kern_proc.c revision 1.255 1 /* $NetBSD: kern_proc.c,v 1.255 2020/06/11 19:20:46 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.255 2020/06/11 19:20:46 ad Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109 #include <sys/futex.h>
110 #include <sys/pserialize.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm.h>
114
115 /*
116 * Process lists.
117 */
118
119 struct proclist allproc __cacheline_aligned;
120 struct proclist zombproc __cacheline_aligned;
121
122 kmutex_t proc_lock __cacheline_aligned;
123 static pserialize_t proc_psz;
124
125 /*
126 * pid to lwp/proc lookup is done by indexing the pid_table array.
127 * Since pid numbers are only allocated when an empty slot
128 * has been found, there is no need to search any lists ever.
129 * (an orphaned pgrp will lock the slot, a session will lock
130 * the pgrp with the same number.)
131 * If the table is too small it is reallocated with twice the
132 * previous size and the entries 'unzipped' into the two halves.
133 * A linked list of free entries is passed through the pt_lwp
134 * field of 'free' items - set odd to be an invalid ptr. Two
135 * additional bits are also used to indicate if the slot is
136 * currently occupied by a proc or lwp, and if the PID is
137 * hidden from certain kinds of lookups. We thus require a
138 * minimum alignment for proc and lwp structures (LWPs are
139 * at least 32-byte aligned).
140 */
141
142 struct pid_table {
143 uintptr_t pt_slot;
144 struct pgrp *pt_pgrp;
145 pid_t pt_pid;
146 };
147
148 #define PT_F_FREE ((uintptr_t)__BIT(0))
149 #define PT_F_LWP 0 /* pseudo-flag */
150 #define PT_F_PROC ((uintptr_t)__BIT(1))
151
152 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
153 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
154
155 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
156 #define PT_RESERVED(s) ((s) == 0)
157 #define PT_NEXT(s) ((u_int)(s) >> 1)
158 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
159 #define PT_SET_LWP(l) ((uintptr_t)(l))
160 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
161 #define PT_SET_RESERVED 0
162 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
163 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
164 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
165 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
166 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
167
168 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
169
170 /*
171 * Table of process IDs (PIDs).
172 */
173 static struct pid_table *pid_table __read_mostly;
174
175 #define INITIAL_PID_TABLE_SIZE (1 << 5)
176
177 /* Table mask, threshold for growing and number of allocated PIDs. */
178 static u_int pid_tbl_mask __read_mostly;
179 static u_int pid_alloc_lim __read_mostly;
180 static u_int pid_alloc_cnt __cacheline_aligned;
181
182 /* Next free, last free and maximum PIDs. */
183 static u_int next_free_pt __cacheline_aligned;
184 static u_int last_free_pt __cacheline_aligned;
185 static pid_t pid_max __read_mostly;
186
187 /* Components of the first process -- never freed. */
188
189 extern struct emul emul_netbsd; /* defined in kern_exec.c */
190
191 struct session session0 = {
192 .s_count = 1,
193 .s_sid = 0,
194 };
195 struct pgrp pgrp0 = {
196 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
197 .pg_session = &session0,
198 };
199 filedesc_t filedesc0;
200 struct cwdinfo cwdi0 = {
201 .cwdi_cmask = CMASK,
202 .cwdi_refcnt = 1,
203 };
204 struct plimit limit0;
205 struct pstats pstat0;
206 struct vmspace vmspace0;
207 struct sigacts sigacts0;
208 struct proc proc0 = {
209 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
210 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
211 .p_nlwps = 1,
212 .p_nrlwps = 1,
213 .p_pgrp = &pgrp0,
214 .p_comm = "system",
215 /*
216 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
217 * when they exit. init(8) can easily wait them out for us.
218 */
219 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
220 .p_stat = SACTIVE,
221 .p_nice = NZERO,
222 .p_emul = &emul_netbsd,
223 .p_cwdi = &cwdi0,
224 .p_limit = &limit0,
225 .p_fd = &filedesc0,
226 .p_vmspace = &vmspace0,
227 .p_stats = &pstat0,
228 .p_sigacts = &sigacts0,
229 #ifdef PROC0_MD_INITIALIZERS
230 PROC0_MD_INITIALIZERS
231 #endif
232 };
233 kauth_cred_t cred0;
234
235 static const int nofile = NOFILE;
236 static const int maxuprc = MAXUPRC;
237
238 static int sysctl_doeproc(SYSCTLFN_PROTO);
239 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
240 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
241
242 #ifdef KASLR
243 static int kern_expose_address = 0;
244 #else
245 static int kern_expose_address = 1;
246 #endif
247 /*
248 * The process list descriptors, used during pid allocation and
249 * by sysctl. No locking on this data structure is needed since
250 * it is completely static.
251 */
252 const struct proclist_desc proclists[] = {
253 { &allproc },
254 { &zombproc },
255 { NULL },
256 };
257
258 static struct pgrp * pg_remove(pid_t);
259 static void pg_delete(pid_t);
260 static void orphanpg(struct pgrp *);
261
262 static specificdata_domain_t proc_specificdata_domain;
263
264 static pool_cache_t proc_cache;
265
266 static kauth_listener_t proc_listener;
267
268 static void fill_proc(const struct proc *, struct proc *, bool);
269 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
270 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
271
272 static int
273 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
274 void *arg0, void *arg1, void *arg2, void *arg3)
275 {
276 struct proc *p;
277 int result;
278
279 result = KAUTH_RESULT_DEFER;
280 p = arg0;
281
282 switch (action) {
283 case KAUTH_PROCESS_CANSEE: {
284 enum kauth_process_req req;
285
286 req = (enum kauth_process_req)(uintptr_t)arg1;
287
288 switch (req) {
289 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
290 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
291 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
292 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
293 result = KAUTH_RESULT_ALLOW;
294 break;
295
296 case KAUTH_REQ_PROCESS_CANSEE_ENV:
297 if (kauth_cred_getuid(cred) !=
298 kauth_cred_getuid(p->p_cred) ||
299 kauth_cred_getuid(cred) !=
300 kauth_cred_getsvuid(p->p_cred))
301 break;
302
303 result = KAUTH_RESULT_ALLOW;
304
305 break;
306
307 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
308 if (!kern_expose_address)
309 break;
310
311 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
312 break;
313
314 result = KAUTH_RESULT_ALLOW;
315
316 break;
317
318 default:
319 break;
320 }
321
322 break;
323 }
324
325 case KAUTH_PROCESS_FORK: {
326 int lnprocs = (int)(unsigned long)arg2;
327
328 /*
329 * Don't allow a nonprivileged user to use the last few
330 * processes. The variable lnprocs is the current number of
331 * processes, maxproc is the limit.
332 */
333 if (__predict_false((lnprocs >= maxproc - 5)))
334 break;
335
336 result = KAUTH_RESULT_ALLOW;
337
338 break;
339 }
340
341 case KAUTH_PROCESS_CORENAME:
342 case KAUTH_PROCESS_STOPFLAG:
343 if (proc_uidmatch(cred, p->p_cred) == 0)
344 result = KAUTH_RESULT_ALLOW;
345
346 break;
347
348 default:
349 break;
350 }
351
352 return result;
353 }
354
355 static int
356 proc_ctor(void *arg __unused, void *obj, int flags __unused)
357 {
358 memset(obj, 0, sizeof(struct proc));
359 return 0;
360 }
361
362 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
363
364 /*
365 * Initialize global process hashing structures.
366 */
367 void
368 procinit(void)
369 {
370 const struct proclist_desc *pd;
371 u_int i;
372 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
373
374 for (pd = proclists; pd->pd_list != NULL; pd++)
375 LIST_INIT(pd->pd_list);
376
377 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
378
379 proc_psz = pserialize_create();
380
381 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
382 * sizeof(struct pid_table), KM_SLEEP);
383 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
384 pid_max = PID_MAX;
385
386 /* Set free list running through table...
387 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
388 for (i = 0; i <= pid_tbl_mask; i++) {
389 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
390 pid_table[i].pt_pgrp = 0;
391 pid_table[i].pt_pid = 0;
392 }
393 /* slot 0 is just grabbed */
394 next_free_pt = 1;
395 /* Need to fix last entry. */
396 last_free_pt = pid_tbl_mask;
397 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
398 /* point at which we grow table - to avoid reusing pids too often */
399 pid_alloc_lim = pid_tbl_mask - 1;
400 #undef LINK_EMPTY
401
402 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
403 mutex_enter(&proc_lock);
404 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
405 panic("failed to reserve PID 1 for init(8)");
406 mutex_exit(&proc_lock);
407
408 proc_specificdata_domain = specificdata_domain_create();
409 KASSERT(proc_specificdata_domain != NULL);
410
411 size_t proc_alignment = coherency_unit;
412 if (proc_alignment < MIN_PROC_ALIGNMENT)
413 proc_alignment = MIN_PROC_ALIGNMENT;
414
415 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
416 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
417
418 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
419 proc_listener_cb, NULL);
420 }
421
422 void
423 procinit_sysctl(void)
424 {
425 static struct sysctllog *clog;
426
427 sysctl_createv(&clog, 0, NULL, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
429 CTLTYPE_INT, "expose_address",
430 SYSCTL_DESCR("Enable exposing kernel addresses"),
431 sysctl_security_expose_address, 0,
432 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
433 sysctl_createv(&clog, 0, NULL, NULL,
434 CTLFLAG_PERMANENT,
435 CTLTYPE_NODE, "proc",
436 SYSCTL_DESCR("System-wide process information"),
437 sysctl_doeproc, 0, NULL, 0,
438 CTL_KERN, KERN_PROC, CTL_EOL);
439 sysctl_createv(&clog, 0, NULL, NULL,
440 CTLFLAG_PERMANENT,
441 CTLTYPE_NODE, "proc2",
442 SYSCTL_DESCR("Machine-independent process information"),
443 sysctl_doeproc, 0, NULL, 0,
444 CTL_KERN, KERN_PROC2, CTL_EOL);
445 sysctl_createv(&clog, 0, NULL, NULL,
446 CTLFLAG_PERMANENT,
447 CTLTYPE_NODE, "proc_args",
448 SYSCTL_DESCR("Process argument information"),
449 sysctl_kern_proc_args, 0, NULL, 0,
450 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
451
452 /*
453 "nodes" under these:
454
455 KERN_PROC_ALL
456 KERN_PROC_PID pid
457 KERN_PROC_PGRP pgrp
458 KERN_PROC_SESSION sess
459 KERN_PROC_TTY tty
460 KERN_PROC_UID uid
461 KERN_PROC_RUID uid
462 KERN_PROC_GID gid
463 KERN_PROC_RGID gid
464
465 all in all, probably not worth the effort...
466 */
467 }
468
469 /*
470 * Initialize process 0.
