1789 		/*
   1790 		 * Mark process as having changed credentials, stops
   1791 		 * tracing etc.
   1792 		 */
   1793 		p->p_flag |= PK_SUGID;
   1794 	}
   1795 
   1796 	mutex_exit(p->p_lock);
   1797 
   1798 	/* If there is a credential to be released, free it now. */
   1799 	if (fcred != NULL) {
   1800 		KASSERT(scred != NULL);
   1801 		kauth_cred_free(fcred);
   1802 		if (oc != scred)
   1803 			kauth_cred_free(oc);
   1804 	}
   1805 }
   1806 
   1807 /*
   1808  * proc_specific_key_create --
   1809  *	Create a key for subsystem proc-specific data.
   1810  */
   1811 int
   1812 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1813 {
   1814 
   1815 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1816 }
   1817 
   1818 /*
   1819  * proc_specific_key_delete --
   1820  *	Delete a key for subsystem proc-specific data.
   1821  */
   1822 void
   1823 proc_specific_key_delete(specificdata_key_t key)
   1824 {
   1825 
   1826 	specificdata_key_delete(proc_specificdata_domain, key);
   1827 }
   1828 
   1829 /*
   1830  * proc_initspecific --
   1831  *	Initialize a proc's specificdata container.
   1832  */
   1833 void
   1834 proc_initspecific(struct proc *p)
   1835 {
   1836 	int error __diagused;
   1837 
   1838 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1839 	KASSERT(error == 0);
   1840 }
   1841 
   1842 /*
   1843  * proc_finispecific --
   1844  *	Finalize a proc's specificdata container.
   1845  */
   1846 void
   1847 proc_finispecific(struct proc *p)
   1848 {
   1849 
   1850 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1851 }
   1852 
   1853 /*
   1854  * proc_getspecific --
   1855  *	Return proc-specific data corresponding to the specified key.
   1856  */
   1857 void *
   1858 proc_getspecific(struct proc *p, specificdata_key_t key)
   1859 {
   1860 
   1861 	return (specificdata_getspecific(proc_specificdata_domain,
   1862 					 &p->p_specdataref, key));
   1863 }
   1864 
   1865 /*
   1866  * proc_setspecific --
   1867  *	Set proc-specific data corresponding to the specified key.
   1868  */
   1869 void
   1870 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1871 {
   1872 
   1873 	specificdata_setspecific(proc_specificdata_domain,
   1874 				 &p->p_specdataref, key, data);
   1875 }
   1876 
   1877 int
   1878 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1879 {
   1880 	int r = 0;
   1881 
   1882 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1883 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1884 		/*
   1885 		 * suid proc of ours or proc not ours
   1886 		 */
   1887 		r = EPERM;
   1888 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1889 		/*
   1890 		 * sgid proc has sgid back to us temporarily
   1891 		 */
   1892 		r = EPERM;
   1893 	} else {
   1894 		/*
   1895 		 * our rgid must be in target's group list (ie,
   1896 		 * sub-processes started by a sgid process)
   1897 		 */
   1898 		int ismember = 0;
   1899 
   1900 		if (kauth_cred_ismember_gid(cred,
   1901 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1902 		    !ismember)
   1903 			r = EPERM;
   1904 	}
   1905 
   1906 	return (r);
   1907 }
   1908 
   1909 /*
   1910  * sysctl stuff
   1911  */
   1912 
   1913 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1914 
   1915 static const u_int sysctl_flagmap[] = {
   1916 	PK_ADVLOCK, P_ADVLOCK,
   1917 	PK_EXEC, P_EXEC,
   1918 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1919 	PK_32, P_32,
   1920 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1921 	PK_SUGID, P_SUGID,
   1922 	0
   1923 };
   1924 
   1925 static const u_int sysctl_sflagmap[] = {
   1926 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1927 	PS_WEXIT, P_WEXIT,
   1928 	PS_STOPFORK, P_STOPFORK,
   1929 	PS_STOPEXEC, P_STOPEXEC,
   1930 	PS_STOPEXIT, P_STOPEXIT,
   1931 	0
   1932 };
   1933 
   1934 static const u_int sysctl_slflagmap[] = {
   1935 	PSL_TRACED, P_TRACED,
   1936 	PSL_CHTRACED, P_CHTRACED,
   1937 	PSL_SYSCALL, P_SYSCALL,
   1938 	0
   1939 };
   1940 
   1941 static const u_int sysctl_lflagmap[] = {
   1942 	PL_CONTROLT, P_CONTROLT,
   1943 	PL_PPWAIT, P_PPWAIT,
   1944 	0
   1945 };
   1946 
