Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.260
      1 /*	$NetBSD: kern_proc.c,v 1.260 2020/09/05 16:30:12 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.260 2020/09/05 16:30:12 riastradh Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 #include <sys/futex.h>
    110 #include <sys/pserialize.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 
    114 /*
    115  * Process lists.
    116  */
    117 
    118 struct proclist		allproc		__cacheline_aligned;
    119 struct proclist		zombproc	__cacheline_aligned;
    120 
    121  kmutex_t		proc_lock	__cacheline_aligned;
    122 static pserialize_t	proc_psz;
    123 
    124 /*
    125  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126  * Since pid numbers are only allocated when an empty slot
    127  * has been found, there is no need to search any lists ever.
    128  * (an orphaned pgrp will lock the slot, a session will lock
    129  * the pgrp with the same number.)
    130  * If the table is too small it is reallocated with twice the
    131  * previous size and the entries 'unzipped' into the two halves.
    132  * A linked list of free entries is passed through the pt_lwp
    133  * field of 'free' items - set odd to be an invalid ptr.  Two
    134  * additional bits are also used to indicate if the slot is
    135  * currently occupied by a proc or lwp, and if the PID is
    136  * hidden from certain kinds of lookups.  We thus require a
    137  * minimum alignment for proc and lwp structures (LWPs are
    138  * at least 32-byte aligned).
    139  */
    140 
    141 struct pid_table {
    142 	uintptr_t	pt_slot;
    143 	struct pgrp	*pt_pgrp;
    144 	pid_t		pt_pid;
    145 };
    146 
    147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148 #define	PT_F_LWP		0	/* pseudo-flag */
    149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150 
    151 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    152 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
    153 
    154 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    155 #define	PT_RESERVED(s)		((s) == 0)
    156 #define	PT_NEXT(s)		((u_int)(s) >> 1)
    157 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    158 #define	PT_SET_LWP(l)		((uintptr_t)(l))
    159 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    160 #define	PT_SET_RESERVED		0
    161 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    162 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    163 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    164 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    165 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    166 
    167 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    168 
    169 /*
    170  * Table of process IDs (PIDs).
    171  */
    172 static struct pid_table *pid_table	__read_mostly;
    173 
    174 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    175 
    176 /* Table mask, threshold for growing and number of allocated PIDs. */
    177 static u_int		pid_tbl_mask	__read_mostly;
    178 static u_int		pid_alloc_lim	__read_mostly;
    179 static u_int		pid_alloc_cnt	__cacheline_aligned;
    180 
    181 /* Next free, last free and maximum PIDs. */
    182 static u_int		next_free_pt	__cacheline_aligned;
    183 static u_int		last_free_pt	__cacheline_aligned;
    184 static pid_t		pid_max		__read_mostly;
    185 
    186 /* Components of the first process -- never freed. */
    187 
    188 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    189 
    190 struct session session0 = {
    191 	.s_count = 1,
    192 	.s_sid = 0,
    193 };
    194 struct pgrp pgrp0 = {
    195 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    196 	.pg_session = &session0,
    197 };
    198 filedesc_t filedesc0;
    199 struct cwdinfo cwdi0 = {
    200 	.cwdi_cmask = CMASK,
    201 	.cwdi_refcnt = 1,
    202 };
    203 struct plimit limit0;
    204 struct pstats pstat0;
    205 struct vmspace vmspace0;
    206 struct sigacts sigacts0;
    207 struct proc proc0 = {
    208 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    209 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    210 	.p_nlwps = 1,
    211 	.p_nrlwps = 1,
    212 	.p_pgrp = &pgrp0,
    213 	.p_comm = "system",
    214 	/*
    215 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    216 	 * when they exit.  init(8) can easily wait them out for us.
    217 	 */
    218 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    219 	.p_stat = SACTIVE,
    220 	.p_nice = NZERO,
    221 	.p_emul = &emul_netbsd,
    222 	.p_cwdi = &cwdi0,
    223 	.p_limit = &limit0,
    224 	.p_fd = &filedesc0,
    225 	.p_vmspace = &vmspace0,
    226 	.p_stats = &pstat0,
    227 	.p_sigacts = &sigacts0,
    228 #ifdef PROC0_MD_INITIALIZERS
    229 	PROC0_MD_INITIALIZERS
    230 #endif
    231 };
    232 kauth_cred_t cred0;
    233 
    234 static const int	nofile	= NOFILE;
    235 static const int	maxuprc	= MAXUPRC;
    236 
    237 static int sysctl_doeproc(SYSCTLFN_PROTO);
    238 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    239 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    240 
    241 #ifdef KASLR
    242 static int kern_expose_address = 0;
    243 #else
    244 static int kern_expose_address = 1;
    245 #endif
    246 /*
    247  * The process list descriptors, used during pid allocation and
    248  * by sysctl.  No locking on this data structure is needed since
    249  * it is completely static.
    250  */
    251 const struct proclist_desc proclists[] = {
    252 	{ &allproc	},
    253 	{ &zombproc	},
    254 	{ NULL		},
    255 };
    256 
    257 static struct pgrp *	pg_remove(pid_t);
    258 static void		pg_delete(pid_t);
    259 static void		orphanpg(struct pgrp *);
    260 
    261 static specificdata_domain_t proc_specificdata_domain;
    262 
    263 static pool_cache_t proc_cache;
    264 
    265 static kauth_listener_t proc_listener;
    266 
    267 static void fill_proc(const struct proc *, struct proc *, bool);
    268 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    269 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    270 
    271 static int
    272 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    273     void *arg0, void *arg1, void *arg2, void *arg3)
    274 {
    275 	struct proc *p;
    276 	int result;
    277 
    278 	result = KAUTH_RESULT_DEFER;
    279 	p = arg0;
    280 
    281 	switch (action) {
    282 	case KAUTH_PROCESS_CANSEE: {
    283 		enum kauth_process_req req;
    284 
    285 		req = (enum kauth_process_req)(uintptr_t)arg1;
    286 
    287 		switch (req) {
    288 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    289 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    290 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    291 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    292 			result = KAUTH_RESULT_ALLOW;
    293 			break;
    294 
    295 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    296 			if (kauth_cred_getuid(cred) !=
    297 			    kauth_cred_getuid(p->p_cred) ||
    298 			    kauth_cred_getuid(cred) !=
    299 			    kauth_cred_getsvuid(p->p_cred))
    300 				break;
    301 
    302 			result = KAUTH_RESULT_ALLOW;
    303 
    304 			break;
    305 
    306 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    307 			if (!kern_expose_address)
    308 				break;
    309 
    310 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    311 				break;
    312 
    313 			result = KAUTH_RESULT_ALLOW;
    314 
    315 			break;
    316 
    317 		default:
    318 			break;
    319 		}
    320 
    321 		break;
    322 		}
    323 
    324 	case KAUTH_PROCESS_FORK: {
    325 		int lnprocs = (int)(unsigned long)arg2;
    326 
    327 		/*
    328 		 * Don't allow a nonprivileged user to use the last few
    329 		 * processes. The variable lnprocs is the current number of
    330 		 * processes, maxproc is the limit.
    331 		 */
    332 		if (__predict_false((lnprocs >= maxproc - 5)))
    333 			break;
    334 
    335 		result = KAUTH_RESULT_ALLOW;
    336 
    337 		break;
    338 		}
    339 
    340 	case KAUTH_PROCESS_CORENAME:
    341 	case KAUTH_PROCESS_STOPFLAG:
    342 		if (proc_uidmatch(cred, p->p_cred) == 0)
    343 			result = KAUTH_RESULT_ALLOW;
    344 
    345 		break;
    346 
    347 	default:
    348 		break;
    349 	}
    350 
    351 	return result;
    352 }
    353 
    354 static int
    355 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    356 {
    357 	memset(obj, 0, sizeof(struct proc));
    358 	return 0;
    359 }
    360 
    361 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    362 
    363 /*
    364  * Initialize global process hashing structures.
    365  */
    366 void
    367 procinit(void)
    368 {
    369 	const struct proclist_desc *pd;
    370 	u_int i;
    371 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    372 
    373 	for (pd = proclists; pd->pd_list != NULL; pd++)
    374 		LIST_INIT(pd->pd_list);
    375 
    376 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
    377 
    378 	proc_psz = pserialize_create();
    379 
    380 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    381 	    * sizeof(struct pid_table), KM_SLEEP);
    382 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    383 	pid_max = PID_MAX;
    384 
    385 	/* Set free list running through table...
    386 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    387 	for (i = 0; i <= pid_tbl_mask; i++) {
    388 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    389 		pid_table[i].pt_pgrp = 0;
    390 		pid_table[i].pt_pid = 0;
    391 	}
    392 	/* slot 0 is just grabbed */
    393 	next_free_pt = 1;
    394 	/* Need to fix last entry. */
    395 	last_free_pt = pid_tbl_mask;
    396 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    397 	/* point at which we grow table - to avoid reusing pids too often */
    398 	pid_alloc_lim = pid_tbl_mask - 1;
    399 #undef LINK_EMPTY
    400 
    401 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    402 	mutex_enter(&proc_lock);
    403 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    404 		panic("failed to reserve PID 1 for init(8)");
    405 	mutex_exit(&proc_lock);
    406 
    407 	proc_specificdata_domain = specificdata_domain_create();
    408 	KASSERT(proc_specificdata_domain != NULL);
    409 
    410 	size_t proc_alignment = coherency_unit;
    411 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    412 		proc_alignment = MIN_PROC_ALIGNMENT;
    413 
    414 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    415 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    416 
    417 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    418 	    proc_listener_cb, NULL);
    419 }
    420 
    421 void
    422 procinit_sysctl(void)
    423 {
    424 	static struct sysctllog *clog;
    425 
    426 	sysctl_createv(&clog, 0, NULL, NULL,
    427 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    428 		       CTLTYPE_INT, "expose_address",
    429 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    430 		       sysctl_security_expose_address, 0,
    431 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    432 	sysctl_createv(&clog, 0, NULL, NULL,
    433 		       CTLFLAG_PERMANENT,
    434 		       CTLTYPE_NODE, "proc",
    435 		       SYSCTL_DESCR("System-wide process information"),
    436 		       sysctl_doeproc, 0, NULL, 0,
    437 		       CTL_KERN, KERN_PROC, CTL_EOL);
    438 	sysctl_createv(&clog, 0, NULL, NULL,
    439 		       CTLFLAG_PERMANENT,
    440 		       CTLTYPE_NODE, "proc2",
    441 		       SYSCTL_DESCR("Machine-independent process information"),
    442 		       sysctl_doeproc, 0, NULL, 0,
    443 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    444 	sysctl_createv(&clog, 0, NULL, NULL,
    445 		       CTLFLAG_PERMANENT,
    446 		       CTLTYPE_NODE, "proc_args",
    447 		       SYSCTL_DESCR("Process argument information"),
    448 		       sysctl_kern_proc_args, 0, NULL, 0,
    449 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    450 
    451 	/*
    452 	  "nodes" under these:
    453 
    454 	  KERN_PROC_ALL
    455 	  KERN_PROC_PID pid
    456 	  KERN_PROC_PGRP pgrp
    457 	  KERN_PROC_SESSION sess
    458 	  KERN_PROC_TTY tty
    459 	  KERN_PROC_UID uid
    460 	  KERN_PROC_RUID uid
    461 	  KERN_PROC_GID gid
    462 	  KERN_PROC_RGID gid
    463 
    464 	  all in all, probably not worth the effort...
    465 	*/
    466 }
    467 
    468 /*
    469  * Initialize process 0.
