kern_proc.c revision 1.261.2.1 1 /* $NetBSD: kern_proc.c,v 1.261.2.1 2021/01/03 16:35:04 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.261.2.1 2021/01/03 16:35:04 thorpej Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109 #include <sys/futex.h>
110 #include <sys/pserialize.h>
111
112 #include <uvm/uvm_extern.h>
113
114 /*
115 * Process lists.
116 */
117
118 struct proclist allproc __cacheline_aligned;
119 struct proclist zombproc __cacheline_aligned;
120
121 kmutex_t proc_lock __cacheline_aligned;
122 static pserialize_t proc_psz;
123
124 /*
125 * pid to lwp/proc lookup is done by indexing the pid_table array.
126 * Since pid numbers are only allocated when an empty slot
127 * has been found, there is no need to search any lists ever.
128 * (an orphaned pgrp will lock the slot, a session will lock
129 * the pgrp with the same number.)
130 * If the table is too small it is reallocated with twice the
131 * previous size and the entries 'unzipped' into the two halves.
132 * A linked list of free entries is passed through the pt_lwp
133 * field of 'free' items - set odd to be an invalid ptr. Two
134 * additional bits are also used to indicate if the slot is
135 * currently occupied by a proc or lwp, and if the PID is
136 * hidden from certain kinds of lookups. We thus require a
137 * minimum alignment for proc and lwp structures (LWPs are
138 * at least 32-byte aligned).
139 */
140
141 struct pid_table {
142 uintptr_t pt_slot;
143 struct pgrp *pt_pgrp;
144 pid_t pt_pid;
145 };
146
147 #define PT_F_FREE ((uintptr_t)__BIT(0))
148 #define PT_F_LWP 0 /* pseudo-flag */
149 #define PT_F_PROC ((uintptr_t)__BIT(1))
150
151 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
152 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
153
154 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
155 #define PT_RESERVED(s) ((s) == 0)
156 #define PT_NEXT(s) ((u_int)(s) >> 1)
157 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
158 #define PT_SET_LWP(l) ((uintptr_t)(l))
159 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
160 #define PT_SET_RESERVED 0
161 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
162 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
163 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
164 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
165 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
166
167 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
168
169 /*
170 * Table of process IDs (PIDs).
171 */
172 static struct pid_table *pid_table __read_mostly;
173
174 #define INITIAL_PID_TABLE_SIZE (1 << 5)
175
176 /* Table mask, threshold for growing and number of allocated PIDs. */
177 static u_int pid_tbl_mask __read_mostly;
178 static u_int pid_alloc_lim __read_mostly;
179 static u_int pid_alloc_cnt __cacheline_aligned;
180
181 /* Next free, last free and maximum PIDs. */
182 static u_int next_free_pt __cacheline_aligned;
183 static u_int last_free_pt __cacheline_aligned;
184 static pid_t pid_max __read_mostly;
185
186 /* Components of the first process -- never freed. */
187
188 extern struct emul emul_netbsd; /* defined in kern_exec.c */
189
190 struct session session0 = {
191 .s_count = 1,
192 .s_sid = 0,
193 };
194 struct pgrp pgrp0 = {
195 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
196 .pg_session = &session0,
197 };
198 filedesc_t filedesc0;
199 struct cwdinfo cwdi0 = {
200 .cwdi_cmask = CMASK,
201 .cwdi_refcnt = 1,
202 };
203 struct plimit limit0;
204 struct pstats pstat0;
205 struct vmspace vmspace0;
206 struct sigacts sigacts0;
207 struct proc proc0 = {
208 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
209 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
210 .p_nlwps = 1,
211 .p_nrlwps = 1,
212 .p_pgrp = &pgrp0,
213 .p_comm = "system",
214 /*
215 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
216 * when they exit. init(8) can easily wait them out for us.
217 */
218 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
219 .p_stat = SACTIVE,
220 .p_nice = NZERO,
221 .p_emul = &emul_netbsd,
222 .p_cwdi = &cwdi0,
223 .p_limit = &limit0,
224 .p_fd = &filedesc0,
225 .p_vmspace = &vmspace0,
226 .p_stats = &pstat0,
227 .p_sigacts = &sigacts0,
228 #ifdef PROC0_MD_INITIALIZERS
229 PROC0_MD_INITIALIZERS
230 #endif
231 };
232 kauth_cred_t cred0;
233
234 static const int nofile = NOFILE;
235 static const int maxuprc = MAXUPRC;
236
237 static int sysctl_doeproc(SYSCTLFN_PROTO);
238 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
239 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
240
241 #ifdef KASLR
242 static int kern_expose_address = 0;
243 #else
244 static int kern_expose_address = 1;
245 #endif
246 /*
247 * The process list descriptors, used during pid allocation and
248 * by sysctl. No locking on this data structure is needed since
249 * it is completely static.
250 */
251 const struct proclist_desc proclists[] = {
252 { &allproc },
253 { &zombproc },
254 { NULL },
255 };
256
257 static struct pgrp * pg_remove(pid_t);
258 static void pg_delete(pid_t);
259 static void orphanpg(struct pgrp *);
260
261 static specificdata_domain_t proc_specificdata_domain;
262
263 static pool_cache_t proc_cache;
264
265 static kauth_listener_t proc_listener;
266
267 static void fill_proc(const struct proc *, struct proc *, bool);
268 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
269 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
270
271 static int
272 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
273 void *arg0, void *arg1, void *arg2, void *arg3)
274 {
275 struct proc *p;
276 int result;
277
278 result = KAUTH_RESULT_DEFER;
279 p = arg0;
280
281 switch (action) {
282 case KAUTH_PROCESS_CANSEE: {
283 enum kauth_process_req req;
284
285 req = (enum kauth_process_req)(uintptr_t)arg1;
286
287 switch (req) {
288 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
289 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
290 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
291 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
292 result = KAUTH_RESULT_ALLOW;
293 break;
294
295 case KAUTH_REQ_PROCESS_CANSEE_ENV:
296 if (kauth_cred_getuid(cred) !=
297 kauth_cred_getuid(p->p_cred) ||
298 kauth_cred_getuid(cred) !=
299 kauth_cred_getsvuid(p->p_cred))
300 break;
301
302 result = KAUTH_RESULT_ALLOW;
303
304 break;
305
306 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
307 if (!kern_expose_address)
308 break;
309
310 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
311 break;
312
313 result = KAUTH_RESULT_ALLOW;
314
315 break;
316
317 default:
318 break;
319 }
320
321 break;
322 }
323
324 case KAUTH_PROCESS_FORK: {
325 int lnprocs = (int)(unsigned long)arg2;
326
327 /*
328 * Don't allow a nonprivileged user to use the last few
329 * processes. The variable lnprocs is the current number of
330 * processes, maxproc is the limit.
331 */
332 if (__predict_false((lnprocs >= maxproc - 5)))
333 break;
334
335 result = KAUTH_RESULT_ALLOW;
336
337 break;
338 }
339
340 case KAUTH_PROCESS_CORENAME:
341 case KAUTH_PROCESS_STOPFLAG:
342 if (proc_uidmatch(cred, p->p_cred) == 0)
343 result = KAUTH_RESULT_ALLOW;
344
345 break;
346
347 default:
348 break;
349 }
350
351 return result;
352 }
353
354 static int
355 proc_ctor(void *arg __unused, void *obj, int flags __unused)
356 {
357 memset(obj, 0, sizeof(struct proc));
358 return 0;
359 }
360
361 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
362
363 /*
364 * Initialize global process hashing structures.
365 */
366 void
367 procinit(void)
368 {
369 const struct proclist_desc *pd;
370 u_int i;
371 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
372
373 for (pd = proclists; pd->pd_list != NULL; pd++)
374 LIST_INIT(pd->pd_list);
375
376 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
377
378 proc_psz = pserialize_create();
379
380 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
381 * sizeof(struct pid_table), KM_SLEEP);
382 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
383 pid_max = PID_MAX;
384
385 /* Set free list running through table...
386 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
387 for (i = 0; i <= pid_tbl_mask; i++) {
388 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
389 pid_table[i].pt_pgrp = 0;
390 pid_table[i].pt_pid = 0;
391 }
392 /* slot 0 is just grabbed */
393 next_free_pt = 1;
394 /* Need to fix last entry. */
395 last_free_pt = pid_tbl_mask;
396 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
397 /* point at which we grow table - to avoid reusing pids too often */
398 pid_alloc_lim = pid_tbl_mask - 1;
399 #undef LINK_EMPTY
400
401 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
402 mutex_enter(&proc_lock);
403 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
404 panic("failed to reserve PID 1 for init(8)");
405 mutex_exit(&proc_lock);
406
407 proc_specificdata_domain = specificdata_domain_create();
408 KASSERT(proc_specificdata_domain != NULL);
409
410 size_t proc_alignment = coherency_unit;
411 if (proc_alignment < MIN_PROC_ALIGNMENT)
412 proc_alignment = MIN_PROC_ALIGNMENT;
413
414 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
415 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
416
417 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
418 proc_listener_cb, NULL);
419 }
420
421 void
422 procinit_sysctl(void)
423 {
424 static struct sysctllog *clog;
425
426 sysctl_createv(&clog, 0, NULL, NULL,
427 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
428 CTLTYPE_INT, "expose_address",
429 SYSCTL_DESCR("Enable exposing kernel addresses"),
430 sysctl_security_expose_address, 0,
431 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
432 sysctl_createv(&clog, 0, NULL, NULL,
433 CTLFLAG_PERMANENT,
434 CTLTYPE_NODE, "proc",
435 SYSCTL_DESCR("System-wide process information"),
436 sysctl_doeproc, 0, NULL, 0,
437 CTL_KERN, KERN_PROC, CTL_EOL);
438 sysctl_createv(&clog, 0, NULL, NULL,
439 CTLFLAG_PERMANENT,
440 CTLTYPE_NODE, "proc2",
441 SYSCTL_DESCR("Machine-independent process information"),
442 sysctl_doeproc, 0, NULL, 0,
443 CTL_KERN, KERN_PROC2, CTL_EOL);
444 sysctl_createv(&clog, 0, NULL, NULL,
445 CTLFLAG_PERMANENT,
446 CTLTYPE_NODE, "proc_args",
447 SYSCTL_DESCR("Process argument information"),
448 sysctl_kern_proc_args, 0, NULL, 0,
449 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
450
451 /*
452 "nodes" under these:
453
454 KERN_PROC_ALL
455 KERN_PROC_PID pid
456 KERN_PROC_PGRP pgrp
457 KERN_PROC_SESSION sess
458 KERN_PROC_TTY tty
459 KERN_PROC_UID uid
460 KERN_PROC_RUID uid
461 KERN_PROC_GID gid
462 KERN_PROC_RGID gid
463
464 all in all, probably not worth the effort...
465 */
466 }
467
468 /*
469 * Initialize process 0.
