Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.261.2.1
      1 /*	$NetBSD: kern_proc.c,v 1.261.2.1 2021/01/03 16:35:04 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.261.2.1 2021/01/03 16:35:04 thorpej Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 #include <sys/futex.h>
    110 #include <sys/pserialize.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 
    114 /*
    115  * Process lists.
    116  */
    117 
    118 struct proclist		allproc		__cacheline_aligned;
    119 struct proclist		zombproc	__cacheline_aligned;
    120 
    121  kmutex_t		proc_lock	__cacheline_aligned;
    122 static pserialize_t	proc_psz;
    123 
    124 /*
    125  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126  * Since pid numbers are only allocated when an empty slot
    127  * has been found, there is no need to search any lists ever.
    128  * (an orphaned pgrp will lock the slot, a session will lock
    129  * the pgrp with the same number.)
    130  * If the table is too small it is reallocated with twice the
    131  * previous size and the entries 'unzipped' into the two halves.
    132  * A linked list of free entries is passed through the pt_lwp
    133  * field of 'free' items - set odd to be an invalid ptr.  Two
    134  * additional bits are also used to indicate if the slot is
    135  * currently occupied by a proc or lwp, and if the PID is
    136  * hidden from certain kinds of lookups.  We thus require a
    137  * minimum alignment for proc and lwp structures (LWPs are
    138  * at least 32-byte aligned).
    139  */
    140 
    141 struct pid_table {
    142 	uintptr_t	pt_slot;
    143 	struct pgrp	*pt_pgrp;
    144 	pid_t		pt_pid;
    145 };
    146 
    147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148 #define	PT_F_LWP		0	/* pseudo-flag */
    149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150 
    151 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    152 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
    153 
    154 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    155 #define	PT_RESERVED(s)		((s) == 0)
    156 #define	PT_NEXT(s)		((u_int)(s) >> 1)
    157 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    158 #define	PT_SET_LWP(l)		((uintptr_t)(l))
    159 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    160 #define	PT_SET_RESERVED		0
    161 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    162 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    163 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    164 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    165 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    166 
    167 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    168 
    169 /*
    170  * Table of process IDs (PIDs).
    171  */
    172 static struct pid_table *pid_table	__read_mostly;
    173 
    174 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    175 
    176 /* Table mask, threshold for growing and number of allocated PIDs. */
    177 static u_int		pid_tbl_mask	__read_mostly;
    178 static u_int		pid_alloc_lim	__read_mostly;
    179 static u_int		pid_alloc_cnt	__cacheline_aligned;
    180 
    181 /* Next free, last free and maximum PIDs. */
    182 static u_int		next_free_pt	__cacheline_aligned;
    183 static u_int		last_free_pt	__cacheline_aligned;
    184 static pid_t		pid_max		__read_mostly;
    185 
    186 /* Components of the first process -- never freed. */
    187 
    188 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    189 
    190 struct session session0 = {
    191 	.s_count = 1,
    192 	.s_sid = 0,
    193 };
    194 struct pgrp pgrp0 = {
    195 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    196 	.pg_session = &session0,
    197 };
    198 filedesc_t filedesc0;
    199 struct cwdinfo cwdi0 = {
    200 	.cwdi_cmask = CMASK,
    201 	.cwdi_refcnt = 1,
    202 };
    203 struct plimit limit0;
    204 struct pstats pstat0;
    205 struct vmspace vmspace0;
    206 struct sigacts sigacts0;
    207 struct proc proc0 = {
    208 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    209 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    210 	.p_nlwps = 1,
    211 	.p_nrlwps = 1,
    212 	.p_pgrp = &pgrp0,
    213 	.p_comm = "system",
    214 	/*
    215 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    216 	 * when they exit.  init(8) can easily wait them out for us.
    217 	 */
    218 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    219 	.p_stat = SACTIVE,
    220 	.p_nice = NZERO,
    221 	.p_emul = &emul_netbsd,
    222 	.p_cwdi = &cwdi0,
    223 	.p_limit = &limit0,
    224 	.p_fd = &filedesc0,
    225 	.p_vmspace = &vmspace0,
    226 	.p_stats = &pstat0,
    227 	.p_sigacts = &sigacts0,
    228 #ifdef PROC0_MD_INITIALIZERS
    229 	PROC0_MD_INITIALIZERS
    230 #endif
    231 };
    232 kauth_cred_t cred0;
    233 
    234 static const int	nofile	= NOFILE;
    235 static const int	maxuprc	= MAXUPRC;
    236 
    237 static int sysctl_doeproc(SYSCTLFN_PROTO);
    238 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    239 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    240 
    241 #ifdef KASLR
    242 static int kern_expose_address = 0;
    243 #else
    244 static int kern_expose_address = 1;
    245 #endif
    246 /*
    247  * The process list descriptors, used during pid allocation and
    248  * by sysctl.  No locking on this data structure is needed since
    249  * it is completely static.
    250  */
    251 const struct proclist_desc proclists[] = {
    252 	{ &allproc	},
    253 	{ &zombproc	},
    254 	{ NULL		},
    255 };
    256 
    257 static struct pgrp *	pg_remove(pid_t);
    258 static void		pg_delete(pid_t);
    259 static void		orphanpg(struct pgrp *);
    260 
    261 static specificdata_domain_t proc_specificdata_domain;
    262 
    263 static pool_cache_t proc_cache;
    264 
    265 static kauth_listener_t proc_listener;
    266 
    267 static void fill_proc(const struct proc *, struct proc *, bool);
    268 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    269 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    270 
    271 static int
    272 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    273     void *arg0, void *arg1, void *arg2, void *arg3)
    274 {
    275 	struct proc *p;
    276 	int result;
    277 
    278 	result = KAUTH_RESULT_DEFER;
    279 	p = arg0;
    280 
    281 	switch (action) {
    282 	case KAUTH_PROCESS_CANSEE: {
    283 		enum kauth_process_req req;
    284 
    285 		req = (enum kauth_process_req)(uintptr_t)arg1;
    286 
    287 		switch (req) {
    288 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    289 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    290 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    291 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    292 			result = KAUTH_RESULT_ALLOW;
    293 			break;
    294 
    295 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    296 			if (kauth_cred_getuid(cred) !=
    297 			    kauth_cred_getuid(p->p_cred) ||
    298 			    kauth_cred_getuid(cred) !=
    299 			    kauth_cred_getsvuid(p->p_cred))
    300 				break;
    301 
    302 			result = KAUTH_RESULT_ALLOW;
    303 
    304 			break;
    305 
    306 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    307 			if (!kern_expose_address)
    308 				break;
    309 
    310 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    311 				break;
    312 
    313 			result = KAUTH_RESULT_ALLOW;
    314 
    315 			break;
    316 
    317 		default:
    318 			break;
    319 		}
    320 
    321 		break;
    322 		}
    323 
    324 	case KAUTH_PROCESS_FORK: {
    325 		int lnprocs = (int)(unsigned long)arg2;
    326 
    327 		/*
    328 		 * Don't allow a nonprivileged user to use the last few
    329 		 * processes. The variable lnprocs is the current number of
    330 		 * processes, maxproc is the limit.
    331 		 */
    332 		if (__predict_false((lnprocs >= maxproc - 5)))
    333 			break;
    334 
    335 		result = KAUTH_RESULT_ALLOW;
    336 
    337 		break;
    338 		}
    339 
    340 	case KAUTH_PROCESS_CORENAME:
    341 	case KAUTH_PROCESS_STOPFLAG:
    342 		if (proc_uidmatch(cred, p->p_cred) == 0)
    343 			result = KAUTH_RESULT_ALLOW;
    344 
    345 		break;
    346 
    347 	default:
    348 		break;
    349 	}
    350 
    351 	return result;
    352 }
    353 
    354 static int
    355 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    356 {
    357 	memset(obj, 0, sizeof(struct proc));
    358 	return 0;
    359 }
    360 
    361 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    362 
    363 /*
    364  * Initialize global process hashing structures.
    365  */
    366 void
    367 procinit(void)
    368 {
    369 	const struct proclist_desc *pd;
    370 	u_int i;
    371 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    372 
    373 	for (pd = proclists; pd->pd_list != NULL; pd++)
    374 		LIST_INIT(pd->pd_list);
    375 
    376 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
    377 
    378 	proc_psz = pserialize_create();
    379 
    380 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    381 	    * sizeof(struct pid_table), KM_SLEEP);
    382 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    383 	pid_max = PID_MAX;
    384 
    385 	/* Set free list running through table...