471 */
472 void
473 proc0_init(void)
474 {
475 struct proc *p;
476 struct pgrp *pg;
477 struct rlimit *rlim;
478 rlim_t lim;
479 int i;
480
481 p = &proc0;
482 pg = &pgrp0;
483
484 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
485 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
486 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
487
488 rw_init(&p->p_reflock);
489 cv_init(&p->p_waitcv, "wait");
490 cv_init(&p->p_lwpcv, "lwpwait");
491
492 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
493
494 KASSERT(lwp0.l_lid == 0);
495 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
496 LIST_INSERT_HEAD(&allproc, p, p_list);
497
498 pid_table[lwp0.l_lid].pt_pgrp = pg;
499 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
500
501 #ifdef __HAVE_SYSCALL_INTERN
502 (*p->p_emul->e_syscall_intern)(p);
503 #endif
504
505 /* Create credentials. */
506 cred0 = kauth_cred_alloc();
507 p->p_cred = cred0;
508
509 /* Create the CWD info. */
510 rw_init(&cwdi0.cwdi_lock);
511
512 /* Create the limits structures. */
513 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
514
515 rlim = limit0.pl_rlimit;
516 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
517 rlim[i].rlim_cur = RLIM_INFINITY;
518 rlim[i].rlim_max = RLIM_INFINITY;
519 }
520
521 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
522 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
523
524 rlim[RLIMIT_NPROC].rlim_max = maxproc;
525 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
526
527 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
528 rlim[RLIMIT_RSS].rlim_max = lim;
529 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
530 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
531
532 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
533 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
534
535 /* Note that default core name has zero length. */
536 limit0.pl_corename = defcorename;
537 limit0.pl_cnlen = 0;
538 limit0.pl_refcnt = 1;
539 limit0.pl_writeable = false;
540 limit0.pl_sv_limit = NULL;
541
542 /* Configure virtual memory system, set vm rlimits. */
543 uvm_init_limits(p);
544
545 /* Initialize file descriptor table for proc0. */
546 fd_init(&filedesc0);
547
548 /*
549 * Initialize proc0's vmspace, which uses the kernel pmap.
550 * All kernel processes (which never have user space mappings)
551 * share proc0's vmspace, and thus, the kernel pmap.
552 */
553 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
554 trunc_page(VM_MAXUSER_ADDRESS),
555 #ifdef __USE_TOPDOWN_VM
556 true
557 #else
558 false
559 #endif
560 );
561
562 /* Initialize signal state for proc0. XXX IPL_SCHED */
563 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
564 siginit(p);
565
566 proc_initspecific(p);
567 kdtrace_proc_ctor(NULL, p);
568 }
569
570 /*
571 * Session reference counting.
572 */
573
574 void
575 proc_sesshold(struct session *ss)
576 {
577
578 KASSERT(mutex_owned(&proc_lock));
579 ss->s_count++;
580 }
581
582 void
583 proc_sessrele(struct session *ss)
584 {
585 struct pgrp *pg;
586
587 KASSERT(mutex_owned(&proc_lock));
588 KASSERT(ss->s_count > 0);
589
590 /*
591 * We keep the pgrp with the same id as the session in order to
592 * stop a process being given the same pid. Since the pgrp holds
593 * a reference to the session, it must be a 'zombie' pgrp by now.
594 */
595 if (--ss->s_count == 0) {
596 pg = pg_remove(ss->s_sid);
597 } else {
598 pg = NULL;
599 ss = NULL;
600 }
601
602 mutex_exit(&proc_lock);
603
604 if (pg)
605 kmem_free(pg, sizeof(struct pgrp));
606 if (ss)
607 kmem_free(ss, sizeof(struct session));
608 }
609
610 /*
611 * Check that the specified process group is in the session of the
612 * specified process.
613 * Treats -ve ids as process ids.
614 * Used to validate TIOCSPGRP requests.
615 */
616 int
617 pgid_in_session(struct proc *p, pid_t pg_id)
618 {
619 struct pgrp *pgrp;
620 struct session *session;
621 int error;
622
623 mutex_enter(&proc_lock);
624 if (pg_id < 0) {
625 struct proc *p1 = proc_find(-pg_id);
626 if (p1 == NULL) {
627 error = EINVAL;
628 goto fail;
629 }
630 pgrp = p1->p_pgrp;
631 } else {
632 pgrp = pgrp_find(pg_id);
633 if (pgrp == NULL) {
634 error = EINVAL;
635 goto fail;
636 }
637 }
638 session = pgrp->pg_session;
639 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
640 fail:
641 mutex_exit(&proc_lock);
642 return error;
643 }
644
645 /*
646 * p_inferior: is p an inferior of q?
647 */
648 static inline bool
649 p_inferior(struct proc *p, struct proc *q)
650 {
651
652 KASSERT(mutex_owned(&proc_lock));
653
654 for (; p != q; p = p->p_pptr)
655 if (p->p_pid == 0)
656 return false;
657 return true;
658 }
659
660 /*
661 * proc_find_lwp: locate an lwp in said proc by the ID.
662 *
663 * => Must be called with p::p_lock held.
664 * => LSIDL lwps are not returned because they are only partially
665 * constructed while occupying the slot.
666 * => Callers need to be careful about lwp::l_stat of the returned
667 * lwp.
668 */
669 struct lwp *
670 proc_find_lwp(proc_t *p, pid_t pid)
671 {
672 struct pid_table *pt;
673 struct lwp *l = NULL;
674 uintptr_t slot;
675 int s;
676
677 KASSERT(mutex_owned(p->p_lock));
678
679 /*
680 * Look in the pid_table. This is done unlocked inside a pserialize
681 * read section covering pid_table's memory allocation only, so take
682 * care to read the slot atomically and only once. This issues a
683 * memory barrier for dependent loads on alpha.
684 */
685 s = pserialize_read_enter();
686 pt = &pid_table[pid & pid_tbl_mask];
687 slot = atomic_load_consume(&pt->pt_slot);
688 if (__predict_false(!PT_IS_LWP(slot))) {
689 pserialize_read_exit(s);
690 return NULL;
691 }
692
693 /*
694 * Check to see if the LWP is from the correct process. We won't
695 * see entries in pid_table from a prior process that also used "p",
696 * by virtue of the fact that allocating "p" means all prior updates
697 * to dependant data structures are visible to this thread.
698 */
699 l = PT_GET_LWP(slot);
700 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
701 pserialize_read_exit(s);
702 return NULL;
703 }
704
705 /*
706 * We now know that p->p_lock holds this LWP stable.
707 *
708 * If the status is not LSIDL, it means the LWP is intended to be
709 * findable by LID and l_lid cannot change behind us.
710 *
711 * No need to acquire the LWP's lock to check for LSIDL, as
712 * p->p_lock must be held to transition in and out of LSIDL.
713 * Any other observed state of is no particular interest.
714 */
715 pserialize_read_exit(s);
716 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
717 }
718
719 /*
720 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
721 *
722 * => Called in a pserialize read section with no locks held.
723 * => LSIDL lwps are not returned because they are only partially
724 * constructed while occupying the slot.
725 * => Callers need to be careful about lwp::l_stat of the returned
726 * lwp.
727 * => If an LWP is found, it's returned locked.
728 */
729 struct lwp *
730 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
731 {
732 struct pid_table *pt;
733 struct lwp *l = NULL;
734 uintptr_t slot;
735
736 KASSERT(pserialize_in_read_section());
737
738 /*
739 * Look in the pid_table. This is done unlocked inside a pserialize
740 * read section covering pid_table's memory allocation only, so take
741 * care to read the slot atomically and only once. This issues a
742 * memory barrier for dependent loads on alpha.
743 */
744 pt = &pid_table[pid & pid_tbl_mask];
745 slot = atomic_load_consume(&pt->pt_slot);
746 if (__predict_false(!PT_IS_LWP(slot))) {
747 return NULL;
748 }
749
750 /*
751 * Lock the LWP we found to get it stable. If it's embryonic or
752 * reaped (LSIDL) then none of the other fields can safely be
753 * checked.
754 */
755 l = PT_GET_LWP(slot);
756 lwp_lock(l);
757 if (__predict_false(l->l_stat == LSIDL)) {
758 lwp_unlock(l);
759 return NULL;
760 }
761
762 /*
763 * l_proc and l_lid are now known stable because the LWP is not
764 * LSIDL, so check those fields too to make sure we found the
765 * right thing.
766 */
767 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
768 lwp_unlock(l);
769 return NULL;
770 }
771
772 /* Everything checks out, return it locked. */
773 return l;
774 }
775
776 /*
777 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
778 * on its containing proc.
779 *
780 * => Similar to proc_find_lwp(), but does not require you to have
781 * the proc a priori.
782 * => Also returns proc * to caller, with p::p_lock held.
783 * => Same caveats apply.
784 */
785 struct lwp *
786 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
787 {
788 struct pid_table *pt;
789 struct proc *p = NULL;
790 struct lwp *l = NULL;
791 uintptr_t slot;
792
793 KASSERT(pp != NULL);
794 mutex_enter(&proc_lock);
795 pt = &pid_table[pid & pid_tbl_mask];
796
797 slot = pt->pt_slot;
798 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
799 l = PT_GET_LWP(slot);
800 p = l->l_proc;
801 mutex_enter(p->p_lock);
802 if (__predict_false(l->l_stat == LSIDL)) {
803 mutex_exit(p->p_lock);
804 l = NULL;
805 p = NULL;
806 }
807 }
808 mutex_exit(&proc_lock);
809
810 KASSERT(p == NULL || mutex_owned(p->p_lock));
811 *pp = p;
812 return l;
813 }
814
815 /*
816 * proc_find_raw_pid_table_locked: locate a process by the ID.
817 *
818 * => Must be called with proc_lock held.
819 */
820 static proc_t *
821 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
822 {
823 struct pid_table *pt;
824 proc_t *p = NULL;
825 uintptr_t slot;
826
827 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
828 pt = &pid_table[pid & pid_tbl_mask];
829
830 slot = pt->pt_slot;
831 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
832 /*
833 * When looking up processes, require a direct match
834 * on the PID assigned to the proc, not just one of
835 * its LWPs.
836 *
837 * N.B. We require lwp::l_proc of LSIDL LWPs to be
838 * valid here.
839 */
840 p = PT_GET_LWP(slot)->l_proc;
841 if (__predict_false(p->p_pid != pid && !any_lwpid))
842 p = NULL;
843 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
844 p = PT_GET_PROC(slot);
845 }
846 return p;
847 }
848
849 proc_t *
850 proc_find_raw(pid_t pid)
851 {
852
853 return proc_find_raw_pid_table_locked(pid, false);
854 }
855
856 static proc_t *
857 proc_find_internal(pid_t pid, bool any_lwpid)
858 {
859 proc_t *p;
860
861 KASSERT(mutex_owned(&proc_lock));
862
863 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
864 if (__predict_false(p == NULL)) {
865 return NULL;
866 }
867
868 /*
869 * Only allow live processes to be found by PID.
870 * XXX: p_stat might change, since proc unlocked.
871 */
872 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
873 return p;
874 }
875 return NULL;
876 }
877
878 proc_t *
879 proc_find(pid_t pid)
880 {
881 return proc_find_internal(pid, false);
882 }
883
884 proc_t *
885 proc_find_lwpid(pid_t pid)
886 {
887 return proc_find_internal(pid, true);
888 }
889
890 /*
891 * pgrp_find: locate a process group by the ID.