   1947 static const u_int sysctl_stflagmap[] = {
   1948 	PST_PROFIL, P_PROFIL,
   1949 	0
   1950 
   1951 };
   1952 
   1953 /* used by kern_lwp also */
   1954 const u_int sysctl_lwpflagmap[] = {
   1955 	LW_SINTR, L_SINTR,
   1956 	LW_SYSTEM, L_SYSTEM,
   1957 	0
   1958 };
   1959 
   1960 /*
   1961  * Find the most ``active'' lwp of a process and return it for ps display
   1962  * purposes
   1963  */
   1964 static struct lwp *
   1965 proc_active_lwp(struct proc *p)
   1966 {
   1967 	static const int ostat[] = {
   1968 		0,
   1969 		2,	/* LSIDL */
   1970 		6,	/* LSRUN */
   1971 		5,	/* LSSLEEP */
   1972 		4,	/* LSSTOP */
   1973 		0,	/* LSZOMB */
   1974 		1,	/* LSDEAD */
   1975 		7,	/* LSONPROC */
   1976 		3	/* LSSUSPENDED */
   1977 	};
   1978 
   1979 	struct lwp *l, *lp = NULL;
   1980 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1981 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   1982 		if (lp == NULL ||
   1983 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   1984 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   1985 		    l->l_cpticks > lp->l_cpticks)) {
   1986 			lp = l;
   1987 			continue;
   1988 		}
   1989 	}
   1990 	return lp;
   1991 }
   1992 
   1993 static int
   1994 sysctl_doeproc(SYSCTLFN_ARGS)
   1995 {
   1996 	union {
   1997 		struct kinfo_proc kproc;
   1998 		struct kinfo_proc2 kproc2;
   1999 	} *kbuf;
   2000 	struct proc *p, *next, *marker;
   2001 	char *where, *dp;
   2002 	int type, op, arg, error;
   2003 	u_int elem_size, kelem_size, elem_count;
   2004 	size_t buflen, needed;
   2005 	bool match, zombie, mmmbrains;
   2006 	const bool allowaddr = get_expose_address(curproc);
   2007 
   2008 	if (namelen == 1 && name[0] == CTL_QUERY)
   2009 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2010 
   2011 	dp = where = oldp;
   2012 	buflen = where != NULL ? *oldlenp : 0;
   2013 	error = 0;
   2014 	needed = 0;
   2015 	type = rnode->sysctl_num;
   2016 
   2017 	if (type == KERN_PROC) {
   2018 		if (namelen == 0)
   2019 			return EINVAL;
   2020 		switch (op = name[0]) {
   2021 		case KERN_PROC_ALL:
   2022 			if (namelen != 1)
   2023 				return EINVAL;
   2024 			arg = 0;
   2025 			break;
   2026 		default:
   2027 			if (namelen != 2)
   2028 				return EINVAL;
   2029 			arg = name[1];
   2030 			break;
   2031 		}
   2032 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2033 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2034 	} else {
   2035 		if (namelen != 4)
   2036 			return EINVAL;
   2037 		op = name[0];
   2038 		arg = name[1];
   2039 		elem_size = name[2];
   2040 		elem_count = name[3];
   2041 		kelem_size = sizeof(kbuf->kproc2);
   2042 	}
   2043 
   2044 	sysctl_unlock();
   2045 
   2046 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2047 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2048 	marker->p_flag = PK_MARKER;
   2049 
   2050 	mutex_enter(proc_lock);
   2051 	/*
   2052 	 * Start with zombies to prevent reporting processes twice, in case they
   2053 	 * are dying and being moved from the list of alive processes to zombies.
   2054 	 */
   2055 	mmmbrains = true;
   2056 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2057 		if (p == NULL) {
   2058 			if (mmmbrains) {
   2059 				p = LIST_FIRST(&allproc);
   2060 				mmmbrains = false;
   2061 			}
   2062 			if (p == NULL)
   2063 				break;
   2064 		}
   2065 		next = LIST_NEXT(p, p_list);
   2066 		if ((p->p_flag & PK_MARKER) != 0)
   2067 			continue;
   2068 
   2069 		/*
   2070 		 * Skip embryonic processes.
   2071 		 */
   2072 		if (p->p_stat == SIDL)
   2073 			continue;
   2074 
   2075 		mutex_enter(p->p_lock);
   2076 		error = kauth_authorize_process(l->l_cred,
   2077 		    KAUTH_PROCESS_CANSEE, p,
   2078 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2079 		if (error != 0) {
   2080 			mutex_exit(p->p_lock);
   2081 			continue;
   2082 		}
   2083 
   2084 		/*
   2085 		 * Hande all the operations in one switch on the cost of
   2086 		 * algorithm complexity is on purpose. The win splitting this
   2087 		 * function into several similar copies makes maintenance burden
   2088 		 * burden, code grow and boost is neglible in practical systems.