470 */
471 void
472 proc0_init(void)
473 {
474 struct proc *p;
475 struct pgrp *pg;
476 struct rlimit *rlim;
477 rlim_t lim;
478 int i;
479
480 p = &proc0;
481 pg = &pgrp0;
482
483 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
484 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
485 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
486
487 rw_init(&p->p_reflock);
488 cv_init(&p->p_waitcv, "wait");
489 cv_init(&p->p_lwpcv, "lwpwait");
490
491 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
492
493 KASSERT(lwp0.l_lid == 0);
494 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
495 LIST_INSERT_HEAD(&allproc, p, p_list);
496
497 pid_table[lwp0.l_lid].pt_pgrp = pg;
498 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
499
500 #ifdef __HAVE_SYSCALL_INTERN
501 (*p->p_emul->e_syscall_intern)(p);
502 #endif
503
504 /* Create credentials. */
505 cred0 = kauth_cred_alloc();
506 p->p_cred = cred0;
507
508 /* Create the CWD info. */
509 rw_init(&cwdi0.cwdi_lock);
510
511 /* Create the limits structures. */
512 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
513
514 rlim = limit0.pl_rlimit;
515 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
516 rlim[i].rlim_cur = RLIM_INFINITY;
517 rlim[i].rlim_max = RLIM_INFINITY;
518 }
519
520 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
521 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
522
523 rlim[RLIMIT_NPROC].rlim_max = maxproc;
524 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
525
526 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
527 rlim[RLIMIT_RSS].rlim_max = lim;
528 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
529 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
530
531 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
532 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
533
534 /* Note that default core name has zero length. */
535 limit0.pl_corename = defcorename;
536 limit0.pl_cnlen = 0;
537 limit0.pl_refcnt = 1;
538 limit0.pl_writeable = false;
539 limit0.pl_sv_limit = NULL;
540
541 /* Configure virtual memory system, set vm rlimits. */
542 uvm_init_limits(p);
543
544 /* Initialize file descriptor table for proc0. */
545 fd_init(&filedesc0);
546
547 /*
548 * Initialize proc0's vmspace, which uses the kernel pmap.
549 * All kernel processes (which never have user space mappings)
550 * share proc0's vmspace, and thus, the kernel pmap.
551 */
552 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
553 trunc_page(VM_MAXUSER_ADDRESS),
554 #ifdef __USE_TOPDOWN_VM
555 true
556 #else
557 false
558 #endif
559 );
560
561 /* Initialize signal state for proc0. XXX IPL_SCHED */
562 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
563 siginit(p);
564
565 proc_initspecific(p);
566 kdtrace_proc_ctor(NULL, p);
567 }
568
569 /*
570 * Session reference counting.
571 */
572
573 void
574 proc_sesshold(struct session *ss)
575 {
576
577 KASSERT(mutex_owned(&proc_lock));
578 ss->s_count++;
579 }
580
581 void
582 proc_sessrele(struct session *ss)
583 {
584 struct pgrp *pg;
585
586 KASSERT(mutex_owned(&proc_lock));
587 KASSERT(ss->s_count > 0);
588
589 /*
590 * We keep the pgrp with the same id as the session in order to
591 * stop a process being given the same pid. Since the pgrp holds
592 * a reference to the session, it must be a 'zombie' pgrp by now.
593 */
594 if (--ss->s_count == 0) {
595 pg = pg_remove(ss->s_sid);
596 } else {
597 pg = NULL;
598 ss = NULL;
599 }
600
601 mutex_exit(&proc_lock);
602
603 if (pg)
604 kmem_free(pg, sizeof(struct pgrp));
605 if (ss)
606 kmem_free(ss, sizeof(struct session));
607 }
608
609 /*
610 * Check that the specified process group is in the session of the
611 * specified process.
612 * Treats -ve ids as process ids.
613 * Used to validate TIOCSPGRP requests.
614 */
615 int
616 pgid_in_session(struct proc *p, pid_t pg_id)
617 {
618 struct pgrp *pgrp;
619 struct session *session;
620 int error;
621
622 if (pg_id == INT_MIN)
623 return EINVAL;
624
625 mutex_enter(&proc_lock);
626 if (pg_id < 0) {
627 struct proc *p1 = proc_find(-pg_id);
628 if (p1 == NULL) {
629 error = EINVAL;
630 goto fail;
631 }
632 pgrp = p1->p_pgrp;
633 } else {
634 pgrp = pgrp_find(pg_id);
635 if (pgrp == NULL) {
636 error = EINVAL;
637 goto fail;
638 }
639 }
640 session = pgrp->pg_session;
641 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
642 fail:
643 mutex_exit(&proc_lock);
644 return error;
645 }
646
647 /*
648 * p_inferior: is p an inferior of q?
649 */
650 static inline bool
651 p_inferior(struct proc *p, struct proc *q)
652 {
653
654 KASSERT(mutex_owned(&proc_lock));
655
656 for (; p != q; p = p->p_pptr)
657 if (p->p_pid == 0)
658 return false;
659 return true;
660 }
661
662 /*
663 * proc_find_lwp: locate an lwp in said proc by the ID.
664 *
665 * => Must be called with p::p_lock held.
666 * => LSIDL lwps are not returned because they are only partially
667 * constructed while occupying the slot.
668 * => Callers need to be careful about lwp::l_stat of the returned
669 * lwp.
670 */
671 struct lwp *
672 proc_find_lwp(proc_t *p, pid_t pid)
673 {
674 struct pid_table *pt;
675 struct lwp *l = NULL;
676 uintptr_t slot;
677 int s;
678
679 KASSERT(mutex_owned(p->p_lock));
680
681 /*
682 * Look in the pid_table. This is done unlocked inside a pserialize
683 * read section covering pid_table's memory allocation only, so take
684 * care to read the slot atomically and only once. This issues a
685 * memory barrier for dependent loads on alpha.
686 */
687 s = pserialize_read_enter();
688 pt = &pid_table[pid & pid_tbl_mask];
689 slot = atomic_load_consume(&pt->pt_slot);
690 if (__predict_false(!PT_IS_LWP(slot))) {
691 pserialize_read_exit(s);
692 return NULL;
693 }
694
695 /*
696 * Check to see if the LWP is from the correct process. We won't
697 * see entries in pid_table from a prior process that also used "p",
698 * by virtue of the fact that allocating "p" means all prior updates
699 * to dependant data structures are visible to this thread.
700 */
701 l = PT_GET_LWP(slot);
702 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
703 pserialize_read_exit(s);
704 return NULL;
705 }
706
707 /*
708 * We now know that p->p_lock holds this LWP stable.
709 *
710 * If the status is not LSIDL, it means the LWP is intended to be
711 * findable by LID and l_lid cannot change behind us.
712 *
713 * No need to acquire the LWP's lock to check for LSIDL, as
714 * p->p_lock must be held to transition in and out of LSIDL.
715 * Any other observed state of is no particular interest.
716 */
717 pserialize_read_exit(s);
718 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
719 }
720
721 /*
722 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
723 *
724 * => Called in a pserialize read section with no locks held.
725 * => LSIDL lwps are not returned because they are only partially
726 * constructed while occupying the slot.
727 * => Callers need to be careful about lwp::l_stat of the returned
728 * lwp.
729 * => If an LWP is found, it's returned locked.
730 */
731 struct lwp *
732 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
733 {
734 struct pid_table *pt;
735 struct lwp *l = NULL;
736 uintptr_t slot;
737
738 KASSERT(pserialize_in_read_section());
739
740 /*
741 * Look in the pid_table. This is done unlocked inside a pserialize
742 * read section covering pid_table's memory allocation only, so take
743 * care to read the slot atomically and only once. This issues a
744 * memory barrier for dependent loads on alpha.
745 */
746 pt = &pid_table[pid & pid_tbl_mask];
747 slot = atomic_load_consume(&pt->pt_slot);
748 if (__predict_false(!PT_IS_LWP(slot))) {
749 return NULL;
750 }
751
752 /*
753 * Lock the LWP we found to get it stable. If it's embryonic or
754 * reaped (LSIDL) then none of the other fields can safely be
755 * checked.
756 */
757 l = PT_GET_LWP(slot);
758 lwp_lock(l);
759 if (__predict_false(l->l_stat == LSIDL)) {
760 lwp_unlock(l);
761 return NULL;
762 }
763
764 /*
765 * l_proc and l_lid are now known stable because the LWP is not
766 * LSIDL, so check those fields too to make sure we found the
767 * right thing.
768 */
769 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
770 lwp_unlock(l);
771 return NULL;
772 }
773
774 /* Everything checks out, return it locked. */
775 return l;
776 }
777
778 /*
779 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
780 * on its containing proc.
781 *
782 * => Similar to proc_find_lwp(), but does not require you to have
783 * the proc a priori.
784 * => Also returns proc * to caller, with p::p_lock held.
785 * => Same caveats apply.
786 */
787 struct lwp *
788 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
789 {
790 struct pid_table *pt;
791 struct proc *p = NULL;
792 struct lwp *l = NULL;
793 uintptr_t slot;
794
795 KASSERT(pp != NULL);
796 mutex_enter(&proc_lock);
797 pt = &pid_table[pid & pid_tbl_mask];
798
799 slot = pt->pt_slot;
800 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
801 l = PT_GET_LWP(slot);
802 p = l->l_proc;
803 mutex_enter(p->p_lock);
804 if (__predict_false(l->l_stat == LSIDL)) {
805 mutex_exit(p->p_lock);
806 l = NULL;
807 p = NULL;
808 }
809 }
810 mutex_exit(&proc_lock);
811
812 KASSERT(p == NULL || mutex_owned(p->p_lock));
813 *pp = p;
814 return l;
815 }
816
817 /*
818 * proc_find_raw_pid_table_locked: locate a process by the ID.
819 *
820 * => Must be called with proc_lock held.
821 */
822 static proc_t *
823 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
824 {
825 struct pid_table *pt;
826 proc_t *p = NULL;
827 uintptr_t slot;
828
829 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
830 pt = &pid_table[pid & pid_tbl_mask];
831
832 slot = pt->pt_slot;
833 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
834 /*
835 * When looking up processes, require a direct match
836 * on the PID assigned to the proc, not just one of
837 * its LWPs.
838 *
839 * N.B. We require lwp::l_proc of LSIDL LWPs to be
840 * valid here.
841 */
842 p = PT_GET_LWP(slot)->l_proc;
843 if (__predict_false(p->p_pid != pid && !any_lwpid))
844 p = NULL;
845 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
846 p = PT_GET_PROC(slot);
847 }
848 return p;
849 }
850
851 proc_t *
852 proc_find_raw(pid_t pid)
853 {
854
855 return proc_find_raw_pid_table_locked(pid, false);
856 }
857
858 static proc_t *
859 proc_find_internal(pid_t pid, bool any_lwpid)
860 {
861 proc_t *p;
862
863 KASSERT(mutex_owned(&proc_lock));
864
865 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
866 if (__predict_false(p == NULL)) {
867 return NULL;
868 }
869
870 /*
871 * Only allow live processes to be found by PID.
872 * XXX: p_stat might change, since proc unlocked.