892 *
893 * => Must be called with proc_lock held.
894 */
895 struct pgrp *
896 pgrp_find(pid_t pgid)
897 {
898 struct pgrp *pg;
899
900 KASSERT(mutex_owned(&proc_lock));
901
902 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
903
904 /*
905 * Cannot look up a process group that only exists because the
906 * session has not died yet (traditional).
907 */
908 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
909 return NULL;
910 }
911 return pg;
912 }
913
914 static void
915 expand_pid_table(void)
916 {
917 size_t pt_size, tsz;
918 struct pid_table *n_pt, *new_pt;
919 uintptr_t slot;
920 struct pgrp *pgrp;
921 pid_t pid, rpid;
922 u_int i;
923 uint new_pt_mask;
924
925 KASSERT(mutex_owned(&proc_lock));
926
927 /* Unlock the pid_table briefly to allocate memory. */
928 pt_size = pid_tbl_mask + 1;
929 mutex_exit(&proc_lock);
930
931 tsz = pt_size * 2 * sizeof(struct pid_table);
932 new_pt = kmem_alloc(tsz, KM_SLEEP);
933 new_pt_mask = pt_size * 2 - 1;
934
935 /* XXX For now. The pratical limit is much lower anyway. */
936 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
937
938 mutex_enter(&proc_lock);
939 if (pt_size != pid_tbl_mask + 1) {
940 /* Another process beat us to it... */
941 mutex_exit(&proc_lock);
942 kmem_free(new_pt, tsz);
943 goto out;
944 }
945
946 /*
947 * Copy entries from old table into new one.
948 * If 'pid' is 'odd' we need to place in the upper half,
949 * even pid's to the lower half.
950 * Free items stay in the low half so we don't have to
951 * fixup the reference to them.
952 * We stuff free items on the front of the freelist
953 * because we can't write to unmodified entries.
954 * Processing the table backwards maintains a semblance
955 * of issuing pid numbers that increase with time.
956 */
957 i = pt_size - 1;
958 n_pt = new_pt + i;
959 for (; ; i--, n_pt--) {
960 slot = pid_table[i].pt_slot;
961 pgrp = pid_table[i].pt_pgrp;
962 if (!PT_VALID(slot)) {
963 /* Up 'use count' so that link is valid */
964 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
965 rpid = 0;
966 slot = PT_SET_FREE(pid);
967 if (pgrp)
968 pid = pgrp->pg_id;
969 } else {
970 pid = pid_table[i].pt_pid;
971 rpid = pid;
972 }
973
974 /* Save entry in appropriate half of table */
975 n_pt[pid & pt_size].pt_slot = slot;
976 n_pt[pid & pt_size].pt_pgrp = pgrp;
977 n_pt[pid & pt_size].pt_pid = rpid;
978
979 /* Put other piece on start of free list */
980 pid = (pid ^ pt_size) & ~pid_tbl_mask;
981 n_pt[pid & pt_size].pt_slot =
982 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
983 n_pt[pid & pt_size].pt_pgrp = 0;
984 n_pt[pid & pt_size].pt_pid = 0;
985
986 next_free_pt = i | (pid & pt_size);
987 if (i == 0)
988 break;
989 }
990
991 /* Save old table size and switch tables */
992 tsz = pt_size * sizeof(struct pid_table);
993 n_pt = pid_table;
994 pid_table = new_pt;
995 pid_tbl_mask = new_pt_mask;
996
997 /*
998 * pid_max starts as PID_MAX (= 30000), once we have 16384
999 * allocated pids we need it to be larger!
1000 */
1001 if (pid_tbl_mask > PID_MAX) {
1002 pid_max = pid_tbl_mask * 2 + 1;
1003 pid_alloc_lim |= pid_alloc_lim << 1;
1004 } else
1005 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1006
1007 mutex_exit(&proc_lock);
1008
1009 /*
1010 * Make sure that unlocked access to the old pid_table is complete
1011 * and then free it.
1012 */
1013 pserialize_perform(proc_psz);
1014 kmem_free(n_pt, tsz);
1015
1016 out: /* Return with proc_lock held again. */
1017 mutex_enter(&proc_lock);
1018 }
1019
1020 struct proc *
1021 proc_alloc(void)
1022 {
1023 struct proc *p;
1024
1025 p = pool_cache_get(proc_cache, PR_WAITOK);
1026 p->p_stat = SIDL; /* protect against others */
1027 proc_initspecific(p);
1028 kdtrace_proc_ctor(NULL, p);
1029
1030 /*
1031 * Allocate a placeholder in the pid_table. When we create the
1032 * first LWP for this process, it will take ownership of the
1033 * slot.
1034 */
1035 if (__predict_false(proc_alloc_pid(p) == -1)) {
1036 /* Allocating the PID failed; unwind. */
1037 proc_finispecific(p);
1038 proc_free_mem(p);
1039 p = NULL;
1040 }
1041 return p;
1042 }
1043
1044 /*
1045 * proc_alloc_pid_slot: allocate PID and record the occcupant so that
1046 * proc_find_raw() can find it by the PID.
1047 */
1048 static pid_t __noinline
1049 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1050 {
1051 struct pid_table *pt;
1052 pid_t pid;
1053 int nxt;
1054
1055 KASSERT(mutex_owned(&proc_lock));
1056
1057 for (;;expand_pid_table()) {
1058 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1059 /* ensure pids cycle through 2000+ values */
1060 continue;
1061 }
1062 /*
1063 * The first user process *must* be given PID 1.
1064 * it has already been reserved for us. This
1065 * will be coming in from the proc_alloc() call
1066 * above, and the entry will be usurped later when
1067 * the first user LWP is created.
1068 * XXX this is slightly gross.
1069 */
1070 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1071 p != &proc0)) {
1072 KASSERT(PT_IS_PROC(slot));
1073 pt = &pid_table[1];
1074 pt->pt_slot = slot;
1075 return 1;
1076 }
1077 pt = &pid_table[next_free_pt];
1078 #ifdef DIAGNOSTIC
1079 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1080 panic("proc_alloc: slot busy");
1081 #endif
1082 nxt = PT_NEXT(pt->pt_slot);
1083 if (nxt & pid_tbl_mask)
1084 break;
1085 /* Table full - expand (NB last entry not used....) */
1086 }
1087
1088 /* pid is 'saved use count' + 'size' + entry */
1089 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1090 if ((uint)pid > (uint)pid_max)
1091 pid &= pid_tbl_mask;
1092 next_free_pt = nxt & pid_tbl_mask;
1093
1094 /* XXX For now. The pratical limit is much lower anyway. */
1095 KASSERT(pid <= FUTEX_TID_MASK);
1096
1097 /* Grab table slot */
1098 pt->pt_slot = slot;
1099
1100 KASSERT(pt->pt_pid == 0);
1101 pt->pt_pid = pid;
1102 pid_alloc_cnt++;
1103
1104 return pid;
1105 }
1106
1107 pid_t
1108 proc_alloc_pid(struct proc *p)
1109 {
1110 pid_t pid;
1111
1112 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1113 KASSERT(p->p_stat == SIDL);
1114
1115 mutex_enter(&proc_lock);
1116 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1117 if (pid != -1)
1118 p->p_pid = pid;
1119 mutex_exit(&proc_lock);
1120
1121 return pid;
1122 }
1123
1124 pid_t
1125 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1126 {
1127 struct pid_table *pt;
1128 pid_t pid;
1129
1130 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1131 KASSERT(l->l_proc == p);
1132 KASSERT(l->l_stat == LSIDL);
1133
1134 /*
1135 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1136 * is globally visible before the LWP becomes visible via the
1137 * pid_table.
1138 */
1139 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1140 membar_producer();
1141 #endif
1142
1143 /*
1144 * If the slot for p->p_pid currently points to the proc,
1145 * then we should usurp this ID for the LWP. This happens
1146 * at least once per process (for the first LWP), and can
1147 * happen again if the first LWP for a process exits and
1148 * before the process creates another.
1149 */
1150 mutex_enter(&proc_lock);
1151 pid = p->p_pid;
1152 pt = &pid_table[pid & pid_tbl_mask];
1153 KASSERT(pt->pt_pid == pid);
1154 if (PT_IS_PROC(pt->pt_slot)) {
1155 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1156 l->l_lid = pid;
1157 pt->pt_slot = PT_SET_LWP(l);
1158 } else {
1159 /* Need to allocate a new slot. */
1160 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1161 if (pid != -1)
1162 l->l_lid = pid;
1163 }
1164 mutex_exit(&proc_lock);
1165
1166 return pid;
1167 }
1168
1169 static void __noinline
1170 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1171 {
1172 struct pid_table *pt;
1173
1174 pt = &pid_table[pid & pid_tbl_mask];
1175
1176 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1177 KASSERT(pt->pt_pid == pid);
1178
1179 /* save pid use count in slot */
1180 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1181 pt->pt_pid = 0;
1182
1183 if (pt->pt_pgrp == NULL) {
1184 /* link last freed entry onto ours */
1185 pid &= pid_tbl_mask;
1186 pt = &pid_table[last_free_pt];
1187 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1188 pt->pt_pid = 0;
1189 last_free_pt = pid;
1190 pid_alloc_cnt--;
1191 }
1192 }
1193
1194 /*
1195 * Free a process id - called from proc_free (in kern_exit.c)
1196 *
1197 * Called with the proc_lock held.
1198 */
1199 void
1200 proc_free_pid(pid_t pid)
1201 {
1202
1203 KASSERT(mutex_owned(&proc_lock));
1204 proc_free_pid_internal(pid, PT_F_PROC);
1205 }
1206
1207 /*
1208 * Free a process id used by an LWP. If this was the process's
1209 * first LWP, we convert the slot to point to the process; the
1210 * entry will get cleaned up later when the process finishes exiting.
1211 *
1212 * If not, then it's the same as proc_free_pid().
1213 */
1214 void
1215 proc_free_lwpid(struct proc *p, pid_t pid)
1216 {
1217
1218 KASSERT(mutex_owned(&proc_lock));
1219
1220 if (__predict_true(p->p_pid == pid)) {
1221 struct pid_table *pt;
1222
1223 pt = &pid_table[pid & pid_tbl_mask];
1224
1225 KASSERT(pt->pt_pid == pid);
1226 KASSERT(PT_IS_LWP(pt->pt_slot));
1227 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1228
1229 pt->pt_slot = PT_SET_PROC(p);
1230 return;
1231 }
1232 proc_free_pid_internal(pid, PT_F_LWP);
1233 }
1234
1235 void
1236 proc_free_mem(struct proc *p)
1237 {
1238
1239 kdtrace_proc_dtor(NULL, p);
1240 pool_cache_put(proc_cache, p);
1241 }
1242
1243 /*
1244 * proc_enterpgrp: move p to a new or existing process group (and session).
1245 *
1246 * If we are creating a new pgrp, the pgid should equal
1247 * the calling process' pid.
1248 * If is only valid to enter a process group that is in the session
1249 * of the process.