   2089 		 */
   2090 		switch (op) {
   2091 		case KERN_PROC_PID:
   2092 			match = (p->p_pid == (pid_t)arg);
   2093 			break;
   2094 
   2095 		case KERN_PROC_PGRP:
   2096 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2097 			break;
   2098 
   2099 		case KERN_PROC_SESSION:
   2100 			match = (p->p_session->s_sid == (pid_t)arg);
   2101 			break;
   2102 
   2103 		case KERN_PROC_TTY:
   2104 			match = true;
   2105 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2106 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2107 				    p->p_session->s_ttyp == NULL ||
   2108 				    p->p_session->s_ttyvp != NULL) {
   2109 				    	match = false;
   2110 				}
   2111 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2112 			    p->p_session->s_ttyp == NULL) {
   2113 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2114 					match = false;
   2115 				}
   2116 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2117 				match = false;
   2118 			}
   2119 			break;
   2120 
   2121 		case KERN_PROC_UID:
   2122 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2123 			break;
   2124 
   2125 		case KERN_PROC_RUID:
   2126 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2127 			break;
   2128 
   2129 		case KERN_PROC_GID:
   2130 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2131 			break;
   2132 
   2133 		case KERN_PROC_RGID:
   2134 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2135 			break;
   2136 
   2137 		case KERN_PROC_ALL:
   2138 			match = true;
   2139 			/* allow everything */
   2140 			break;
   2141 
   2142 		default:
   2143 			error = EINVAL;
   2144 			mutex_exit(p->p_lock);
   2145 			goto cleanup;
   2146 		}
   2147 		if (!match) {
   2148 			mutex_exit(p->p_lock);
   2149 			continue;
   2150 		}
   2151 
   2152 		/*
   2153 		 * Grab a hold on the process.
   2154 		 */
   2155 		if (mmmbrains) {
   2156 			zombie = true;
   2157 		} else {
   2158 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2159 		}
   2160 		if (zombie) {
   2161 			LIST_INSERT_AFTER(p, marker, p_list);
   2162 		}
   2163 
   2164 		if (buflen >= elem_size &&
   2165 		    (type == KERN_PROC || elem_count > 0)) {
   2166 			ruspace(p);	/* Update process vm resource use */
   2167 
   2168 			if (type == KERN_PROC) {
   2169 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2170 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2171 				    allowaddr);
   2172 			} else {
   2173 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2174 				    allowaddr);
   2175 				elem_count--;
   2176 			}
   2177 			mutex_exit(p->p_lock);
   2178 			mutex_exit(proc_lock);
   2179 			/*
   2180 			 * Copy out elem_size, but not larger than kelem_size
   2181 			 */
   2182 			error = sysctl_copyout(l, kbuf, dp,
   2183 			    uimin(kelem_size, elem_size));
   2184 			mutex_enter(proc_lock);
   2185 			if (error) {
   2186 				goto bah;
   2187 			}
   2188 			dp += elem_size;
   2189 			buflen -= elem_size;
   2190 		} else {
   2191 			mutex_exit(p->p_lock);
   2192 		}
   2193 		needed += elem_size;
   2194 
   2195 		/*
   2196 		 * Release reference to process.
   2197 		 */
   2198 	 	if (zombie) {
   2199 			next = LIST_NEXT(marker, p_list);
   2200  			LIST_REMOVE(marker, p_list);
   2201 		} else {
   2202 			rw_exit(&p->p_reflock);
   2203 			next = LIST_NEXT(p, p_list);
   2204 		}
   2205 
   2206 		/*
   2207 		 * Short-circuit break quickly!
   2208 		 */
   2209 		if (op == KERN_PROC_PID)
   2210                 	break;
   2211 	}
   2212 	mutex_exit(proc_lock);
   2213 
   2214 	if (where != NULL) {
   2215 		*oldlenp = dp - where;
   2216 		if (needed > *oldlenp) {
   2217 			error = ENOMEM;
   2218 			goto out;
   2219 		}
   2220 	} else {
   2221 		needed += KERN_PROCSLOP;
   2222 		*oldlenp = needed;
   2223 	}
   2224 	kmem_free(kbuf, sizeof(*kbuf));
   2225 	kmem_free(marker, sizeof(*marker));
   2226 	sysctl_relock();
   2227 	return 0;
   2228  bah:
   2229  	if (zombie)
   2230  		LIST_REMOVE(marker, p_list);
   2231 	else
   2232 		rw_exit(&p->p_reflock);
   2233  cleanup:
   2234 	mutex_exit(proc_lock);
   2235  out:
   2236 	kmem_free(kbuf, sizeof(*kbuf));
   2237 	kmem_free(marker, sizeof(*marker));
   2238 	sysctl_relock();
   2239 	return error;
   2240 }
   2241 
   2242 int
   2243 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2244 {
   2245 #if !defined(_RUMPKERNEL)
   2246 	int retval;
   2247 
   2248 	if (p->p_flag & PK_32) {
   2249 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2250 		    enosys(), retval);
   2251 		return retval;
   2252 	}
   2253 #endif /* !defined(_RUMPKERNEL) */
   2254 
   2255 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2256 }
   2257 
   2258 static int
   2259 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2260 {
   2261 	void **cookie = cookie_;
   2262 	struct lwp *l = cookie[0];
   2263 	char *dst = cookie[1];
   2264 
   2265 	return sysctl_copyout(l, src, dst + off, len);
   2266 }
   2267 
   2268 /*