873 */
874 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
875 return p;
876 }
877 return NULL;
878 }
879
880 proc_t *
881 proc_find(pid_t pid)
882 {
883 return proc_find_internal(pid, false);
884 }
885
886 proc_t *
887 proc_find_lwpid(pid_t pid)
888 {
889 return proc_find_internal(pid, true);
890 }
891
892 /*
893 * pgrp_find: locate a process group by the ID.
894 *
895 * => Must be called with proc_lock held.
896 */
897 struct pgrp *
898 pgrp_find(pid_t pgid)
899 {
900 struct pgrp *pg;
901
902 KASSERT(mutex_owned(&proc_lock));
903
904 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
905
906 /*
907 * Cannot look up a process group that only exists because the
908 * session has not died yet (traditional).
909 */
910 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
911 return NULL;
912 }
913 return pg;
914 }
915
916 static void
917 expand_pid_table(void)
918 {
919 size_t pt_size, tsz;
920 struct pid_table *n_pt, *new_pt;
921 uintptr_t slot;
922 struct pgrp *pgrp;
923 pid_t pid, rpid;
924 u_int i;
925 uint new_pt_mask;
926
927 KASSERT(mutex_owned(&proc_lock));
928
929 /* Unlock the pid_table briefly to allocate memory. */
930 pt_size = pid_tbl_mask + 1;
931 mutex_exit(&proc_lock);
932
933 tsz = pt_size * 2 * sizeof(struct pid_table);
934 new_pt = kmem_alloc(tsz, KM_SLEEP);
935 new_pt_mask = pt_size * 2 - 1;
936
937 /* XXX For now. The pratical limit is much lower anyway. */
938 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
939
940 mutex_enter(&proc_lock);
941 if (pt_size != pid_tbl_mask + 1) {
942 /* Another process beat us to it... */
943 mutex_exit(&proc_lock);
944 kmem_free(new_pt, tsz);
945 goto out;
946 }
947
948 /*
949 * Copy entries from old table into new one.
950 * If 'pid' is 'odd' we need to place in the upper half,
951 * even pid's to the lower half.
952 * Free items stay in the low half so we don't have to
953 * fixup the reference to them.
954 * We stuff free items on the front of the freelist
955 * because we can't write to unmodified entries.
956 * Processing the table backwards maintains a semblance
957 * of issuing pid numbers that increase with time.
958 */
959 i = pt_size - 1;
960 n_pt = new_pt + i;
961 for (; ; i--, n_pt--) {
962 slot = pid_table[i].pt_slot;
963 pgrp = pid_table[i].pt_pgrp;
964 if (!PT_VALID(slot)) {
965 /* Up 'use count' so that link is valid */
966 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
967 rpid = 0;
968 slot = PT_SET_FREE(pid);
969 if (pgrp)
970 pid = pgrp->pg_id;
971 } else {
972 pid = pid_table[i].pt_pid;
973 rpid = pid;
974 }
975
976 /* Save entry in appropriate half of table */
977 n_pt[pid & pt_size].pt_slot = slot;
978 n_pt[pid & pt_size].pt_pgrp = pgrp;
979 n_pt[pid & pt_size].pt_pid = rpid;
980
981 /* Put other piece on start of free list */
982 pid = (pid ^ pt_size) & ~pid_tbl_mask;
983 n_pt[pid & pt_size].pt_slot =
984 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
985 n_pt[pid & pt_size].pt_pgrp = 0;
986 n_pt[pid & pt_size].pt_pid = 0;
987
988 next_free_pt = i | (pid & pt_size);
989 if (i == 0)
990 break;
991 }
992
993 /* Save old table size and switch tables */
994 tsz = pt_size * sizeof(struct pid_table);
995 n_pt = pid_table;
996 pid_table = new_pt;
997 pid_tbl_mask = new_pt_mask;
998
999 /*
1000 * pid_max starts as PID_MAX (= 30000), once we have 16384
1001 * allocated pids we need it to be larger!
1002 */
1003 if (pid_tbl_mask > PID_MAX) {
1004 pid_max = pid_tbl_mask * 2 + 1;
1005 pid_alloc_lim |= pid_alloc_lim << 1;
1006 } else
1007 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1008
1009 mutex_exit(&proc_lock);
1010
1011 /*
1012 * Make sure that unlocked access to the old pid_table is complete
1013 * and then free it.
1014 */
1015 pserialize_perform(proc_psz);
1016 kmem_free(n_pt, tsz);
1017
1018 out: /* Return with proc_lock held again. */
1019 mutex_enter(&proc_lock);
1020 }
1021
1022 struct proc *
1023 proc_alloc(void)
1024 {
1025 struct proc *p;
1026
1027 p = pool_cache_get(proc_cache, PR_WAITOK);
1028 p->p_stat = SIDL; /* protect against others */
1029 proc_initspecific(p);
1030 kdtrace_proc_ctor(NULL, p);
1031
1032 /*
1033 * Allocate a placeholder in the pid_table. When we create the
1034 * first LWP for this process, it will take ownership of the
1035 * slot.
1036 */
1037 if (__predict_false(proc_alloc_pid(p) == -1)) {
1038 /* Allocating the PID failed; unwind. */
1039 proc_finispecific(p);
1040 proc_free_mem(p);
1041 p = NULL;
1042 }
1043 return p;
1044 }
1045
1046 /*
1047 * proc_alloc_pid_slot: allocate PID and record the occcupant so that
1048 * proc_find_raw() can find it by the PID.
1049 */
1050 static pid_t __noinline
1051 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1052 {
1053 struct pid_table *pt;
1054 pid_t pid;
1055 int nxt;
1056
1057 KASSERT(mutex_owned(&proc_lock));
1058
1059 for (;;expand_pid_table()) {
1060 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1061 /* ensure pids cycle through 2000+ values */
1062 continue;
1063 }
1064 /*
1065 * The first user process *must* be given PID 1.
1066 * it has already been reserved for us. This
1067 * will be coming in from the proc_alloc() call
1068 * above, and the entry will be usurped later when
1069 * the first user LWP is created.
1070 * XXX this is slightly gross.
1071 */
1072 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1073 p != &proc0)) {
1074 KASSERT(PT_IS_PROC(slot));
1075 pt = &pid_table[1];
1076 pt->pt_slot = slot;
1077 return 1;
1078 }
1079 pt = &pid_table[next_free_pt];
1080 #ifdef DIAGNOSTIC
1081 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1082 panic("proc_alloc: slot busy");
1083 #endif
1084 nxt = PT_NEXT(pt->pt_slot);
1085 if (nxt & pid_tbl_mask)
1086 break;
1087 /* Table full - expand (NB last entry not used....) */
1088 }
1089
1090 /* pid is 'saved use count' + 'size' + entry */
1091 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1092 if ((uint)pid > (uint)pid_max)
1093 pid &= pid_tbl_mask;
1094 next_free_pt = nxt & pid_tbl_mask;
1095
1096 /* XXX For now. The pratical limit is much lower anyway. */
1097 KASSERT(pid <= FUTEX_TID_MASK);
1098
1099 /* Grab table slot */
1100 pt->pt_slot = slot;
1101
1102 KASSERT(pt->pt_pid == 0);
1103 pt->pt_pid = pid;
1104 pid_alloc_cnt++;
1105
1106 return pid;
1107 }
1108
1109 pid_t
1110 proc_alloc_pid(struct proc *p)
1111 {
1112 pid_t pid;
1113
1114 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1115 KASSERT(p->p_stat == SIDL);
1116
1117 mutex_enter(&proc_lock);
1118 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1119 if (pid != -1)
1120 p->p_pid = pid;
1121 mutex_exit(&proc_lock);
1122
1123 return pid;
1124 }
1125
1126 pid_t
1127 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1128 {
1129 struct pid_table *pt;
1130 pid_t pid;
1131
1132 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1133 KASSERT(l->l_proc == p);
1134 KASSERT(l->l_stat == LSIDL);
1135
1136 /*
1137 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1138 * is globally visible before the LWP becomes visible via the
1139 * pid_table.
1140 */
1141 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1142 membar_producer();
1143 #endif
1144
1145 /*
1146 * If the slot for p->p_pid currently points to the proc,
1147 * then we should usurp this ID for the LWP. This happens
1148 * at least once per process (for the first LWP), and can
1149 * happen again if the first LWP for a process exits and
1150 * before the process creates another.
1151 */
1152 mutex_enter(&proc_lock);
1153 pid = p->p_pid;
1154 pt = &pid_table[pid & pid_tbl_mask];
1155 KASSERT(pt->pt_pid == pid);
1156 if (PT_IS_PROC(pt->pt_slot)) {
1157 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1158 l->l_lid = pid;
1159 pt->pt_slot = PT_SET_LWP(l);
1160 } else {
1161 /* Need to allocate a new slot. */
1162 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1163 if (pid != -1)
1164 l->l_lid = pid;
1165 }
1166 mutex_exit(&proc_lock);
1167
1168 return pid;
1169 }
1170
1171 static void __noinline
1172 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1173 {
1174 struct pid_table *pt;
1175
1176 pt = &pid_table[pid & pid_tbl_mask];
1177
1178 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1179 KASSERT(pt->pt_pid == pid);
1180
1181 /* save pid use count in slot */
1182 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1183 pt->pt_pid = 0;
1184
1185 if (pt->pt_pgrp == NULL) {
1186 /* link last freed entry onto ours */
1187 pid &= pid_tbl_mask;
1188 pt = &pid_table[last_free_pt];
1189 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1190 pt->pt_pid = 0;
1191 last_free_pt = pid;
1192 pid_alloc_cnt--;
1193 }
1194 }
1195
1196 /*
1197 * Free a process id - called from proc_free (in kern_exit.c)
1198 *
1199 * Called with the proc_lock held.
1200 */
1201 void
1202 proc_free_pid(pid_t pid)
1203 {
1204
1205 KASSERT(mutex_owned(&proc_lock));
1206 proc_free_pid_internal(pid, PT_F_PROC);
1207 }
1208
1209 /*
1210 * Free a process id used by an LWP. If this was the process's
1211 * first LWP, we convert the slot to point to the process; the
1212 * entry will get cleaned up later when the process finishes exiting.
1213 *
1214 * If not, then it's the same as proc_free_pid().
1215 */
1216 void
1217 proc_free_lwpid(struct proc *p, pid_t pid)
1218 {
1219
1220 KASSERT(mutex_owned(&proc_lock));
1221
1222 if (__predict_true(p->p_pid == pid)) {
1223 struct pid_table *pt;
1224
1225 pt = &pid_table[pid & pid_tbl_mask];
1226
1227 KASSERT(pt->pt_pid == pid);
1228 KASSERT(PT_IS_LWP(pt->pt_slot));
1229 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1230
1231 pt->pt_slot = PT_SET_PROC(p);
1232 return;
1233 }
1234 proc_free_pid_internal(pid, PT_F_LWP);
1235 }
1236
1237 void
1238 proc_free_mem(struct proc *p)
1239 {
1240
1241 kdtrace_proc_dtor(NULL, p);
1242 pool_cache_put(proc_cache, p);
1243 }
1244
1245 /*
1246 * proc_enterpgrp: move p to a new or existing process group (and session).