    470  */
    471 void
    472 proc0_init(void)
    473 {
    474 	struct proc *p;
    475 	struct pgrp *pg;
    476 	struct rlimit *rlim;
    477 	rlim_t lim;
    478 	int i;
    479 
    480 	p = &proc0;
    481 	pg = &pgrp0;
    482 
    483 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    484 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    485 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    486 
    487 	rw_init(&p->p_reflock);
    488 	cv_init(&p->p_waitcv, "wait");
    489 	cv_init(&p->p_lwpcv, "lwpwait");
    490 
    491 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    492 
    493 	KASSERT(lwp0.l_lid == 0);
    494 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    495 	LIST_INSERT_HEAD(&allproc, p, p_list);
    496 
    497 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    498 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    499 
    500 #ifdef __HAVE_SYSCALL_INTERN
    501 	(*p->p_emul->e_syscall_intern)(p);
    502 #endif
    503 
    504 	/* Create credentials. */
    505 	cred0 = kauth_cred_alloc();
    506 	p->p_cred = cred0;
    507 
    508 	/* Create the CWD info. */
    509 	rw_init(&cwdi0.cwdi_lock);
    510 
    511 	/* Create the limits structures. */
    512 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    513 
    514 	rlim = limit0.pl_rlimit;
    515 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    516 		rlim[i].rlim_cur = RLIM_INFINITY;
    517 		rlim[i].rlim_max = RLIM_INFINITY;
    518 	}
    519 
    520 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    521 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    522 
    523 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    524 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    525 
    526 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
    527 	rlim[RLIMIT_RSS].rlim_max = lim;
    528 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    529 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    530 
    531 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    532 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    533 
    534 	/* Note that default core name has zero length. */
    535 	limit0.pl_corename = defcorename;
    536 	limit0.pl_cnlen = 0;
    537 	limit0.pl_refcnt = 1;
    538 	limit0.pl_writeable = false;
    539 	limit0.pl_sv_limit = NULL;
    540 
    541 	/* Configure virtual memory system, set vm rlimits. */
    542 	uvm_init_limits(p);
    543 
    544 	/* Initialize file descriptor table for proc0. */
    545 	fd_init(&filedesc0);
    546 
    547 	/*
    548 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    549 	 * All kernel processes (which never have user space mappings)
    550 	 * share proc0's vmspace, and thus, the kernel pmap.
    551 	 */
    552 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    553 	    trunc_page(VM_MAXUSER_ADDRESS),
    554 #ifdef __USE_TOPDOWN_VM
    555 	    true
    556 #else
    557 	    false
    558 #endif
    559 	    );
    560 
    561 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    562 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    563 	siginit(p);
    564 
    565 	proc_initspecific(p);
    566 	kdtrace_proc_ctor(NULL, p);
    567 }
    568 
    569 /*
    570  * Session reference counting.
    571  */
    572 
    573 void
    574 proc_sesshold(struct session *ss)
    575 {
    576 
    577 	KASSERT(mutex_owned(&proc_lock));
    578 	ss->s_count++;
    579 }
    580 
    581 void
    582 proc_sessrele(struct session *ss)
    583 {
    584 	struct pgrp *pg;
    585 
    586 	KASSERT(mutex_owned(&proc_lock));
    587 	KASSERT(ss->s_count > 0);
    588 
    589 	/*
    590 	 * We keep the pgrp with the same id as the session in order to
    591 	 * stop a process being given the same pid.  Since the pgrp holds
    592 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    593 	 */
    594 	if (--ss->s_count == 0) {
    595 		pg = pg_remove(ss->s_sid);
    596 	} else {
    597 		pg = NULL;
    598 		ss = NULL;
    599 	}
    600 
    601 	mutex_exit(&proc_lock);
    602 
    603 	if (pg)
    604 		kmem_free(pg, sizeof(struct pgrp));
    605 	if (ss)
    606 		kmem_free(ss, sizeof(struct session));
    607 }
    608 
    609 /*
    610  * Check that the specified process group is in the session of the
    611  * specified process.
    612  * Treats -ve ids as process ids.
    613  * Used to validate TIOCSPGRP requests.
    614  */
    615 int
    616 pgid_in_session(struct proc *p, pid_t pg_id)
    617 {
    618 	struct pgrp *pgrp;
    619 	struct session *session;
    620 	int error;
    621 
    622 	mutex_enter(&proc_lock);
    623 	if (pg_id < 0) {
    624 		struct proc *p1 = proc_find(-pg_id);
    625 		if (p1 == NULL) {
    626 			error = EINVAL;
    627 			goto fail;
    628 		}
    629 		pgrp = p1->p_pgrp;
    630 	} else {
    631 		pgrp = pgrp_find(pg_id);
    632 		if (pgrp == NULL) {
    633 			error = EINVAL;
    634 			goto fail;
    635 		}
    636 	}
    637 	session = pgrp->pg_session;
    638 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    639 fail:
    640 	mutex_exit(&proc_lock);
    641 	return error;
    642 }
    643 
    644 /*
    645  * p_inferior: is p an inferior of q?
    646  */
    647 static inline bool
    648 p_inferior(struct proc *p, struct proc *q)
    649 {
    650 
    651 	KASSERT(mutex_owned(&proc_lock));
    652 
    653 	for (; p != q; p = p->p_pptr)
    654 		if (p->p_pid == 0)
    655 			return false;
    656 	return true;
    657 }
    658 
    659 /*
    660  * proc_find_lwp: locate an lwp in said proc by the ID.
    661  *
    662  * => Must be called with p::p_lock held.
    663  * => LSIDL lwps are not returned because they are only partially
    664  *    constructed while occupying the slot.
    665  * => Callers need to be careful about lwp::l_stat of the returned
    666  *    lwp.
    667  */
    668 struct lwp *
    669 proc_find_lwp(proc_t *p, pid_t pid)
    670 {
    671 	struct pid_table *pt;
    672 	struct lwp *l = NULL;
    673 	uintptr_t slot;
    674 	int s;
    675 
    676 	KASSERT(mutex_owned(p->p_lock));
    677 
    678 	/*
    679 	 * Look in the pid_table.  This is done unlocked inside a pserialize
    680 	 * read section covering pid_table's memory allocation only, so take
    681 	 * care to read the slot atomically and only once.  This issues a
    682 	 * memory barrier for dependent loads on alpha.
    683 	 */
    684 	s = pserialize_read_enter();
    685 	pt = &pid_table[pid & pid_tbl_mask];
    686 	slot = atomic_load_consume(&pt->pt_slot);
    687 	if (__predict_false(!PT_IS_LWP(slot))) {
    688 		pserialize_read_exit(s);
    689 		return NULL;
    690 	}
    691 
    692 	/*
    693 	 * Check to see if the LWP is from the correct process.  We won't
    694 	 * see entries in pid_table from a prior process that also used "p",
    695 	 * by virtue of the fact that allocating "p" means all prior updates
    696 	 * to dependant data structures are visible to this thread.
    697 	 */
    698 	l = PT_GET_LWP(slot);
    699 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
    700 		pserialize_read_exit(s);
    701 		return NULL;
    702 	}
    703 
    704 	/*
    705 	 * We now know that p->p_lock holds this LWP stable.
    706 	 *
    707 	 * If the status is not LSIDL, it means the LWP is intended to be
    708 	 * findable by LID and l_lid cannot change behind us.
    709 	 *
    710 	 * No need to acquire the LWP's lock to check for LSIDL, as
    711 	 * p->p_lock must be held to transition in and out of LSIDL.
    712 	 * Any other observed state of is no particular interest.
    713 	 */
    714 	pserialize_read_exit(s);
    715 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
    716 }
    717 
    718 /*
    719  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
    720  *
    721  * => Called in a pserialize read section with no locks held.
    722  * => LSIDL lwps are not returned because they are only partially
    723  *    constructed while occupying the slot.
    724  * => Callers need to be careful about lwp::l_stat of the returned
    725  *    lwp.
    726  * => If an LWP is found, it's returned locked.
    727  */
    728 struct lwp *
    729 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
    730 {
    731 	struct pid_table *pt;
    732 	struct lwp *l = NULL;
    733 	uintptr_t slot;
    734 
    735 	KASSERT(pserialize_in_read_section());
    736 
    737 	/*
    738 	 * Look in the pid_table.  This is done unlocked inside a pserialize
    739 	 * read section covering pid_table's memory allocation only, so take
    740 	 * care to read the slot atomically and only once.  This issues a
    741 	 * memory barrier for dependent loads on alpha.
    742 	 */
    743 	pt = &pid_table[pid & pid_tbl_mask];
    744 	slot = atomic_load_consume(&pt->pt_slot);
    745 	if (__predict_false(!PT_IS_LWP(slot))) {
    746 		return NULL;
    747 	}
    748 
    749 	/*
    750 	 * Lock the LWP we found to get it stable.  If it's embryonic or
    751 	 * reaped (LSIDL) then none of the other fields can safely be
    752 	 * checked.
    753 	 */
    754 	l = PT_GET_LWP(slot);
    755 	lwp_lock(l);
    756 	if (__predict_false(l->l_stat == LSIDL)) {
    757 		lwp_unlock(l);
    758 		return NULL;
    759 	}
    760 
    761 	/*
    762 	 * l_proc and l_lid are now known stable because the LWP is not
    763 	 * LSIDL, so check those fields too to make sure we found the
    764 	 * right thing.
    765 	 */
    766 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
    767 		lwp_unlock(l);
    768 		return NULL;
    769 	}
    770 
    771 	/* Everything checks out, return it locked. */
    772 	return l;
    773 }
    774 
    775 /*
    776  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
    777  * on its containing proc.
    778  *
    779  * => Similar to proc_find_lwp(), but does not require you to have
    780  *    the proc a priori.
    781  * => Also returns proc * to caller, with p::p_lock held.
    782  * => Same caveats apply.
    783  */
    784 struct lwp *
    785 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
    786 {
    787 	struct pid_table *pt;
    788 	struct proc *p = NULL;
    789 	struct lwp *l = NULL;
    790 	uintptr_t slot;
    791 
    792 	KASSERT(pp != NULL);
    793 	mutex_enter(&proc_lock);
    794 	pt = &pid_table[pid & pid_tbl_mask];
    795 
    796 	slot = pt->pt_slot;
    797 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    798 		l = PT_GET_LWP(slot);
    799 		p = l->l_proc;
    800 		mutex_enter(p->p_lock);
    801 		if (__predict_false(l->l_stat == LSIDL)) {
    802 			mutex_exit(p->p_lock);
    803 			l = NULL;
    804 			p = NULL;
    805 		}
    806 	}
    807 	mutex_exit(&proc_lock);
    808 
    809 	KASSERT(p == NULL || mutex_owned(p->p_lock));
    810 	*pp = p;
    811 	return l;
    812 }
    813 
    814 /*
    815  * proc_find_raw_pid_table_locked: locate a process by the ID.
    816  *
    817  * => Must be called with proc_lock held.
    818  */
    819 static proc_t *
    820 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
    821 {
    822 	struct pid_table *pt;
    823 	proc_t *p = NULL;
    824 	uintptr_t slot;
    825 
    826 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
    827 	pt = &pid_table[pid & pid_tbl_mask];
    828 
    829 	slot = pt->pt_slot;
    830 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    831 		/*
    832 		 * When looking up processes, require a direct match
    833 		 * on the PID assigned to the proc, not just one of
    834 		 * its LWPs.
    835 		 *
    836 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
    837 		 * valid here.
    838 		 */
    839 		p = PT_GET_LWP(slot)->l_proc;
    840 		if (__predict_false(p->p_pid != pid && !any_lwpid))
    841 			p = NULL;
    842 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    843 		p = PT_GET_PROC(slot);
    844 	}
    845 	return p;
    846 }
    847 
    848 proc_t *
    849 proc_find_raw(pid_t pid)
    850 {
    851 
    852 	return proc_find_raw_pid_table_locked(pid, false);
    853 }
    854 
    855 static proc_t *
    856 proc_find_internal(pid_t pid, bool any_lwpid)
    857 {
    858 	proc_t *p;
    859 
    860 	KASSERT(mutex_owned(&proc_lock));
    861 
    862 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
    863 	if (__predict_false(p == NULL)) {
    864 		return NULL;
    865 	}
    866 
    867 	/*
    868 	 * Only allow live processes to be found by PID.
    869 	 * XXX: p_stat might change, since proc unlocked.