   2269  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2270  */
   2271 static int
   2272 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2273 {
   2274 	struct ps_strings pss;
   2275 	struct proc *p;
   2276 	pid_t pid;
   2277 	int type, error;
   2278 	void *cookie[2];
   2279 
   2280 	if (namelen == 1 && name[0] == CTL_QUERY)
   2281 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2282 
   2283 	if (newp != NULL || namelen != 2)
   2284 		return (EINVAL);
   2285 	pid = name[0];
   2286 	type = name[1];
   2287 
   2288 	switch (type) {
   2289 	case KERN_PROC_PATHNAME:
   2290 		sysctl_unlock();
   2291 		error = fill_pathname(l, pid, oldp, oldlenp);
   2292 		sysctl_relock();
   2293 		return error;
   2294 
   2295 	case KERN_PROC_CWD:
   2296 		sysctl_unlock();
   2297 		error = fill_cwd(l, pid, oldp, oldlenp);
   2298 		sysctl_relock();
   2299 		return error;
   2300 
   2301 	case KERN_PROC_ARGV:
   2302 	case KERN_PROC_NARGV:
   2303 	case KERN_PROC_ENV:
   2304 	case KERN_PROC_NENV:
   2305 		/* ok */
   2306 		break;
   2307 	default:
   2308 		return (EINVAL);
   2309 	}
   2310 
   2311 	sysctl_unlock();
   2312 
   2313 	/* check pid */
   2314 	mutex_enter(proc_lock);
   2315 	if ((p = proc_find(pid)) == NULL) {
   2316 		error = EINVAL;
   2317 		goto out_locked;
   2318 	}
   2319 	mutex_enter(p->p_lock);
   2320 
   2321 	/* Check permission. */
   2322 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2323 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2324 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2325 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2326 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2327 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2328 	else
   2329 		error = EINVAL; /* XXXGCC */
   2330 	if (error) {
   2331 		mutex_exit(p->p_lock);
   2332 		goto out_locked;
   2333 	}
   2334 
   2335 	if (oldp == NULL) {
   2336 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2337 			*oldlenp = sizeof (int);
   2338 		else
   2339 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2340 		error = 0;
   2341 		mutex_exit(p->p_lock);
   2342 		goto out_locked;
   2343 	}
   2344 
   2345 	/*
   2346 	 * Zombies don't have a stack, so we can't read their psstrings.
   2347 	 * System processes also don't have a user stack.
   2348 	 */
   2349 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2350 		error = EINVAL;
   2351 		mutex_exit(p->p_lock);
   2352 		goto out_locked;
   2353 	}
   2354 
   2355 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2356 	mutex_exit(p->p_lock);
   2357 	if (error) {
   2358 		goto out_locked;
   2359 	}
   2360 	mutex_exit(proc_lock);
   2361 
   2362 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2363 		int value;
   2364 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2365 			if (type == KERN_PROC_NARGV)
   2366 				value = pss.ps_nargvstr;
   2367 			else
   2368 				value = pss.ps_nenvstr;
   2369 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2370 			*oldlenp = sizeof(value);
   2371 		}
   2372 	} else {
   2373 		cookie[0] = l;
   2374 		cookie[1] = oldp;
   2375 		error = copy_procargs(p, type, oldlenp,
   2376 		    copy_procargs_sysctl_cb, cookie);
   2377 	}
   2378 	rw_exit(&p->p_reflock);
   2379 	sysctl_relock();
   2380 	return error;
   2381 
   2382 out_locked:
   2383 	mutex_exit(proc_lock);
   2384 	sysctl_relock();
   2385 	return error;
   2386 }
   2387 
   2388 int
   2389 copy_procargs(struct proc *p, int oid, size_t *limit,
   2390     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2391 {
   2392 	struct ps_strings pss;
   2393 	size_t len, i, loaded, entry_len;
   2394 	struct uio auio;
   2395 	struct iovec aiov;
   2396 	int error, argvlen;
   2397 	char *arg;
   2398 	char **argv;
   2399 	vaddr_t user_argv;
   2400 	struct vmspace *vmspace;
   2401 
   2402 	/*
   2403 	 * Allocate a temporary buffer to hold the argument vector and
   2404 	 * the arguments themselve.
   2405 	 */
   2406 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2407 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2408 
   2409 	/*
   2410 	 * Lock the process down in memory.
   2411 	 */
   2412 	vmspace = p->p_vmspace;
   2413 	uvmspace_addref(vmspace);
   2414 
   2415 	/*
   2416 	 * Read in the ps_strings structure.
   2417 	 */
   2418 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2419 		goto done;
   2420 
   2421 	/*
   2422 	 * Now read the address of the argument vector.
   2423 	 */
   2424 	switch (oid) {
   2425 	case KERN_PROC_ARGV:
   2426 		user_argv = (uintptr_t)pss.ps_argvstr;
   2427 		argvlen = pss.ps_nargvstr;
   2428 		break;
   2429 	case KERN_PROC_ENV:
   2430 		user_argv = (uintptr_t)pss.ps_envstr;
   2431 		argvlen = pss.ps_nenvstr;
   2432 		break;
   2433 	default:
   2434 		error = EINVAL;
   2435 		goto done;
   2436 	}
   2437 
   2438 	if (argvlen < 0) {
   2439 		error = EIO;
   2440 		goto done;
   2441 	}
   2442 
   2443 
   2444 	/*
   2445 	 * Now copy each string.