1247 *
1248 * If we are creating a new pgrp, the pgid should equal
1249 * the calling process' pid.
1250 * If is only valid to enter a process group that is in the session
1251 * of the process.
1252 * Also mksess should only be set if we are creating a process group
1253 *
1254 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1255 */
1256 int
1257 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1258 {
1259 struct pgrp *new_pgrp, *pgrp;
1260 struct session *sess;
1261 struct proc *p;
1262 int rval;
1263 pid_t pg_id = NO_PGID;
1264
1265 /* Allocate data areas we might need before doing any validity checks */
1266 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1267 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1268
1269 mutex_enter(&proc_lock);
1270 rval = EPERM; /* most common error (to save typing) */
1271
1272 /* Check pgrp exists or can be created */
1273 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1274 if (pgrp != NULL && pgrp->pg_id != pgid)
1275 goto done;
1276
1277 /* Can only set another process under restricted circumstances. */
1278 if (pid != curp->p_pid) {
1279 /* Must exist and be one of our children... */
1280 p = proc_find_internal(pid, false);
1281 if (p == NULL || !p_inferior(p, curp)) {
1282 rval = ESRCH;
1283 goto done;
1284 }
1285 /* ... in the same session... */
1286 if (sess != NULL || p->p_session != curp->p_session)
1287 goto done;
1288 /* ... existing pgid must be in same session ... */
1289 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1290 goto done;
1291 /* ... and not done an exec. */
1292 if (p->p_flag & PK_EXEC) {
1293 rval = EACCES;
1294 goto done;
1295 }
1296 } else {
1297 /* ... setsid() cannot re-enter a pgrp */
1298 if (mksess && (curp->p_pgid == curp->p_pid ||
1299 pgrp_find(curp->p_pid)))
1300 goto done;
1301 p = curp;
1302 }
1303
1304 /* Changing the process group/session of a session
1305 leader is definitely off limits. */
1306 if (SESS_LEADER(p)) {
1307 if (sess == NULL && p->p_pgrp == pgrp)
1308 /* unless it's a definite noop */
1309 rval = 0;
1310 goto done;
1311 }
1312
1313 /* Can only create a process group with id of process */
1314 if (pgrp == NULL && pgid != pid)
1315 goto done;
1316
1317 /* Can only create a session if creating pgrp */
1318 if (sess != NULL && pgrp != NULL)
1319 goto done;
1320
1321 /* Check we allocated memory for a pgrp... */
1322 if (pgrp == NULL && new_pgrp == NULL)
1323 goto done;
1324
1325 /* Don't attach to 'zombie' pgrp */
1326 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1327 goto done;
1328
1329 /* Expect to succeed now */
1330 rval = 0;
1331
1332 if (pgrp == p->p_pgrp)
1333 /* nothing to do */
1334 goto done;
1335
1336 /* Ok all setup, link up required structures */
1337
1338 if (pgrp == NULL) {
1339 pgrp = new_pgrp;
1340 new_pgrp = NULL;
1341 if (sess != NULL) {
1342 sess->s_sid = p->p_pid;
1343 sess->s_leader = p;
1344 sess->s_count = 1;
1345 sess->s_ttyvp = NULL;
1346 sess->s_ttyp = NULL;
1347 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1348 memcpy(sess->s_login, p->p_session->s_login,
1349 sizeof(sess->s_login));
1350 p->p_lflag &= ~PL_CONTROLT;
1351 } else {
1352 sess = p->p_pgrp->pg_session;
1353 proc_sesshold(sess);
1354 }
1355 pgrp->pg_session = sess;
1356 sess = NULL;
1357
1358 pgrp->pg_id = pgid;
1359 LIST_INIT(&pgrp->pg_members);
1360 #ifdef DIAGNOSTIC
1361 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1362 panic("enterpgrp: pgrp table slot in use");
1363 if (__predict_false(mksess && p != curp))
1364 panic("enterpgrp: mksession and p != curproc");
1365 #endif
1366 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1367 pgrp->pg_jobc = 0;
1368 }
1369
1370 /*
1371 * Adjust eligibility of affected pgrps to participate in job control.
1372 * Increment eligibility counts before decrementing, otherwise we
1373 * could reach 0 spuriously during the first call.
1374 */
1375 fixjobc(p, pgrp, 1);
1376 fixjobc(p, p->p_pgrp, 0);
1377
1378 /* Interlock with ttread(). */
1379 mutex_spin_enter(&tty_lock);
1380
1381 /* Move process to requested group. */
1382 LIST_REMOVE(p, p_pglist);
1383 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1384 /* defer delete until we've dumped the lock */
1385 pg_id = p->p_pgrp->pg_id;
1386 p->p_pgrp = pgrp;
1387 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1388
1389 /* Done with the swap; we can release the tty mutex. */
1390 mutex_spin_exit(&tty_lock);
1391
1392 done:
1393 if (pg_id != NO_PGID) {
1394 /* Releases proc_lock. */
1395 pg_delete(pg_id);
1396 } else {
1397 mutex_exit(&proc_lock);
1398 }
1399 if (sess != NULL)
1400 kmem_free(sess, sizeof(*sess));
1401 if (new_pgrp != NULL)
1402 kmem_free(new_pgrp, sizeof(*new_pgrp));
1403 #ifdef DEBUG_PGRP
1404 if (__predict_false(rval))
1405 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1406 pid, pgid, mksess, curp->p_pid, rval);
1407 #endif
1408 return rval;
1409 }
1410
1411 /*
1412 * proc_leavepgrp: remove a process from its process group.
1413 * => must be called with the proc_lock held, which will be released;
1414 */
1415 void
1416 proc_leavepgrp(struct proc *p)
1417 {
1418 struct pgrp *pgrp;
1419
1420 KASSERT(mutex_owned(&proc_lock));
1421
1422 /* Interlock with ttread() */
1423 mutex_spin_enter(&tty_lock);
1424 pgrp = p->p_pgrp;
1425 LIST_REMOVE(p, p_pglist);
1426 p->p_pgrp = NULL;
1427 mutex_spin_exit(&tty_lock);
1428
1429 if (LIST_EMPTY(&pgrp->pg_members)) {
1430 /* Releases proc_lock. */
1431 pg_delete(pgrp->pg_id);
1432 } else {
1433 mutex_exit(&proc_lock);
1434 }
1435 }
1436
1437 /*
1438 * pg_remove: remove a process group from the table.
1439 * => must be called with the proc_lock held;
1440 * => returns process group to free;
1441 */
1442 static struct pgrp *
1443 pg_remove(pid_t pg_id)
1444 {
1445 struct pgrp *pgrp;
1446 struct pid_table *pt;
1447
1448 KASSERT(mutex_owned(&proc_lock));
1449
1450 pt = &pid_table[pg_id & pid_tbl_mask];
1451 pgrp = pt->pt_pgrp;
1452
1453 KASSERT(pgrp != NULL);
1454 KASSERT(pgrp->pg_id == pg_id);
1455 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1456
1457 pt->pt_pgrp = NULL;
1458
1459 if (!PT_VALID(pt->pt_slot)) {
1460 /* Orphaned pgrp, put slot onto free list. */
1461 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1462 pg_id &= pid_tbl_mask;
1463 pt = &pid_table[last_free_pt];
1464 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1465 KASSERT(pt->pt_pid == 0);
1466 last_free_pt = pg_id;
1467 pid_alloc_cnt--;
1468 }
1469 return pgrp;
1470 }
1471
1472 /*
1473 * pg_delete: delete and free a process group.
1474 * => must be called with the proc_lock held, which will be released.
1475 */
1476 static void
1477 pg_delete(pid_t pg_id)
1478 {
1479 struct pgrp *pg;
1480 struct tty *ttyp;
1481 struct session *ss;
1482
1483 KASSERT(mutex_owned(&proc_lock));
1484
1485 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1486 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1487 mutex_exit(&proc_lock);
1488 return;
1489 }
1490
1491 ss = pg->pg_session;
1492
1493 /* Remove reference (if any) from tty to this process group */
1494 mutex_spin_enter(&tty_lock);
1495 ttyp = ss->s_ttyp;
1496 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1497 ttyp->t_pgrp = NULL;
1498 KASSERT(ttyp->t_session == ss);
1499 }
1500 mutex_spin_exit(&tty_lock);
1501
1502 /*
1503 * The leading process group in a session is freed by proc_sessrele(),
1504 * if last reference. It will also release the locks.
1505 */
1506 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1507 proc_sessrele(ss);
1508
1509 if (pg != NULL) {
1510 /* Free it, if was not done above. */
1511 kmem_free(pg, sizeof(struct pgrp));
1512 }
1513 }
1514
1515 /*
1516 * Adjust pgrp jobc counters when specified process changes process group.
1517 * We count the number of processes in each process group that "qualify"
1518 * the group for terminal job control (those with a parent in a different
1519 * process group of the same session). If that count reaches zero, the
1520 * process group becomes orphaned. Check both the specified process'
1521 * process group and that of its children.
1522 * entering == 0 => p is leaving specified group.
1523 * entering == 1 => p is entering specified group.
1524 *
1525 * Call with proc_lock held.
1526 */
1527 void
1528 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1529 {
1530 struct pgrp *hispgrp;
1531 struct session *mysession = pgrp->pg_session;
1532 struct proc *child;
1533
1534 KASSERT(mutex_owned(&proc_lock));
1535
1536 /*
1537 * Check p's parent to see whether p qualifies its own process
1538 * group; if so, adjust count for p's process group.
1539 */
1540 hispgrp = p->p_pptr->p_pgrp;
1541 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1542 if (entering) {
1543 pgrp->pg_jobc++;
1544 p->p_lflag &= ~PL_ORPHANPG;
1545 } else {
1546 /* KASSERT(pgrp->pg_jobc > 0); */
1547 if (--pgrp->pg_jobc == 0)
1548 orphanpg(pgrp);
1549 }
1550 }
1551
1552 /*
1553 * Check this process' children to see whether they qualify
1554 * their process groups; if so, adjust counts for children's
1555 * process groups.
1556 */
1557 LIST_FOREACH(child, &p->p_children, p_sibling) {
1558 hispgrp = child->p_pgrp;
1559 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1560 !P_ZOMBIE(child)) {
1561 if (entering) {
1562 child->p_lflag &= ~PL_ORPHANPG;
1563 hispgrp->pg_jobc++;
1564 } else {
1565 KASSERT(hispgrp->pg_jobc > 0);
1566 if (--hispgrp->pg_jobc == 0)
1567 orphanpg(hispgrp);
1568 }
1569 }
1570 }
1571 }
1572
1573 /*
1574 * A process group has become orphaned;
1575 * if there are any stopped processes in the group,
1576 * hang-up all process in that group.
1577 *
1578 * Call with proc_lock held.