1250 * Also mksess should only be set if we are creating a process group
1251 *
1252 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1253 */
1254 int
1255 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1256 {
1257 struct pgrp *new_pgrp, *pgrp;
1258 struct session *sess;
1259 struct proc *p;
1260 int rval;
1261 pid_t pg_id = NO_PGID;
1262
1263 /* Allocate data areas we might need before doing any validity checks */
1264 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1265 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1266
1267 mutex_enter(&proc_lock);
1268 rval = EPERM; /* most common error (to save typing) */
1269
1270 /* Check pgrp exists or can be created */
1271 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1272 if (pgrp != NULL && pgrp->pg_id != pgid)
1273 goto done;
1274
1275 /* Can only set another process under restricted circumstances. */
1276 if (pid != curp->p_pid) {
1277 /* Must exist and be one of our children... */
1278 p = proc_find_internal(pid, false);
1279 if (p == NULL || !p_inferior(p, curp)) {
1280 rval = ESRCH;
1281 goto done;
1282 }
1283 /* ... in the same session... */
1284 if (sess != NULL || p->p_session != curp->p_session)
1285 goto done;
1286 /* ... existing pgid must be in same session ... */
1287 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1288 goto done;
1289 /* ... and not done an exec. */
1290 if (p->p_flag & PK_EXEC) {
1291 rval = EACCES;
1292 goto done;
1293 }
1294 } else {
1295 /* ... setsid() cannot re-enter a pgrp */
1296 if (mksess && (curp->p_pgid == curp->p_pid ||
1297 pgrp_find(curp->p_pid)))
1298 goto done;
1299 p = curp;
1300 }
1301
1302 /* Changing the process group/session of a session
1303 leader is definitely off limits. */
1304 if (SESS_LEADER(p)) {
1305 if (sess == NULL && p->p_pgrp == pgrp)
1306 /* unless it's a definite noop */
1307 rval = 0;
1308 goto done;
1309 }
1310
1311 /* Can only create a process group with id of process */
1312 if (pgrp == NULL && pgid != pid)
1313 goto done;
1314
1315 /* Can only create a session if creating pgrp */
1316 if (sess != NULL && pgrp != NULL)
1317 goto done;
1318
1319 /* Check we allocated memory for a pgrp... */
1320 if (pgrp == NULL && new_pgrp == NULL)
1321 goto done;
1322
1323 /* Don't attach to 'zombie' pgrp */
1324 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1325 goto done;
1326
1327 /* Expect to succeed now */
1328 rval = 0;
1329
1330 if (pgrp == p->p_pgrp)
1331 /* nothing to do */
1332 goto done;
1333
1334 /* Ok all setup, link up required structures */
1335
1336 if (pgrp == NULL) {
1337 pgrp = new_pgrp;
1338 new_pgrp = NULL;
1339 if (sess != NULL) {
1340 sess->s_sid = p->p_pid;
1341 sess->s_leader = p;
1342 sess->s_count = 1;
1343 sess->s_ttyvp = NULL;
1344 sess->s_ttyp = NULL;
1345 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1346 memcpy(sess->s_login, p->p_session->s_login,
1347 sizeof(sess->s_login));
1348 p->p_lflag &= ~PL_CONTROLT;
1349 } else {
1350 sess = p->p_pgrp->pg_session;
1351 proc_sesshold(sess);
1352 }
1353 pgrp->pg_session = sess;
1354 sess = NULL;
1355
1356 pgrp->pg_id = pgid;
1357 LIST_INIT(&pgrp->pg_members);
1358 #ifdef DIAGNOSTIC
1359 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1360 panic("enterpgrp: pgrp table slot in use");
1361 if (__predict_false(mksess && p != curp))
1362 panic("enterpgrp: mksession and p != curproc");
1363 #endif
1364 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1365 pgrp->pg_jobc = 0;
1366 }
1367
1368 /*
1369 * Adjust eligibility of affected pgrps to participate in job control.
1370 * Increment eligibility counts before decrementing, otherwise we
1371 * could reach 0 spuriously during the first call.
1372 */
1373 fixjobc(p, pgrp, 1);
1374 fixjobc(p, p->p_pgrp, 0);
1375
1376 /* Interlock with ttread(). */
1377 mutex_spin_enter(&tty_lock);
1378
1379 /* Move process to requested group. */
1380 LIST_REMOVE(p, p_pglist);
1381 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1382 /* defer delete until we've dumped the lock */
1383 pg_id = p->p_pgrp->pg_id;
1384 p->p_pgrp = pgrp;
1385 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1386
1387 /* Done with the swap; we can release the tty mutex. */
1388 mutex_spin_exit(&tty_lock);
1389
1390 done:
1391 if (pg_id != NO_PGID) {
1392 /* Releases proc_lock. */
1393 pg_delete(pg_id);
1394 } else {
1395 mutex_exit(&proc_lock);
1396 }
1397 if (sess != NULL)
1398 kmem_free(sess, sizeof(*sess));
1399 if (new_pgrp != NULL)
1400 kmem_free(new_pgrp, sizeof(*new_pgrp));
1401 #ifdef DEBUG_PGRP
1402 if (__predict_false(rval))
1403 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1404 pid, pgid, mksess, curp->p_pid, rval);
1405 #endif
1406 return rval;
1407 }
1408
1409 /*
1410 * proc_leavepgrp: remove a process from its process group.
1411 * => must be called with the proc_lock held, which will be released;
1412 */
1413 void
1414 proc_leavepgrp(struct proc *p)
1415 {
1416 struct pgrp *pgrp;
1417
1418 KASSERT(mutex_owned(&proc_lock));
1419
1420 /* Interlock with ttread() */
1421 mutex_spin_enter(&tty_lock);
1422 pgrp = p->p_pgrp;
1423 LIST_REMOVE(p, p_pglist);
1424 p->p_pgrp = NULL;
1425 mutex_spin_exit(&tty_lock);
1426
1427 if (LIST_EMPTY(&pgrp->pg_members)) {
1428 /* Releases proc_lock. */
1429 pg_delete(pgrp->pg_id);
1430 } else {
1431 mutex_exit(&proc_lock);
1432 }
1433 }
1434
1435 /*
1436 * pg_remove: remove a process group from the table.
1437 * => must be called with the proc_lock held;
1438 * => returns process group to free;
1439 */
1440 static struct pgrp *
1441 pg_remove(pid_t pg_id)
1442 {
1443 struct pgrp *pgrp;
1444 struct pid_table *pt;
1445
1446 KASSERT(mutex_owned(&proc_lock));
1447
1448 pt = &pid_table[pg_id & pid_tbl_mask];
1449 pgrp = pt->pt_pgrp;
1450
1451 KASSERT(pgrp != NULL);
1452 KASSERT(pgrp->pg_id == pg_id);
1453 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1454
1455 pt->pt_pgrp = NULL;
1456
1457 if (!PT_VALID(pt->pt_slot)) {
1458 /* Orphaned pgrp, put slot onto free list. */
1459 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1460 pg_id &= pid_tbl_mask;
1461 pt = &pid_table[last_free_pt];
1462 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1463 KASSERT(pt->pt_pid == 0);
1464 last_free_pt = pg_id;
1465 pid_alloc_cnt--;
1466 }
1467 return pgrp;
1468 }
1469
1470 /*
1471 * pg_delete: delete and free a process group.
1472 * => must be called with the proc_lock held, which will be released.
1473 */
1474 static void
1475 pg_delete(pid_t pg_id)
1476 {
1477 struct pgrp *pg;
1478 struct tty *ttyp;
1479 struct session *ss;
1480
1481 KASSERT(mutex_owned(&proc_lock));
1482
1483 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1484 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1485 mutex_exit(&proc_lock);
1486 return;
1487 }
1488
1489 ss = pg->pg_session;
1490
1491 /* Remove reference (if any) from tty to this process group */
1492 mutex_spin_enter(&tty_lock);
1493 ttyp = ss->s_ttyp;
1494 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1495 ttyp->t_pgrp = NULL;
1496 KASSERT(ttyp->t_session == ss);
1497 }
1498 mutex_spin_exit(&tty_lock);
1499
1500 /*
1501 * The leading process group in a session is freed by proc_sessrele(),
1502 * if last reference. It will also release the locks.
1503 */
1504 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1505 proc_sessrele(ss);
1506
1507 if (pg != NULL) {
1508 /* Free it, if was not done above. */
1509 kmem_free(pg, sizeof(struct pgrp));
1510 }
1511 }
1512
1513 /*
1514 * Adjust pgrp jobc counters when specified process changes process group.
1515 * We count the number of processes in each process group that "qualify"
1516 * the group for terminal job control (those with a parent in a different
1517 * process group of the same session). If that count reaches zero, the
1518 * process group becomes orphaned. Check both the specified process'
1519 * process group and that of its children.
1520 * entering == 0 => p is leaving specified group.
1521 * entering == 1 => p is entering specified group.
1522 *
1523 * Call with proc_lock held.
1524 */
1525 void
1526 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1527 {
1528 struct pgrp *hispgrp;
1529 struct session *mysession = pgrp->pg_session;
1530 struct proc *child;
1531
1532 KASSERT(mutex_owned(&proc_lock));
1533
1534 /*
1535 * Check p's parent to see whether p qualifies its own process
1536 * group; if so, adjust count for p's process group.
1537 */
1538 hispgrp = p->p_pptr->p_pgrp;
1539 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1540 if (entering) {
1541 pgrp->pg_jobc++;
1542 p->p_lflag &= ~PL_ORPHANPG;
1543 } else {
1544 KASSERT(pgrp->pg_jobc > 0);
1545 if (--pgrp->pg_jobc == 0)
1546 orphanpg(pgrp);
1547 }
1548 }
1549
1550 /*
1551 * Check this process' children to see whether they qualify
1552 * their process groups; if so, adjust counts for children's
1553 * process groups.
1554 */
1555 LIST_FOREACH(child, &p->p_children, p_sibling) {
1556 hispgrp = child->p_pgrp;
1557 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1558 !P_ZOMBIE(child)) {
1559 if (entering) {
1560 child->p_lflag &= ~PL_ORPHANPG;
1561 hispgrp->pg_jobc++;
1562 } else {
1563 KASSERT(hispgrp->pg_jobc > 0);
1564 if (--hispgrp->pg_jobc == 0)
1565 orphanpg(hispgrp);
1566 }
1567 }
1568 }
1569 }
1570
1571 /*
1572 * A process group has become orphaned;
1573 * if there are any stopped processes in the group,
1574 * hang-up all process in that group.
1575 *
1576 * Call with proc_lock held.