   2446 	 */
   2447 	len = 0; /* bytes written to user buffer */
   2448 	loaded = 0; /* bytes from argv already processed */
   2449 	i = 0; /* To make compiler happy */
   2450 	entry_len = PROC_PTRSZ(p);
   2451 
   2452 	for (; argvlen; --argvlen) {
   2453 		int finished = 0;
   2454 		vaddr_t base;
   2455 		size_t xlen;
   2456 		int j;
   2457 
   2458 		if (loaded == 0) {
   2459 			size_t rem = entry_len * argvlen;
   2460 			loaded = MIN(rem, PAGE_SIZE);
   2461 			error = copyin_vmspace(vmspace,
   2462 			    (const void *)user_argv, argv, loaded);
   2463 			if (error)
   2464 				break;
   2465 			user_argv += loaded;
   2466 			i = 0;
   2467 		}
   2468 
   2469 #if !defined(_RUMPKERNEL)
   2470 		if (p->p_flag & PK_32)
   2471 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2472 			    (argv, i++), 0, base);
   2473 		else
   2474 #endif /* !defined(_RUMPKERNEL) */
   2475 			base = (vaddr_t)argv[i++];
   2476 		loaded -= entry_len;
   2477 
   2478 		/*
   2479 		 * The program has messed around with its arguments,
   2480 		 * possibly deleting some, and replacing them with
   2481 		 * NULL's. Treat this as the last argument and not
   2482 		 * a failure.
   2483 		 */
   2484 		if (base == 0)
   2485 			break;
   2486 
   2487 		while (!finished) {
   2488 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2489 
   2490 			aiov.iov_base = arg;
   2491 			aiov.iov_len = PAGE_SIZE;
   2492 			auio.uio_iov = &aiov;
   2493 			auio.uio_iovcnt = 1;
   2494 			auio.uio_offset = base;
   2495 			auio.uio_resid = xlen;
   2496 			auio.uio_rw = UIO_READ;
   2497 			UIO_SETUP_SYSSPACE(&auio);
   2498 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2499 			if (error)
   2500 				goto done;
   2501 
   2502 			/* Look for the end of the string */
   2503 			for (j = 0; j < xlen; j++) {
   2504 				if (arg[j] == '\0') {
   2505 					xlen = j + 1;
   2506 					finished = 1;
   2507 					break;
   2508 				}
   2509 			}
   2510 
   2511 			/* Check for user buffer overflow */
   2512 			if (len + xlen > *limit) {
   2513 				finished = 1;
   2514 				if (len > *limit)
   2515 					xlen = 0;
   2516 				else
   2517 					xlen = *limit - len;
   2518 			}
   2519 
   2520 			/* Copyout the page */
   2521 			error = (*cb)(cookie, arg, len, xlen);
   2522 			if (error)
   2523 				goto done;
   2524 
   2525 			len += xlen;
   2526 			base += xlen;
   2527 		}
   2528 	}
   2529 	*limit = len;
   2530 
   2531 done:
   2532 	kmem_free(argv, PAGE_SIZE);
   2533 	kmem_free(arg, PAGE_SIZE);
   2534 	uvmspace_free(vmspace);
   2535 	return error;
   2536 }
   2537 
   2538 /*
   2539  * Fill in a proc structure for the specified process.
   2540  */
   2541 static void
   2542 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2543 {
   2544 	COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
   2545 	COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
   2546 	COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
   2547 	COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
   2548 	COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
   2549 	COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2550 	COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2551 	COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
   2552 	COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
   2553 	COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2554 	COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
   2555 	COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
   2556 	COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2557 	COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2558 	COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
   2559 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2560 	COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
   2561 	p->p_exitsig = psrc->p_exitsig;
   2562 	p->p_flag = psrc->p_flag;
   2563 	p->p_sflag = psrc->p_sflag;
   2564 	p->p_slflag = psrc->p_slflag;
   2565 	p->p_lflag = psrc->p_lflag;
   2566 	p->p_stflag = psrc->p_stflag;
   2567 	p->p_stat = psrc->p_stat;
   2568 	p->p_trace_enabled = psrc->p_trace_enabled;
   2569 	p->p_pid = psrc->p_pid;
   2570 	COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
   2571 	COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
   2572 	COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
   2573 	COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
   2574 	COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
   2575 	COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
   2576 	p->p_nlwps = psrc->p_nlwps;
   2577 	p->p_nzlwps = psrc->p_nzlwps;
   2578 	p->p_nrlwps = psrc->p_nrlwps;
   2579 	p->p_nlwpwait = psrc->p_nlwpwait;
   2580 	p->p_ndlwps = psrc->p_ndlwps;
   2581 	p->p_nstopchild = psrc->p_nstopchild;
   2582 	p->p_waited = psrc->p_waited;
   2583 	COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2584 	COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2585 	COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2586 	p->p_estcpu = psrc->p_estcpu;
   2587 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2588 	p->p_forktime = psrc->p_forktime;
   2589 	p->p_pctcpu = psrc->p_pctcpu;
   2590 	COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
   2591 	COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
   2592 	p->p_rtime = psrc->p_rtime;
   2593 	p->p_uticks = psrc->p_uticks;
   2594 	p->p_sticks = psrc->p_sticks;
   2595 	p->p_iticks = psrc->p_iticks;
   2596 	p->p_xutime = psrc->p_xutime;
   2597 	p->p_xstime = psrc->p_xstime;
   2598 	p->p_traceflag = psrc->p_traceflag;
   2599 	COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
   2600 	COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
   2601 	COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
   2602 	COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2603 	COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
   2604 	COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
   2605 	COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2606 	COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
   2607 	COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2608 	p->p_ppid = psrc->p_ppid;
   2609 	p->p_oppid = psrc->p_oppid;
   2610 	COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
   2611 	COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
   2612 	p->p_nice = psrc->p_nice;
   2613 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2614 	COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2615 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2616 	p->p_pax = psrc->p_pax;
   2617 	p->p_xexit = psrc->p_xexit;
   2618 	p->p_xsig = psrc->p_xsig;
   2619 	p->p_acflag = psrc->p_acflag;
   2620 	COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
   2621 	p->p_stackbase = psrc->p_stackbase;
   2622 	COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2623 }
   2624 
   2625 /*
   2626  * Fill in an eproc structure for the specified process.