    870 	 */
    871 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    872 		return p;
    873 	}
    874 	return NULL;
    875 }
    876 
    877 proc_t *
    878 proc_find(pid_t pid)
    879 {
    880 	return proc_find_internal(pid, false);
    881 }
    882 
    883 proc_t *
    884 proc_find_lwpid(pid_t pid)
    885 {
    886 	return proc_find_internal(pid, true);
    887 }
    888 
    889 /*
    890  * pgrp_find: locate a process group by the ID.
    891  *
    892  * => Must be called with proc_lock held.
    893  */
    894 struct pgrp *
    895 pgrp_find(pid_t pgid)
    896 {
    897 	struct pgrp *pg;
    898 
    899 	KASSERT(mutex_owned(&proc_lock));
    900 
    901 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    902 
    903 	/*
    904 	 * Cannot look up a process group that only exists because the
    905 	 * session has not died yet (traditional).
    906 	 */
    907 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    908 		return NULL;
    909 	}
    910 	return pg;
    911 }
    912 
    913 static void
    914 expand_pid_table(void)
    915 {
    916 	size_t pt_size, tsz;
    917 	struct pid_table *n_pt, *new_pt;
    918 	uintptr_t slot;
    919 	struct pgrp *pgrp;
    920 	pid_t pid, rpid;
    921 	u_int i;
    922 	uint new_pt_mask;
    923 
    924 	KASSERT(mutex_owned(&proc_lock));
    925 
    926 	/* Unlock the pid_table briefly to allocate memory. */
    927 	pt_size = pid_tbl_mask + 1;
    928 	mutex_exit(&proc_lock);
    929 
    930 	tsz = pt_size * 2 * sizeof(struct pid_table);
    931 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    932 	new_pt_mask = pt_size * 2 - 1;
    933 
    934 	/* XXX For now.  The pratical limit is much lower anyway. */
    935 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    936 
    937 	mutex_enter(&proc_lock);
    938 	if (pt_size != pid_tbl_mask + 1) {
    939 		/* Another process beat us to it... */
    940 		mutex_exit(&proc_lock);
    941 		kmem_free(new_pt, tsz);
    942 		goto out;
    943 	}
    944 
    945 	/*
    946 	 * Copy entries from old table into new one.
    947 	 * If 'pid' is 'odd' we need to place in the upper half,
    948 	 * even pid's to the lower half.
    949 	 * Free items stay in the low half so we don't have to
    950 	 * fixup the reference to them.
    951 	 * We stuff free items on the front of the freelist
    952 	 * because we can't write to unmodified entries.
    953 	 * Processing the table backwards maintains a semblance
    954 	 * of issuing pid numbers that increase with time.
    955 	 */
    956 	i = pt_size - 1;
    957 	n_pt = new_pt + i;
    958 	for (; ; i--, n_pt--) {
    959 		slot = pid_table[i].pt_slot;
    960 		pgrp = pid_table[i].pt_pgrp;
    961 		if (!PT_VALID(slot)) {
    962 			/* Up 'use count' so that link is valid */
    963 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    964 			rpid = 0;
    965 			slot = PT_SET_FREE(pid);
    966 			if (pgrp)
    967 				pid = pgrp->pg_id;
    968 		} else {
    969 			pid = pid_table[i].pt_pid;
    970 			rpid = pid;
    971 		}
    972 
    973 		/* Save entry in appropriate half of table */
    974 		n_pt[pid & pt_size].pt_slot = slot;
    975 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    976 		n_pt[pid & pt_size].pt_pid = rpid;
    977 
    978 		/* Put other piece on start of free list */
    979 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    980 		n_pt[pid & pt_size].pt_slot =
    981 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
    982 		n_pt[pid & pt_size].pt_pgrp = 0;
    983 		n_pt[pid & pt_size].pt_pid = 0;
    984 
    985 		next_free_pt = i | (pid & pt_size);
    986 		if (i == 0)
    987 			break;
    988 	}
    989 
    990 	/* Save old table size and switch tables */
    991 	tsz = pt_size * sizeof(struct pid_table);
    992 	n_pt = pid_table;
    993 	pid_table = new_pt;
    994 	pid_tbl_mask = new_pt_mask;
    995 
    996 	/*
    997 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    998 	 * allocated pids we need it to be larger!
    999 	 */
   1000 	if (pid_tbl_mask > PID_MAX) {
   1001 		pid_max = pid_tbl_mask * 2 + 1;
   1002 		pid_alloc_lim |= pid_alloc_lim << 1;
   1003 	} else
   1004 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
   1005 
   1006 	mutex_exit(&proc_lock);
   1007 
   1008 	/*
   1009 	 * Make sure that unlocked access to the old pid_table is complete
   1010 	 * and then free it.
   1011 	 */
   1012 	pserialize_perform(proc_psz);
   1013 	kmem_free(n_pt, tsz);
   1014 
   1015  out:	/* Return with proc_lock held again. */
   1016 	mutex_enter(&proc_lock);
   1017 }
   1018 
   1019 struct proc *
   1020 proc_alloc(void)
   1021 {
   1022 	struct proc *p;
   1023 
   1024 	p = pool_cache_get(proc_cache, PR_WAITOK);
   1025 	p->p_stat = SIDL;			/* protect against others */
   1026 	proc_initspecific(p);
   1027 	kdtrace_proc_ctor(NULL, p);
   1028 
   1029 	/*
   1030 	 * Allocate a placeholder in the pid_table.  When we create the
   1031 	 * first LWP for this process, it will take ownership of the
   1032 	 * slot.
   1033 	 */
   1034 	if (__predict_false(proc_alloc_pid(p) == -1)) {
   1035 		/* Allocating the PID failed; unwind. */
   1036 		proc_finispecific(p);
   1037 		proc_free_mem(p);
   1038 		p = NULL;
   1039 	}
   1040 	return p;
   1041 }
   1042 
   1043 /*
   1044  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
   1045  * proc_find_raw() can find it by the PID.
   1046  */
   1047 static pid_t __noinline
   1048 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1049 {
   1050 	struct pid_table *pt;
   1051 	pid_t pid;
   1052 	int nxt;
   1053 
   1054 	KASSERT(mutex_owned(&proc_lock));
   1055 
   1056 	for (;;expand_pid_table()) {
   1057 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1058 			/* ensure pids cycle through 2000+ values */
   1059 			continue;
   1060 		}
   1061 		/*
   1062 		 * The first user process *must* be given PID 1.
   1063 		 * it has already been reserved for us.  This
   1064 		 * will be coming in from the proc_alloc() call
   1065 		 * above, and the entry will be usurped later when
   1066 		 * the first user LWP is created.
   1067 		 * XXX this is slightly gross.
   1068 		 */
   1069 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1070 				    p != &proc0)) {
   1071 			KASSERT(PT_IS_PROC(slot));
   1072 			pt = &pid_table[1];
   1073 			pt->pt_slot = slot;
   1074 			return 1;
   1075 		}
   1076 		pt = &pid_table[next_free_pt];
   1077 #ifdef DIAGNOSTIC
   1078 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1079 			panic("proc_alloc: slot busy");
   1080 #endif
   1081 		nxt = PT_NEXT(pt->pt_slot);
   1082 		if (nxt & pid_tbl_mask)
   1083 			break;
   1084 		/* Table full - expand (NB last entry not used....) */
   1085 	}
   1086 
   1087 	/* pid is 'saved use count' + 'size' + entry */
   1088 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1089 	if ((uint)pid > (uint)pid_max)
   1090 		pid &= pid_tbl_mask;
   1091 	next_free_pt = nxt & pid_tbl_mask;
   1092 
   1093 	/* XXX For now.  The pratical limit is much lower anyway. */
   1094 	KASSERT(pid <= FUTEX_TID_MASK);
   1095 
   1096 	/* Grab table slot */
   1097 	pt->pt_slot = slot;
   1098 
   1099 	KASSERT(pt->pt_pid == 0);
   1100 	pt->pt_pid = pid;
   1101 	pid_alloc_cnt++;
   1102 
   1103 	return pid;
   1104 }
   1105 
   1106 pid_t
   1107 proc_alloc_pid(struct proc *p)
   1108 {
   1109 	pid_t pid;
   1110 
   1111 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1112 	KASSERT(p->p_stat == SIDL);
   1113 
   1114 	mutex_enter(&proc_lock);
   1115 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1116 	if (pid != -1)
   1117 		p->p_pid = pid;
   1118 	mutex_exit(&proc_lock);
   1119 
   1120 	return pid;
   1121 }
   1122 
   1123 pid_t
   1124 proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1125 {
   1126 	struct pid_table *pt;
   1127 	pid_t pid;
   1128 
   1129 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1130 	KASSERT(l->l_proc == p);
   1131 	KASSERT(l->l_stat == LSIDL);
   1132 
   1133 	/*
   1134 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
   1135 	 * is globally visible before the LWP becomes visible via the
   1136 	 * pid_table.
   1137 	 */
   1138 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1139 	membar_producer();
   1140 #endif
   1141 
   1142 	/*
   1143 	 * If the slot for p->p_pid currently points to the proc,
   1144 	 * then we should usurp this ID for the LWP.  This happens
   1145 	 * at least once per process (for the first LWP), and can
   1146 	 * happen again if the first LWP for a process exits and
   1147 	 * before the process creates another.
   1148 	 */
   1149 	mutex_enter(&proc_lock);
   1150 	pid = p->p_pid;
   1151 	pt = &pid_table[pid & pid_tbl_mask];
   1152 	KASSERT(pt->pt_pid == pid);
   1153 	if (PT_IS_PROC(pt->pt_slot)) {
   1154 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1155 		l->l_lid = pid;
   1156 		pt->pt_slot = PT_SET_LWP(l);
   1157 	} else {
   1158 		/* Need to allocate a new slot. */
   1159 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1160 		if (pid != -1)
   1161 			l->l_lid = pid;
   1162 	}
   1163 	mutex_exit(&proc_lock);
   1164 
   1165 	return pid;
   1166 }
   1167 
   1168 static void __noinline
   1169 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1170 {
   1171 	struct pid_table *pt;
   1172 
   1173 	pt = &pid_table[pid & pid_tbl_mask];
   1174 
   1175 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1176 	KASSERT(pt->pt_pid == pid);
   1177 
   1178 	/* save pid use count in slot */
   1179 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1180 	pt->pt_pid = 0;
   1181 
   1182 	if (pt->pt_pgrp == NULL) {
   1183 		/* link last freed entry onto ours */
   1184 		pid &= pid_tbl_mask;
   1185 		pt = &pid_table[last_free_pt];
   1186 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1187 		pt->pt_pid = 0;
   1188 		last_free_pt = pid;
   1189 		pid_alloc_cnt--;
   1190 	}
   1191 }
   1192 
   1193 /*
   1194  * Free a process id - called from proc_free (in kern_exit.c)
   1195  *
   1196  * Called with the proc_lock held.
   1197  */
   1198 void
   1199 proc_free_pid(pid_t pid)
   1200 {
   1201 
   1202 	KASSERT(mutex_owned(&proc_lock));
   1203 	proc_free_pid_internal(pid, PT_F_PROC);
   1204 }
   1205 
   1206 /*
   1207  * Free a process id used by an LWP.  If this was the process's
   1208  * first LWP, we convert the slot to point to the process; the
   1209  * entry will get cleaned up later when the process finishes exiting.
   1210  *
   1211  * If not, then it's the same as proc_free_pid().
   1212  */
   1213 void
   1214 proc_free_lwpid(struct proc *p, pid_t pid)
   1215 {
   1216 
   1217 	KASSERT(mutex_owned(&proc_lock));
   1218 
   1219 	if (__predict_true(p->p_pid == pid)) {
   1220 		struct pid_table *pt;
   1221 
   1222 		pt = &pid_table[pid & pid_tbl_mask];
   1223 
   1224 		KASSERT(pt->pt_pid == pid);
   1225 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1226 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1227 
   1228 		pt->pt_slot = PT_SET_PROC(p);
   1229 		return;
   1230 	}
   1231 	proc_free_pid_internal(pid, PT_F_LWP);
   1232 }
   1233 
   1234 void
   1235 proc_free_mem(struct proc *p)
   1236 {
   1237 
   1238 	kdtrace_proc_dtor(NULL, p);
   1239 	pool_cache_put(proc_cache, p);
   1240 }
   1241 
   1242 /*
   1243  * proc_enterpgrp: move p to a new or existing process group (and session).