    386 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    387 	for (i = 0; i <= pid_tbl_mask; i++) {
    388 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    389 		pid_table[i].pt_pgrp = 0;
    390 		pid_table[i].pt_pid = 0;
    391 	}
    392 	/* slot 0 is just grabbed */
    393 	next_free_pt = 1;
    394 	/* Need to fix last entry. */
    395 	last_free_pt = pid_tbl_mask;
    396 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    397 	/* point at which we grow table - to avoid reusing pids too often */
    398 	pid_alloc_lim = pid_tbl_mask - 1;
    399 #undef LINK_EMPTY
    400 
    401 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    402 	mutex_enter(&proc_lock);
    403 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    404 		panic("failed to reserve PID 1 for init(8)");
    405 	mutex_exit(&proc_lock);
    406 
    407 	proc_specificdata_domain = specificdata_domain_create();
    408 	KASSERT(proc_specificdata_domain != NULL);
    409 
    410 	size_t proc_alignment = coherency_unit;
    411 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    412 		proc_alignment = MIN_PROC_ALIGNMENT;
    413 
    414 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    415 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    416 
    417 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    418 	    proc_listener_cb, NULL);
    419 }
    420 
    421 void
    422 procinit_sysctl(void)
    423 {
    424 	static struct sysctllog *clog;
    425 
    426 	sysctl_createv(&clog, 0, NULL, NULL,
    427 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    428 		       CTLTYPE_INT, "expose_address",
    429 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    430 		       sysctl_security_expose_address, 0,
    431 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    432 	sysctl_createv(&clog, 0, NULL, NULL,
    433 		       CTLFLAG_PERMANENT,
    434 		       CTLTYPE_NODE, "proc",
    435 		       SYSCTL_DESCR("System-wide process information"),
    436 		       sysctl_doeproc, 0, NULL, 0,
    437 		       CTL_KERN, KERN_PROC, CTL_EOL);
    438 	sysctl_createv(&clog, 0, NULL, NULL,
    439 		       CTLFLAG_PERMANENT,
    440 		       CTLTYPE_NODE, "proc2",
    441 		       SYSCTL_DESCR("Machine-independent process information"),
    442 		       sysctl_doeproc, 0, NULL, 0,
    443 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    444 	sysctl_createv(&clog, 0, NULL, NULL,
    445 		       CTLFLAG_PERMANENT,
    446 		       CTLTYPE_NODE, "proc_args",
    447 		       SYSCTL_DESCR("Process argument information"),
    448 		       sysctl_kern_proc_args, 0, NULL, 0,
    449 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    450 
    451 	/*
    452 	  "nodes" under these:
    453 
    454 	  KERN_PROC_ALL
    455 	  KERN_PROC_PID pid
    456 	  KERN_PROC_PGRP pgrp
    457 	  KERN_PROC_SESSION sess
    458 	  KERN_PROC_TTY tty
    459 	  KERN_PROC_UID uid
    460 	  KERN_PROC_RUID uid
    461 	  KERN_PROC_GID gid
    462 	  KERN_PROC_RGID gid
    463 
    464 	  all in all, probably not worth the effort...
    465 	*/
    466 }
    467 
    468 /*
    469  * Initialize process 0.
    470  */
    471 void
    472 proc0_init(void)
    473 {
    474 	struct proc *p;
    475 	struct pgrp *pg;
    476 	struct rlimit *rlim;
    477 	rlim_t lim;
    478 	int i;
    479 
    480 	p = &proc0;
    481 	pg = &pgrp0;
    482 
    483 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    484 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    485 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    486 
    487 	rw_init(&p->p_reflock);
    488 	cv_init(&p->p_waitcv, "wait");
    489 	cv_init(&p->p_lwpcv, "lwpwait");
    490 
    491 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    492 
    493 	KASSERT(lwp0.l_lid == 0);
    494 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    495 	LIST_INSERT_HEAD(&allproc, p, p_list);
    496 
    497 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    498 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    499 
    500 #ifdef __HAVE_SYSCALL_INTERN
    501 	(*p->p_emul->e_syscall_intern)(p);
    502 #endif
    503 
    504 	/* Create credentials. */
    505 	cred0 = kauth_cred_alloc();
    506 	p->p_cred = cred0;
    507 
    508 	/* Create the CWD info. */
    509 	rw_init(&cwdi0.cwdi_lock);
    510 
    511 	/* Create the limits structures. */
    512 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    513 
    514 	rlim = limit0.pl_rlimit;
    515 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    516 		rlim[i].rlim_cur = RLIM_INFINITY;
    517 		rlim[i].rlim_max = RLIM_INFINITY;
    518 	}
    519 
    520 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    521 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    522 
    523 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    524 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    525 
    526 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
    527 	rlim[RLIMIT_RSS].rlim_max = lim;
    528 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    529 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    530 
    531 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    532 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
    533 
    534 	/* Note that default core name has zero length. */
    535 	limit0.pl_corename = defcorename;
    536 	limit0.pl_cnlen = 0;
    537 	limit0.pl_refcnt = 1;
    538 	limit0.pl_writeable = false;
    539 	limit0.pl_sv_limit = NULL;
    540 
    541 	/* Configure virtual memory system, set vm rlimits. */
    542 	uvm_init_limits(p);
    543 
    544 	/* Initialize file descriptor table for proc0. */
    545 	fd_init(&filedesc0);
    546 
    547 	/*
    548 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    549 	 * All kernel processes (which never have user space mappings)
    550 	 * share proc0's vmspace, and thus, the kernel pmap.
    551 	 */
    552 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    553 	    trunc_page(VM_MAXUSER_ADDRESS),
    554 #ifdef __USE_TOPDOWN_VM
    555 	    true
    556 #else
    557 	    false
    558 #endif
    559 	    );
    560 
    561 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    562 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    563 	siginit(p);
    564 
    565 	proc_initspecific(p);
    566 	kdtrace_proc_ctor(NULL, p);
    567 }
    568 
    569 /*
    570  * Session reference counting.
    571  */
    572 
    573 void
    574 proc_sesshold(struct session *ss)
    575 {
    576 
    577 	KASSERT(mutex_owned(&proc_lock));
    578 	ss->s_count++;
    579 }
    580 
    581 void
    582 proc_sessrele(struct session *ss)
    583 {
    584 	struct pgrp *pg;
    585 
    586 	KASSERT(mutex_owned(&proc_lock));
    587 	KASSERT(ss->s_count > 0);
    588 
    589 	/*
    590 	 * We keep the pgrp with the same id as the session in order to
    591 	 * stop a process being given the same pid.  Since the pgrp holds
    592 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    593 	 */
    594 	if (--ss->s_count == 0) {
    595 		pg = pg_remove(ss->s_sid);
    596 	} else {
    597 		pg = NULL;
    598 		ss = NULL;
    599 	}
    600 
    601 	mutex_exit(&proc_lock);
    602 
    603 	if (pg)
    604 		kmem_free(pg, sizeof(struct pgrp));
    605 	if (ss)
    606 		kmem_free(ss, sizeof(struct session));
    607 }
    608 
    609 /*
    610  * Check that the specified process group is in the session of the
    611  * specified process.
    612  * Treats -ve ids as process ids.
    613  * Used to validate TIOCSPGRP requests.
    614  */
    615 int
    616 pgid_in_session(struct proc *p, pid_t pg_id)
    617 {
    618 	struct pgrp *pgrp;
    619 	struct session *session;
    620 	int error;
    621 
    622 	if (pg_id == INT_MIN)
    623 		return EINVAL;
    624 
    625 	mutex_enter(&proc_lock);
    626 	if (pg_id < 0) {
    627 		struct proc *p1 = proc_find(-pg_id);
    628 		if (p1 == NULL) {
    629 			error = EINVAL;
    630 			goto fail;
    631 		}
    632 		pgrp = p1->p_pgrp;
    633 	} else {
    634 		pgrp = pgrp_find(pg_id);
    635 		if (pgrp == NULL) {
    636 			error = EINVAL;
    637 			goto fail;
    638 		}
    639 	}
    640 	session = pgrp->pg_session;
    641 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    642 fail:
    643 	mutex_exit(&proc_lock);
    644 	return error;
    645 }
    646 
    647 /*
    648  * p_inferior: is p an inferior of q?