   2627  */
   2628 void
   2629 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2630 {
   2631 	struct tty *tp;
   2632 	struct lwp *l;
   2633 
   2634 	KASSERT(mutex_owned(proc_lock));
   2635 	KASSERT(mutex_owned(p->p_lock));
   2636 
   2637 	COND_SET_VALUE(ep->e_paddr, p, allowaddr);
   2638 	COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
   2639 	if (p->p_cred) {
   2640 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2641 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2642 	}
   2643 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2644 		struct vmspace *vm = p->p_vmspace;
   2645 
   2646 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2647 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2648 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2649 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2650 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2651 
   2652 		/* Pick the primary (first) LWP */
   2653 		l = proc_active_lwp(p);
   2654 		KASSERT(l != NULL);
   2655 		lwp_lock(l);
   2656 		if (l->l_wchan)
   2657 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2658 		lwp_unlock(l);
   2659 	}
   2660 	ep->e_ppid = p->p_ppid;
   2661 	if (p->p_pgrp && p->p_session) {
   2662 		ep->e_pgid = p->p_pgrp->pg_id;
   2663 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2664 		ep->e_sid = p->p_session->s_sid;
   2665 		if ((p->p_lflag & PL_CONTROLT) &&
   2666 		    (tp = p->p_session->s_ttyp)) {
   2667 			ep->e_tdev = tp->t_dev;
   2668 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2669 			COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
   2670 		} else
   2671 			ep->e_tdev = (uint32_t)NODEV;
   2672 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2673 		if (SESS_LEADER(p))
   2674 			ep->e_flag |= EPROC_SLEADER;
   2675 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2676 	}
   2677 	ep->e_xsize = ep->e_xrssize = 0;
   2678 	ep->e_xccount = ep->e_xswrss = 0;
   2679 }
   2680 
   2681 /*
   2682  * Fill in a kinfo_proc2 structure for the specified process.
   2683  */
   2684 void
   2685 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2686 {
   2687 	struct tty *tp;
   2688 	struct lwp *l, *l2;
   2689 	struct timeval ut, st, rt;
   2690 	sigset_t ss1, ss2;
   2691 	struct rusage ru;
   2692 	struct vmspace *vm;
   2693 
   2694 	KASSERT(mutex_owned(proc_lock));
   2695 	KASSERT(mutex_owned(p->p_lock));
   2696 
   2697 	sigemptyset(&ss1);
   2698 	sigemptyset(&ss2);
   2699 
   2700 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2701 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2702 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2703 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2704 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2705 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2706 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2707 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2708 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2709 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2710 	ki->p_eflag = 0;
   2711 	ki->p_exitsig = p->p_exitsig;
   2712 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2713 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2714 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2715 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2716 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2717 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2718 	ki->p_pid = p->p_pid;
   2719 	ki->p_ppid = p->p_ppid;
   2720 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2721 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2722 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2723 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2724 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2725 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2726 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2727 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2728 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2729 	    UIO_SYSSPACE);
   2730 
   2731 	ki->p_uticks = p->p_uticks;
   2732 	ki->p_sticks = p->p_sticks;
   2733 	ki->p_iticks = p->p_iticks;
   2734 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2735 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2736 	ki->p_traceflag = p->p_traceflag;
   2737 
   2738 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2739 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2740 
   2741 	ki->p_cpticks = 0;
   2742 	ki->p_pctcpu = p->p_pctcpu;
   2743 	ki->p_estcpu = 0;
   2744 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2745 	ki->p_realstat = p->p_stat;
   2746 	ki->p_nice = p->p_nice;
   2747 	ki->p_xstat = P_WAITSTATUS(p);
   2748 	ki->p_acflag = p->p_acflag;
   2749 
   2750 	strncpy(ki->p_comm, p->p_comm,
   2751 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2752 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2753 
   2754 	ki->p_nlwps = p->p_nlwps;
   2755 	ki->p_realflag = ki->p_flag;
   2756 
   2757 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2758 		vm = p->p_vmspace;
   2759 		ki->p_vm_rssize = vm_resident_count(vm);
   2760 		ki->p_vm_tsize = vm->vm_tsize;
   2761 		ki->p_vm_dsize = vm->vm_dsize;
   2762 		ki->p_vm_ssize = vm->vm_ssize;
   2763 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2764 		/*
   2765 		 * Since the stack is initially mapped mostly with
   2766 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2767 		 * to skip the unused stack portion.