   1244  *
   1245  * If we are creating a new pgrp, the pgid should equal
   1246  * the calling process' pid.
   1247  * If is only valid to enter a process group that is in the session
   1248  * of the process.
   1249  * Also mksess should only be set if we are creating a process group
   1250  *
   1251  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1252  */
   1253 int
   1254 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1255 {
   1256 	struct pgrp *new_pgrp, *pgrp;
   1257 	struct session *sess;
   1258 	struct proc *p;
   1259 	int rval;
   1260 	pid_t pg_id = NO_PGID;
   1261 
   1262 	/* Allocate data areas we might need before doing any validity checks */
   1263 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1264 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1265 
   1266 	mutex_enter(&proc_lock);
   1267 	rval = EPERM;	/* most common error (to save typing) */
   1268 
   1269 	/* Check pgrp exists or can be created */
   1270 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1271 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1272 		goto done;
   1273 
   1274 	/* Can only set another process under restricted circumstances. */
   1275 	if (pid != curp->p_pid) {
   1276 		/* Must exist and be one of our children... */
   1277 		p = proc_find_internal(pid, false);
   1278 		if (p == NULL || !p_inferior(p, curp)) {
   1279 			rval = ESRCH;
   1280 			goto done;
   1281 		}
   1282 		/* ... in the same session... */
   1283 		if (sess != NULL || p->p_session != curp->p_session)
   1284 			goto done;
   1285 		/* ... existing pgid must be in same session ... */
   1286 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1287 			goto done;
   1288 		/* ... and not done an exec. */
   1289 		if (p->p_flag & PK_EXEC) {
   1290 			rval = EACCES;
   1291 			goto done;
   1292 		}
   1293 	} else {
   1294 		/* ... setsid() cannot re-enter a pgrp */
   1295 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1296 		    pgrp_find(curp->p_pid)))
   1297 			goto done;
   1298 		p = curp;
   1299 	}
   1300 
   1301 	/* Changing the process group/session of a session
   1302 	   leader is definitely off limits. */
   1303 	if (SESS_LEADER(p)) {
   1304 		if (sess == NULL && p->p_pgrp == pgrp)
   1305 			/* unless it's a definite noop */
   1306 			rval = 0;
   1307 		goto done;
   1308 	}
   1309 
   1310 	/* Can only create a process group with id of process */
   1311 	if (pgrp == NULL && pgid != pid)
   1312 		goto done;
   1313 
   1314 	/* Can only create a session if creating pgrp */
   1315 	if (sess != NULL && pgrp != NULL)
   1316 		goto done;
   1317 
   1318 	/* Check we allocated memory for a pgrp... */
   1319 	if (pgrp == NULL && new_pgrp == NULL)
   1320 		goto done;
   1321 
   1322 	/* Don't attach to 'zombie' pgrp */
   1323 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1324 		goto done;
   1325 
   1326 	/* Expect to succeed now */
   1327 	rval = 0;
   1328 
   1329 	if (pgrp == p->p_pgrp)
   1330 		/* nothing to do */
   1331 		goto done;
   1332 
   1333 	/* Ok all setup, link up required structures */
   1334 
   1335 	if (pgrp == NULL) {
   1336 		pgrp = new_pgrp;
   1337 		new_pgrp = NULL;
   1338 		if (sess != NULL) {
   1339 			sess->s_sid = p->p_pid;
   1340 			sess->s_leader = p;
   1341 			sess->s_count = 1;
   1342 			sess->s_ttyvp = NULL;
   1343 			sess->s_ttyp = NULL;
   1344 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1345 			memcpy(sess->s_login, p->p_session->s_login,
   1346 			    sizeof(sess->s_login));
   1347 			p->p_lflag &= ~PL_CONTROLT;
   1348 		} else {
   1349 			sess = p->p_pgrp->pg_session;
   1350 			proc_sesshold(sess);
   1351 		}
   1352 		pgrp->pg_session = sess;
   1353 		sess = NULL;
   1354 
   1355 		pgrp->pg_id = pgid;
   1356 		LIST_INIT(&pgrp->pg_members);
   1357 #ifdef DIAGNOSTIC
   1358 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1359 			panic("enterpgrp: pgrp table slot in use");
   1360 		if (__predict_false(mksess && p != curp))
   1361 			panic("enterpgrp: mksession and p != curproc");
   1362 #endif
   1363 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1364 		pgrp->pg_jobc = 0;
   1365 	}
   1366 
   1367 	/*
   1368 	 * Adjust eligibility of affected pgrps to participate in job control.
   1369 	 * Increment eligibility counts before decrementing, otherwise we
   1370 	 * could reach 0 spuriously during the first call.
   1371 	 */
   1372 	fixjobc(p, pgrp, 1);
   1373 	fixjobc(p, p->p_pgrp, 0);
   1374 
   1375 	/* Interlock with ttread(). */
   1376 	mutex_spin_enter(&tty_lock);
   1377 
   1378 	/* Move process to requested group. */
   1379 	LIST_REMOVE(p, p_pglist);
   1380 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1381 		/* defer delete until we've dumped the lock */
   1382 		pg_id = p->p_pgrp->pg_id;
   1383 	p->p_pgrp = pgrp;
   1384 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1385 
   1386 	/* Done with the swap; we can release the tty mutex. */
   1387 	mutex_spin_exit(&tty_lock);
   1388 
   1389     done:
   1390 	if (pg_id != NO_PGID) {
   1391 		/* Releases proc_lock. */
   1392 		pg_delete(pg_id);
   1393 	} else {
   1394 		mutex_exit(&proc_lock);
   1395 	}
   1396 	if (sess != NULL)
   1397 		kmem_free(sess, sizeof(*sess));
   1398 	if (new_pgrp != NULL)
   1399 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1400 #ifdef DEBUG_PGRP
   1401 	if (__predict_false(rval))
   1402 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1403 			pid, pgid, mksess, curp->p_pid, rval);
   1404 #endif
   1405 	return rval;
   1406 }
   1407 
   1408 /*
   1409  * proc_leavepgrp: remove a process from its process group.
   1410  *  => must be called with the proc_lock held, which will be released;
   1411  */
   1412 void
   1413 proc_leavepgrp(struct proc *p)
   1414 {
   1415 	struct pgrp *pgrp;
   1416 
   1417 	KASSERT(mutex_owned(&proc_lock));
   1418 
   1419 	/* Interlock with ttread() */
   1420 	mutex_spin_enter(&tty_lock);
   1421 	pgrp = p->p_pgrp;
   1422 	LIST_REMOVE(p, p_pglist);
   1423 	p->p_pgrp = NULL;
   1424 	mutex_spin_exit(&tty_lock);
   1425 
   1426 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1427 		/* Releases proc_lock. */
   1428 		pg_delete(pgrp->pg_id);
   1429 	} else {
   1430 		mutex_exit(&proc_lock);
   1431 	}
   1432 }
   1433 
   1434 /*
   1435  * pg_remove: remove a process group from the table.
   1436  *  => must be called with the proc_lock held;
   1437  *  => returns process group to free;
   1438  */
   1439 static struct pgrp *
   1440 pg_remove(pid_t pg_id)
   1441 {
   1442 	struct pgrp *pgrp;
   1443 	struct pid_table *pt;
   1444 
   1445 	KASSERT(mutex_owned(&proc_lock));
   1446 
   1447 	pt = &pid_table[pg_id & pid_tbl_mask];
   1448 	pgrp = pt->pt_pgrp;
   1449 
   1450 	KASSERT(pgrp != NULL);
   1451 	KASSERT(pgrp->pg_id == pg_id);
   1452 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1453 
   1454 	pt->pt_pgrp = NULL;
   1455 
   1456 	if (!PT_VALID(pt->pt_slot)) {
   1457 		/* Orphaned pgrp, put slot onto free list. */
   1458 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1459 		pg_id &= pid_tbl_mask;
   1460 		pt = &pid_table[last_free_pt];
   1461 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1462 		KASSERT(pt->pt_pid == 0);
   1463 		last_free_pt = pg_id;
   1464 		pid_alloc_cnt--;
   1465 	}
   1466 	return pgrp;
   1467 }
   1468 
   1469 /*
   1470  * pg_delete: delete and free a process group.
   1471  *  => must be called with the proc_lock held, which will be released.
   1472  */
   1473 static void
   1474 pg_delete(pid_t pg_id)
   1475 {
   1476 	struct pgrp *pg;
   1477 	struct tty *ttyp;
   1478 	struct session *ss;
   1479 
   1480 	KASSERT(mutex_owned(&proc_lock));
   1481 
   1482 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1483 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1484 		mutex_exit(&proc_lock);
   1485 		return;
   1486 	}
   1487 
   1488 	ss = pg->pg_session;
   1489 
   1490 	/* Remove reference (if any) from tty to this process group */
   1491 	mutex_spin_enter(&tty_lock);
   1492 	ttyp = ss->s_ttyp;
   1493 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1494 		ttyp->t_pgrp = NULL;
   1495 		KASSERT(ttyp->t_session == ss);
   1496 	}
   1497 	mutex_spin_exit(&tty_lock);
   1498 
   1499 	/*
   1500 	 * The leading process group in a session is freed by proc_sessrele(),
   1501 	 * if last reference.  It will also release the locks.
   1502 	 */
   1503 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1504 	proc_sessrele(ss);
   1505 
   1506 	if (pg != NULL) {
   1507 		/* Free it, if was not done above. */
   1508 		kmem_free(pg, sizeof(struct pgrp));
   1509 	}
   1510 }
   1511 
   1512 /*
   1513  * Adjust pgrp jobc counters when specified process changes process group.
   1514  * We count the number of processes in each process group that "qualify"
   1515  * the group for terminal job control (those with a parent in a different
   1516  * process group of the same session).  If that count reaches zero, the
   1517  * process group becomes orphaned.  Check both the specified process'
   1518  * process group and that of its children.
   1519  * entering == 0 => p is leaving specified group.
   1520  * entering == 1 => p is entering specified group.
   1521  *
   1522  * Call with proc_lock held.
   1523  */
   1524 void
   1525 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1526 {
   1527 	struct pgrp *hispgrp;
   1528 	struct session *mysession = pgrp->pg_session;
   1529 	struct proc *child;
   1530 
   1531 	KASSERT(mutex_owned(&proc_lock));
   1532 
   1533 	/*
   1534 	 * Check p's parent to see whether p qualifies its own process
   1535 	 * group; if so, adjust count for p's process group.
   1536 	 */
   1537 	hispgrp = p->p_pptr->p_pgrp;
   1538 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1539 		if (entering) {
   1540 			pgrp->pg_jobc++;
   1541 			p->p_lflag &= ~PL_ORPHANPG;
   1542 		} else {
   1543 			KASSERT(pgrp->pg_jobc > 0);
   1544 			if (--pgrp->pg_jobc == 0)
   1545 				orphanpg(pgrp);
   1546 		}
   1547 	}
   1548 
   1549 	/*
   1550 	 * Check this process' children to see whether they qualify
   1551 	 * their process groups; if so, adjust counts for children's
   1552 	 * process groups.
   1553 	 */
   1554 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1555 		hispgrp = child->p_pgrp;
   1556 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1557 		    !P_ZOMBIE(child)) {
   1558 			if (entering) {
   1559 				child->p_lflag &= ~PL_ORPHANPG;
   1560 				hispgrp->pg_jobc++;
   1561 			} else {
   1562 				KASSERT(hispgrp->pg_jobc > 0);
   1563 				if (--hispgrp->pg_jobc == 0)
   1564 					orphanpg(hispgrp);
   1565 			}
   1566 		}
   1567 	}
   1568 }
   1569 
   1570 /*
   1571  * A process group has become orphaned;
   1572  * if there are any stopped processes in the group,
   1573  * hang-up all process in that group.