    649  */
    650 static inline bool
    651 p_inferior(struct proc *p, struct proc *q)
    652 {
    653 
    654 	KASSERT(mutex_owned(&proc_lock));
    655 
    656 	for (; p != q; p = p->p_pptr)
    657 		if (p->p_pid == 0)
    658 			return false;
    659 	return true;
    660 }
    661 
    662 /*
    663  * proc_find_lwp: locate an lwp in said proc by the ID.
    664  *
    665  * => Must be called with p::p_lock held.
    666  * => LSIDL lwps are not returned because they are only partially
    667  *    constructed while occupying the slot.
    668  * => Callers need to be careful about lwp::l_stat of the returned
    669  *    lwp.
    670  */
    671 struct lwp *
    672 proc_find_lwp(proc_t *p, pid_t pid)
    673 {
    674 	struct pid_table *pt;
    675 	struct lwp *l = NULL;
    676 	uintptr_t slot;
    677 	int s;
    678 
    679 	KASSERT(mutex_owned(p->p_lock));
    680 
    681 	/*
    682 	 * Look in the pid_table.  This is done unlocked inside a pserialize
    683 	 * read section covering pid_table's memory allocation only, so take
    684 	 * care to read the slot atomically and only once.  This issues a
    685 	 * memory barrier for dependent loads on alpha.
    686 	 */
    687 	s = pserialize_read_enter();
    688 	pt = &pid_table[pid & pid_tbl_mask];
    689 	slot = atomic_load_consume(&pt->pt_slot);
    690 	if (__predict_false(!PT_IS_LWP(slot))) {
    691 		pserialize_read_exit(s);
    692 		return NULL;
    693 	}
    694 
    695 	/*
    696 	 * Check to see if the LWP is from the correct process.  We won't
    697 	 * see entries in pid_table from a prior process that also used "p",
    698 	 * by virtue of the fact that allocating "p" means all prior updates
    699 	 * to dependant data structures are visible to this thread.
    700 	 */
    701 	l = PT_GET_LWP(slot);
    702 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
    703 		pserialize_read_exit(s);
    704 		return NULL;
    705 	}
    706 
    707 	/*
    708 	 * We now know that p->p_lock holds this LWP stable.
    709 	 *
    710 	 * If the status is not LSIDL, it means the LWP is intended to be
    711 	 * findable by LID and l_lid cannot change behind us.
    712 	 *
    713 	 * No need to acquire the LWP's lock to check for LSIDL, as
    714 	 * p->p_lock must be held to transition in and out of LSIDL.
    715 	 * Any other observed state of is no particular interest.
    716 	 */
    717 	pserialize_read_exit(s);
    718 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
    719 }
    720 
    721 /*
    722  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
    723  *
    724  * => Called in a pserialize read section with no locks held.
    725  * => LSIDL lwps are not returned because they are only partially
    726  *    constructed while occupying the slot.
    727  * => Callers need to be careful about lwp::l_stat of the returned
    728  *    lwp.
    729  * => If an LWP is found, it's returned locked.
    730  */
    731 struct lwp *
    732 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
    733 {
    734 	struct pid_table *pt;
    735 	struct lwp *l = NULL;
    736 	uintptr_t slot;
    737 
    738 	KASSERT(pserialize_in_read_section());
    739 
    740 	/*
    741 	 * Look in the pid_table.  This is done unlocked inside a pserialize
    742 	 * read section covering pid_table's memory allocation only, so take
    743 	 * care to read the slot atomically and only once.  This issues a
    744 	 * memory barrier for dependent loads on alpha.
    745 	 */
    746 	pt = &pid_table[pid & pid_tbl_mask];
    747 	slot = atomic_load_consume(&pt->pt_slot);
    748 	if (__predict_false(!PT_IS_LWP(slot))) {
    749 		return NULL;
    750 	}
    751 
    752 	/*
    753 	 * Lock the LWP we found to get it stable.  If it's embryonic or
    754 	 * reaped (LSIDL) then none of the other fields can safely be
    755 	 * checked.
    756 	 */
    757 	l = PT_GET_LWP(slot);
    758 	lwp_lock(l);
    759 	if (__predict_false(l->l_stat == LSIDL)) {
    760 		lwp_unlock(l);
    761 		return NULL;
    762 	}
    763 
    764 	/*
    765 	 * l_proc and l_lid are now known stable because the LWP is not
    766 	 * LSIDL, so check those fields too to make sure we found the
    767 	 * right thing.
    768 	 */
    769 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
    770 		lwp_unlock(l);
    771 		return NULL;
    772 	}
    773 
    774 	/* Everything checks out, return it locked. */
    775 	return l;
    776 }
    777 
    778 /*
    779  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
    780  * on its containing proc.
    781  *
    782  * => Similar to proc_find_lwp(), but does not require you to have
    783  *    the proc a priori.
    784  * => Also returns proc * to caller, with p::p_lock held.
    785  * => Same caveats apply.
    786  */
    787 struct lwp *
    788 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
    789 {
    790 	struct pid_table *pt;
    791 	struct proc *p = NULL;
    792 	struct lwp *l = NULL;
    793 	uintptr_t slot;
    794 
    795 	KASSERT(pp != NULL);
    796 	mutex_enter(&proc_lock);
    797 	pt = &pid_table[pid & pid_tbl_mask];
    798 
    799 	slot = pt->pt_slot;
    800 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    801 		l = PT_GET_LWP(slot);
    802 		p = l->l_proc;
    803 		mutex_enter(p->p_lock);
    804 		if (__predict_false(l->l_stat == LSIDL)) {
    805 			mutex_exit(p->p_lock);
    806 			l = NULL;
    807 			p = NULL;
    808 		}
    809 	}
    810 	mutex_exit(&proc_lock);
    811 
    812 	KASSERT(p == NULL || mutex_owned(p->p_lock));
    813 	*pp = p;
    814 	return l;
    815 }
    816 
    817 /*
    818  * proc_find_raw_pid_table_locked: locate a process by the ID.
    819  *
    820  * => Must be called with proc_lock held.
    821  */
    822 static proc_t *
    823 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
    824 {
    825 	struct pid_table *pt;
    826 	proc_t *p = NULL;
    827 	uintptr_t slot;
    828 
    829 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
    830 	pt = &pid_table[pid & pid_tbl_mask];
    831 
    832 	slot = pt->pt_slot;
    833 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    834 		/*
    835 		 * When looking up processes, require a direct match
    836 		 * on the PID assigned to the proc, not just one of
    837 		 * its LWPs.
    838 		 *
    839 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
    840 		 * valid here.
    841 		 */
    842 		p = PT_GET_LWP(slot)->l_proc;
    843 		if (__predict_false(p->p_pid != pid && !any_lwpid))
    844 			p = NULL;
    845 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    846 		p = PT_GET_PROC(slot);
    847 	}
    848 	return p;
    849 }
    850 
    851 proc_t *
    852 proc_find_raw(pid_t pid)
    853 {
    854 
    855 	return proc_find_raw_pid_table_locked(pid, false);
    856 }
    857 
    858 static proc_t *
    859 proc_find_internal(pid_t pid, bool any_lwpid)
    860 {
    861 	proc_t *p;
    862 
    863 	KASSERT(mutex_owned(&proc_lock));
    864 
    865 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
    866 	if (__predict_false(p == NULL)) {
    867 		return NULL;
    868 	}
    869 
    870 	/*
    871 	 * Only allow live processes to be found by PID.
    872 	 * XXX: p_stat might change, since proc unlocked.
    873 	 */
    874 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    875 		return p;
    876 	}
    877 	return NULL;
    878 }
    879 
    880 proc_t *
    881 proc_find(pid_t pid)
    882 {
    883 	return proc_find_internal(pid, false);
    884 }
    885 
    886 proc_t *
    887 proc_find_lwpid(pid_t pid)
    888 {
    889 	return proc_find_internal(pid, true);
    890 }
    891 
    892 /*
    893  * pgrp_find: locate a process group by the ID.
    894  *
    895  * => Must be called with proc_lock held.
    896  */
    897 struct pgrp *
    898 pgrp_find(pid_t pgid)
    899 {
    900 	struct pgrp *pg;
    901 
    902 	KASSERT(mutex_owned(&proc_lock));
    903 
    904 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    905 
    906 	/*
    907 	 * Cannot look up a process group that only exists because the
    908 	 * session has not died yet (traditional).