   2768 		 */
   2769 		ki->p_vm_msize =
   2770 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2771 
   2772 		/* Pick the primary (first) LWP */
   2773 		l = proc_active_lwp(p);
   2774 		KASSERT(l != NULL);
   2775 		lwp_lock(l);
   2776 		ki->p_nrlwps = p->p_nrlwps;
   2777 		ki->p_forw = 0;
   2778 		ki->p_back = 0;
   2779 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2780 		ki->p_stat = l->l_stat;
   2781 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2782 		ki->p_swtime = l->l_swtime;
   2783 		ki->p_slptime = l->l_slptime;
   2784 		if (l->l_stat == LSONPROC)
   2785 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2786 		else
   2787 			ki->p_schedflags = 0;
   2788 		ki->p_priority = lwp_eprio(l);
   2789 		ki->p_usrpri = l->l_priority;
   2790 		if (l->l_wchan)
   2791 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2792 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2793 		ki->p_cpuid = cpu_index(l->l_cpu);
   2794 		lwp_unlock(l);
   2795 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2796 			/* This is hardly correct, but... */
   2797 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2798 			sigplusset(&l->l_sigmask, &ss2);
   2799 			ki->p_cpticks += l->l_cpticks;
   2800 			ki->p_pctcpu += l->l_pctcpu;
   2801 			ki->p_estcpu += l->l_estcpu;
   2802 		}
   2803 	}
   2804 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2805 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2806 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2807 
   2808 	if (p->p_session != NULL) {
   2809 		ki->p_sid = p->p_session->s_sid;
   2810 		ki->p__pgid = p->p_pgrp->pg_id;
   2811 		if (p->p_session->s_ttyvp)
   2812 			ki->p_eflag |= EPROC_CTTY;
   2813 		if (SESS_LEADER(p))
   2814 			ki->p_eflag |= EPROC_SLEADER;
   2815 		strncpy(ki->p_login, p->p_session->s_login,
   2816 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2817 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2818 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2819 			ki->p_tdev = tp->t_dev;
   2820 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2821 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2822 			    allowaddr);
   2823 		} else {
   2824 			ki->p_tdev = (int32_t)NODEV;
   2825 		}
   2826 	}
   2827 
   2828 	if (!P_ZOMBIE(p) && !zombie) {
   2829 		ki->p_uvalid = 1;
   2830 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2831 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2832 
   2833 		calcru(p, &ut, &st, NULL, &rt);
   2834 		ki->p_rtime_sec = rt.tv_sec;
   2835 		ki->p_rtime_usec = rt.tv_usec;
   2836 		ki->p_uutime_sec = ut.tv_sec;
   2837 		ki->p_uutime_usec = ut.tv_usec;
   2838 		ki->p_ustime_sec = st.tv_sec;
   2839 		ki->p_ustime_usec = st.tv_usec;
   2840 
   2841 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2842 		ki->p_uru_nvcsw = 0;
   2843 		ki->p_uru_nivcsw = 0;
   2844 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2845 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2846 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2847 			ruadd(&ru, &l2->l_ru);
   2848 		}
   2849 		ki->p_uru_maxrss = ru.ru_maxrss;
   2850 		ki->p_uru_ixrss = ru.ru_ixrss;
   2851 		ki->p_uru_idrss = ru.ru_idrss;
   2852 		ki->p_uru_isrss = ru.ru_isrss;
   2853 		ki->p_uru_minflt = ru.ru_minflt;
   2854 		ki->p_uru_majflt = ru.ru_majflt;
   2855 		ki->p_uru_nswap = ru.ru_nswap;
   2856 		ki->p_uru_inblock = ru.ru_inblock;
   2857 		ki->p_uru_oublock = ru.ru_oublock;
   2858 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2859 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2860 		ki->p_uru_nsignals = ru.ru_nsignals;
   2861 
   2862 		timeradd(&p->p_stats->p_cru.ru_utime,
   2863 			 &p->p_stats->p_cru.ru_stime, &ut);
   2864 		ki->p_uctime_sec = ut.tv_sec;
   2865 		ki->p_uctime_usec = ut.tv_usec;
   2866 	}
   2867 }
   2868 
   2869 
   2870 int
   2871 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2872 {
   2873 	int error;
   2874 
   2875 	mutex_enter(proc_lock);
   2876 	if (pid == -1)
   2877 		*p = l->l_proc;
   2878 	else
   2879 		*p = proc_find(pid);
   2880 
   2881 	if (*p == NULL) {
   2882 		if (pid != -1)
   2883 			mutex_exit(proc_lock);
   2884 		return ESRCH;
   2885 	}
   2886 	if (pid != -1)