   1574  *
   1575  * Call with proc_lock held.
   1576  */
   1577 static void
   1578 orphanpg(struct pgrp *pg)
   1579 {
   1580 	struct proc *p;
   1581 
   1582 	KASSERT(mutex_owned(&proc_lock));
   1583 
   1584 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1585 		if (p->p_stat == SSTOP) {
   1586 			p->p_lflag |= PL_ORPHANPG;
   1587 			psignal(p, SIGHUP);
   1588 			psignal(p, SIGCONT);
   1589 		}
   1590 	}
   1591 }
   1592 
   1593 #ifdef DDB
   1594 #include <ddb/db_output.h>
   1595 void pidtbl_dump(void);
   1596 void
   1597 pidtbl_dump(void)
   1598 {
   1599 	struct pid_table *pt;
   1600 	struct proc *p;
   1601 	struct pgrp *pgrp;
   1602 	uintptr_t slot;
   1603 	int id;
   1604 
   1605 	db_printf("pid table %p size %x, next %x, last %x\n",
   1606 		pid_table, pid_tbl_mask+1,
   1607 		next_free_pt, last_free_pt);
   1608 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1609 		slot = pt->pt_slot;
   1610 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1611 			continue;
   1612 		if (PT_IS_LWP(slot)) {
   1613 			p = PT_GET_LWP(slot)->l_proc;
   1614 		} else if (PT_IS_PROC(slot)) {
   1615 			p = PT_GET_PROC(slot);
   1616 		} else {
   1617 			p = NULL;
   1618 		}
   1619 		db_printf("  id %x: ", id);
   1620 		if (p != NULL)
   1621 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1622 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1623 		else
   1624 			db_printf("next %x use %x\n",
   1625 				PT_NEXT(slot) & pid_tbl_mask,
   1626 				PT_NEXT(slot) & ~pid_tbl_mask);
   1627 		if ((pgrp = pt->pt_pgrp)) {
   1628 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1629 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1630 			    pgrp->pg_session->s_count,
   1631 			    pgrp->pg_session->s_login);
   1632 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1633 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1634 			    LIST_FIRST(&pgrp->pg_members));
   1635 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1636 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1637 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1638 			}
   1639 		}
   1640 	}
   1641 }
   1642 #endif /* DDB */
   1643 
   1644 #ifdef KSTACK_CHECK_MAGIC
   1645 
   1646 #define	KSTACK_MAGIC	0xdeadbeaf
   1647 
   1648 /* XXX should be per process basis? */
   1649 static int	kstackleftmin = KSTACK_SIZE;
   1650 static int	kstackleftthres = KSTACK_SIZE / 8;
   1651 
   1652 void
   1653 kstack_setup_magic(const struct lwp *l)
   1654 {
   1655 	uint32_t *ip;
   1656 	uint32_t const *end;
   1657 
   1658 	KASSERT(l != NULL);
   1659 	KASSERT(l != &lwp0);
   1660 
   1661 	/*
   1662 	 * fill all the stack with magic number
   1663 	 * so that later modification on it can be detected.
   1664 	 */
   1665 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1666 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1667 	for (; ip < end; ip++) {
   1668 		*ip = KSTACK_MAGIC;
   1669 	}
   1670 }
   1671 
   1672 void
   1673 kstack_check_magic(const struct lwp *l)
   1674 {
   1675 	uint32_t const *ip, *end;
   1676 	int stackleft;
   1677 
   1678 	KASSERT(l != NULL);
   1679 
   1680 	/* don't check proc0 */ /*XXX*/
   1681 	if (l == &lwp0)
   1682 		return;
   1683 
   1684 #ifdef __MACHINE_STACK_GROWS_UP
   1685 	/* stack grows upwards (eg. hppa) */
   1686 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1687 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1688 	for (ip--; ip >= end; ip--)
   1689 		if (*ip != KSTACK_MAGIC)
   1690 			break;
   1691 
   1692 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1693 #else /* __MACHINE_STACK_GROWS_UP */
   1694 	/* stack grows downwards (eg. i386) */
   1695 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1696 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1697 	for (; ip < end; ip++)
   1698 		if (*ip != KSTACK_MAGIC)
   1699 			break;
   1700 
   1701 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1702 #endif /* __MACHINE_STACK_GROWS_UP */
   1703 
   1704 	if (kstackleftmin > stackleft) {
   1705 		kstackleftmin = stackleft;
   1706 		if (stackleft < kstackleftthres)
   1707 			printf("warning: kernel stack left %d bytes"
   1708 			    "(pid %u:lid %u)\n", stackleft,
   1709 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1710 	}
   1711 
   1712 	if (stackleft <= 0) {
   1713 		panic("magic on the top of kernel stack changed for "
   1714 		    "pid %u, lid %u: maybe kernel stack overflow",
   1715 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1716 	}
   1717 }
   1718 #endif /* KSTACK_CHECK_MAGIC */
   1719 
   1720 int
   1721 proclist_foreach_call(struct proclist *list,
   1722     int (*callback)(struct proc *, void *arg), void *arg)
   1723 {
   1724 	struct proc marker;
   1725 	struct proc *p;
   1726 	int ret = 0;
   1727 
   1728 	marker.p_flag = PK_MARKER;
   1729 	mutex_enter(&proc_lock);
   1730 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1731 		if (p->p_flag & PK_MARKER) {
   1732 			p = LIST_NEXT(p, p_list);
   1733 			continue;
   1734 		}
   1735 		LIST_INSERT_AFTER(p, &marker, p_list);
   1736 		ret = (*callback)(p, arg);
   1737 		KASSERT(mutex_owned(&proc_lock));
   1738 		p = LIST_NEXT(&marker, p_list);
   1739 		LIST_REMOVE(&marker, p_list);
   1740 	}
   1741 	mutex_exit(&proc_lock);
   1742 
   1743 	return ret;
   1744 }
   1745 
   1746 int
   1747 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1748 {
   1749 
   1750 	/* XXXCDC: how should locking work here? */
   1751 
   1752 	/* curproc exception is for coredump. */
   1753 
   1754 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1755 	    (p->p_vmspace->vm_refcnt < 1)) {
   1756 		return EFAULT;
   1757 	}
   1758 
   1759 	uvmspace_addref(p->p_vmspace);
   1760 	*vm = p->p_vmspace;
   1761 
   1762 	return 0;
   1763 }
   1764 
   1765 /*
   1766  * Acquire a write lock on the process credential.
   1767  */
   1768 void
   1769 proc_crmod_enter(void)
   1770 {
   1771 	struct lwp *l = curlwp;
   1772 	struct proc *p = l->l_proc;
   1773 	kauth_cred_t oc;
   1774 
   1775 	/* Reset what needs to be reset in plimit. */
   1776 	if (p->p_limit->pl_corename != defcorename) {
   1777 		lim_setcorename(p, defcorename, 0);
   1778 	}
   1779 
   1780 	mutex_enter(p->p_lock);
   1781 
   1782 	/* Ensure the LWP cached credentials are up to date. */
   1783 	if ((oc = l->l_cred) != p->p_cred) {
   1784 		kauth_cred_hold(p->p_cred);
   1785 		l->l_cred = p->p_cred;
   1786 		kauth_cred_free(oc);
   1787 	}
   1788 }
   1789 
   1790 /*
   1791  * Set in a new process credential, and drop the write lock.  The credential
   1792  * must have a reference already.  Optionally, free a no-longer required
   1793  * credential.  The scheduler also needs to inspect p_cred, so we also
   1794  * briefly acquire the sched state mutex.
   1795  */
   1796 void
   1797 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1798 {
   1799 	struct lwp *l = curlwp, *l2;
   1800 	struct proc *p = l->l_proc;
   1801 	kauth_cred_t oc;
   1802 
   1803 	KASSERT(mutex_owned(p->p_lock));
   1804 
   1805 	/* Is there a new credential to set in? */
   1806 	if (scred != NULL) {
   1807 		p->p_cred = scred;
   1808 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1809 			if (l2 != l)
   1810 				l2->l_prflag |= LPR_CRMOD;
   1811 		}
   1812 
   1813 		/* Ensure the LWP cached credentials are up to date. */
   1814 		if ((oc = l->l_cred) != scred) {
   1815 			kauth_cred_hold(scred);
   1816 			l->l_cred = scred;
   1817 		}
   1818 	} else
   1819 		oc = NULL;	/* XXXgcc */
   1820 
   1821 	if (sugid) {
   1822 		/*
   1823 		 * Mark process as having changed credentials, stops
   1824 		 * tracing etc.
   1825 		 */
   1826 		p->p_flag |= PK_SUGID;
   1827 	}
   1828 
   1829 	mutex_exit(p->p_lock);
   1830 
   1831 	/* If there is a credential to be released, free it now. */
   1832 	if (fcred != NULL) {
   1833 		KASSERT(scred != NULL);
   1834 		kauth_cred_free(fcred);
   1835 		if (oc != scred)
   1836 			kauth_cred_free(oc);
   1837 	}
   1838 }
   1839 
   1840 /*
   1841  * proc_specific_key_create --
   1842  *	Create a key for subsystem proc-specific data.
   1843  */
   1844 int
   1845 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1846 {
   1847 
   1848 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1849 }
   1850 
   1851 /*
   1852  * proc_specific_key_delete --
   1853  *	Delete a key for subsystem proc-specific data.
   1854  */
   1855 void
   1856 proc_specific_key_delete(specificdata_key_t key)
   1857 {
   1858 
   1859 	specificdata_key_delete(proc_specificdata_domain, key);
   1860 }
   1861 
   1862 /*
   1863  * proc_initspecific --
   1864  *	Initialize a proc's specificdata container.
   1865  */
   1866 void
   1867 proc_initspecific(struct proc *p)
   1868 {
   1869 	int error __diagused;
   1870 
   1871 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1872 	KASSERT(error == 0);
   1873 }
   1874 
   1875 /*
   1876  * proc_finispecific --
   1877  *	Finalize a proc's specificdata container.
   1878  */
   1879 void
   1880 proc_finispecific(struct proc *p)
   1881 {
   1882 
   1883 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1884 }
   1885 
   1886 /*
   1887  * proc_getspecific --
   1888  *	Return proc-specific data corresponding to the specified key.
   1889  */
   1890 void *
   1891 proc_getspecific(struct proc *p, specificdata_key_t key)
   1892 {
   1893 
   1894 	return (specificdata_getspecific(proc_specificdata_domain,
   1895 					 &p->p_specdataref, key));
   1896 }
   1897 
   1898 /*
   1899  * proc_setspecific --
   1900  *	Set proc-specific data corresponding to the specified key.