1579 */
1580 static void
1581 orphanpg(struct pgrp *pg)
1582 {
1583 struct proc *p;
1584
1585 KASSERT(mutex_owned(&proc_lock));
1586
1587 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1588 if (p->p_stat == SSTOP) {
1589 p->p_lflag |= PL_ORPHANPG;
1590 psignal(p, SIGHUP);
1591 psignal(p, SIGCONT);
1592 }
1593 }
1594 }
1595
1596 #ifdef DDB
1597 #include <ddb/db_output.h>
1598 void pidtbl_dump(void);
1599 void
1600 pidtbl_dump(void)
1601 {
1602 struct pid_table *pt;
1603 struct proc *p;
1604 struct pgrp *pgrp;
1605 uintptr_t slot;
1606 int id;
1607
1608 db_printf("pid table %p size %x, next %x, last %x\n",
1609 pid_table, pid_tbl_mask+1,
1610 next_free_pt, last_free_pt);
1611 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1612 slot = pt->pt_slot;
1613 if (!PT_VALID(slot) && !pt->pt_pgrp)
1614 continue;
1615 if (PT_IS_LWP(slot)) {
1616 p = PT_GET_LWP(slot)->l_proc;
1617 } else if (PT_IS_PROC(slot)) {
1618 p = PT_GET_PROC(slot);
1619 } else {
1620 p = NULL;
1621 }
1622 db_printf(" id %x: ", id);
1623 if (p != NULL)
1624 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1625 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1626 else
1627 db_printf("next %x use %x\n",
1628 PT_NEXT(slot) & pid_tbl_mask,
1629 PT_NEXT(slot) & ~pid_tbl_mask);
1630 if ((pgrp = pt->pt_pgrp)) {
1631 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1632 pgrp->pg_session, pgrp->pg_session->s_sid,
1633 pgrp->pg_session->s_count,
1634 pgrp->pg_session->s_login);
1635 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1636 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1637 LIST_FIRST(&pgrp->pg_members));
1638 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1639 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1640 p->p_pid, p, p->p_pgrp, p->p_comm);
1641 }
1642 }
1643 }
1644 }
1645 #endif /* DDB */
1646
1647 #ifdef KSTACK_CHECK_MAGIC
1648
1649 #define KSTACK_MAGIC 0xdeadbeaf
1650
1651 /* XXX should be per process basis? */
1652 static int kstackleftmin = KSTACK_SIZE;
1653 static int kstackleftthres = KSTACK_SIZE / 8;
1654
1655 void
1656 kstack_setup_magic(const struct lwp *l)
1657 {
1658 uint32_t *ip;
1659 uint32_t const *end;
1660
1661 KASSERT(l != NULL);
1662 KASSERT(l != &lwp0);
1663
1664 /*
1665 * fill all the stack with magic number
1666 * so that later modification on it can be detected.
1667 */
1668 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1669 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1670 for (; ip < end; ip++) {
1671 *ip = KSTACK_MAGIC;
1672 }
1673 }
1674
1675 void
1676 kstack_check_magic(const struct lwp *l)
1677 {
1678 uint32_t const *ip, *end;
1679 int stackleft;
1680
1681 KASSERT(l != NULL);
1682
1683 /* don't check proc0 */ /*XXX*/
1684 if (l == &lwp0)
1685 return;
1686
1687 #ifdef __MACHINE_STACK_GROWS_UP
1688 /* stack grows upwards (eg. hppa) */
1689 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1690 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1691 for (ip--; ip >= end; ip--)
1692 if (*ip != KSTACK_MAGIC)
1693 break;
1694
1695 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1696 #else /* __MACHINE_STACK_GROWS_UP */
1697 /* stack grows downwards (eg. i386) */
1698 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1699 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1700 for (; ip < end; ip++)
1701 if (*ip != KSTACK_MAGIC)
1702 break;
1703
1704 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1705 #endif /* __MACHINE_STACK_GROWS_UP */
1706
1707 if (kstackleftmin > stackleft) {
1708 kstackleftmin = stackleft;
1709 if (stackleft < kstackleftthres)
1710 printf("warning: kernel stack left %d bytes"
1711 "(pid %u:lid %u)\n", stackleft,
1712 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1713 }
1714
1715 if (stackleft <= 0) {
1716 panic("magic on the top of kernel stack changed for "
1717 "pid %u, lid %u: maybe kernel stack overflow",
1718 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1719 }
1720 }
1721 #endif /* KSTACK_CHECK_MAGIC */
1722
1723 int
1724 proclist_foreach_call(struct proclist *list,
1725 int (*callback)(struct proc *, void *arg), void *arg)
1726 {
1727 struct proc marker;
1728 struct proc *p;
1729 int ret = 0;
1730
1731 marker.p_flag = PK_MARKER;
1732 mutex_enter(&proc_lock);
1733 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1734 if (p->p_flag & PK_MARKER) {
1735 p = LIST_NEXT(p, p_list);
1736 continue;
1737 }
1738 LIST_INSERT_AFTER(p, &marker, p_list);
1739 ret = (*callback)(p, arg);
1740 KASSERT(mutex_owned(&proc_lock));
1741 p = LIST_NEXT(&marker, p_list);
1742 LIST_REMOVE(&marker, p_list);
1743 }
1744 mutex_exit(&proc_lock);
1745
1746 return ret;
1747 }
1748
1749 int
1750 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1751 {
1752
1753 /* XXXCDC: how should locking work here? */
1754
1755 /* curproc exception is for coredump. */
1756
1757 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1758 (p->p_vmspace->vm_refcnt < 1)) {
1759 return EFAULT;
1760 }
1761
1762 uvmspace_addref(p->p_vmspace);
1763 *vm = p->p_vmspace;
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * Acquire a write lock on the process credential.
1770 */
1771 void
1772 proc_crmod_enter(void)
1773 {
1774 struct lwp *l = curlwp;
1775 struct proc *p = l->l_proc;
1776 kauth_cred_t oc;
1777
1778 /* Reset what needs to be reset in plimit. */
1779 if (p->p_limit->pl_corename != defcorename) {
1780 lim_setcorename(p, defcorename, 0);
1781 }
1782
1783 mutex_enter(p->p_lock);
1784
1785 /* Ensure the LWP cached credentials are up to date. */
1786 if ((oc = l->l_cred) != p->p_cred) {
1787 kauth_cred_hold(p->p_cred);
1788 l->l_cred = p->p_cred;
1789 kauth_cred_free(oc);
1790 }
1791 }
1792
1793 /*
1794 * Set in a new process credential, and drop the write lock. The credential
1795 * must have a reference already. Optionally, free a no-longer required
1796 * credential. The scheduler also needs to inspect p_cred, so we also
1797 * briefly acquire the sched state mutex.
1798 */
1799 void
1800 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1801 {
1802 struct lwp *l = curlwp, *l2;
1803 struct proc *p = l->l_proc;
1804 kauth_cred_t oc;
1805
1806 KASSERT(mutex_owned(p->p_lock));
1807
1808 /* Is there a new credential to set in? */
1809 if (scred != NULL) {
1810 p->p_cred = scred;
1811 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1812 if (l2 != l)
1813 l2->l_prflag |= LPR_CRMOD;
1814 }
1815
1816 /* Ensure the LWP cached credentials are up to date. */
1817 if ((oc = l->l_cred) != scred) {
1818 kauth_cred_hold(scred);
1819 l->l_cred = scred;
1820 }
1821 } else
1822 oc = NULL; /* XXXgcc */
1823
1824 if (sugid) {
1825 /*
1826 * Mark process as having changed credentials, stops
1827 * tracing etc.
1828 */
1829 p->p_flag |= PK_SUGID;
1830 }
1831
1832 mutex_exit(p->p_lock);
1833
1834 /* If there is a credential to be released, free it now. */
1835 if (fcred != NULL) {
1836 KASSERT(scred != NULL);
1837 kauth_cred_free(fcred);
1838 if (oc != scred)
1839 kauth_cred_free(oc);
1840 }
1841 }
1842
1843 /*
1844 * proc_specific_key_create --
1845 * Create a key for subsystem proc-specific data.
1846 */
1847 int
1848 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1849 {
1850
1851 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1852 }
1853
1854 /*
1855 * proc_specific_key_delete --
1856 * Delete a key for subsystem proc-specific data.
1857 */
1858 void
1859 proc_specific_key_delete(specificdata_key_t key)
1860 {
1861
1862 specificdata_key_delete(proc_specificdata_domain, key);
1863 }
1864
1865 /*
1866 * proc_initspecific --
1867 * Initialize a proc's specificdata container.
1868 */
1869 void
1870 proc_initspecific(struct proc *p)
1871 {
1872 int error __diagused;
1873
1874 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1875 KASSERT(error == 0);
1876 }
1877
1878 /*
1879 * proc_finispecific --
1880 * Finalize a proc's specificdata container.
1881 */
1882 void
1883 proc_finispecific(struct proc *p)
1884 {
1885
1886 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1887 }
1888
1889 /*
1890 * proc_getspecific --
1891 * Return proc-specific data corresponding to the specified key.
1892 */
1893 void *
1894 proc_getspecific(struct proc *p, specificdata_key_t key)
1895 {
1896
1897 return (specificdata_getspecific(proc_specificdata_domain,
1898 &p->p_specdataref, key));
1899 }
1900
1901 /*
1902 * proc_setspecific --
1903 * Set proc-specific data corresponding to the specified key.