1577 */
1578 static void
1579 orphanpg(struct pgrp *pg)
1580 {
1581 struct proc *p;
1582
1583 KASSERT(mutex_owned(&proc_lock));
1584
1585 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1586 if (p->p_stat == SSTOP) {
1587 p->p_lflag |= PL_ORPHANPG;
1588 psignal(p, SIGHUP);
1589 psignal(p, SIGCONT);
1590 }
1591 }
1592 }
1593
1594 #ifdef DDB
1595 #include <ddb/db_output.h>
1596 void pidtbl_dump(void);
1597 void
1598 pidtbl_dump(void)
1599 {
1600 struct pid_table *pt;
1601 struct proc *p;
1602 struct pgrp *pgrp;
1603 uintptr_t slot;
1604 int id;
1605
1606 db_printf("pid table %p size %x, next %x, last %x\n",
1607 pid_table, pid_tbl_mask+1,
1608 next_free_pt, last_free_pt);
1609 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1610 slot = pt->pt_slot;
1611 if (!PT_VALID(slot) && !pt->pt_pgrp)
1612 continue;
1613 if (PT_IS_LWP(slot)) {
1614 p = PT_GET_LWP(slot)->l_proc;
1615 } else if (PT_IS_PROC(slot)) {
1616 p = PT_GET_PROC(slot);
1617 } else {
1618 p = NULL;
1619 }
1620 db_printf(" id %x: ", id);
1621 if (p != NULL)
1622 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1623 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1624 else
1625 db_printf("next %x use %x\n",
1626 PT_NEXT(slot) & pid_tbl_mask,
1627 PT_NEXT(slot) & ~pid_tbl_mask);
1628 if ((pgrp = pt->pt_pgrp)) {
1629 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1630 pgrp->pg_session, pgrp->pg_session->s_sid,
1631 pgrp->pg_session->s_count,
1632 pgrp->pg_session->s_login);
1633 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1634 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1635 LIST_FIRST(&pgrp->pg_members));
1636 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1637 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1638 p->p_pid, p, p->p_pgrp, p->p_comm);
1639 }
1640 }
1641 }
1642 }
1643 #endif /* DDB */
1644
1645 #ifdef KSTACK_CHECK_MAGIC
1646
1647 #define KSTACK_MAGIC 0xdeadbeaf
1648
1649 /* XXX should be per process basis? */
1650 static int kstackleftmin = KSTACK_SIZE;
1651 static int kstackleftthres = KSTACK_SIZE / 8;
1652
1653 void
1654 kstack_setup_magic(const struct lwp *l)
1655 {
1656 uint32_t *ip;
1657 uint32_t const *end;
1658
1659 KASSERT(l != NULL);
1660 KASSERT(l != &lwp0);
1661
1662 /*
1663 * fill all the stack with magic number
1664 * so that later modification on it can be detected.
1665 */
1666 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1667 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1668 for (; ip < end; ip++) {
1669 *ip = KSTACK_MAGIC;
1670 }
1671 }
1672
1673 void
1674 kstack_check_magic(const struct lwp *l)
1675 {
1676 uint32_t const *ip, *end;
1677 int stackleft;
1678
1679 KASSERT(l != NULL);
1680
1681 /* don't check proc0 */ /*XXX*/
1682 if (l == &lwp0)
1683 return;
1684
1685 #ifdef __MACHINE_STACK_GROWS_UP
1686 /* stack grows upwards (eg. hppa) */
1687 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1688 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1689 for (ip--; ip >= end; ip--)
1690 if (*ip != KSTACK_MAGIC)
1691 break;
1692
1693 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1694 #else /* __MACHINE_STACK_GROWS_UP */
1695 /* stack grows downwards (eg. i386) */
1696 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1697 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1698 for (; ip < end; ip++)
1699 if (*ip != KSTACK_MAGIC)
1700 break;
1701
1702 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1703 #endif /* __MACHINE_STACK_GROWS_UP */
1704
1705 if (kstackleftmin > stackleft) {
1706 kstackleftmin = stackleft;
1707 if (stackleft < kstackleftthres)
1708 printf("warning: kernel stack left %d bytes"
1709 "(pid %u:lid %u)\n", stackleft,
1710 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1711 }
1712
1713 if (stackleft <= 0) {
1714 panic("magic on the top of kernel stack changed for "
1715 "pid %u, lid %u: maybe kernel stack overflow",
1716 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1717 }
1718 }
1719 #endif /* KSTACK_CHECK_MAGIC */
1720
1721 int
1722 proclist_foreach_call(struct proclist *list,
1723 int (*callback)(struct proc *, void *arg), void *arg)
1724 {
1725 struct proc marker;
1726 struct proc *p;
1727 int ret = 0;
1728
1729 marker.p_flag = PK_MARKER;
1730 mutex_enter(&proc_lock);
1731 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1732 if (p->p_flag & PK_MARKER) {
1733 p = LIST_NEXT(p, p_list);
1734 continue;
1735 }
1736 LIST_INSERT_AFTER(p, &marker, p_list);
1737 ret = (*callback)(p, arg);
1738 KASSERT(mutex_owned(&proc_lock));
1739 p = LIST_NEXT(&marker, p_list);
1740 LIST_REMOVE(&marker, p_list);
1741 }
1742 mutex_exit(&proc_lock);
1743
1744 return ret;
1745 }
1746
1747 int
1748 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1749 {
1750
1751 /* XXXCDC: how should locking work here? */
1752
1753 /* curproc exception is for coredump. */
1754
1755 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1756 (p->p_vmspace->vm_refcnt < 1)) {
1757 return EFAULT;
1758 }
1759
1760 uvmspace_addref(p->p_vmspace);
1761 *vm = p->p_vmspace;
1762
1763 return 0;
1764 }
1765
1766 /*
1767 * Acquire a write lock on the process credential.
1768 */
1769 void
1770 proc_crmod_enter(void)
1771 {
1772 struct lwp *l = curlwp;
1773 struct proc *p = l->l_proc;
1774 kauth_cred_t oc;
1775
1776 /* Reset what needs to be reset in plimit. */
1777 if (p->p_limit->pl_corename != defcorename) {
1778 lim_setcorename(p, defcorename, 0);
1779 }
1780
1781 mutex_enter(p->p_lock);
1782
1783 /* Ensure the LWP cached credentials are up to date. */
1784 if ((oc = l->l_cred) != p->p_cred) {
1785 kauth_cred_hold(p->p_cred);
1786 l->l_cred = p->p_cred;
1787 kauth_cred_free(oc);
1788 }
1789 }
1790
1791 /*
1792 * Set in a new process credential, and drop the write lock. The credential
1793 * must have a reference already. Optionally, free a no-longer required
1794 * credential. The scheduler also needs to inspect p_cred, so we also
1795 * briefly acquire the sched state mutex.
1796 */
1797 void
1798 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1799 {
1800 struct lwp *l = curlwp, *l2;
1801 struct proc *p = l->l_proc;
1802 kauth_cred_t oc;
1803
1804 KASSERT(mutex_owned(p->p_lock));
1805
1806 /* Is there a new credential to set in? */
1807 if (scred != NULL) {
1808 p->p_cred = scred;
1809 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1810 if (l2 != l)
1811 l2->l_prflag |= LPR_CRMOD;
1812 }
1813
1814 /* Ensure the LWP cached credentials are up to date. */
1815 if ((oc = l->l_cred) != scred) {
1816 kauth_cred_hold(scred);
1817 l->l_cred = scred;
1818 }
1819 } else
1820 oc = NULL; /* XXXgcc */
1821
1822 if (sugid) {
1823 /*
1824 * Mark process as having changed credentials, stops
1825 * tracing etc.
1826 */
1827 p->p_flag |= PK_SUGID;
1828 }
1829
1830 mutex_exit(p->p_lock);
1831
1832 /* If there is a credential to be released, free it now. */
1833 if (fcred != NULL) {
1834 KASSERT(scred != NULL);
1835 kauth_cred_free(fcred);
1836 if (oc != scred)
1837 kauth_cred_free(oc);
1838 }
1839 }
1840
1841 /*
1842 * proc_specific_key_create --
1843 * Create a key for subsystem proc-specific data.
1844 */
1845 int
1846 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1847 {
1848
1849 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1850 }
1851
1852 /*
1853 * proc_specific_key_delete --
1854 * Delete a key for subsystem proc-specific data.
1855 */
1856 void
1857 proc_specific_key_delete(specificdata_key_t key)
1858 {
1859
1860 specificdata_key_delete(proc_specificdata_domain, key);
1861 }
1862
1863 /*
1864 * proc_initspecific --
1865 * Initialize a proc's specificdata container.
1866 */
1867 void
1868 proc_initspecific(struct proc *p)
1869 {
1870 int error __diagused;
1871
1872 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1873 KASSERT(error == 0);
1874 }
1875
1876 /*
1877 * proc_finispecific --
1878 * Finalize a proc's specificdata container.
1879 */
1880 void
1881 proc_finispecific(struct proc *p)
1882 {
1883
1884 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1885 }
1886
1887 /*
1888 * proc_getspecific --
1889 * Return proc-specific data corresponding to the specified key.
1890 */
1891 void *
1892 proc_getspecific(struct proc *p, specificdata_key_t key)
1893 {
1894
1895 return (specificdata_getspecific(proc_specificdata_domain,
1896 &p->p_specdataref, key));
1897 }
1898
1899 /*
1900 * proc_setspecific --
1901 * Set proc-specific data corresponding to the specified key.