   2887 		mutex_enter((*p)->p_lock);
   2888 	mutex_exit(proc_lock);
   2889 
   2890 	error = kauth_authorize_process(l->l_cred,
   2891 	    KAUTH_PROCESS_CANSEE, *p,
   2892 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2893 	if (error) {
   2894 		if (pid != -1)
   2895 			mutex_exit((*p)->p_lock);
   2896 	}
   2897 	return error;
   2898 }
   2899 
   2900 static int
   2901 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2902 {
   2903 	int error;
   2904 	struct proc *p;
   2905 
   2906 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2907 		return error;
   2908 
   2909 	if (p->p_path == NULL) {
   2910 		if (pid != -1)
   2911 			mutex_exit(p->p_lock);
   2912 		return ENOENT;
   2913 	}
   2914 
   2915 	size_t len = strlen(p->p_path) + 1;
   2916 	if (oldp != NULL) {
   2917 		size_t copylen = uimin(len, *oldlenp);
   2918 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2919 		if (error == 0 && *oldlenp < len)
   2920 			error = ENOSPC;
   2921 	}
   2922 	*oldlenp = len;
   2923 	if (pid != -1)
   2924 		mutex_exit(p->p_lock);
   2925 	return error;
   2926 }
   2927 
   2928 static int
   2929 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2930 {
   2931 	int error;
   2932 	struct proc *p;
   2933 	char *path;
   2934 	char *bp, *bend;
   2935 	struct cwdinfo *cwdi;
   2936 	struct vnode *vp;
   2937 	size_t len, lenused;
   2938 
   2939 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2940 		return error;
   2941 
   2942 	len = MAXPATHLEN * 4;
   2943 
   2944 	path = kmem_alloc(len, KM_SLEEP);
   2945 
   2946 	bp = &path[len];
   2947 	bend = bp;
   2948 	*(--bp) = '\0';
   2949 
   2950 	cwdi = p->p_cwdi;
   2951 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   2952 	vp = cwdi->cwdi_cdir;
   2953 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   2954 	rw_exit(&cwdi->cwdi_lock);
   2955 
   2956 	if (error)
   2957 		goto out;
   2958 
   2959 	lenused = bend - bp;
   2960 
   2961 	if (oldp != NULL) {
   2962 		size_t copylen = uimin(lenused, *oldlenp);
   2963 		error = sysctl_copyout(l, bp, oldp, copylen);
   2964 		if (error == 0 && *oldlenp < lenused)
   2965 			error = ENOSPC;
   2966 	}
   2967 	*oldlenp = lenused;
   2968 out:
   2969 	if (pid != -1)
   2970 		mutex_exit(p->p_lock);
   2971 	kmem_free(path, len);
   2972 	return error;
   2973 }
   2974 
   2975 int
   2976 proc_getauxv(struct proc *p, void **buf, size_t *len)
   2977 {
   2978 	struct ps_strings pss;
   2979 	int error;
   2980 	void *uauxv, *kauxv;
   2981 	size_t size;
   2982 
   2983 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2984 		return error;
   2985 	if (pss.ps_envstr == NULL)
   2986 		return EIO;
   2987 
   2988 	size = p->p_execsw->es_arglen;
   2989 	if (size == 0)
   2990 		return EIO;
   2991 
   2992 	size_t ptrsz = PROC_PTRSZ(p);
   2993 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   2994 
   2995 	kauxv = kmem_alloc(size, KM_SLEEP);
   2996 
   2997 	error = copyin_proc(p, uauxv, kauxv, size);
   2998 	if (error) {
   2999 		kmem_free(kauxv, size);
   3000 		return error;
   3001 	}
   3002 
   3003 	*buf = kauxv;
   3004 	*len = size;
   3005 
   3006 	return 0;
   3007 }
   3008 
   3009 
   3010 static int
   3011 sysctl_security_expose_address(SYSCTLFN_ARGS)
   3012 {
   3013 	int expose_address, error;
   3014 	struct sysctlnode node;
   3015 
   3016 	node = *rnode;
   3017 	node.sysctl_data = &expose_address;
   3018 	expose_address = *(int *)rnode->sysctl_data;
   3019 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3020 	if (error || newp == NULL)
   3021 		return error;
   3022 
   3023 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3024 	    0, NULL, NULL, NULL))
   3025 		return EPERM;
   3026 
   3027 	switch (expose_address) {
   3028 	case 0:
   3029 	case 1:
   3030 	case 2:
   3031 		break;
   3032 	default:
   3033 		return EINVAL;
   3034 	}
   3035 
   3036 	*(int *)rnode->sysctl_data = expose_address;
   3037 
   3038 	return 0;
   3039 }
   3040 
   3041 bool
   3042 get_expose_address(struct proc *p)
   3043 {
   3044 	/* allow only if sysctl variable is set or privileged */
   3045 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3046 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3047 }
   3048