1904 */
1905 void
1906 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1907 {
1908
1909 specificdata_setspecific(proc_specificdata_domain,
1910 &p->p_specdataref, key, data);
1911 }
1912
1913 int
1914 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1915 {
1916 int r = 0;
1917
1918 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1919 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1920 /*
1921 * suid proc of ours or proc not ours
1922 */
1923 r = EPERM;
1924 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1925 /*
1926 * sgid proc has sgid back to us temporarily
1927 */
1928 r = EPERM;
1929 } else {
1930 /*
1931 * our rgid must be in target's group list (ie,
1932 * sub-processes started by a sgid process)
1933 */
1934 int ismember = 0;
1935
1936 if (kauth_cred_ismember_gid(cred,
1937 kauth_cred_getgid(target), &ismember) != 0 ||
1938 !ismember)
1939 r = EPERM;
1940 }
1941
1942 return (r);
1943 }
1944
1945 /*
1946 * sysctl stuff
1947 */
1948
1949 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1950
1951 static const u_int sysctl_flagmap[] = {
1952 PK_ADVLOCK, P_ADVLOCK,
1953 PK_EXEC, P_EXEC,
1954 PK_NOCLDWAIT, P_NOCLDWAIT,
1955 PK_32, P_32,
1956 PK_CLDSIGIGN, P_CLDSIGIGN,
1957 PK_SUGID, P_SUGID,
1958 0
1959 };
1960
1961 static const u_int sysctl_sflagmap[] = {
1962 PS_NOCLDSTOP, P_NOCLDSTOP,
1963 PS_WEXIT, P_WEXIT,
1964 PS_STOPFORK, P_STOPFORK,
1965 PS_STOPEXEC, P_STOPEXEC,
1966 PS_STOPEXIT, P_STOPEXIT,
1967 0
1968 };
1969
1970 static const u_int sysctl_slflagmap[] = {
1971 PSL_TRACED, P_TRACED,
1972 PSL_CHTRACED, P_CHTRACED,
1973 PSL_SYSCALL, P_SYSCALL,
1974 0
1975 };
1976
1977 static const u_int sysctl_lflagmap[] = {
1978 PL_CONTROLT, P_CONTROLT,
1979 PL_PPWAIT, P_PPWAIT,
1980 0
1981 };
1982
1983 static const u_int sysctl_stflagmap[] = {
1984 PST_PROFIL, P_PROFIL,
1985 0
1986
1987 };
1988
1989 /* used by kern_lwp also */
1990 const u_int sysctl_lwpflagmap[] = {
1991 LW_SINTR, L_SINTR,
1992 LW_SYSTEM, L_SYSTEM,
1993 0
1994 };
1995
1996 /*
1997 * Find the most ``active'' lwp of a process and return it for ps display
1998 * purposes
1999 */
2000 static struct lwp *
2001 proc_active_lwp(struct proc *p)
2002 {
2003 static const int ostat[] = {
2004 0,
2005 2, /* LSIDL */
2006 6, /* LSRUN */
2007 5, /* LSSLEEP */
2008 4, /* LSSTOP */
2009 0, /* LSZOMB */
2010 1, /* LSDEAD */
2011 7, /* LSONPROC */
2012 3 /* LSSUSPENDED */
2013 };
2014
2015 struct lwp *l, *lp = NULL;
2016 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2017 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2018 if (lp == NULL ||
2019 ostat[l->l_stat] > ostat[lp->l_stat] ||
2020 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2021 l->l_cpticks > lp->l_cpticks)) {
2022 lp = l;
2023 continue;
2024 }
2025 }
2026 return lp;
2027 }
2028
2029 static int
2030 sysctl_doeproc(SYSCTLFN_ARGS)
2031 {
2032 union {
2033 struct kinfo_proc kproc;
2034 struct kinfo_proc2 kproc2;
2035 } *kbuf;
2036 struct proc *p, *next, *marker;
2037 char *where, *dp;
2038 int type, op, arg, error;
2039 u_int elem_size, kelem_size, elem_count;
2040 size_t buflen, needed;
2041 bool match, zombie, mmmbrains;
2042 const bool allowaddr = get_expose_address(curproc);
2043
2044 if (namelen == 1 && name[0] == CTL_QUERY)
2045 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2046
2047 dp = where = oldp;
2048 buflen = where != NULL ? *oldlenp : 0;
2049 error = 0;
2050 needed = 0;
2051 type = rnode->sysctl_num;
2052
2053 if (type == KERN_PROC) {
2054 if (namelen == 0)
2055 return EINVAL;
2056 switch (op = name[0]) {
2057 case KERN_PROC_ALL:
2058 if (namelen != 1)
2059 return EINVAL;
2060 arg = 0;
2061 break;
2062 default:
2063 if (namelen != 2)
2064 return EINVAL;
2065 arg = name[1];
2066 break;
2067 }
2068 elem_count = 0; /* Hush little compiler, don't you cry */
2069 kelem_size = elem_size = sizeof(kbuf->kproc);
2070 } else {
2071 if (namelen != 4)
2072 return EINVAL;
2073 op = name[0];
2074 arg = name[1];
2075 elem_size = name[2];
2076 elem_count = name[3];
2077 kelem_size = sizeof(kbuf->kproc2);
2078 }
2079
2080 sysctl_unlock();
2081
2082 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2083 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2084 marker->p_flag = PK_MARKER;
2085
2086 mutex_enter(&proc_lock);
2087 /*
2088 * Start with zombies to prevent reporting processes twice, in case they
2089 * are dying and being moved from the list of alive processes to zombies.
2090 */
2091 mmmbrains = true;
2092 for (p = LIST_FIRST(&zombproc);; p = next) {
2093 if (p == NULL) {
2094 if (mmmbrains) {
2095 p = LIST_FIRST(&allproc);
2096 mmmbrains = false;
2097 }
2098 if (p == NULL)
2099 break;
2100 }
2101 next = LIST_NEXT(p, p_list);
2102 if ((p->p_flag & PK_MARKER) != 0)
2103 continue;
2104
2105 /*
2106 * Skip embryonic processes.
2107 */
2108 if (p->p_stat == SIDL)
2109 continue;
2110
2111 mutex_enter(p->p_lock);
2112 error = kauth_authorize_process(l->l_cred,
2113 KAUTH_PROCESS_CANSEE, p,
2114 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2115 if (error != 0) {
2116 mutex_exit(p->p_lock);
2117 continue;
2118 }
2119
2120 /*
2121 * Hande all the operations in one switch on the cost of
2122 * algorithm complexity is on purpose. The win splitting this
2123 * function into several similar copies makes maintenance burden
2124 * burden, code grow and boost is neglible in practical systems.
2125 */
2126 switch (op) {
2127 case KERN_PROC_PID:
2128 match = (p->p_pid == (pid_t)arg);
2129 break;
2130
2131 case KERN_PROC_PGRP:
2132 match = (p->p_pgrp->pg_id == (pid_t)arg);
2133 break;
2134
2135 case KERN_PROC_SESSION:
2136 match = (p->p_session->s_sid == (pid_t)arg);
2137 break;
2138
2139 case KERN_PROC_TTY:
2140 match = true;
2141 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2142 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2143 p->p_session->s_ttyp == NULL ||
2144 p->p_session->s_ttyvp != NULL) {
2145 match = false;
2146 }
2147 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2148 p->p_session->s_ttyp == NULL) {
2149 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2150 match = false;
2151 }
2152 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2153 match = false;
2154 }
2155 break;
2156
2157 case KERN_PROC_UID:
2158 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2159 break;
2160
2161 case KERN_PROC_RUID:
2162 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2163 break;
2164
2165 case KERN_PROC_GID:
2166 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2167 break;
2168
2169 case KERN_PROC_RGID:
2170 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2171 break;
2172
2173 case KERN_PROC_ALL:
2174 match = true;
2175 /* allow everything */
2176 break;
2177
2178 default:
2179 error = EINVAL;
2180 mutex_exit(p->p_lock);
2181 goto cleanup;
2182 }
2183 if (!match) {
2184 mutex_exit(p->p_lock);
2185 continue;
2186 }
2187
2188 /*
2189 * Grab a hold on the process.
2190 */
2191 if (mmmbrains) {
2192 zombie = true;
2193 } else {
2194 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2195 }
2196 if (zombie) {
2197 LIST_INSERT_AFTER(p, marker, p_list);
2198 }
2199
2200 if (buflen >= elem_size &&
2201 (type == KERN_PROC || elem_count > 0)) {
2202 ruspace(p); /* Update process vm resource use */
2203
2204 if (type == KERN_PROC) {
2205 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2206 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2207 allowaddr);
2208 } else {
2209 fill_kproc2(p, &kbuf->kproc2, zombie,
2210 allowaddr);
2211 elem_count--;
2212 }
2213 mutex_exit(p->p_lock);
2214 mutex_exit(&proc_lock);
2215 /*
2216 * Copy out elem_size, but not larger than kelem_size
2217 */
2218 error = sysctl_copyout(l, kbuf, dp,
2219 uimin(kelem_size, elem_size));
2220 mutex_enter(&proc_lock);
2221 if (error) {
2222 goto bah;
2223 }
2224 dp += elem_size;
2225 buflen -= elem_size;
2226 } else {
2227 mutex_exit(p->p_lock);
2228 }
2229 needed += elem_size;
2230
2231 /*
2232 * Release reference to process.
2233 */
2234 if (zombie) {
2235 next = LIST_NEXT(marker, p_list);
2236 LIST_REMOVE(marker, p_list);
2237 } else {
2238 rw_exit(&p->p_reflock);
2239 next = LIST_NEXT(p, p_list);
2240 }
2241
2242 /*
2243 * Short-circuit break quickly!
2244 */
2245 if (op == KERN_PROC_PID)
2246 break;
2247 }
2248 mutex_exit(&proc_lock);
2249
2250 if (where != NULL) {
2251 *oldlenp = dp - where;
2252 if (needed > *oldlenp) {
2253 error = ENOMEM;
2254 goto out;
2255 }
2256 } else {
2257 needed += KERN_PROCSLOP;
2258 *oldlenp = needed;
2259 }
2260 kmem_free(kbuf, sizeof(*kbuf));
2261 kmem_free(marker, sizeof(*marker));
2262 sysctl_relock();
2263 return 0;
2264 bah:
2265 if (zombie)
2266 LIST_REMOVE(marker, p_list);
2267 else
2268 rw_exit(&p->p_reflock);
2269 cleanup:
2270 mutex_exit(&proc_lock);
2271 out:
2272 kmem_free(kbuf, sizeof(*kbuf));
2273 kmem_free(marker, sizeof(*marker));
2274 sysctl_relock();
2275 return error;
2276 }
2277
2278 int
2279 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2280 {
2281 #if !defined(_RUMPKERNEL)
2282 int retval;
2283
2284 if (p->p_flag & PK_32) {
2285 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2286 enosys(), retval);
2287 return retval;
2288 }
2289 #endif /* !defined(_RUMPKERNEL) */
2290
2291 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2292 }
2293
2294 static int
2295 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2296 {
2297 void **cookie = cookie_;
2298 struct lwp *l = cookie[0];
2299 char *dst = cookie[1];
2300
2301 return sysctl_copyout(l, src, dst + off, len);
2302 }
2303
2304 /*
2305 * sysctl helper routine for kern.proc_args pseudo-subtree.
2306 */
2307 static int
2308 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2309 {
2310 struct ps_strings pss;
2311 struct proc *p;
2312 pid_t pid;
2313 int type, error;
2314 void *cookie[2];
2315
2316 if (namelen == 1 && name[0] == CTL_QUERY)
2317 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2318
2319 if (newp != NULL || namelen != 2)
2320 return (EINVAL);
2321 pid = name[0];
2322 type = name[1];
2323
2324 switch (type) {
2325 case KERN_PROC_PATHNAME:
2326 sysctl_unlock();
2327 error = fill_pathname(l, pid, oldp, oldlenp);
2328 sysctl_relock();
2329 return error;
2330
2331 case KERN_PROC_CWD:
2332 sysctl_unlock();
2333 error = fill_cwd(l, pid, oldp, oldlenp);
2334 sysctl_relock();
2335 return error;
2336
2337 case KERN_PROC_ARGV:
2338 case KERN_PROC_NARGV:
2339 case KERN_PROC_ENV:
2340 case KERN_PROC_NENV:
2341 /* ok */
2342 break;
2343 default:
2344 return (EINVAL);
2345 }
2346
2347 sysctl_unlock();
2348
2349 /* check pid */
2350 mutex_enter(&proc_lock);
2351 if ((p = proc_find(pid)) == NULL) {
2352 error = EINVAL;
2353 goto out_locked;
2354 }
2355 mutex_enter(p->p_lock);
2356
2357 /* Check permission. */
2358 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2359 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2360 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2361 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2362 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2363 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2364 else
2365 error = EINVAL; /* XXXGCC */
2366 if (error) {
2367 mutex_exit(p->p_lock);
2368 goto out_locked;
2369 }
2370
2371 if (oldp == NULL) {
2372 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2373 *oldlenp = sizeof (int);
2374 else
2375 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2376 error = 0;
2377 mutex_exit(p->p_lock);
2378 goto out_locked;
2379 }
2380
2381 /*
2382 * Zombies don't have a stack, so we can't read their psstrings.