    909 	 */
    910 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    911 		return NULL;
    912 	}
    913 	return pg;
    914 }
    915 
    916 static void
    917 expand_pid_table(void)
    918 {
    919 	size_t pt_size, tsz;
    920 	struct pid_table *n_pt, *new_pt;
    921 	uintptr_t slot;
    922 	struct pgrp *pgrp;
    923 	pid_t pid, rpid;
    924 	u_int i;
    925 	uint new_pt_mask;
    926 
    927 	KASSERT(mutex_owned(&proc_lock));
    928 
    929 	/* Unlock the pid_table briefly to allocate memory. */
    930 	pt_size = pid_tbl_mask + 1;
    931 	mutex_exit(&proc_lock);
    932 
    933 	tsz = pt_size * 2 * sizeof(struct pid_table);
    934 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    935 	new_pt_mask = pt_size * 2 - 1;
    936 
    937 	/* XXX For now.  The pratical limit is much lower anyway. */
    938 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    939 
    940 	mutex_enter(&proc_lock);
    941 	if (pt_size != pid_tbl_mask + 1) {
    942 		/* Another process beat us to it... */
    943 		mutex_exit(&proc_lock);
    944 		kmem_free(new_pt, tsz);
    945 		goto out;
    946 	}
    947 
    948 	/*
    949 	 * Copy entries from old table into new one.
    950 	 * If 'pid' is 'odd' we need to place in the upper half,
    951 	 * even pid's to the lower half.
    952 	 * Free items stay in the low half so we don't have to
    953 	 * fixup the reference to them.
    954 	 * We stuff free items on the front of the freelist
    955 	 * because we can't write to unmodified entries.
    956 	 * Processing the table backwards maintains a semblance
    957 	 * of issuing pid numbers that increase with time.
    958 	 */
    959 	i = pt_size - 1;
    960 	n_pt = new_pt + i;
    961 	for (; ; i--, n_pt--) {
    962 		slot = pid_table[i].pt_slot;
    963 		pgrp = pid_table[i].pt_pgrp;
    964 		if (!PT_VALID(slot)) {
    965 			/* Up 'use count' so that link is valid */
    966 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    967 			rpid = 0;
    968 			slot = PT_SET_FREE(pid);
    969 			if (pgrp)
    970 				pid = pgrp->pg_id;
    971 		} else {
    972 			pid = pid_table[i].pt_pid;
    973 			rpid = pid;
    974 		}
    975 
    976 		/* Save entry in appropriate half of table */
    977 		n_pt[pid & pt_size].pt_slot = slot;
    978 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    979 		n_pt[pid & pt_size].pt_pid = rpid;
    980 
    981 		/* Put other piece on start of free list */
    982 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    983 		n_pt[pid & pt_size].pt_slot =
    984 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
    985 		n_pt[pid & pt_size].pt_pgrp = 0;
    986 		n_pt[pid & pt_size].pt_pid = 0;
    987 
    988 		next_free_pt = i | (pid & pt_size);
    989 		if (i == 0)
    990 			break;
    991 	}
    992 
    993 	/* Save old table size and switch tables */
    994 	tsz = pt_size * sizeof(struct pid_table);
    995 	n_pt = pid_table;
    996 	pid_table = new_pt;
    997 	pid_tbl_mask = new_pt_mask;
    998 
    999 	/*
   1000 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
   1001 	 * allocated pids we need it to be larger!
   1002 	 */
   1003 	if (pid_tbl_mask > PID_MAX) {
   1004 		pid_max = pid_tbl_mask * 2 + 1;
   1005 		pid_alloc_lim |= pid_alloc_lim << 1;
   1006 	} else
   1007 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
   1008 
   1009 	mutex_exit(&proc_lock);
   1010 
   1011 	/*
   1012 	 * Make sure that unlocked access to the old pid_table is complete
   1013 	 * and then free it.
   1014 	 */
   1015 	pserialize_perform(proc_psz);
   1016 	kmem_free(n_pt, tsz);
   1017 
   1018  out:	/* Return with proc_lock held again. */
   1019 	mutex_enter(&proc_lock);
   1020 }
   1021 
   1022 struct proc *
   1023 proc_alloc(void)
   1024 {
   1025 	struct proc *p;
   1026 
   1027 	p = pool_cache_get(proc_cache, PR_WAITOK);
   1028 	p->p_stat = SIDL;			/* protect against others */
   1029 	proc_initspecific(p);
   1030 	kdtrace_proc_ctor(NULL, p);
   1031 
   1032 	/*
   1033 	 * Allocate a placeholder in the pid_table.  When we create the
   1034 	 * first LWP for this process, it will take ownership of the
   1035 	 * slot.
   1036 	 */
   1037 	if (__predict_false(proc_alloc_pid(p) == -1)) {
   1038 		/* Allocating the PID failed; unwind. */
   1039 		proc_finispecific(p);
   1040 		proc_free_mem(p);
   1041 		p = NULL;
   1042 	}
   1043 	return p;
   1044 }
   1045 
   1046 /*
   1047  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
   1048  * proc_find_raw() can find it by the PID.
   1049  */
   1050 static pid_t __noinline
   1051 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1052 {
   1053 	struct pid_table *pt;
   1054 	pid_t pid;
   1055 	int nxt;
   1056 
   1057 	KASSERT(mutex_owned(&proc_lock));
   1058 
   1059 	for (;;expand_pid_table()) {
   1060 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1061 			/* ensure pids cycle through 2000+ values */
   1062 			continue;
   1063 		}
   1064 		/*
   1065 		 * The first user process *must* be given PID 1.
   1066 		 * it has already been reserved for us.  This
   1067 		 * will be coming in from the proc_alloc() call
   1068 		 * above, and the entry will be usurped later when
   1069 		 * the first user LWP is created.
   1070 		 * XXX this is slightly gross.
   1071 		 */
   1072 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1073 				    p != &proc0)) {
   1074 			KASSERT(PT_IS_PROC(slot));
   1075 			pt = &pid_table[1];
   1076 			pt->pt_slot = slot;
   1077 			return 1;
   1078 		}
   1079 		pt = &pid_table[next_free_pt];
   1080 #ifdef DIAGNOSTIC
   1081 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1082 			panic("proc_alloc: slot busy");
   1083 #endif
   1084 		nxt = PT_NEXT(pt->pt_slot);
   1085 		if (nxt & pid_tbl_mask)
   1086 			break;
   1087 		/* Table full - expand (NB last entry not used....) */
   1088 	}
   1089 
   1090 	/* pid is 'saved use count' + 'size' + entry */
   1091 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1092 	if ((uint)pid > (uint)pid_max)
   1093 		pid &= pid_tbl_mask;
   1094 	next_free_pt = nxt & pid_tbl_mask;
   1095 
   1096 	/* XXX For now.  The pratical limit is much lower anyway. */
   1097 	KASSERT(pid <= FUTEX_TID_MASK);
   1098 
   1099 	/* Grab table slot */
   1100 	pt->pt_slot = slot;
   1101 
   1102 	KASSERT(pt->pt_pid == 0);
   1103 	pt->pt_pid = pid;
   1104 	pid_alloc_cnt++;
   1105 
   1106 	return pid;
   1107 }
   1108 
   1109 pid_t
   1110 proc_alloc_pid(struct proc *p)
   1111 {
   1112 	pid_t pid;
   1113 
   1114 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1115 	KASSERT(p->p_stat == SIDL);
   1116 
   1117 	mutex_enter(&proc_lock);
   1118 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1119 	if (pid != -1)
   1120 		p->p_pid = pid;
   1121 	mutex_exit(&proc_lock);
   1122 
   1123 	return pid;
   1124 }
   1125 
   1126 pid_t
   1127 proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1128 {
   1129 	struct pid_table *pt;
   1130 	pid_t pid;
   1131 
   1132 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1133 	KASSERT(l->l_proc == p);
   1134 	KASSERT(l->l_stat == LSIDL);
   1135 
   1136 	/*
   1137 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
   1138 	 * is globally visible before the LWP becomes visible via the
   1139 	 * pid_table.
   1140 	 */
   1141 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1142 	membar_producer();
   1143 #endif
   1144 
   1145 	/*
   1146 	 * If the slot for p->p_pid currently points to the proc,
   1147 	 * then we should usurp this ID for the LWP.  This happens
   1148 	 * at least once per process (for the first LWP), and can
   1149 	 * happen again if the first LWP for a process exits and
   1150 	 * before the process creates another.