1902 */
1903 void
1904 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1905 {
1906
1907 specificdata_setspecific(proc_specificdata_domain,
1908 &p->p_specdataref, key, data);
1909 }
1910
1911 int
1912 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1913 {
1914 int r = 0;
1915
1916 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1917 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1918 /*
1919 * suid proc of ours or proc not ours
1920 */
1921 r = EPERM;
1922 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1923 /*
1924 * sgid proc has sgid back to us temporarily
1925 */
1926 r = EPERM;
1927 } else {
1928 /*
1929 * our rgid must be in target's group list (ie,
1930 * sub-processes started by a sgid process)
1931 */
1932 int ismember = 0;
1933
1934 if (kauth_cred_ismember_gid(cred,
1935 kauth_cred_getgid(target), &ismember) != 0 ||
1936 !ismember)
1937 r = EPERM;
1938 }
1939
1940 return (r);
1941 }
1942
1943 /*
1944 * sysctl stuff
1945 */
1946
1947 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1948
1949 static const u_int sysctl_flagmap[] = {
1950 PK_ADVLOCK, P_ADVLOCK,
1951 PK_EXEC, P_EXEC,
1952 PK_NOCLDWAIT, P_NOCLDWAIT,
1953 PK_32, P_32,
1954 PK_CLDSIGIGN, P_CLDSIGIGN,
1955 PK_SUGID, P_SUGID,
1956 0
1957 };
1958
1959 static const u_int sysctl_sflagmap[] = {
1960 PS_NOCLDSTOP, P_NOCLDSTOP,
1961 PS_WEXIT, P_WEXIT,
1962 PS_STOPFORK, P_STOPFORK,
1963 PS_STOPEXEC, P_STOPEXEC,
1964 PS_STOPEXIT, P_STOPEXIT,
1965 0
1966 };
1967
1968 static const u_int sysctl_slflagmap[] = {
1969 PSL_TRACED, P_TRACED,
1970 PSL_CHTRACED, P_CHTRACED,
1971 PSL_SYSCALL, P_SYSCALL,
1972 0
1973 };
1974
1975 static const u_int sysctl_lflagmap[] = {
1976 PL_CONTROLT, P_CONTROLT,
1977 PL_PPWAIT, P_PPWAIT,
1978 0
1979 };
1980
1981 static const u_int sysctl_stflagmap[] = {
1982 PST_PROFIL, P_PROFIL,
1983 0
1984
1985 };
1986
1987 /* used by kern_lwp also */
1988 const u_int sysctl_lwpflagmap[] = {
1989 LW_SINTR, L_SINTR,
1990 LW_SYSTEM, L_SYSTEM,
1991 0
1992 };
1993
1994 /*
1995 * Find the most ``active'' lwp of a process and return it for ps display
1996 * purposes
1997 */
1998 static struct lwp *
1999 proc_active_lwp(struct proc *p)
2000 {
2001 static const int ostat[] = {
2002 0,
2003 2, /* LSIDL */
2004 6, /* LSRUN */
2005 5, /* LSSLEEP */
2006 4, /* LSSTOP */
2007 0, /* LSZOMB */
2008 1, /* LSDEAD */
2009 7, /* LSONPROC */
2010 3 /* LSSUSPENDED */
2011 };
2012
2013 struct lwp *l, *lp = NULL;
2014 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2015 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2016 if (lp == NULL ||
2017 ostat[l->l_stat] > ostat[lp->l_stat] ||
2018 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2019 l->l_cpticks > lp->l_cpticks)) {
2020 lp = l;
2021 continue;
2022 }
2023 }
2024 return lp;
2025 }
2026
2027 static int
2028 sysctl_doeproc(SYSCTLFN_ARGS)
2029 {
2030 union {
2031 struct kinfo_proc kproc;
2032 struct kinfo_proc2 kproc2;
2033 } *kbuf;
2034 struct proc *p, *next, *marker;
2035 char *where, *dp;
2036 int type, op, arg, error;
2037 u_int elem_size, kelem_size, elem_count;
2038 size_t buflen, needed;
2039 bool match, zombie, mmmbrains;
2040 const bool allowaddr = get_expose_address(curproc);
2041
2042 if (namelen == 1 && name[0] == CTL_QUERY)
2043 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2044
2045 dp = where = oldp;
2046 buflen = where != NULL ? *oldlenp : 0;
2047 error = 0;
2048 needed = 0;
2049 type = rnode->sysctl_num;
2050
2051 if (type == KERN_PROC) {
2052 if (namelen == 0)
2053 return EINVAL;
2054 switch (op = name[0]) {
2055 case KERN_PROC_ALL:
2056 if (namelen != 1)
2057 return EINVAL;
2058 arg = 0;
2059 break;
2060 default:
2061 if (namelen != 2)
2062 return EINVAL;
2063 arg = name[1];
2064 break;
2065 }
2066 elem_count = 0; /* Hush little compiler, don't you cry */
2067 kelem_size = elem_size = sizeof(kbuf->kproc);
2068 } else {
2069 if (namelen != 4)
2070 return EINVAL;
2071 op = name[0];
2072 arg = name[1];
2073 elem_size = name[2];
2074 elem_count = name[3];
2075 kelem_size = sizeof(kbuf->kproc2);
2076 }
2077
2078 sysctl_unlock();
2079
2080 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2081 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2082 marker->p_flag = PK_MARKER;
2083
2084 mutex_enter(&proc_lock);
2085 /*
2086 * Start with zombies to prevent reporting processes twice, in case they
2087 * are dying and being moved from the list of alive processes to zombies.
2088 */
2089 mmmbrains = true;
2090 for (p = LIST_FIRST(&zombproc);; p = next) {
2091 if (p == NULL) {
2092 if (mmmbrains) {
2093 p = LIST_FIRST(&allproc);
2094 mmmbrains = false;
2095 }
2096 if (p == NULL)
2097 break;
2098 }
2099 next = LIST_NEXT(p, p_list);
2100 if ((p->p_flag & PK_MARKER) != 0)
2101 continue;
2102
2103 /*
2104 * Skip embryonic processes.
2105 */
2106 if (p->p_stat == SIDL)
2107 continue;
2108
2109 mutex_enter(p->p_lock);
2110 error = kauth_authorize_process(l->l_cred,
2111 KAUTH_PROCESS_CANSEE, p,
2112 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2113 if (error != 0) {
2114 mutex_exit(p->p_lock);
2115 continue;
2116 }
2117
2118 /*
2119 * Hande all the operations in one switch on the cost of
2120 * algorithm complexity is on purpose. The win splitting this
2121 * function into several similar copies makes maintenance burden
2122 * burden, code grow and boost is neglible in practical systems.
2123 */
2124 switch (op) {
2125 case KERN_PROC_PID:
2126 match = (p->p_pid == (pid_t)arg);
2127 break;
2128
2129 case KERN_PROC_PGRP:
2130 match = (p->p_pgrp->pg_id == (pid_t)arg);
2131 break;
2132
2133 case KERN_PROC_SESSION:
2134 match = (p->p_session->s_sid == (pid_t)arg);
2135 break;
2136
2137 case KERN_PROC_TTY:
2138 match = true;
2139 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2140 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2141 p->p_session->s_ttyp == NULL ||
2142 p->p_session->s_ttyvp != NULL) {
2143 match = false;
2144 }
2145 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2146 p->p_session->s_ttyp == NULL) {
2147 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2148 match = false;
2149 }
2150 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2151 match = false;
2152 }
2153 break;
2154
2155 case KERN_PROC_UID:
2156 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2157 break;
2158
2159 case KERN_PROC_RUID:
2160 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2161 break;
2162
2163 case KERN_PROC_GID:
2164 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2165 break;
2166
2167 case KERN_PROC_RGID:
2168 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2169 break;
2170
2171 case KERN_PROC_ALL:
2172 match = true;
2173 /* allow everything */
2174 break;
2175
2176 default:
2177 error = EINVAL;
2178 mutex_exit(p->p_lock);
2179 goto cleanup;
2180 }
2181 if (!match) {
2182 mutex_exit(p->p_lock);
2183 continue;
2184 }
2185
2186 /*
2187 * Grab a hold on the process.
2188 */
2189 if (mmmbrains) {
2190 zombie = true;
2191 } else {
2192 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2193 }
2194 if (zombie) {
2195 LIST_INSERT_AFTER(p, marker, p_list);
2196 }
2197
2198 if (buflen >= elem_size &&
2199 (type == KERN_PROC || elem_count > 0)) {
2200 ruspace(p); /* Update process vm resource use */
2201
2202 if (type == KERN_PROC) {
2203 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2204 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2205 allowaddr);
2206 } else {
2207 fill_kproc2(p, &kbuf->kproc2, zombie,
2208 allowaddr);
2209 elem_count--;
2210 }
2211 mutex_exit(p->p_lock);
2212 mutex_exit(&proc_lock);
2213 /*
2214 * Copy out elem_size, but not larger than kelem_size
2215 */
2216 error = sysctl_copyout(l, kbuf, dp,
2217 uimin(kelem_size, elem_size));
2218 mutex_enter(&proc_lock);
2219 if (error) {
2220 goto bah;
2221 }
2222 dp += elem_size;
2223 buflen -= elem_size;
2224 } else {
2225 mutex_exit(p->p_lock);
2226 }
2227 needed += elem_size;
2228
2229 /*
2230 * Release reference to process.
2231 */
2232 if (zombie) {
2233 next = LIST_NEXT(marker, p_list);
2234 LIST_REMOVE(marker, p_list);
2235 } else {
2236 rw_exit(&p->p_reflock);
2237 next = LIST_NEXT(p, p_list);
2238 }
2239
2240 /*
2241 * Short-circuit break quickly!
2242 */
2243 if (op == KERN_PROC_PID)
2244 break;
2245 }
2246 mutex_exit(&proc_lock);
2247
2248 if (where != NULL) {
2249 *oldlenp = dp - where;
2250 if (needed > *oldlenp) {
2251 error = ENOMEM;
2252 goto out;
2253 }
2254 } else {
2255 needed += KERN_PROCSLOP;
2256 *oldlenp = needed;
2257 }
2258 kmem_free(kbuf, sizeof(*kbuf));
2259 kmem_free(marker, sizeof(*marker));
2260 sysctl_relock();
2261 return 0;
2262 bah:
2263 if (zombie)
2264 LIST_REMOVE(marker, p_list);
2265 else
2266 rw_exit(&p->p_reflock);
2267 cleanup:
2268 mutex_exit(&proc_lock);
2269 out:
2270 kmem_free(kbuf, sizeof(*kbuf));
2271 kmem_free(marker, sizeof(*marker));
2272 sysctl_relock();
2273 return error;
2274 }
2275
2276 int
2277 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2278 {
2279 #if !defined(_RUMPKERNEL)
2280 int retval;
2281
2282 if (p->p_flag & PK_32) {
2283 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2284 enosys(), retval);
2285 return retval;
2286 }
2287 #endif /* !defined(_RUMPKERNEL) */
2288
2289 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2290 }
2291
2292 static int
2293 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2294 {
2295 void **cookie = cookie_;
2296 struct lwp *l = cookie[0];
2297 char *dst = cookie[1];
2298
2299 return sysctl_copyout(l, src, dst + off, len);
2300 }
2301
2302 /*
2303 * sysctl helper routine for kern.proc_args pseudo-subtree.
2304 */
2305 static int
2306 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2307 {
2308 struct ps_strings pss;
2309 struct proc *p;
2310 pid_t pid;
2311 int type, error;
2312 void *cookie[2];
2313
2314 if (namelen == 1 && name[0] == CTL_QUERY)
2315 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2316
2317 if (newp != NULL || namelen != 2)
2318 return (EINVAL);
2319 pid = name[0];
2320 type = name[1];
2321
2322 switch (type) {
2323 case KERN_PROC_PATHNAME:
2324 sysctl_unlock();
2325 error = fill_pathname(l, pid, oldp, oldlenp);
2326 sysctl_relock();
2327 return error;
2328
2329 case KERN_PROC_CWD:
2330 sysctl_unlock();
2331 error = fill_cwd(l, pid, oldp, oldlenp);
2332 sysctl_relock();
2333 return error;
2334
2335 case KERN_PROC_ARGV:
2336 case KERN_PROC_NARGV:
2337 case KERN_PROC_ENV:
2338 case KERN_PROC_NENV:
2339 /* ok */
2340 break;
2341 default:
2342 return (EINVAL);
2343 }
2344
2345 sysctl_unlock();
2346
2347 /* check pid */
2348 mutex_enter(&proc_lock);
2349 if ((p = proc_find(pid)) == NULL) {
2350 error = EINVAL;
2351 goto out_locked;
2352 }
2353 mutex_enter(p->p_lock);
2354
2355 /* Check permission. */
2356 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2357 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2358 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2359 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2360 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2361 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2362 else
2363 error = EINVAL; /* XXXGCC */
2364 if (error) {
2365 mutex_exit(p->p_lock);
2366 goto out_locked;
2367 }
2368
2369 if (oldp == NULL) {
2370 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2371 *oldlenp = sizeof (int);
2372 else
2373 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2374 error = 0;
2375 mutex_exit(p->p_lock);
2376 goto out_locked;
2377 }
2378
2379 /*
2380 * Zombies don't have a stack, so we can't read their psstrings.