2383 * System processes also don't have a user stack.
2384 */
2385 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2386 error = EINVAL;
2387 mutex_exit(p->p_lock);
2388 goto out_locked;
2389 }
2390
2391 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2392 mutex_exit(p->p_lock);
2393 if (error) {
2394 goto out_locked;
2395 }
2396 mutex_exit(&proc_lock);
2397
2398 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2399 int value;
2400 if ((error = copyin_psstrings(p, &pss)) == 0) {
2401 if (type == KERN_PROC_NARGV)
2402 value = pss.ps_nargvstr;
2403 else
2404 value = pss.ps_nenvstr;
2405 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2406 *oldlenp = sizeof(value);
2407 }
2408 } else {
2409 cookie[0] = l;
2410 cookie[1] = oldp;
2411 error = copy_procargs(p, type, oldlenp,
2412 copy_procargs_sysctl_cb, cookie);
2413 }
2414 rw_exit(&p->p_reflock);
2415 sysctl_relock();
2416 return error;
2417
2418 out_locked:
2419 mutex_exit(&proc_lock);
2420 sysctl_relock();
2421 return error;
2422 }
2423
2424 int
2425 copy_procargs(struct proc *p, int oid, size_t *limit,
2426 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2427 {
2428 struct ps_strings pss;
2429 size_t len, i, loaded, entry_len;
2430 struct uio auio;
2431 struct iovec aiov;
2432 int error, argvlen;
2433 char *arg;
2434 char **argv;
2435 vaddr_t user_argv;
2436 struct vmspace *vmspace;
2437
2438 /*
2439 * Allocate a temporary buffer to hold the argument vector and
2440 * the arguments themselve.
2441 */
2442 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2443 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2444
2445 /*
2446 * Lock the process down in memory.
2447 */
2448 vmspace = p->p_vmspace;
2449 uvmspace_addref(vmspace);
2450
2451 /*
2452 * Read in the ps_strings structure.
2453 */
2454 if ((error = copyin_psstrings(p, &pss)) != 0)
2455 goto done;
2456
2457 /*
2458 * Now read the address of the argument vector.
2459 */
2460 switch (oid) {
2461 case KERN_PROC_ARGV:
2462 user_argv = (uintptr_t)pss.ps_argvstr;
2463 argvlen = pss.ps_nargvstr;
2464 break;
2465 case KERN_PROC_ENV:
2466 user_argv = (uintptr_t)pss.ps_envstr;
2467 argvlen = pss.ps_nenvstr;
2468 break;
2469 default:
2470 error = EINVAL;
2471 goto done;
2472 }
2473
2474 if (argvlen < 0) {
2475 error = EIO;
2476 goto done;
2477 }
2478
2479
2480 /*
2481 * Now copy each string.
2482 */
2483 len = 0; /* bytes written to user buffer */
2484 loaded = 0; /* bytes from argv already processed */
2485 i = 0; /* To make compiler happy */
2486 entry_len = PROC_PTRSZ(p);
2487
2488 for (; argvlen; --argvlen) {
2489 int finished = 0;
2490 vaddr_t base;
2491 size_t xlen;
2492 int j;
2493
2494 if (loaded == 0) {
2495 size_t rem = entry_len * argvlen;
2496 loaded = MIN(rem, PAGE_SIZE);
2497 error = copyin_vmspace(vmspace,
2498 (const void *)user_argv, argv, loaded);
2499 if (error)
2500 break;
2501 user_argv += loaded;
2502 i = 0;
2503 }
2504
2505 #if !defined(_RUMPKERNEL)
2506 if (p->p_flag & PK_32)
2507 MODULE_HOOK_CALL(kern_proc32_base_hook,
2508 (argv, i++), 0, base);
2509 else
2510 #endif /* !defined(_RUMPKERNEL) */
2511 base = (vaddr_t)argv[i++];
2512 loaded -= entry_len;
2513
2514 /*
2515 * The program has messed around with its arguments,
2516 * possibly deleting some, and replacing them with
2517 * NULL's. Treat this as the last argument and not
2518 * a failure.
2519 */
2520 if (base == 0)
2521 break;
2522
2523 while (!finished) {
2524 xlen = PAGE_SIZE - (base & PAGE_MASK);
2525
2526 aiov.iov_base = arg;
2527 aiov.iov_len = PAGE_SIZE;
2528 auio.uio_iov = &aiov;
2529 auio.uio_iovcnt = 1;
2530 auio.uio_offset = base;
2531 auio.uio_resid = xlen;
2532 auio.uio_rw = UIO_READ;
2533 UIO_SETUP_SYSSPACE(&auio);
2534 error = uvm_io(&vmspace->vm_map, &auio, 0);
2535 if (error)
2536 goto done;
2537
2538 /* Look for the end of the string */
2539 for (j = 0; j < xlen; j++) {
2540 if (arg[j] == '\0') {
2541 xlen = j + 1;
2542 finished = 1;
2543 break;
2544 }
2545 }
2546
2547 /* Check for user buffer overflow */
2548 if (len + xlen > *limit) {
2549 finished = 1;
2550 if (len > *limit)
2551 xlen = 0;
2552 else
2553 xlen = *limit - len;
2554 }
2555
2556 /* Copyout the page */
2557 error = (*cb)(cookie, arg, len, xlen);
2558 if (error)
2559 goto done;
2560
2561 len += xlen;
2562 base += xlen;
2563 }
2564 }
2565 *limit = len;
2566
2567 done:
2568 kmem_free(argv, PAGE_SIZE);
2569 kmem_free(arg, PAGE_SIZE);
2570 uvmspace_free(vmspace);
2571 return error;
2572 }
2573
2574 /*
2575 * Fill in a proc structure for the specified process.
2576 */
2577 static void
2578 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2579 {
2580 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2581 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2582 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2583 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2584 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2585 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2586 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2587 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2588 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2589 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2590 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2591 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2592 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2593 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2594 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2595 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2596 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2597 p->p_exitsig = psrc->p_exitsig;
2598 p->p_flag = psrc->p_flag;
2599 p->p_sflag = psrc->p_sflag;
2600 p->p_slflag = psrc->p_slflag;
2601 p->p_lflag = psrc->p_lflag;
2602 p->p_stflag = psrc->p_stflag;
2603 p->p_stat = psrc->p_stat;
2604 p->p_trace_enabled = psrc->p_trace_enabled;
2605 p->p_pid = psrc->p_pid;
2606 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2607 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2608 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2609 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2610 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2611 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2612 p->p_nlwps = psrc->p_nlwps;
2613 p->p_nzlwps = psrc->p_nzlwps;
2614 p->p_nrlwps = psrc->p_nrlwps;
2615 p->p_nlwpwait = psrc->p_nlwpwait;
2616 p->p_ndlwps = psrc->p_ndlwps;
2617 p->p_nstopchild = psrc->p_nstopchild;
2618 p->p_waited = psrc->p_waited;
2619 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2620 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2621 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2622 p->p_estcpu = psrc->p_estcpu;
2623 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2624 p->p_forktime = psrc->p_forktime;
2625 p->p_pctcpu = psrc->p_pctcpu;
2626 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2627 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2628 p->p_rtime = psrc->p_rtime;
2629 p->p_uticks = psrc->p_uticks;
2630 p->p_sticks = psrc->p_sticks;
2631 p->p_iticks = psrc->p_iticks;
2632 p->p_xutime = psrc->p_xutime;
2633 p->p_xstime = psrc->p_xstime;
2634 p->p_traceflag = psrc->p_traceflag;
2635 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2636 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2637 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2638 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2639 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2640 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2641 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2642 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2643 allowaddr);
2644 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2645 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2646 p->p_ppid = psrc->p_ppid;
2647 p->p_oppid = psrc->p_oppid;
2648 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2649 p->p_sigctx = psrc->p_sigctx;
2650 p->p_nice = psrc->p_nice;
2651 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2652 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2653 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2654 p->p_pax = psrc->p_pax;
2655 p->p_xexit = psrc->p_xexit;
2656 p->p_xsig = psrc->p_xsig;
2657 p->p_acflag = psrc->p_acflag;
2658 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2659 p->p_stackbase = psrc->p_stackbase;
2660 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2661 }
2662
2663 /*
2664 * Fill in an eproc structure for the specified process.
2665 */
2666 void
2667 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2668 {
2669 struct tty *tp;
2670 struct lwp *l;
2671
2672 KASSERT(mutex_owned(&proc_lock));
2673 KASSERT(mutex_owned(p->p_lock));
2674
2675 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2676 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2677 if (p->p_cred) {
2678 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2679 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2680 }
2681 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2682 struct vmspace *vm = p->p_vmspace;
2683
2684 ep->e_vm.vm_rssize = vm_resident_count(vm);
2685 ep->e_vm.vm_tsize = vm->vm_tsize;
2686 ep->e_vm.vm_dsize = vm->vm_dsize;
2687 ep->e_vm.vm_ssize = vm->vm_ssize;
2688 ep->e_vm.vm_map.size = vm->vm_map.size;
2689
2690 /* Pick the primary (first) LWP */
2691 l = proc_active_lwp(p);
2692 KASSERT(l != NULL);
2693 lwp_lock(l);
2694 if (l->l_wchan)
2695 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2696 lwp_unlock(l);
2697 }
2698 ep->e_ppid = p->p_ppid;
2699 if (p->p_pgrp && p->p_session) {
2700 ep->e_pgid = p->p_pgrp->pg_id;
2701 ep->e_jobc = p->p_pgrp->pg_jobc;
2702 ep->e_sid = p->p_session->s_sid;
2703 if ((p->p_lflag & PL_CONTROLT) &&
2704 (tp = p->p_session->s_ttyp)) {
2705 ep->e_tdev = tp->t_dev;
2706 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2707 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2708 } else
2709 ep->e_tdev = (uint32_t)NODEV;
2710 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2711 if (SESS_LEADER(p))
2712 ep->e_flag |= EPROC_SLEADER;
2713 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2714 }
2715 ep->e_xsize = ep->e_xrssize = 0;
2716 ep->e_xccount = ep->e_xswrss = 0;
2717 }
2718
2719 /*
2720 * Fill in a kinfo_proc2 structure for the specified process.