   1901  */
   1902 void
   1903 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1904 {
   1905 
   1906 	specificdata_setspecific(proc_specificdata_domain,
   1907 				 &p->p_specdataref, key, data);
   1908 }
   1909 
   1910 int
   1911 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1912 {
   1913 	int r = 0;
   1914 
   1915 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1916 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1917 		/*
   1918 		 * suid proc of ours or proc not ours
   1919 		 */
   1920 		r = EPERM;
   1921 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1922 		/*
   1923 		 * sgid proc has sgid back to us temporarily
   1924 		 */
   1925 		r = EPERM;
   1926 	} else {
   1927 		/*
   1928 		 * our rgid must be in target's group list (ie,
   1929 		 * sub-processes started by a sgid process)
   1930 		 */
   1931 		int ismember = 0;
   1932 
   1933 		if (kauth_cred_ismember_gid(cred,
   1934 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1935 		    !ismember)
   1936 			r = EPERM;
   1937 	}
   1938 
   1939 	return (r);
   1940 }
   1941 
   1942 /*
   1943  * sysctl stuff
   1944  */
   1945 
   1946 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1947 
   1948 static const u_int sysctl_flagmap[] = {
   1949 	PK_ADVLOCK, P_ADVLOCK,
   1950 	PK_EXEC, P_EXEC,
   1951 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1952 	PK_32, P_32,
   1953 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1954 	PK_SUGID, P_SUGID,
   1955 	0
   1956 };
   1957 
   1958 static const u_int sysctl_sflagmap[] = {
   1959 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1960 	PS_WEXIT, P_WEXIT,
   1961 	PS_STOPFORK, P_STOPFORK,
   1962 	PS_STOPEXEC, P_STOPEXEC,
   1963 	PS_STOPEXIT, P_STOPEXIT,
   1964 	0
   1965 };
   1966 
   1967 static const u_int sysctl_slflagmap[] = {
   1968 	PSL_TRACED, P_TRACED,
   1969 	PSL_CHTRACED, P_CHTRACED,
   1970 	PSL_SYSCALL, P_SYSCALL,
   1971 	0
   1972 };
   1973 
   1974 static const u_int sysctl_lflagmap[] = {
   1975 	PL_CONTROLT, P_CONTROLT,
   1976 	PL_PPWAIT, P_PPWAIT,
   1977 	0
   1978 };
   1979 
   1980 static const u_int sysctl_stflagmap[] = {
   1981 	PST_PROFIL, P_PROFIL,
   1982 	0
   1983 
   1984 };
   1985 
   1986 /* used by kern_lwp also */
   1987 const u_int sysctl_lwpflagmap[] = {
   1988 	LW_SINTR, L_SINTR,
   1989 	LW_SYSTEM, L_SYSTEM,
   1990 	0
   1991 };
   1992 
   1993 /*
   1994  * Find the most ``active'' lwp of a process and return it for ps display
   1995  * purposes
   1996  */
   1997 static struct lwp *
   1998 proc_active_lwp(struct proc *p)
   1999 {
   2000 	static const int ostat[] = {
   2001 		0,
   2002 		2,	/* LSIDL */
   2003 		6,	/* LSRUN */
   2004 		5,	/* LSSLEEP */
   2005 		4,	/* LSSTOP */
   2006 		0,	/* LSZOMB */
   2007 		1,	/* LSDEAD */
   2008 		7,	/* LSONPROC */
   2009 		3	/* LSSUSPENDED */
   2010 	};
   2011 
   2012 	struct lwp *l, *lp = NULL;
   2013 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2014 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   2015 		if (lp == NULL ||
   2016 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   2017 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   2018 		    l->l_cpticks > lp->l_cpticks)) {
   2019 			lp = l;
   2020 			continue;
   2021 		}
   2022 	}
   2023 	return lp;
   2024 }
   2025 
   2026 static int
   2027 sysctl_doeproc(SYSCTLFN_ARGS)
   2028 {
   2029 	union {
   2030 		struct kinfo_proc kproc;
   2031 		struct kinfo_proc2 kproc2;
   2032 	} *kbuf;
   2033 	struct proc *p, *next, *marker;
   2034 	char *where, *dp;
   2035 	int type, op, arg, error;
   2036 	u_int elem_size, kelem_size, elem_count;
   2037 	size_t buflen, needed;
   2038 	bool match, zombie, mmmbrains;
   2039 	const bool allowaddr = get_expose_address(curproc);
   2040 
   2041 	if (namelen == 1 && name[0] == CTL_QUERY)
   2042 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2043 
   2044 	dp = where = oldp;
   2045 	buflen = where != NULL ? *oldlenp : 0;
   2046 	error = 0;
   2047 	needed = 0;
   2048 	type = rnode->sysctl_num;
   2049 
   2050 	if (type == KERN_PROC) {
   2051 		if (namelen == 0)
   2052 			return EINVAL;
   2053 		switch (op = name[0]) {
   2054 		case KERN_PROC_ALL:
   2055 			if (namelen != 1)
   2056 				return EINVAL;
   2057 			arg = 0;
   2058 			break;
   2059 		default:
   2060 			if (namelen != 2)
   2061 				return EINVAL;
   2062 			arg = name[1];
   2063 			break;
   2064 		}
   2065 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2066 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2067 	} else {
   2068 		if (namelen != 4)
   2069 			return EINVAL;
   2070 		op = name[0];
   2071 		arg = name[1];
   2072 		elem_size = name[2];
   2073 		elem_count = name[3];
   2074 		kelem_size = sizeof(kbuf->kproc2);
   2075 	}
   2076 
   2077 	sysctl_unlock();
   2078 
   2079 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2080 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2081 	marker->p_flag = PK_MARKER;
   2082 
   2083 	mutex_enter(&proc_lock);
   2084 	/*
   2085 	 * Start with zombies to prevent reporting processes twice, in case they
   2086 	 * are dying and being moved from the list of alive processes to zombies.
   2087 	 */
   2088 	mmmbrains = true;
   2089 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2090 		if (p == NULL) {
   2091 			if (mmmbrains) {
   2092 				p = LIST_FIRST(&allproc);
   2093 				mmmbrains = false;
   2094 			}
   2095 			if (p == NULL)
   2096 				break;
   2097 		}
   2098 		next = LIST_NEXT(p, p_list);
   2099 		if ((p->p_flag & PK_MARKER) != 0)
   2100 			continue;
   2101 
   2102 		/*
   2103 		 * Skip embryonic processes.
   2104 		 */
   2105 		if (p->p_stat == SIDL)
   2106 			continue;
   2107 
   2108 		mutex_enter(p->p_lock);
   2109 		error = kauth_authorize_process(l->l_cred,
   2110 		    KAUTH_PROCESS_CANSEE, p,
   2111 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2112 		if (error != 0) {
   2113 			mutex_exit(p->p_lock);
   2114 			continue;
   2115 		}
   2116 
   2117 		/*
   2118 		 * Hande all the operations in one switch on the cost of
   2119 		 * algorithm complexity is on purpose. The win splitting this
   2120 		 * function into several similar copies makes maintenance burden
   2121 		 * burden, code grow and boost is neglible in practical systems.
   2122 		 */
   2123 		switch (op) {
   2124 		case KERN_PROC_PID:
   2125 			match = (p->p_pid == (pid_t)arg);
   2126 			break;
   2127 
   2128 		case KERN_PROC_PGRP:
   2129 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2130 			break;
   2131 
   2132 		case KERN_PROC_SESSION:
   2133 			match = (p->p_session->s_sid == (pid_t)arg);
   2134 			break;
   2135 
   2136 		case KERN_PROC_TTY:
   2137 			match = true;
   2138 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2139 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2140 				    p->p_session->s_ttyp == NULL ||
   2141 				    p->p_session->s_ttyvp != NULL) {
   2142 				    	match = false;
   2143 				}
   2144 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2145 			    p->p_session->s_ttyp == NULL) {
   2146 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2147 					match = false;
   2148 				}
   2149 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2150 				match = false;
   2151 			}
   2152 			break;
   2153 
   2154 		case KERN_PROC_UID:
   2155 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2156 			break;
   2157 
   2158 		case KERN_PROC_RUID:
   2159 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2160 			break;
   2161 
   2162 		case KERN_PROC_GID:
   2163 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2164 			break;
   2165 
   2166 		case KERN_PROC_RGID:
   2167 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2168 			break;
   2169 
   2170 		case KERN_PROC_ALL:
   2171 			match = true;
   2172 			/* allow everything */
   2173 			break;
   2174 
   2175 		default:
   2176 			error = EINVAL;
   2177 			mutex_exit(p->p_lock);
   2178 			goto cleanup;
   2179 		}
   2180 		if (!match) {
   2181 			mutex_exit(p->p_lock);
   2182 			continue;
   2183 		}
   2184 
   2185 		/*
   2186 		 * Grab a hold on the process.
   2187 		 */
   2188 		if (mmmbrains) {
   2189 			zombie = true;
   2190 		} else {
   2191 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2192 		}
   2193 		if (zombie) {
   2194 			LIST_INSERT_AFTER(p, marker, p_list);
   2195 		}
   2196 
   2197 		if (buflen >= elem_size &&
   2198 		    (type == KERN_PROC || elem_count > 0)) {
   2199 			ruspace(p);	/* Update process vm resource use */
   2200 
   2201 			if (type == KERN_PROC) {
   2202 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2203 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2204 				    allowaddr);
   2205 			} else {
   2206 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2207 				    allowaddr);
   2208 				elem_count--;
   2209 			}
   2210 			mutex_exit(p->p_lock);
   2211 			mutex_exit(&proc_lock);
   2212 			/*
   2213 			 * Copy out elem_size, but not larger than kelem_size
   2214 			 */
   2215 			error = sysctl_copyout(l, kbuf, dp,
   2216 			    uimin(kelem_size, elem_size));
   2217 			mutex_enter(&proc_lock);
   2218 			if (error) {
   2219 				goto bah;
   2220 			}
   2221 			dp += elem_size;
   2222 			buflen -= elem_size;
   2223 		} else {
   2224 			mutex_exit(p->p_lock);
   2225 		}
   2226 		needed += elem_size;
   2227 
   2228 		/*
   2229 		 * Release reference to process.
   2230 		 */
   2231 	 	if (zombie) {
   2232 			next = LIST_NEXT(marker, p_list);
   2233  			LIST_REMOVE(marker, p_list);
   2234 		} else {
   2235 			rw_exit(&p->p_reflock);
   2236 			next = LIST_NEXT(p, p_list);
   2237 		}
   2238 
   2239 		/*
   2240 		 * Short-circuit break quickly!
   2241 		 */
   2242 		if (op == KERN_PROC_PID)
   2243                 	break;
   2244 	}
   2245 	mutex_exit(&proc_lock);
   2246 
   2247 	if (where != NULL) {
   2248 		*oldlenp = dp - where;
   2249 		if (needed > *oldlenp) {
   2250 			error = ENOMEM;
   2251 			goto out;
   2252 		}
   2253 	} else {
   2254 		needed += KERN_PROCSLOP;
   2255 		*oldlenp = needed;
   2256 	}
   2257 	kmem_free(kbuf, sizeof(*kbuf));
   2258 	kmem_free(marker, sizeof(*marker));
   2259 	sysctl_relock();
   2260 	return 0;
   2261  bah:
   2262  	if (zombie)
   2263  		LIST_REMOVE(marker, p_list);
   2264 	else
   2265 		rw_exit(&p->p_reflock);
   2266  cleanup:
   2267 	mutex_exit(&proc_lock);
   2268  out:
   2269 	kmem_free(kbuf, sizeof(*kbuf));
   2270 	kmem_free(marker, sizeof(*marker));
   2271 	sysctl_relock();
   2272 	return error;
   2273 }
   2274 
   2275 int
   2276 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2277 {
   2278 #if !defined(_RUMPKERNEL)
   2279 	int retval;
   2280 
   2281 	if (p->p_flag & PK_32) {
   2282 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2283 		    enosys(), retval);
   2284 		return retval;
   2285 	}
   2286 #endif /* !defined(_RUMPKERNEL) */
   2287 
   2288 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2289 }
   2290 
   2291 static int
   2292 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2293 {
   2294 	void **cookie = cookie_;
   2295 	struct lwp *l = cookie[0];
   2296 	char *dst = cookie[1];
   2297 
   2298 	return sysctl_copyout(l, src, dst + off, len);
   2299 }
   2300 
   2301 /*
   2302  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2303  */
   2304 static int
   2305 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2306 {
   2307 	struct ps_strings pss;
   2308 	struct proc *p;
   2309 	pid_t pid;
   2310 	int type, error;
   2311 	void *cookie[2];
   2312 
   2313 	if (namelen == 1 && name[0] == CTL_QUERY)
   2314 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2315 
   2316 	if (newp != NULL || namelen != 2)
   2317 		return (EINVAL);
   2318 	pid = name[0];
   2319 	type = name[1];
   2320 
   2321 	switch (type) {
   2322 	case KERN_PROC_PATHNAME:
   2323 		sysctl_unlock();
   2324 		error = fill_pathname(l, pid, oldp, oldlenp);
   2325 		sysctl_relock();
   2326 		return error;
   2327 
   2328 	case KERN_PROC_CWD:
   2329 		sysctl_unlock();
   2330 		error = fill_cwd(l, pid, oldp, oldlenp);
   2331 		sysctl_relock();
   2332 		return error;
   2333 
   2334 	case KERN_PROC_ARGV:
   2335 	case KERN_PROC_NARGV:
   2336 	case KERN_PROC_ENV:
   2337 	case KERN_PROC_NENV:
   2338 		/* ok */
   2339 		break;
   2340 	default:
   2341 		return (EINVAL);
   2342 	}
   2343 
   2344 	sysctl_unlock();
   2345 
   2346 	/* check pid */
   2347 	mutex_enter(&proc_lock);
   2348 	if ((p = proc_find(pid)) == NULL) {
   2349 		error = EINVAL;
   2350 		goto out_locked;
   2351 	}
   2352 	mutex_enter(p->p_lock);
   2353 
   2354 	/* Check permission. */
   2355 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2356 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2357 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2358 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2359 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2360 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2361 	else
   2362 		error = EINVAL; /* XXXGCC */
   2363 	if (error) {
   2364 		mutex_exit(p->p_lock);
   2365 		goto out_locked;
   2366 	}
   2367 
   2368 	if (oldp == NULL) {
   2369 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2370 			*oldlenp = sizeof (int);
   2371 		else
   2372 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2373 		error = 0;
   2374 		mutex_exit(p->p_lock);
   2375 		goto out_locked;
   2376 	}
   2377 
   2378 	/*
   2379 	 * Zombies don't have a stack, so we can't read their psstrings.