2381 * System processes also don't have a user stack.
2382 */
2383 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2384 error = EINVAL;
2385 mutex_exit(p->p_lock);
2386 goto out_locked;
2387 }
2388
2389 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2390 mutex_exit(p->p_lock);
2391 if (error) {
2392 goto out_locked;
2393 }
2394 mutex_exit(&proc_lock);
2395
2396 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2397 int value;
2398 if ((error = copyin_psstrings(p, &pss)) == 0) {
2399 if (type == KERN_PROC_NARGV)
2400 value = pss.ps_nargvstr;
2401 else
2402 value = pss.ps_nenvstr;
2403 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2404 *oldlenp = sizeof(value);
2405 }
2406 } else {
2407 cookie[0] = l;
2408 cookie[1] = oldp;
2409 error = copy_procargs(p, type, oldlenp,
2410 copy_procargs_sysctl_cb, cookie);
2411 }
2412 rw_exit(&p->p_reflock);
2413 sysctl_relock();
2414 return error;
2415
2416 out_locked:
2417 mutex_exit(&proc_lock);
2418 sysctl_relock();
2419 return error;
2420 }
2421
2422 int
2423 copy_procargs(struct proc *p, int oid, size_t *limit,
2424 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2425 {
2426 struct ps_strings pss;
2427 size_t len, i, loaded, entry_len;
2428 struct uio auio;
2429 struct iovec aiov;
2430 int error, argvlen;
2431 char *arg;
2432 char **argv;
2433 vaddr_t user_argv;
2434 struct vmspace *vmspace;
2435
2436 /*
2437 * Allocate a temporary buffer to hold the argument vector and
2438 * the arguments themselve.
2439 */
2440 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2441 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2442
2443 /*
2444 * Lock the process down in memory.
2445 */
2446 vmspace = p->p_vmspace;
2447 uvmspace_addref(vmspace);
2448
2449 /*
2450 * Read in the ps_strings structure.
2451 */
2452 if ((error = copyin_psstrings(p, &pss)) != 0)
2453 goto done;
2454
2455 /*
2456 * Now read the address of the argument vector.
2457 */
2458 switch (oid) {
2459 case KERN_PROC_ARGV:
2460 user_argv = (uintptr_t)pss.ps_argvstr;
2461 argvlen = pss.ps_nargvstr;
2462 break;
2463 case KERN_PROC_ENV:
2464 user_argv = (uintptr_t)pss.ps_envstr;
2465 argvlen = pss.ps_nenvstr;
2466 break;
2467 default:
2468 error = EINVAL;
2469 goto done;
2470 }
2471
2472 if (argvlen < 0) {
2473 error = EIO;
2474 goto done;
2475 }
2476
2477
2478 /*
2479 * Now copy each string.
2480 */
2481 len = 0; /* bytes written to user buffer */
2482 loaded = 0; /* bytes from argv already processed */
2483 i = 0; /* To make compiler happy */
2484 entry_len = PROC_PTRSZ(p);
2485
2486 for (; argvlen; --argvlen) {
2487 int finished = 0;
2488 vaddr_t base;
2489 size_t xlen;
2490 int j;
2491
2492 if (loaded == 0) {
2493 size_t rem = entry_len * argvlen;
2494 loaded = MIN(rem, PAGE_SIZE);
2495 error = copyin_vmspace(vmspace,
2496 (const void *)user_argv, argv, loaded);
2497 if (error)
2498 break;
2499 user_argv += loaded;
2500 i = 0;
2501 }
2502
2503 #if !defined(_RUMPKERNEL)
2504 if (p->p_flag & PK_32)
2505 MODULE_HOOK_CALL(kern_proc32_base_hook,
2506 (argv, i++), 0, base);
2507 else
2508 #endif /* !defined(_RUMPKERNEL) */
2509 base = (vaddr_t)argv[i++];
2510 loaded -= entry_len;
2511
2512 /*
2513 * The program has messed around with its arguments,
2514 * possibly deleting some, and replacing them with
2515 * NULL's. Treat this as the last argument and not
2516 * a failure.
2517 */
2518 if (base == 0)
2519 break;
2520
2521 while (!finished) {
2522 xlen = PAGE_SIZE - (base & PAGE_MASK);
2523
2524 aiov.iov_base = arg;
2525 aiov.iov_len = PAGE_SIZE;
2526 auio.uio_iov = &aiov;
2527 auio.uio_iovcnt = 1;
2528 auio.uio_offset = base;
2529 auio.uio_resid = xlen;
2530 auio.uio_rw = UIO_READ;
2531 UIO_SETUP_SYSSPACE(&auio);
2532 error = uvm_io(&vmspace->vm_map, &auio, 0);
2533 if (error)
2534 goto done;
2535
2536 /* Look for the end of the string */
2537 for (j = 0; j < xlen; j++) {
2538 if (arg[j] == '\0') {
2539 xlen = j + 1;
2540 finished = 1;
2541 break;
2542 }
2543 }
2544
2545 /* Check for user buffer overflow */
2546 if (len + xlen > *limit) {
2547 finished = 1;
2548 if (len > *limit)
2549 xlen = 0;
2550 else
2551 xlen = *limit - len;
2552 }
2553
2554 /* Copyout the page */
2555 error = (*cb)(cookie, arg, len, xlen);
2556 if (error)
2557 goto done;
2558
2559 len += xlen;
2560 base += xlen;
2561 }
2562 }
2563 *limit = len;
2564
2565 done:
2566 kmem_free(argv, PAGE_SIZE);
2567 kmem_free(arg, PAGE_SIZE);
2568 uvmspace_free(vmspace);
2569 return error;
2570 }
2571
2572 /*
2573 * Fill in a proc structure for the specified process.
2574 */
2575 static void
2576 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2577 {
2578 COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
2579 COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
2580 COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
2581 COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
2582 COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
2583 COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
2584 COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2585 COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
2586 COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
2587 COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
2588 COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
2589 COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
2590 COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
2591 COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
2592 COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
2593 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2594 COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
2595 p->p_exitsig = psrc->p_exitsig;
2596 p->p_flag = psrc->p_flag;
2597 p->p_sflag = psrc->p_sflag;
2598 p->p_slflag = psrc->p_slflag;
2599 p->p_lflag = psrc->p_lflag;
2600 p->p_stflag = psrc->p_stflag;
2601 p->p_stat = psrc->p_stat;
2602 p->p_trace_enabled = psrc->p_trace_enabled;
2603 p->p_pid = psrc->p_pid;
2604 COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
2605 COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
2606 COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
2607 COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
2608 COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
2609 COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
2610 p->p_nlwps = psrc->p_nlwps;
2611 p->p_nzlwps = psrc->p_nzlwps;
2612 p->p_nrlwps = psrc->p_nrlwps;
2613 p->p_nlwpwait = psrc->p_nlwpwait;
2614 p->p_ndlwps = psrc->p_ndlwps;
2615 p->p_nstopchild = psrc->p_nstopchild;
2616 p->p_waited = psrc->p_waited;
2617 COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2618 COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2619 COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
2620 p->p_estcpu = psrc->p_estcpu;
2621 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2622 p->p_forktime = psrc->p_forktime;
2623 p->p_pctcpu = psrc->p_pctcpu;
2624 COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
2625 COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
2626 p->p_rtime = psrc->p_rtime;
2627 p->p_uticks = psrc->p_uticks;
2628 p->p_sticks = psrc->p_sticks;
2629 p->p_iticks = psrc->p_iticks;
2630 p->p_xutime = psrc->p_xutime;
2631 p->p_xstime = psrc->p_xstime;
2632 p->p_traceflag = psrc->p_traceflag;
2633 COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
2634 COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
2635 COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
2636 COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
2637 COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
2638 COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
2639 COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2640 COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
2641 COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2642 p->p_ppid = psrc->p_ppid;
2643 p->p_oppid = psrc->p_oppid;
2644 COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
2645 COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
2646 p->p_nice = psrc->p_nice;
2647 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2648 COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
2649 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2650 p->p_pax = psrc->p_pax;
2651 p->p_xexit = psrc->p_xexit;
2652 p->p_xsig = psrc->p_xsig;
2653 p->p_acflag = psrc->p_acflag;
2654 COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
2655 p->p_stackbase = psrc->p_stackbase;
2656 COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
2657 }
2658
2659 /*
2660 * Fill in an eproc structure for the specified process.
2661 */
2662 void
2663 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2664 {
2665 struct tty *tp;
2666 struct lwp *l;
2667
2668 KASSERT(mutex_owned(&proc_lock));
2669 KASSERT(mutex_owned(p->p_lock));
2670
2671 COND_SET_VALUE(ep->e_paddr, p, allowaddr);
2672 COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
2673 if (p->p_cred) {
2674 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2675 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2676 }
2677 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2678 struct vmspace *vm = p->p_vmspace;
2679
2680 ep->e_vm.vm_rssize = vm_resident_count(vm);
2681 ep->e_vm.vm_tsize = vm->vm_tsize;
2682 ep->e_vm.vm_dsize = vm->vm_dsize;
2683 ep->e_vm.vm_ssize = vm->vm_ssize;
2684 ep->e_vm.vm_map.size = vm->vm_map.size;
2685
2686 /* Pick the primary (first) LWP */
2687 l = proc_active_lwp(p);
2688 KASSERT(l != NULL);
2689 lwp_lock(l);
2690 if (l->l_wchan)
2691 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2692 lwp_unlock(l);
2693 }
2694 ep->e_ppid = p->p_ppid;
2695 if (p->p_pgrp && p->p_session) {
2696 ep->e_pgid = p->p_pgrp->pg_id;
2697 ep->e_jobc = p->p_pgrp->pg_jobc;
2698 ep->e_sid = p->p_session->s_sid;
2699 if ((p->p_lflag & PL_CONTROLT) &&
2700 (tp = p->p_session->s_ttyp)) {
2701 ep->e_tdev = tp->t_dev;
2702 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2703 COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
2704 } else
2705 ep->e_tdev = (uint32_t)NODEV;
2706 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2707 if (SESS_LEADER(p))
2708 ep->e_flag |= EPROC_SLEADER;
2709 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2710 }
2711 ep->e_xsize = ep->e_xrssize = 0;
2712 ep->e_xccount = ep->e_xswrss = 0;
2713 }
2714
2715 /*
2716 * Fill in a kinfo_proc2 structure for the specified process.