   1151 	 */
   1152 	mutex_enter(&proc_lock);
   1153 	pid = p->p_pid;
   1154 	pt = &pid_table[pid & pid_tbl_mask];
   1155 	KASSERT(pt->pt_pid == pid);
   1156 	if (PT_IS_PROC(pt->pt_slot)) {
   1157 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1158 		l->l_lid = pid;
   1159 		pt->pt_slot = PT_SET_LWP(l);
   1160 	} else {
   1161 		/* Need to allocate a new slot. */
   1162 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1163 		if (pid != -1)
   1164 			l->l_lid = pid;
   1165 	}
   1166 	mutex_exit(&proc_lock);
   1167 
   1168 	return pid;
   1169 }
   1170 
   1171 static void __noinline
   1172 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1173 {
   1174 	struct pid_table *pt;
   1175 
   1176 	pt = &pid_table[pid & pid_tbl_mask];
   1177 
   1178 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1179 	KASSERT(pt->pt_pid == pid);
   1180 
   1181 	/* save pid use count in slot */
   1182 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1183 	pt->pt_pid = 0;
   1184 
   1185 	if (pt->pt_pgrp == NULL) {
   1186 		/* link last freed entry onto ours */
   1187 		pid &= pid_tbl_mask;
   1188 		pt = &pid_table[last_free_pt];
   1189 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1190 		pt->pt_pid = 0;
   1191 		last_free_pt = pid;
   1192 		pid_alloc_cnt--;
   1193 	}
   1194 }
   1195 
   1196 /*
   1197  * Free a process id - called from proc_free (in kern_exit.c)
   1198  *
   1199  * Called with the proc_lock held.
   1200  */
   1201 void
   1202 proc_free_pid(pid_t pid)
   1203 {
   1204 
   1205 	KASSERT(mutex_owned(&proc_lock));
   1206 	proc_free_pid_internal(pid, PT_F_PROC);
   1207 }
   1208 
   1209 /*
   1210  * Free a process id used by an LWP.  If this was the process's
   1211  * first LWP, we convert the slot to point to the process; the
   1212  * entry will get cleaned up later when the process finishes exiting.
   1213  *
   1214  * If not, then it's the same as proc_free_pid().
   1215  */
   1216 void
   1217 proc_free_lwpid(struct proc *p, pid_t pid)
   1218 {
   1219 
   1220 	KASSERT(mutex_owned(&proc_lock));
   1221 
   1222 	if (__predict_true(p->p_pid == pid)) {
   1223 		struct pid_table *pt;
   1224 
   1225 		pt = &pid_table[pid & pid_tbl_mask];
   1226 
   1227 		KASSERT(pt->pt_pid == pid);
   1228 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1229 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1230 
   1231 		pt->pt_slot = PT_SET_PROC(p);
   1232 		return;
   1233 	}
   1234 	proc_free_pid_internal(pid, PT_F_LWP);
   1235 }
   1236 
   1237 void
   1238 proc_free_mem(struct proc *p)
   1239 {
   1240 
   1241 	kdtrace_proc_dtor(NULL, p);
   1242 	pool_cache_put(proc_cache, p);
   1243 }
   1244 
   1245 /*
   1246  * proc_enterpgrp: move p to a new or existing process group (and session).
   1247  *
   1248  * If we are creating a new pgrp, the pgid should equal
   1249  * the calling process' pid.
   1250  * If is only valid to enter a process group that is in the session
   1251  * of the process.
   1252  * Also mksess should only be set if we are creating a process group
   1253  *
   1254  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1255  */
   1256 int
   1257 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1258 {
   1259 	struct pgrp *new_pgrp, *pgrp;
   1260 	struct session *sess;
   1261 	struct proc *p;
   1262 	int rval;
   1263 	pid_t pg_id = NO_PGID;
   1264 
   1265 	/* Allocate data areas we might need before doing any validity checks */
   1266 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1267 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1268 
   1269 	mutex_enter(&proc_lock);
   1270 	rval = EPERM;	/* most common error (to save typing) */
   1271 
   1272 	/* Check pgrp exists or can be created */
   1273 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1274 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1275 		goto done;
   1276 
   1277 	/* Can only set another process under restricted circumstances. */
   1278 	if (pid != curp->p_pid) {
   1279 		/* Must exist and be one of our children... */
   1280 		p = proc_find_internal(pid, false);
   1281 		if (p == NULL || !p_inferior(p, curp)) {
   1282 			rval = ESRCH;
   1283 			goto done;
   1284 		}
   1285 		/* ... in the same session... */
   1286 		if (sess != NULL || p->p_session != curp->p_session)
   1287 			goto done;
   1288 		/* ... existing pgid must be in same session ... */
   1289 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1290 			goto done;
   1291 		/* ... and not done an exec. */
   1292 		if (p->p_flag & PK_EXEC) {
   1293 			rval = EACCES;
   1294 			goto done;
   1295 		}
   1296 	} else {
   1297 		/* ... setsid() cannot re-enter a pgrp */
   1298 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1299 		    pgrp_find(curp->p_pid)))
   1300 			goto done;
   1301 		p = curp;
   1302 	}
   1303 
   1304 	/* Changing the process group/session of a session
   1305 	   leader is definitely off limits. */
   1306 	if (SESS_LEADER(p)) {
   1307 		if (sess == NULL && p->p_pgrp == pgrp)
   1308 			/* unless it's a definite noop */
   1309 			rval = 0;
   1310 		goto done;
   1311 	}
   1312 
   1313 	/* Can only create a process group with id of process */
   1314 	if (pgrp == NULL && pgid != pid)
   1315 		goto done;
   1316 
   1317 	/* Can only create a session if creating pgrp */
   1318 	if (sess != NULL && pgrp != NULL)
   1319 		goto done;
   1320 
   1321 	/* Check we allocated memory for a pgrp... */
   1322 	if (pgrp == NULL && new_pgrp == NULL)
   1323 		goto done;
   1324 
   1325 	/* Don't attach to 'zombie' pgrp */
   1326 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1327 		goto done;
   1328 
   1329 	/* Expect to succeed now */
   1330 	rval = 0;
   1331 
   1332 	if (pgrp == p->p_pgrp)
   1333 		/* nothing to do */
   1334 		goto done;
   1335 
   1336 	/* Ok all setup, link up required structures */
   1337 
   1338 	if (pgrp == NULL) {
   1339 		pgrp = new_pgrp;
   1340 		new_pgrp = NULL;
   1341 		if (sess != NULL) {
   1342 			sess->s_sid = p->p_pid;
   1343 			sess->s_leader = p;
   1344 			sess->s_count = 1;
   1345 			sess->s_ttyvp = NULL;
   1346 			sess->s_ttyp = NULL;
   1347 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1348 			memcpy(sess->s_login, p->p_session->s_login,
   1349 			    sizeof(sess->s_login));
   1350 			p->p_lflag &= ~PL_CONTROLT;
   1351 		} else {
   1352 			sess = p->p_pgrp->pg_session;
   1353 			proc_sesshold(sess);
   1354 		}
   1355 		pgrp->pg_session = sess;
   1356 		sess = NULL;
   1357 
   1358 		pgrp->pg_id = pgid;
   1359 		LIST_INIT(&pgrp->pg_members);
   1360 #ifdef DIAGNOSTIC
   1361 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1362 			panic("enterpgrp: pgrp table slot in use");
   1363 		if (__predict_false(mksess && p != curp))
   1364 			panic("enterpgrp: mksession and p != curproc");
   1365 #endif
   1366 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1367 		pgrp->pg_jobc = 0;
   1368 	}
   1369 
   1370 	/*
   1371 	 * Adjust eligibility of affected pgrps to participate in job control.
   1372 	 * Increment eligibility counts before decrementing, otherwise we
   1373 	 * could reach 0 spuriously during the first call.
   1374 	 */
   1375 	fixjobc(p, pgrp, 1);
   1376 	fixjobc(p, p->p_pgrp, 0);
   1377 
   1378 	/* Interlock with ttread(). */
   1379 	mutex_spin_enter(&tty_lock);
   1380 
   1381 	/* Move process to requested group. */
   1382 	LIST_REMOVE(p, p_pglist);
   1383 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1384 		/* defer delete until we've dumped the lock */
   1385 		pg_id = p->p_pgrp->pg_id;
   1386 	p->p_pgrp = pgrp;
   1387 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1388 
   1389 	/* Done with the swap; we can release the tty mutex. */
   1390 	mutex_spin_exit(&tty_lock);
   1391 
   1392     done:
   1393 	if (pg_id != NO_PGID) {
   1394 		/* Releases proc_lock. */
   1395 		pg_delete(pg_id);
   1396 	} else {
   1397 		mutex_exit(&proc_lock);
   1398 	}
   1399 	if (sess != NULL)
   1400 		kmem_free(sess, sizeof(*sess));
   1401 	if (new_pgrp != NULL)
   1402 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1403 #ifdef DEBUG_PGRP
   1404 	if (__predict_false(rval))
   1405 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1406 			pid, pgid, mksess, curp->p_pid, rval);
   1407 #endif
   1408 	return rval;
   1409 }
   1410 
   1411 /*
   1412  * proc_leavepgrp: remove a process from its process group.