   2380 	 * System processes also don't have a user stack.
   2381 	 */
   2382 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2383 		error = EINVAL;
   2384 		mutex_exit(p->p_lock);
   2385 		goto out_locked;
   2386 	}
   2387 
   2388 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2389 	mutex_exit(p->p_lock);
   2390 	if (error) {
   2391 		goto out_locked;
   2392 	}
   2393 	mutex_exit(&proc_lock);
   2394 
   2395 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2396 		int value;
   2397 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2398 			if (type == KERN_PROC_NARGV)
   2399 				value = pss.ps_nargvstr;
   2400 			else
   2401 				value = pss.ps_nenvstr;
   2402 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2403 			*oldlenp = sizeof(value);
   2404 		}
   2405 	} else {
   2406 		cookie[0] = l;
   2407 		cookie[1] = oldp;
   2408 		error = copy_procargs(p, type, oldlenp,
   2409 		    copy_procargs_sysctl_cb, cookie);
   2410 	}
   2411 	rw_exit(&p->p_reflock);
   2412 	sysctl_relock();
   2413 	return error;
   2414 
   2415 out_locked:
   2416 	mutex_exit(&proc_lock);
   2417 	sysctl_relock();
   2418 	return error;
   2419 }
   2420 
   2421 int
   2422 copy_procargs(struct proc *p, int oid, size_t *limit,
   2423     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2424 {
   2425 	struct ps_strings pss;
   2426 	size_t len, i, loaded, entry_len;
   2427 	struct uio auio;
   2428 	struct iovec aiov;
   2429 	int error, argvlen;
   2430 	char *arg;
   2431 	char **argv;
   2432 	vaddr_t user_argv;
   2433 	struct vmspace *vmspace;
   2434 
   2435 	/*
   2436 	 * Allocate a temporary buffer to hold the argument vector and
   2437 	 * the arguments themselve.
   2438 	 */
   2439 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2440 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2441 
   2442 	/*
   2443 	 * Lock the process down in memory.
   2444 	 */
   2445 	vmspace = p->p_vmspace;
   2446 	uvmspace_addref(vmspace);
   2447 
   2448 	/*
   2449 	 * Read in the ps_strings structure.
   2450 	 */
   2451 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2452 		goto done;
   2453 
   2454 	/*
   2455 	 * Now read the address of the argument vector.
   2456 	 */
   2457 	switch (oid) {
   2458 	case KERN_PROC_ARGV:
   2459 		user_argv = (uintptr_t)pss.ps_argvstr;
   2460 		argvlen = pss.ps_nargvstr;
   2461 		break;
   2462 	case KERN_PROC_ENV:
   2463 		user_argv = (uintptr_t)pss.ps_envstr;
   2464 		argvlen = pss.ps_nenvstr;
   2465 		break;
   2466 	default:
   2467 		error = EINVAL;
   2468 		goto done;
   2469 	}
   2470 
   2471 	if (argvlen < 0) {
   2472 		error = EIO;
   2473 		goto done;
   2474 	}
   2475 
   2476 
   2477 	/*
   2478 	 * Now copy each string.
   2479 	 */
   2480 	len = 0; /* bytes written to user buffer */
   2481 	loaded = 0; /* bytes from argv already processed */
   2482 	i = 0; /* To make compiler happy */
   2483 	entry_len = PROC_PTRSZ(p);
   2484 
   2485 	for (; argvlen; --argvlen) {
   2486 		int finished = 0;
   2487 		vaddr_t base;
   2488 		size_t xlen;
   2489 		int j;
   2490 
   2491 		if (loaded == 0) {
   2492 			size_t rem = entry_len * argvlen;
   2493 			loaded = MIN(rem, PAGE_SIZE);
   2494 			error = copyin_vmspace(vmspace,
   2495 			    (const void *)user_argv, argv, loaded);
   2496 			if (error)
   2497 				break;
   2498 			user_argv += loaded;
   2499 			i = 0;
   2500 		}
   2501 
   2502 #if !defined(_RUMPKERNEL)
   2503 		if (p->p_flag & PK_32)
   2504 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2505 			    (argv, i++), 0, base);
   2506 		else
   2507 #endif /* !defined(_RUMPKERNEL) */
   2508 			base = (vaddr_t)argv[i++];
   2509 		loaded -= entry_len;
   2510 
   2511 		/*
   2512 		 * The program has messed around with its arguments,
   2513 		 * possibly deleting some, and replacing them with
   2514 		 * NULL's. Treat this as the last argument and not
   2515 		 * a failure.
   2516 		 */
   2517 		if (base == 0)
   2518 			break;
   2519 
   2520 		while (!finished) {
   2521 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2522 
   2523 			aiov.iov_base = arg;
   2524 			aiov.iov_len = PAGE_SIZE;
   2525 			auio.uio_iov = &aiov;
   2526 			auio.uio_iovcnt = 1;
   2527 			auio.uio_offset = base;
   2528 			auio.uio_resid = xlen;
   2529 			auio.uio_rw = UIO_READ;
   2530 			UIO_SETUP_SYSSPACE(&auio);
   2531 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2532 			if (error)
   2533 				goto done;
   2534 
   2535 			/* Look for the end of the string */
   2536 			for (j = 0; j < xlen; j++) {
   2537 				if (arg[j] == '\0') {
   2538 					xlen = j + 1;
   2539 					finished = 1;
   2540 					break;
   2541 				}
   2542 			}
   2543 
   2544 			/* Check for user buffer overflow */
   2545 			if (len + xlen > *limit) {
   2546 				finished = 1;
   2547 				if (len > *limit)
   2548 					xlen = 0;
   2549 				else
   2550 					xlen = *limit - len;
   2551 			}
   2552 
   2553 			/* Copyout the page */
   2554 			error = (*cb)(cookie, arg, len, xlen);
   2555 			if (error)
   2556 				goto done;
   2557 
   2558 			len += xlen;
   2559 			base += xlen;
   2560 		}
   2561 	}
   2562 	*limit = len;
   2563 
   2564 done:
   2565 	kmem_free(argv, PAGE_SIZE);
   2566 	kmem_free(arg, PAGE_SIZE);
   2567 	uvmspace_free(vmspace);
   2568 	return error;
   2569 }
   2570 
   2571 /*
   2572  * Fill in a proc structure for the specified process.
   2573  */
   2574 static void
   2575 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2576 {
   2577 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
   2578 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
   2579 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
   2580 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
   2581 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
   2582 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2583 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2584 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
   2585 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
   2586 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2587 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
   2588 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
   2589 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2590 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2591 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
   2592 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2593 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
   2594 	p->p_exitsig = psrc->p_exitsig;
   2595 	p->p_flag = psrc->p_flag;
   2596 	p->p_sflag = psrc->p_sflag;
   2597 	p->p_slflag = psrc->p_slflag;
   2598 	p->p_lflag = psrc->p_lflag;
   2599 	p->p_stflag = psrc->p_stflag;
   2600 	p->p_stat = psrc->p_stat;
   2601 	p->p_trace_enabled = psrc->p_trace_enabled;
   2602 	p->p_pid = psrc->p_pid;
   2603 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
   2604 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
   2605 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
   2606 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
   2607 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
   2608 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
   2609 	p->p_nlwps = psrc->p_nlwps;
   2610 	p->p_nzlwps = psrc->p_nzlwps;
   2611 	p->p_nrlwps = psrc->p_nrlwps;
   2612 	p->p_nlwpwait = psrc->p_nlwpwait;
   2613 	p->p_ndlwps = psrc->p_ndlwps;
   2614 	p->p_nstopchild = psrc->p_nstopchild;
   2615 	p->p_waited = psrc->p_waited;
   2616 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2617 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2618 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2619 	p->p_estcpu = psrc->p_estcpu;
   2620 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2621 	p->p_forktime = psrc->p_forktime;
   2622 	p->p_pctcpu = psrc->p_pctcpu;
   2623 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
   2624 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
   2625 	p->p_rtime = psrc->p_rtime;
   2626 	p->p_uticks = psrc->p_uticks;
   2627 	p->p_sticks = psrc->p_sticks;
   2628 	p->p_iticks = psrc->p_iticks;
   2629 	p->p_xutime = psrc->p_xutime;
   2630 	p->p_xstime = psrc->p_xstime;
   2631 	p->p_traceflag = psrc->p_traceflag;
   2632 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
   2633 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
   2634 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
   2635 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2636 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
   2637 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
   2638 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2639 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
   2640 	    allowaddr);
   2641 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
   2642 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2643 	p->p_ppid = psrc->p_ppid;
   2644 	p->p_oppid = psrc->p_oppid;
   2645 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
   2646 	p->p_sigctx = psrc->p_sigctx;
   2647 	p->p_nice = psrc->p_nice;
   2648 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2649 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2650 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2651 	p->p_pax = psrc->p_pax;
   2652 	p->p_xexit = psrc->p_xexit;
   2653 	p->p_xsig = psrc->p_xsig;
   2654 	p->p_acflag = psrc->p_acflag;
   2655 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
   2656 	p->p_stackbase = psrc->p_stackbase;
   2657 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2658 }
   2659 
   2660 /*
   2661  * Fill in an eproc structure for the specified process.
   2662  */
   2663 void
   2664 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2665 {
   2666 	struct tty *tp;
   2667 	struct lwp *l;
   2668 
   2669 	KASSERT(mutex_owned(&proc_lock));
   2670 	KASSERT(mutex_owned(p->p_lock));
   2671 
   2672 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
   2673 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
   2674 	if (p->p_cred) {
   2675 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2676 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2677 	}
   2678 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2679 		struct vmspace *vm = p->p_vmspace;
   2680 
   2681 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2682 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2683 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2684 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2685 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2686 
   2687 		/* Pick the primary (first) LWP */
   2688 		l = proc_active_lwp(p);
   2689 		KASSERT(l != NULL);
   2690 		lwp_lock(l);
   2691 		if (l->l_wchan)
   2692 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2693 		lwp_unlock(l);
   2694 	}
   2695 	ep->e_ppid = p->p_ppid;
   2696 	if (p->p_pgrp && p->p_session) {
   2697 		ep->e_pgid = p->p_pgrp->pg_id;
   2698 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2699 		ep->e_sid = p->p_session->s_sid;
   2700 		if ((p->p_lflag & PL_CONTROLT) &&
   2701 		    (tp = p->p_session->s_ttyp)) {
   2702 			ep->e_tdev = tp->t_dev;
   2703 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2704 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
   2705 		} else
   2706 			ep->e_tdev = (uint32_t)NODEV;
   2707 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2708 		if (SESS_LEADER(p))
   2709 			ep->e_flag |= EPROC_SLEADER;
   2710 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2711 	}
   2712 	ep->e_xsize = ep->e_xrssize = 0;
   2713 	ep->e_xccount = ep->e_xswrss = 0;
   2714 }
   2715 
   2716 /*
   2717  * Fill in a kinfo_proc2 structure for the specified process.