2721 */
2722 void
2723 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2724 {
2725 struct tty *tp;
2726 struct lwp *l, *l2;
2727 struct timeval ut, st, rt;
2728 sigset_t ss1, ss2;
2729 struct rusage ru;
2730 struct vmspace *vm;
2731
2732 KASSERT(mutex_owned(&proc_lock));
2733 KASSERT(mutex_owned(p->p_lock));
2734
2735 sigemptyset(&ss1);
2736 sigemptyset(&ss2);
2737
2738 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2739 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2740 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2741 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2742 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2743 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2744 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2745 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2746 ki->p_tsess = 0; /* may be changed if controlling tty below */
2747 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2748 ki->p_eflag = 0;
2749 ki->p_exitsig = p->p_exitsig;
2750 ki->p_flag = L_INMEM; /* Process never swapped out */
2751 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2752 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2753 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2754 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2755 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2756 ki->p_pid = p->p_pid;
2757 ki->p_ppid = p->p_ppid;
2758 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2759 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2760 ki->p_gid = kauth_cred_getegid(p->p_cred);
2761 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2762 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2763 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2764 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2765 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2766 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2767 UIO_SYSSPACE);
2768
2769 ki->p_uticks = p->p_uticks;
2770 ki->p_sticks = p->p_sticks;
2771 ki->p_iticks = p->p_iticks;
2772 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2773 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2774 ki->p_traceflag = p->p_traceflag;
2775
2776 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2777 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2778
2779 ki->p_cpticks = 0;
2780 ki->p_pctcpu = p->p_pctcpu;
2781 ki->p_estcpu = 0;
2782 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2783 ki->p_realstat = p->p_stat;
2784 ki->p_nice = p->p_nice;
2785 ki->p_xstat = P_WAITSTATUS(p);
2786 ki->p_acflag = p->p_acflag;
2787
2788 strncpy(ki->p_comm, p->p_comm,
2789 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2790 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2791
2792 ki->p_nlwps = p->p_nlwps;
2793 ki->p_realflag = ki->p_flag;
2794
2795 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2796 vm = p->p_vmspace;
2797 ki->p_vm_rssize = vm_resident_count(vm);
2798 ki->p_vm_tsize = vm->vm_tsize;
2799 ki->p_vm_dsize = vm->vm_dsize;
2800 ki->p_vm_ssize = vm->vm_ssize;
2801 ki->p_vm_vsize = atop(vm->vm_map.size);
2802 /*
2803 * Since the stack is initially mapped mostly with
2804 * PROT_NONE and grown as needed, adjust the "mapped size"
2805 * to skip the unused stack portion.
2806 */
2807 ki->p_vm_msize =
2808 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2809
2810 /* Pick the primary (first) LWP */
2811 l = proc_active_lwp(p);
2812 KASSERT(l != NULL);
2813 lwp_lock(l);
2814 ki->p_nrlwps = p->p_nrlwps;
2815 ki->p_forw = 0;
2816 ki->p_back = 0;
2817 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2818 ki->p_stat = l->l_stat;
2819 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2820 ki->p_swtime = l->l_swtime;
2821 ki->p_slptime = l->l_slptime;
2822 if (l->l_stat == LSONPROC)
2823 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2824 else
2825 ki->p_schedflags = 0;
2826 ki->p_priority = lwp_eprio(l);
2827 ki->p_usrpri = l->l_priority;
2828 if (l->l_wchan)
2829 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2830 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2831 ki->p_cpuid = cpu_index(l->l_cpu);
2832 lwp_unlock(l);
2833 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2834 /* This is hardly correct, but... */
2835 sigplusset(&l->l_sigpend.sp_set, &ss1);
2836 sigplusset(&l->l_sigmask, &ss2);
2837 ki->p_cpticks += l->l_cpticks;
2838 ki->p_pctcpu += l->l_pctcpu;
2839 ki->p_estcpu += l->l_estcpu;
2840 }
2841 }
2842 sigplusset(&p->p_sigpend.sp_set, &ss1);
2843 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2844 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2845
2846 if (p->p_session != NULL) {
2847 ki->p_sid = p->p_session->s_sid;
2848 ki->p__pgid = p->p_pgrp->pg_id;
2849 if (p->p_session->s_ttyvp)
2850 ki->p_eflag |= EPROC_CTTY;
2851 if (SESS_LEADER(p))
2852 ki->p_eflag |= EPROC_SLEADER;
2853 strncpy(ki->p_login, p->p_session->s_login,
2854 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2855 ki->p_jobc = p->p_pgrp->pg_jobc;
2856 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2857 ki->p_tdev = tp->t_dev;
2858 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2859 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2860 allowaddr);
2861 } else {
2862 ki->p_tdev = (int32_t)NODEV;
2863 }
2864 }
2865
2866 if (!P_ZOMBIE(p) && !zombie) {
2867 ki->p_uvalid = 1;
2868 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2869 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2870
2871 calcru(p, &ut, &st, NULL, &rt);
2872 ki->p_rtime_sec = rt.tv_sec;
2873 ki->p_rtime_usec = rt.tv_usec;
2874 ki->p_uutime_sec = ut.tv_sec;
2875 ki->p_uutime_usec = ut.tv_usec;
2876 ki->p_ustime_sec = st.tv_sec;
2877 ki->p_ustime_usec = st.tv_usec;
2878
2879 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2880 ki->p_uru_nvcsw = 0;
2881 ki->p_uru_nivcsw = 0;
2882 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2883 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2884 ki->p_uru_nivcsw += l2->l_nivcsw;
2885 ruadd(&ru, &l2->l_ru);
2886 }
2887 ki->p_uru_maxrss = ru.ru_maxrss;
2888 ki->p_uru_ixrss = ru.ru_ixrss;
2889 ki->p_uru_idrss = ru.ru_idrss;
2890 ki->p_uru_isrss = ru.ru_isrss;
2891 ki->p_uru_minflt = ru.ru_minflt;
2892 ki->p_uru_majflt = ru.ru_majflt;
2893 ki->p_uru_nswap = ru.ru_nswap;
2894 ki->p_uru_inblock = ru.ru_inblock;
2895 ki->p_uru_oublock = ru.ru_oublock;
2896 ki->p_uru_msgsnd = ru.ru_msgsnd;
2897 ki->p_uru_msgrcv = ru.ru_msgrcv;
2898 ki->p_uru_nsignals = ru.ru_nsignals;
2899
2900 timeradd(&p->p_stats->p_cru.ru_utime,
2901 &p->p_stats->p_cru.ru_stime, &ut);
2902 ki->p_uctime_sec = ut.tv_sec;
2903 ki->p_uctime_usec = ut.tv_usec;
2904 }
2905 }
2906
2907
2908 int
2909 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2910 {
2911 int error;
2912
2913 mutex_enter(&proc_lock);
2914 if (pid == -1)
2915 *p = l->l_proc;
2916 else
2917 *p = proc_find(pid);
2918
2919 if (*p == NULL) {
2920 if (pid != -1)
2921 mutex_exit(&proc_lock);
2922 return ESRCH;
2923 }
2924 if (pid != -1)
2925 mutex_enter((*p)->p_lock);
2926 mutex_exit(&proc_lock);
2927
2928 error = kauth_authorize_process(l->l_cred,
2929 KAUTH_PROCESS_CANSEE, *p,
2930 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2931 if (error) {
2932 if (pid != -1)
2933 mutex_exit((*p)->p_lock);
2934 }
2935 return error;
2936 }
2937
2938 static int
2939 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2940 {
2941 int error;
2942 struct proc *p;
2943
2944 if ((error = proc_find_locked(l, &p, pid)) != 0)
2945 return error;
2946
2947 if (p->p_path == NULL) {
2948 if (pid != -1)
2949 mutex_exit(p->p_lock);
2950 return ENOENT;
2951 }
2952
2953 size_t len = strlen(p->p_path) + 1;
2954 if (oldp != NULL) {
2955 size_t copylen = uimin(len, *oldlenp);
2956 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2957 if (error == 0 && *oldlenp < len)
2958 error = ENOSPC;
2959 }
2960 *oldlenp = len;
2961 if (pid != -1)
2962 mutex_exit(p->p_lock);
2963 return error;
2964 }
2965
2966 static int
2967 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2968 {
2969 int error;
2970 struct proc *p;
2971 char *path;
2972 char *bp, *bend;
2973 struct cwdinfo *cwdi;
2974 struct vnode *vp;
2975 size_t len, lenused;
2976
2977 if ((error = proc_find_locked(l, &p, pid)) != 0)
2978 return error;
2979
2980 len = MAXPATHLEN * 4;
2981
2982 path = kmem_alloc(len, KM_SLEEP);
2983
2984 bp = &path[len];
2985 bend = bp;
2986 *(--bp) = '\0';
2987
2988 cwdi = p->p_cwdi;
2989 rw_enter(&cwdi->cwdi_lock, RW_READER);
2990 vp = cwdi->cwdi_cdir;
2991 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
2992 rw_exit(&cwdi->cwdi_lock);
2993
2994 if (error)
2995 goto out;
2996
2997 lenused = bend - bp;
2998
2999 if (oldp != NULL) {
3000 size_t copylen = uimin(lenused, *oldlenp);
3001 error = sysctl_copyout(l, bp, oldp, copylen);
3002 if (error == 0 && *oldlenp < lenused)
3003 error = ENOSPC;
3004 }
3005 *oldlenp = lenused;
3006 out:
3007 if (pid != -1)
3008 mutex_exit(p->p_lock);
3009 kmem_free(path, len);
3010 return error;
3011 }
3012
3013 int
3014 proc_getauxv(struct proc *p, void **buf, size_t *len)
3015 {
3016 struct ps_strings pss;
3017 int error;
3018 void *uauxv, *kauxv;
3019 size_t size;
3020
3021 if ((error = copyin_psstrings(p, &pss)) != 0)
3022 return error;
3023 if (pss.ps_envstr == NULL)
3024 return EIO;
3025
3026 size = p->p_execsw->es_arglen;
3027 if (size == 0)
3028 return EIO;
3029
3030 size_t ptrsz = PROC_PTRSZ(p);
3031 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3032
3033 kauxv = kmem_alloc(size, KM_SLEEP);
3034
3035 error = copyin_proc(p, uauxv, kauxv, size);
3036 if (error) {
3037 kmem_free(kauxv, size);
3038 return error;
3039 }
3040
3041 *buf = kauxv;
3042 *len = size;
3043
3044 return 0;
3045 }
3046
3047
3048 static int
3049 sysctl_security_expose_address(SYSCTLFN_ARGS)
3050 {
3051 int expose_address, error;
3052 struct sysctlnode node;
3053
3054 node = *rnode;
3055 node.sysctl_data = &expose_address;
3056 expose_address = *(int *)rnode->sysctl_data;
3057 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3058 if (error || newp == NULL)
3059 return error;
3060
3061 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3062 0, NULL, NULL, NULL))
3063 return EPERM;
3064
3065 switch (expose_address) {
3066 case 0:
3067 case 1:
3068 case 2:
3069 break;
3070 default:
3071 return EINVAL;
3072 }
3073
3074 *(int *)rnode->sysctl_data = expose_address;
3075
3076 return 0;
3077 }
3078
3079 bool
3080 get_expose_address(struct proc *p)
3081 {
3082 /* allow only if sysctl variable is set or privileged */
3083 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3084 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3085 }
3086