   1413  *  => must be called with the proc_lock held, which will be released;
   1414  */
   1415 void
   1416 proc_leavepgrp(struct proc *p)
   1417 {
   1418 	struct pgrp *pgrp;
   1419 
   1420 	KASSERT(mutex_owned(&proc_lock));
   1421 
   1422 	/* Interlock with ttread() */
   1423 	mutex_spin_enter(&tty_lock);
   1424 	pgrp = p->p_pgrp;
   1425 	LIST_REMOVE(p, p_pglist);
   1426 	p->p_pgrp = NULL;
   1427 	mutex_spin_exit(&tty_lock);
   1428 
   1429 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1430 		/* Releases proc_lock. */
   1431 		pg_delete(pgrp->pg_id);
   1432 	} else {
   1433 		mutex_exit(&proc_lock);
   1434 	}
   1435 }
   1436 
   1437 /*
   1438  * pg_remove: remove a process group from the table.
   1439  *  => must be called with the proc_lock held;
   1440  *  => returns process group to free;
   1441  */
   1442 static struct pgrp *
   1443 pg_remove(pid_t pg_id)
   1444 {
   1445 	struct pgrp *pgrp;
   1446 	struct pid_table *pt;
   1447 
   1448 	KASSERT(mutex_owned(&proc_lock));
   1449 
   1450 	pt = &pid_table[pg_id & pid_tbl_mask];
   1451 	pgrp = pt->pt_pgrp;
   1452 
   1453 	KASSERT(pgrp != NULL);
   1454 	KASSERT(pgrp->pg_id == pg_id);
   1455 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1456 
   1457 	pt->pt_pgrp = NULL;
   1458 
   1459 	if (!PT_VALID(pt->pt_slot)) {
   1460 		/* Orphaned pgrp, put slot onto free list. */
   1461 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1462 		pg_id &= pid_tbl_mask;
   1463 		pt = &pid_table[last_free_pt];
   1464 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1465 		KASSERT(pt->pt_pid == 0);
   1466 		last_free_pt = pg_id;
   1467 		pid_alloc_cnt--;
   1468 	}
   1469 	return pgrp;
   1470 }
   1471 
   1472 /*
   1473  * pg_delete: delete and free a process group.
   1474  *  => must be called with the proc_lock held, which will be released.
   1475  */
   1476 static void
   1477 pg_delete(pid_t pg_id)
   1478 {
   1479 	struct pgrp *pg;
   1480 	struct tty *ttyp;
   1481 	struct session *ss;
   1482 
   1483 	KASSERT(mutex_owned(&proc_lock));
   1484 
   1485 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1486 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1487 		mutex_exit(&proc_lock);
   1488 		return;
   1489 	}
   1490 
   1491 	ss = pg->pg_session;
   1492 
   1493 	/* Remove reference (if any) from tty to this process group */
   1494 	mutex_spin_enter(&tty_lock);
   1495 	ttyp = ss->s_ttyp;
   1496 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1497 		ttyp->t_pgrp = NULL;
   1498 		KASSERT(ttyp->t_session == ss);
   1499 	}
   1500 	mutex_spin_exit(&tty_lock);
   1501 
   1502 	/*
   1503 	 * The leading process group in a session is freed by proc_sessrele(),
   1504 	 * if last reference.  It will also release the locks.
   1505 	 */
   1506 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1507 	proc_sessrele(ss);
   1508 
   1509 	if (pg != NULL) {
   1510 		/* Free it, if was not done above. */
   1511 		kmem_free(pg, sizeof(struct pgrp));
   1512 	}
   1513 }
   1514 
   1515 /*
   1516  * Adjust pgrp jobc counters when specified process changes process group.
   1517  * We count the number of processes in each process group that "qualify"
   1518  * the group for terminal job control (those with a parent in a different
   1519  * process group of the same session).  If that count reaches zero, the
   1520  * process group becomes orphaned.  Check both the specified process'
   1521  * process group and that of its children.
   1522  * entering == 0 => p is leaving specified group.
   1523  * entering == 1 => p is entering specified group.
   1524  *
   1525  * Call with proc_lock held.
   1526  */
   1527 void
   1528 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1529 {
   1530 	struct pgrp *hispgrp;
   1531 	struct session *mysession = pgrp->pg_session;
   1532 	struct proc *child;
   1533 
   1534 	KASSERT(mutex_owned(&proc_lock));
   1535 
   1536 	/*
   1537 	 * Check p's parent to see whether p qualifies its own process
   1538 	 * group; if so, adjust count for p's process group.
   1539 	 */
   1540 	hispgrp = p->p_pptr->p_pgrp;
   1541 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1542 		if (entering) {
   1543 			pgrp->pg_jobc++;
   1544 			p->p_lflag &= ~PL_ORPHANPG;
   1545 		} else {
   1546 			/* KASSERT(pgrp->pg_jobc > 0); */
   1547 			if (--pgrp->pg_jobc == 0)
   1548 				orphanpg(pgrp);
   1549 		}
   1550 	}
   1551 
   1552 	/*
   1553 	 * Check this process' children to see whether they qualify
   1554 	 * their process groups; if so, adjust counts for children's
   1555 	 * process groups.
   1556 	 */
   1557 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1558 		hispgrp = child->p_pgrp;
   1559 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1560 		    !P_ZOMBIE(child)) {
   1561 			if (entering) {
   1562 				child->p_lflag &= ~PL_ORPHANPG;
   1563 				hispgrp->pg_jobc++;
   1564 			} else {
   1565 				KASSERT(hispgrp->pg_jobc > 0);
   1566 				if (--hispgrp->pg_jobc == 0)
   1567 					orphanpg(hispgrp);
   1568 			}
   1569 		}
   1570 	}
   1571 }
   1572 
   1573 /*
   1574  * A process group has become orphaned;
   1575  * if there are any stopped processes in the group,
   1576  * hang-up all process in that group.
   1577  *
   1578  * Call with proc_lock held.
   1579  */
   1580 static void
   1581 orphanpg(struct pgrp *pg)
   1582 {
   1583 	struct proc *p;
   1584 
   1585 	KASSERT(mutex_owned(&proc_lock));
   1586 
   1587 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1588 		if (p->p_stat == SSTOP) {
   1589 			p->p_lflag |= PL_ORPHANPG;
   1590 			psignal(p, SIGHUP);
   1591 			psignal(p, SIGCONT);
   1592 		}
   1593 	}
   1594 }
   1595 
   1596 #ifdef DDB
   1597 #include <ddb/db_output.h>
   1598 void pidtbl_dump(void);
   1599 void
   1600 pidtbl_dump(void)
   1601 {
   1602 	struct pid_table *pt;
   1603 	struct proc *p;
   1604 	struct pgrp *pgrp;
   1605 	uintptr_t slot;
   1606 	int id;
   1607 
   1608 	db_printf("pid table %p size %x, next %x, last %x\n",
   1609 		pid_table, pid_tbl_mask+1,
   1610 		next_free_pt, last_free_pt);
   1611 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1612 		slot = pt->pt_slot;
   1613 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1614 			continue;
   1615 		if (PT_IS_LWP(slot)) {
   1616 			p = PT_GET_LWP(slot)->l_proc;
   1617 		} else if (PT_IS_PROC(slot)) {
   1618 			p = PT_GET_PROC(slot);
   1619 		} else {
   1620 			p = NULL;
   1621 		}
   1622 		db_printf("  id %x: ", id);
   1623 		if (p != NULL)
   1624 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1625 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1626 		else
   1627 			db_printf("next %x use %x\n",
   1628 				PT_NEXT(slot) & pid_tbl_mask,
   1629 				PT_NEXT(slot) & ~pid_tbl_mask);
   1630 		if ((pgrp = pt->pt_pgrp)) {
   1631 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1632 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1633 			    pgrp->pg_session->s_count,
   1634 			    pgrp->pg_session->s_login);
   1635 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1636 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1637 			    LIST_FIRST(&pgrp->pg_members));
   1638 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1639 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1640 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1641 			}
   1642 		}
   1643 	}
   1644 }
   1645 #endif /* DDB */
   1646 
   1647 #ifdef KSTACK_CHECK_MAGIC
   1648 
   1649 #define	KSTACK_MAGIC	0xdeadbeaf
   1650 
   1651 /* XXX should be per process basis? */
   1652 static int	kstackleftmin = KSTACK_SIZE;
   1653 static int	kstackleftthres = KSTACK_SIZE / 8;
   1654 
   1655 void
   1656 kstack_setup_magic(const struct lwp *l)
   1657 {
   1658 	uint32_t *ip;
   1659 	uint32_t const *end;
   1660 
   1661 	KASSERT(l != NULL);
   1662 	KASSERT(l != &lwp0);
   1663 
   1664 	/*
   1665 	 * fill all the stack with magic number
   1666 	 * so that later modification on it can be detected.