   2718  */
   2719 void
   2720 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2721 {
   2722 	struct tty *tp;
   2723 	struct lwp *l, *l2;
   2724 	struct timeval ut, st, rt;
   2725 	sigset_t ss1, ss2;
   2726 	struct rusage ru;
   2727 	struct vmspace *vm;
   2728 
   2729 	KASSERT(mutex_owned(&proc_lock));
   2730 	KASSERT(mutex_owned(p->p_lock));
   2731 
   2732 	sigemptyset(&ss1);
   2733 	sigemptyset(&ss2);
   2734 
   2735 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2736 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2737 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2738 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2739 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2740 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2741 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2742 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2743 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2744 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2745 	ki->p_eflag = 0;
   2746 	ki->p_exitsig = p->p_exitsig;
   2747 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2748 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2749 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2750 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2751 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2752 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2753 	ki->p_pid = p->p_pid;
   2754 	ki->p_ppid = p->p_ppid;
   2755 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2756 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2757 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2758 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2759 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2760 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2761 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2762 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2763 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2764 	    UIO_SYSSPACE);
   2765 
   2766 	ki->p_uticks = p->p_uticks;
   2767 	ki->p_sticks = p->p_sticks;
   2768 	ki->p_iticks = p->p_iticks;
   2769 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2770 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2771 	ki->p_traceflag = p->p_traceflag;
   2772 
   2773 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2774 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2775 
   2776 	ki->p_cpticks = 0;
   2777 	ki->p_pctcpu = p->p_pctcpu;
   2778 	ki->p_estcpu = 0;
   2779 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2780 	ki->p_realstat = p->p_stat;
   2781 	ki->p_nice = p->p_nice;
   2782 	ki->p_xstat = P_WAITSTATUS(p);
   2783 	ki->p_acflag = p->p_acflag;
   2784 
   2785 	strncpy(ki->p_comm, p->p_comm,
   2786 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2787 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2788 
   2789 	ki->p_nlwps = p->p_nlwps;
   2790 	ki->p_realflag = ki->p_flag;
   2791 
   2792 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2793 		vm = p->p_vmspace;
   2794 		ki->p_vm_rssize = vm_resident_count(vm);
   2795 		ki->p_vm_tsize = vm->vm_tsize;
   2796 		ki->p_vm_dsize = vm->vm_dsize;
   2797 		ki->p_vm_ssize = vm->vm_ssize;
   2798 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2799 		/*
   2800 		 * Since the stack is initially mapped mostly with
   2801 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2802 		 * to skip the unused stack portion.
   2803 		 */
   2804 		ki->p_vm_msize =
   2805 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2806 
   2807 		/* Pick the primary (first) LWP */
   2808 		l = proc_active_lwp(p);
   2809 		KASSERT(l != NULL);
   2810 		lwp_lock(l);
   2811 		ki->p_nrlwps = p->p_nrlwps;
   2812 		ki->p_forw = 0;
   2813 		ki->p_back = 0;
   2814 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2815 		ki->p_stat = l->l_stat;
   2816 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2817 		ki->p_swtime = l->l_swtime;
   2818 		ki->p_slptime = l->l_slptime;
   2819 		if (l->l_stat == LSONPROC)
   2820 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2821 		else
   2822 			ki->p_schedflags = 0;
   2823 		ki->p_priority = lwp_eprio(l);
   2824 		ki->p_usrpri = l->l_priority;
   2825 		if (l->l_wchan)
   2826 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2827 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2828 		ki->p_cpuid = cpu_index(l->l_cpu);
   2829 		lwp_unlock(l);
   2830 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2831 			/* This is hardly correct, but... */
   2832 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2833 			sigplusset(&l->l_sigmask, &ss2);
   2834 			ki->p_cpticks += l->l_cpticks;
   2835 			ki->p_pctcpu += l->l_pctcpu;
   2836 			ki->p_estcpu += l->l_estcpu;
   2837 		}
   2838 	}
   2839 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2840 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2841 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2842 
   2843 	if (p->p_session != NULL) {
   2844 		ki->p_sid = p->p_session->s_sid;
   2845 		ki->p__pgid = p->p_pgrp->pg_id;
   2846 		if (p->p_session->s_ttyvp)
   2847 			ki->p_eflag |= EPROC_CTTY;
   2848 		if (SESS_LEADER(p))
   2849 			ki->p_eflag |= EPROC_SLEADER;
   2850 		strncpy(ki->p_login, p->p_session->s_login,
   2851 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2852 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2853 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2854 			ki->p_tdev = tp->t_dev;
   2855 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2856 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2857 			    allowaddr);
   2858 		} else {
   2859 			ki->p_tdev = (int32_t)NODEV;
   2860 		}
   2861 	}
   2862 
   2863 	if (!P_ZOMBIE(p) && !zombie) {
   2864 		ki->p_uvalid = 1;
   2865 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2866 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2867 
   2868 		calcru(p, &ut, &st, NULL, &rt);
   2869 		ki->p_rtime_sec = rt.tv_sec;
   2870 		ki->p_rtime_usec = rt.tv_usec;
   2871 		ki->p_uutime_sec = ut.tv_sec;
   2872 		ki->p_uutime_usec = ut.tv_usec;
   2873 		ki->p_ustime_sec = st.tv_sec;
   2874 		ki->p_ustime_usec = st.tv_usec;
   2875 
   2876 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2877 		ki->p_uru_nvcsw = 0;
   2878 		ki->p_uru_nivcsw = 0;
   2879 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2880 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2881 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2882 			ruadd(&ru, &l2->l_ru);
   2883 		}
   2884 		ki->p_uru_maxrss = ru.ru_maxrss;
   2885 		ki->p_uru_ixrss = ru.ru_ixrss;
   2886 		ki->p_uru_idrss = ru.ru_idrss;
   2887 		ki->p_uru_isrss = ru.ru_isrss;
   2888 		ki->p_uru_minflt = ru.ru_minflt;
   2889 		ki->p_uru_majflt = ru.ru_majflt;
   2890 		ki->p_uru_nswap = ru.ru_nswap;
   2891 		ki->p_uru_inblock = ru.ru_inblock;
   2892 		ki->p_uru_oublock = ru.ru_oublock;
   2893 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2894 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2895 		ki->p_uru_nsignals = ru.ru_nsignals;
   2896 
   2897 		timeradd(&p->p_stats->p_cru.ru_utime,
   2898 			 &p->p_stats->p_cru.ru_stime, &ut);
   2899 		ki->p_uctime_sec = ut.tv_sec;
   2900 		ki->p_uctime_usec = ut.tv_usec;
   2901 	}
   2902 }
   2903 
   2904 
   2905 int
   2906 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2907 {
   2908 	int error;
   2909 
   2910 	mutex_enter(&proc_lock);
   2911 	if (pid == -1)
   2912 		*p = l->l_proc;
   2913 	else
   2914 		*p = proc_find(pid);
   2915 
   2916 	if (*p == NULL) {
   2917 		if (pid != -1)
   2918 			mutex_exit(&proc_lock);
   2919 		return ESRCH;
   2920 	}
   2921 	if (pid != -1)
   2922 		mutex_enter((*p)->p_lock);
   2923 	mutex_exit(&proc_lock);
   2924 
   2925 	error = kauth_authorize_process(l->l_cred,
   2926 	    KAUTH_PROCESS_CANSEE, *p,
   2927 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2928 	if (error) {
   2929 		if (pid != -1)
   2930 			mutex_exit((*p)->p_lock);
   2931 	}
   2932 	return error;
   2933 }
   2934 
   2935 static int
   2936 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2937 {
   2938 	int error;
   2939 	struct proc *p;
   2940 
   2941 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2942 		return error;
   2943 
   2944 	if (p->p_path == NULL) {
   2945 		if (pid != -1)
   2946 			mutex_exit(p->p_lock);
   2947 		return ENOENT;
   2948 	}
   2949 
   2950 	size_t len = strlen(p->p_path) + 1;
   2951 	if (oldp != NULL) {
   2952 		size_t copylen = uimin(len, *oldlenp);
   2953 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2954 		if (error == 0 && *oldlenp < len)
   2955 			error = ENOSPC;
   2956 	}
   2957 	*oldlenp = len;
   2958 	if (pid != -1)
   2959 		mutex_exit(p->p_lock);
   2960 	return error;
   2961 }
   2962 
   2963 static int
   2964 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2965 {
   2966 	int error;
   2967 	struct proc *p;
   2968 	char *path;
   2969 	char *bp, *bend;
   2970 	struct cwdinfo *cwdi;
   2971 	struct vnode *vp;
   2972 	size_t len, lenused;
   2973 
   2974 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2975 		return error;
   2976 
   2977 	len = MAXPATHLEN * 4;
   2978 
   2979 	path = kmem_alloc(len, KM_SLEEP);
   2980 
   2981 	bp = &path[len];
   2982 	bend = bp;
   2983 	*(--bp) = '\0';
   2984 
   2985 	cwdi = p->p_cwdi;
   2986 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   2987 	vp = cwdi->cwdi_cdir;
   2988 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   2989 	rw_exit(&cwdi->cwdi_lock);
   2990 
   2991 	if (error)
   2992 		goto out;
   2993 
   2994 	lenused = bend - bp;
   2995 
   2996 	if (oldp != NULL) {
   2997 		size_t copylen = uimin(lenused, *oldlenp);
   2998 		error = sysctl_copyout(l, bp, oldp, copylen);
   2999 		if (error == 0 && *oldlenp < lenused)
   3000 			error = ENOSPC;
   3001 	}
   3002 	*oldlenp = lenused;
   3003 out:
   3004 	if (pid != -1)
   3005 		mutex_exit(p->p_lock);
   3006 	kmem_free(path, len);
   3007 	return error;
   3008 }
   3009 
   3010 int
   3011 proc_getauxv(struct proc *p, void **buf, size_t *len)
   3012 {
   3013 	struct ps_strings pss;
   3014 	int error;
   3015 	void *uauxv, *kauxv;
   3016 	size_t size;
   3017 
   3018 	if ((error = copyin_psstrings(p, &pss)) != 0)
   3019 		return error;
   3020 	if (pss.ps_envstr == NULL)
   3021 		return EIO;
   3022 
   3023 	size = p->p_execsw->es_arglen;
   3024 	if (size == 0)
   3025 		return EIO;
   3026 
   3027 	size_t ptrsz = PROC_PTRSZ(p);
   3028 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   3029 
   3030 	kauxv = kmem_alloc(size, KM_SLEEP);
   3031 
   3032 	error = copyin_proc(p, uauxv, kauxv, size);
   3033 	if (error) {
   3034 		kmem_free(kauxv, size);
   3035 		return error;
   3036 	}
   3037 
   3038 	*buf = kauxv;
   3039 	*len = size;
   3040 
   3041 	return 0;
   3042 }
   3043 
   3044 
   3045 static int
   3046 sysctl_security_expose_address(SYSCTLFN_ARGS)
   3047 {
   3048 	int expose_address, error;
   3049 	struct sysctlnode node;
   3050 
   3051 	node = *rnode;
   3052 	node.sysctl_data = &expose_address;
   3053 	expose_address = *(int *)rnode->sysctl_data;
   3054 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3055 	if (error || newp == NULL)
   3056 		return error;
   3057 
   3058 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3059 	    0, NULL, NULL, NULL))
   3060 		return EPERM;
   3061 
   3062 	switch (expose_address) {
   3063 	case 0:
   3064 	case 1:
   3065 	case 2:
   3066 		break;
   3067 	default:
   3068 		return EINVAL;
   3069 	}
   3070 
   3071 	*(int *)rnode->sysctl_data = expose_address;
   3072 
   3073 	return 0;
   3074 }
   3075 
   3076 bool
   3077 get_expose_address(struct proc *p)
   3078 {
   3079 	/* allow only if sysctl variable is set or privileged */
   3080 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3081 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3082 }
   3083