2717 */
2718 void
2719 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2720 {
2721 struct tty *tp;
2722 struct lwp *l, *l2;
2723 struct timeval ut, st, rt;
2724 sigset_t ss1, ss2;
2725 struct rusage ru;
2726 struct vmspace *vm;
2727
2728 KASSERT(mutex_owned(&proc_lock));
2729 KASSERT(mutex_owned(p->p_lock));
2730
2731 sigemptyset(&ss1);
2732 sigemptyset(&ss2);
2733
2734 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2735 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2736 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2737 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2738 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2739 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2740 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2741 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2742 ki->p_tsess = 0; /* may be changed if controlling tty below */
2743 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2744 ki->p_eflag = 0;
2745 ki->p_exitsig = p->p_exitsig;
2746 ki->p_flag = L_INMEM; /* Process never swapped out */
2747 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2748 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2749 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2750 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2751 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2752 ki->p_pid = p->p_pid;
2753 ki->p_ppid = p->p_ppid;
2754 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2755 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2756 ki->p_gid = kauth_cred_getegid(p->p_cred);
2757 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2758 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2759 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2760 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2761 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2762 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2763 UIO_SYSSPACE);
2764
2765 ki->p_uticks = p->p_uticks;
2766 ki->p_sticks = p->p_sticks;
2767 ki->p_iticks = p->p_iticks;
2768 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2769 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2770 ki->p_traceflag = p->p_traceflag;
2771
2772 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2773 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2774
2775 ki->p_cpticks = 0;
2776 ki->p_pctcpu = p->p_pctcpu;
2777 ki->p_estcpu = 0;
2778 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2779 ki->p_realstat = p->p_stat;
2780 ki->p_nice = p->p_nice;
2781 ki->p_xstat = P_WAITSTATUS(p);
2782 ki->p_acflag = p->p_acflag;
2783
2784 strncpy(ki->p_comm, p->p_comm,
2785 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2786 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2787
2788 ki->p_nlwps = p->p_nlwps;
2789 ki->p_realflag = ki->p_flag;
2790
2791 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2792 vm = p->p_vmspace;
2793 ki->p_vm_rssize = vm_resident_count(vm);
2794 ki->p_vm_tsize = vm->vm_tsize;
2795 ki->p_vm_dsize = vm->vm_dsize;
2796 ki->p_vm_ssize = vm->vm_ssize;
2797 ki->p_vm_vsize = atop(vm->vm_map.size);
2798 /*
2799 * Since the stack is initially mapped mostly with
2800 * PROT_NONE and grown as needed, adjust the "mapped size"
2801 * to skip the unused stack portion.
2802 */
2803 ki->p_vm_msize =
2804 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2805
2806 /* Pick the primary (first) LWP */
2807 l = proc_active_lwp(p);
2808 KASSERT(l != NULL);
2809 lwp_lock(l);
2810 ki->p_nrlwps = p->p_nrlwps;
2811 ki->p_forw = 0;
2812 ki->p_back = 0;
2813 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2814 ki->p_stat = l->l_stat;
2815 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2816 ki->p_swtime = l->l_swtime;
2817 ki->p_slptime = l->l_slptime;
2818 if (l->l_stat == LSONPROC)
2819 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2820 else
2821 ki->p_schedflags = 0;
2822 ki->p_priority = lwp_eprio(l);
2823 ki->p_usrpri = l->l_priority;
2824 if (l->l_wchan)
2825 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2826 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2827 ki->p_cpuid = cpu_index(l->l_cpu);
2828 lwp_unlock(l);
2829 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2830 /* This is hardly correct, but... */
2831 sigplusset(&l->l_sigpend.sp_set, &ss1);
2832 sigplusset(&l->l_sigmask, &ss2);
2833 ki->p_cpticks += l->l_cpticks;
2834 ki->p_pctcpu += l->l_pctcpu;
2835 ki->p_estcpu += l->l_estcpu;
2836 }
2837 }
2838 sigplusset(&p->p_sigpend.sp_set, &ss1);
2839 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2840 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2841
2842 if (p->p_session != NULL) {
2843 ki->p_sid = p->p_session->s_sid;
2844 ki->p__pgid = p->p_pgrp->pg_id;
2845 if (p->p_session->s_ttyvp)
2846 ki->p_eflag |= EPROC_CTTY;
2847 if (SESS_LEADER(p))
2848 ki->p_eflag |= EPROC_SLEADER;
2849 strncpy(ki->p_login, p->p_session->s_login,
2850 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2851 ki->p_jobc = p->p_pgrp->pg_jobc;
2852 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2853 ki->p_tdev = tp->t_dev;
2854 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2855 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2856 allowaddr);
2857 } else {
2858 ki->p_tdev = (int32_t)NODEV;
2859 }
2860 }
2861
2862 if (!P_ZOMBIE(p) && !zombie) {
2863 ki->p_uvalid = 1;
2864 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2865 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2866
2867 calcru(p, &ut, &st, NULL, &rt);
2868 ki->p_rtime_sec = rt.tv_sec;
2869 ki->p_rtime_usec = rt.tv_usec;
2870 ki->p_uutime_sec = ut.tv_sec;
2871 ki->p_uutime_usec = ut.tv_usec;
2872 ki->p_ustime_sec = st.tv_sec;
2873 ki->p_ustime_usec = st.tv_usec;
2874
2875 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2876 ki->p_uru_nvcsw = 0;
2877 ki->p_uru_nivcsw = 0;
2878 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2879 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2880 ki->p_uru_nivcsw += l2->l_nivcsw;
2881 ruadd(&ru, &l2->l_ru);
2882 }
2883 ki->p_uru_maxrss = ru.ru_maxrss;
2884 ki->p_uru_ixrss = ru.ru_ixrss;
2885 ki->p_uru_idrss = ru.ru_idrss;
2886 ki->p_uru_isrss = ru.ru_isrss;
2887 ki->p_uru_minflt = ru.ru_minflt;
2888 ki->p_uru_majflt = ru.ru_majflt;
2889 ki->p_uru_nswap = ru.ru_nswap;
2890 ki->p_uru_inblock = ru.ru_inblock;
2891 ki->p_uru_oublock = ru.ru_oublock;
2892 ki->p_uru_msgsnd = ru.ru_msgsnd;
2893 ki->p_uru_msgrcv = ru.ru_msgrcv;
2894 ki->p_uru_nsignals = ru.ru_nsignals;
2895
2896 timeradd(&p->p_stats->p_cru.ru_utime,
2897 &p->p_stats->p_cru.ru_stime, &ut);
2898 ki->p_uctime_sec = ut.tv_sec;
2899 ki->p_uctime_usec = ut.tv_usec;
2900 }
2901 }
2902
2903
2904 int
2905 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2906 {
2907 int error;
2908
2909 mutex_enter(&proc_lock);
2910 if (pid == -1)
2911 *p = l->l_proc;
2912 else
2913 *p = proc_find(pid);
2914
2915 if (*p == NULL) {
2916 if (pid != -1)
2917 mutex_exit(&proc_lock);
2918 return ESRCH;
2919 }
2920 if (pid != -1)
2921 mutex_enter((*p)->p_lock);
2922 mutex_exit(&proc_lock);
2923
2924 error = kauth_authorize_process(l->l_cred,
2925 KAUTH_PROCESS_CANSEE, *p,
2926 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2927 if (error) {
2928 if (pid != -1)
2929 mutex_exit((*p)->p_lock);
2930 }
2931 return error;
2932 }
2933
2934 static int
2935 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2936 {
2937 int error;
2938 struct proc *p;
2939
2940 if ((error = proc_find_locked(l, &p, pid)) != 0)
2941 return error;
2942
2943 if (p->p_path == NULL) {
2944 if (pid != -1)
2945 mutex_exit(p->p_lock);
2946 return ENOENT;
2947 }
2948
2949 size_t len = strlen(p->p_path) + 1;
2950 if (oldp != NULL) {
2951 size_t copylen = uimin(len, *oldlenp);
2952 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2953 if (error == 0 && *oldlenp < len)
2954 error = ENOSPC;
2955 }
2956 *oldlenp = len;
2957 if (pid != -1)
2958 mutex_exit(p->p_lock);
2959 return error;
2960 }
2961
2962 static int
2963 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2964 {
2965 int error;
2966 struct proc *p;
2967 char *path;
2968 char *bp, *bend;
2969 struct cwdinfo *cwdi;
2970 struct vnode *vp;
2971 size_t len, lenused;
2972
2973 if ((error = proc_find_locked(l, &p, pid)) != 0)
2974 return error;
2975
2976 len = MAXPATHLEN * 4;
2977
2978 path = kmem_alloc(len, KM_SLEEP);
2979
2980 bp = &path[len];
2981 bend = bp;
2982 *(--bp) = '\0';
2983
2984 cwdi = p->p_cwdi;
2985 rw_enter(&cwdi->cwdi_lock, RW_READER);
2986 vp = cwdi->cwdi_cdir;
2987 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
2988 rw_exit(&cwdi->cwdi_lock);
2989
2990 if (error)
2991 goto out;
2992
2993 lenused = bend - bp;
2994
2995 if (oldp != NULL) {
2996 size_t copylen = uimin(lenused, *oldlenp);
2997 error = sysctl_copyout(l, bp, oldp, copylen);
2998 if (error == 0 && *oldlenp < lenused)
2999 error = ENOSPC;
3000 }
3001 *oldlenp = lenused;
3002 out:
3003 if (pid != -1)
3004 mutex_exit(p->p_lock);
3005 kmem_free(path, len);
3006 return error;
3007 }
3008
3009 int
3010 proc_getauxv(struct proc *p, void **buf, size_t *len)
3011 {
3012 struct ps_strings pss;
3013 int error;
3014 void *uauxv, *kauxv;
3015 size_t size;
3016
3017 if ((error = copyin_psstrings(p, &pss)) != 0)
3018 return error;
3019 if (pss.ps_envstr == NULL)
3020 return EIO;
3021
3022 size = p->p_execsw->es_arglen;
3023 if (size == 0)
3024 return EIO;
3025
3026 size_t ptrsz = PROC_PTRSZ(p);
3027 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3028
3029 kauxv = kmem_alloc(size, KM_SLEEP);
3030
3031 error = copyin_proc(p, uauxv, kauxv, size);
3032 if (error) {
3033 kmem_free(kauxv, size);
3034 return error;
3035 }
3036
3037 *buf = kauxv;
3038 *len = size;
3039
3040 return 0;
3041 }
3042
3043
3044 static int
3045 sysctl_security_expose_address(SYSCTLFN_ARGS)
3046 {
3047 int expose_address, error;
3048 struct sysctlnode node;
3049
3050 node = *rnode;
3051 node.sysctl_data = &expose_address;
3052 expose_address = *(int *)rnode->sysctl_data;
3053 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3054 if (error || newp == NULL)
3055 return error;
3056
3057 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3058 0, NULL, NULL, NULL))
3059 return EPERM;
3060
3061 switch (expose_address) {
3062 case 0:
3063 case 1:
3064 case 2:
3065 break;
3066 default:
3067 return EINVAL;
3068 }
3069
3070 *(int *)rnode->sysctl_data = expose_address;
3071
3072 return 0;
3073 }
3074
3075 bool
3076 get_expose_address(struct proc *p)
3077 {
3078 /* allow only if sysctl variable is set or privileged */
3079 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3080 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3081 }
3082