   1667 	 */
   1668 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1669 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1670 	for (; ip < end; ip++) {
   1671 		*ip = KSTACK_MAGIC;
   1672 	}
   1673 }
   1674 
   1675 void
   1676 kstack_check_magic(const struct lwp *l)
   1677 {
   1678 	uint32_t const *ip, *end;
   1679 	int stackleft;
   1680 
   1681 	KASSERT(l != NULL);
   1682 
   1683 	/* don't check proc0 */ /*XXX*/
   1684 	if (l == &lwp0)
   1685 		return;
   1686 
   1687 #ifdef __MACHINE_STACK_GROWS_UP
   1688 	/* stack grows upwards (eg. hppa) */
   1689 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1690 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1691 	for (ip--; ip >= end; ip--)
   1692 		if (*ip != KSTACK_MAGIC)
   1693 			break;
   1694 
   1695 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1696 #else /* __MACHINE_STACK_GROWS_UP */
   1697 	/* stack grows downwards (eg. i386) */
   1698 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1699 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1700 	for (; ip < end; ip++)
   1701 		if (*ip != KSTACK_MAGIC)
   1702 			break;
   1703 
   1704 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1705 #endif /* __MACHINE_STACK_GROWS_UP */
   1706 
   1707 	if (kstackleftmin > stackleft) {
   1708 		kstackleftmin = stackleft;
   1709 		if (stackleft < kstackleftthres)
   1710 			printf("warning: kernel stack left %d bytes"
   1711 			    "(pid %u:lid %u)\n", stackleft,
   1712 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1713 	}
   1714 
   1715 	if (stackleft <= 0) {
   1716 		panic("magic on the top of kernel stack changed for "
   1717 		    "pid %u, lid %u: maybe kernel stack overflow",
   1718 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1719 	}
   1720 }
   1721 #endif /* KSTACK_CHECK_MAGIC */
   1722 
   1723 int
   1724 proclist_foreach_call(struct proclist *list,
   1725     int (*callback)(struct proc *, void *arg), void *arg)
   1726 {
   1727 	struct proc marker;
   1728 	struct proc *p;
   1729 	int ret = 0;
   1730 
   1731 	marker.p_flag = PK_MARKER;
   1732 	mutex_enter(&proc_lock);
   1733 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1734 		if (p->p_flag & PK_MARKER) {
   1735 			p = LIST_NEXT(p, p_list);
   1736 			continue;
   1737 		}
   1738 		LIST_INSERT_AFTER(p, &marker, p_list);
   1739 		ret = (*callback)(p, arg);
   1740 		KASSERT(mutex_owned(&proc_lock));
   1741 		p = LIST_NEXT(&marker, p_list);
   1742 		LIST_REMOVE(&marker, p_list);
   1743 	}
   1744 	mutex_exit(&proc_lock);
   1745 
   1746 	return ret;
   1747 }
   1748 
   1749 int
   1750 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1751 {
   1752 
   1753 	/* XXXCDC: how should locking work here? */
   1754 
   1755 	/* curproc exception is for coredump. */
   1756 
   1757 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1758 	    (p->p_vmspace->vm_refcnt < 1)) {
   1759 		return EFAULT;
   1760 	}
   1761 
   1762 	uvmspace_addref(p->p_vmspace);
   1763 	*vm = p->p_vmspace;
   1764 
   1765 	return 0;
   1766 }
   1767 
   1768 /*
   1769  * Acquire a write lock on the process credential.
   1770  */
   1771 void
   1772 proc_crmod_enter(void)
   1773 {
   1774 	struct lwp *l = curlwp;
   1775 	struct proc *p = l->l_proc;
   1776 	kauth_cred_t oc;
   1777 
   1778 	/* Reset what needs to be reset in plimit. */
   1779 	if (p->p_limit->pl_corename != defcorename) {
   1780 		lim_setcorename(p, defcorename, 0);
   1781 	}
   1782 
   1783 	mutex_enter(p->p_lock);
   1784 
   1785 	/* Ensure the LWP cached credentials are up to date. */
   1786 	if ((oc = l->l_cred) != p->p_cred) {
   1787 		kauth_cred_hold(p->p_cred);
   1788 		l->l_cred = p->p_cred;
   1789 		kauth_cred_free(oc);
   1790 	}
   1791 }
   1792 
   1793 /*
   1794  * Set in a new process credential, and drop the write lock.  The credential
   1795  * must have a reference already.  Optionally, free a no-longer required
   1796  * credential.  The scheduler also needs to inspect p_cred, so we also
   1797  * briefly acquire the sched state mutex.
   1798  */
   1799 void
   1800 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1801 {
   1802 	struct lwp *l = curlwp, *l2;
   1803 	struct proc *p = l->l_proc;
   1804 	kauth_cred_t oc;
   1805 
   1806 	KASSERT(mutex_owned(p->p_lock));
   1807 
   1808 	/* Is there a new credential to set in? */
   1809 	if (scred != NULL) {
   1810 		p->p_cred = scred;
   1811 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1812 			if (l2 != l)
   1813 				l2->l_prflag |= LPR_CRMOD;
   1814 		}
   1815 
   1816 		/* Ensure the LWP cached credentials are up to date. */
   1817 		if ((oc = l->l_cred) != scred) {
   1818 			kauth_cred_hold(scred);
   1819 			l->l_cred = scred;
   1820 		}
   1821 	} else
   1822 		oc = NULL;	/* XXXgcc */
   1823 
   1824 	if (sugid) {
   1825 		/*
   1826 		 * Mark process as having changed credentials, stops
   1827 		 * tracing etc.
   1828 		 */
   1829 		p->p_flag |= PK_SUGID;
   1830 	}
   1831 
   1832 	mutex_exit(p->p_lock);
   1833 
   1834 	/* If there is a credential to be released, free it now. */
   1835 	if (fcred != NULL) {
   1836 		KASSERT(scred != NULL);
   1837 		kauth_cred_free(fcred);
   1838 		if (oc != scred)
   1839 			kauth_cred_free(oc);
   1840 	}
   1841 }
   1842 
   1843 /*
   1844  * proc_specific_key_create --
   1845  *	Create a key for subsystem proc-specific data.
   1846  */
   1847 int
   1848 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1849 {
   1850 
   1851 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1852 }
   1853 
   1854 /*
   1855  * proc_specific_key_delete --
   1856  *	Delete a key for subsystem proc-specific data.
   1857  */
   1858 void
   1859 proc_specific_key_delete(specificdata_key_t key)
   1860 {
   1861 
   1862 	specificdata_key_delete(proc_specificdata_domain, key);
   1863 }
   1864 
   1865 /*
   1866  * proc_initspecific --
   1867  *	Initialize a proc's specificdata container.
   1868  */
   1869 void
   1870 proc_initspecific(struct proc *p)
   1871 {
   1872 	int error __diagused;
   1873 
   1874 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1875 	KASSERT(error == 0);
   1876 }
   1877 
   1878 /*
   1879  * proc_finispecific --
   1880  *	Finalize a proc's specificdata container.
   1881  */
   1882 void
   1883 proc_finispecific(struct proc *p)
   1884 {
   1885 
   1886 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1887 }
   1888 
   1889 /*
   1890  * proc_getspecific --
   1891  *	Return proc-specific data corresponding to the specified key.
   1892  */
   1893 void *
   1894 proc_getspecific(struct proc *p, specificdata_key_t key)
   1895 {
   1896 
   1897 	return (specificdata_getspecific(proc_specificdata_domain,
   1898 					 &p->p_specdataref, key));
   1899 }
   1900 
   1901 /*
   1902  * proc_setspecific --
   1903  *	Set proc-specific data corresponding to the specified key.
   1904  */
   1905 void
   1906 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1907 {
   1908 
   1909 	specificdata_setspecific(proc_specificdata_domain,
   1910 				 &p->p_specdataref, key, data);
   1911 }
   1912 
   1913 int
   1914 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1915 {
   1916 	int r = 0;
   1917 
   1918 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1919 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1920 		/*
   1921 		 * suid proc of ours or proc not ours
   1922 		 */
   1923 		r = EPERM;
   1924 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1925 		/*
   1926 		 * sgid proc has sgid back to us temporarily
   1927 		 */
   1928 		r = EPERM;
   1929 	} else {
   1930 		/*
   1931 		 * our rgid must be in target's group list (ie,
   1932 		 * sub-processes started by a sgid process)
   1933 		 */
   1934 		int ismember = 0;
   1935 
   1936 		if (kauth_cred_ismember_gid(cred,
   1937 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1938 		    !ismember)
   1939 			r = EPERM;
   1940 	}
   1941 
   1942 	return (r);
   1943 }
   1944 
   1945 /*
   1946  * sysctl stuff
   1947  */
   1948 
   1949 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1950 
   1951 static const u_int sysctl_flagmap[] = {
   1952 	PK_ADVLOCK, P_ADVLOCK,
   1953 	PK_EXEC, P_EXEC,
   1954 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1955 	PK_32, P_32,
   1956 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1957 	PK_SUGID, P_SUGID,
   1958 	0
   1959 };
   1960 
   1961 static const u_int sysctl_sflagmap[] = {
   1962 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1963 	PS_WEXIT, P_WEXIT,
   1964 	PS_STOPFORK, P_STOPFORK,
   1965 	PS_STOPEXEC, P_STOPEXEC,
   1966 	PS_STOPEXIT, P_STOPEXIT,
   1967 	0
   1968 };
   1969 
   1970 static const u_int sysctl_slflagmap[] = {
   1971 	PSL_TRACED, P_TRACED,
   1972 	PSL_CHTRACED, P_CHTRACED,
   1973 	PSL_SYSCALL, P_SYSCALL,
   1974 	0
   1975 };
   1976 
   1977 static const u_int sysctl_lflagmap[] = {
   1978 	PL_CONTROLT, P_CONTROLT,
   1979 	PL_PPWAIT, P_PPWAIT,
   1980 	0
   1981 };
   1982 
   1983 static const u_int sysctl_stflagmap[] = {
   1984 	PST_PROFIL, P_PROFIL,
   1985 	0
   1986 
   1987 };
   1988 
   1989 /* used by kern_lwp also */
   1990 const u_int sysctl_lwpflagmap[] = {
   1991 	LW_SINTR, L_SINTR,
   1992 	LW_SYSTEM, L_SYSTEM,
   1993 	0
   1994 };
   1995 
   1996 /*
   1997  * Find the most ``active'' lwp of a process and return it for ps display
   1998  * purposes
   1999  */
   2000 static struct lwp *
   2001 proc_active_lwp(struct proc *p)
   2002 {
   2003 	static const int ostat[] = {
   2004 		0,
   2005 		2,	/* LSIDL */
   2006 		6,	/* LSRUN */
   2007 		5,	/* LSSLEEP */
   2008 		4,	/* LSSTOP */
   2009 		0,	/* LSZOMB */
   2010 		1,	/* LSDEAD */
   2011 		7,	/* LSONPROC */
   2012 		3	/* LSSUSPENDED */
   2013 	};
   2014 
   2015 	struct lwp *l, *lp = NULL;
   2016 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2017 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   2018 		if (lp == NULL ||
   2019 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   2020 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   2021 		    l->l_cpticks > lp->l_cpticks)) {
   2022 			lp = l;
   2023 			continue;
   2024 		}
   2025 	}
   2026 	return lp;
   2027 }
   2028 
   2029 static int
   2030 sysctl_doeproc(SYSCTLFN_ARGS)
   2031 {
   2032 	union {
   2033 		struct kinfo_proc kproc;
   2034 		struct kinfo_proc2 kproc2;
   2035 	} *kbuf;
   2036 	struct proc *p, *next, *marker;
   2037 	char *where, *dp;
   2038 	int type, op, arg, error;
   2039 	u_int elem_size, kelem_size, elem_count;
   2040 	size_t buflen, needed;
   2041 	bool match, zombie, mmmbrains;
   2042 	const bool allowaddr = get_expose_address(curproc);
   2043 
   2044 	if (namelen == 1 && name[0] == CTL_QUERY)
   2045 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2046 
   2047 	dp = where = oldp;
   2048 	buflen = where != NULL ? *oldlenp : 0;
   2049 	error = 0;
   2050 	needed = 0;
   2051 	type = rnode->sysctl_num;
   2052 
   2053 	if (type == KERN_PROC) {
   2054 		if (namelen == 0)
   2055 			return EINVAL;
   2056 		switch (op = name[0]) {
   2057 		case KERN_PROC_ALL:
   2058 			if (namelen != 1)
   2059 				return EINVAL;
   2060 			arg = 0;
   2061 			break;
   2062 		default:
   2063 			if (namelen != 2)
   2064 				return EINVAL;
   2065 			arg = name[1];
   2066 			break;
   2067 		}
   2068 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2069 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2070 	} else {
   2071 		if (namelen != 4)
   2072 			return EINVAL;
   2073 		op = name[0];
   2074 		arg = name[1];
   2075 		elem_size = name[2];
   2076 		elem_count = name[3];
   2077 		kelem_size = sizeof(kbuf->kproc2);
   2078 	}
   2079 
   2080 	sysctl_unlock();
   2081 
   2082 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2083 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2084 	marker->p_flag = PK_MARKER;
   2085 
   2086 	mutex_enter(&proc_lock);
   2087 	/*
   2088 	 * Start with zombies to prevent reporting processes twice, in case they
   2089 	 * are dying and being moved from the list of alive processes to zombies.
   2090 	 */
   2091 	mmmbrains = true;
   2092 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2093 		if (p == NULL) {
   2094 			if (mmmbrains) {
   2095 				p = LIST_FIRST(&allproc);
   2096 				mmmbrains = false;
   2097 			}
   2098 			if (p == NULL)
   2099 				break;
   2100 		}
   2101 		next = LIST_NEXT(p, p_list);
   2102 		if ((p->p_flag & PK_MARKER) != 0)
   2103 			continue;
   2104 
   2105 		/*
   2106 		 * Skip embryonic processes.
   2107 		 */
   2108 		if (p->p_stat == SIDL)
   2109 			continue;
   2110 
   2111 		mutex_enter(p->p_lock);
   2112 		error = kauth_authorize_process(l->l_cred,
   2113 		    KAUTH_PROCESS_CANSEE, p,
   2114 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2115 		if (error != 0) {
   2116 			mutex_exit(p->p_lock);
   2117 			continue;
   2118 		}
   2119 
   2120 		/*
   2121 		 * Hande all the operations in one switch on the cost of
   2122 		 * algorithm complexity is on purpose. The win splitting this
   2123 		 * function into several similar copies makes maintenance burden
   2124 		 * burden, code grow and boost is neglible in practical systems.
   2125 		 */
   2126 		switch (op) {
   2127 		case KERN_PROC_PID:
   2128 			match = (p->p_pid == (pid_t)arg);
   2129 			break;
   2130 
   2131 		case KERN_PROC_PGRP:
   2132 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2133 			break;
   2134 
   2135 		case KERN_PROC_SESSION:
   2136 			match = (p->p_session->s_sid == (pid_t)arg);
   2137 			break;
   2138 
   2139 		case KERN_PROC_TTY:
   2140 			match = true;
   2141 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2142 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2143 				    p->p_session->s_ttyp == NULL ||
   2144 				    p->p_session->s_ttyvp != NULL) {
   2145 				    	match = false;
   2146 				}
   2147 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2148 			    p->p_session->s_ttyp == NULL) {
   2149 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2150 					match = false;
   2151 				}
   2152 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2153 				match = false;
   2154 			}
   2155 			break;
   2156 
   2157 		case KERN_PROC_UID:
   2158 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2159 			break;
   2160 
   2161 		case KERN_PROC_RUID:
   2162 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2163 			break;
   2164 
   2165 		case KERN_PROC_GID:
   2166 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2167 			break;
   2168 
   2169 		case KERN_PROC_RGID:
   2170 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2171 			break;
   2172 
   2173 		case KERN_PROC_ALL:
   2174 			match = true;
   2175 			/* allow everything */
   2176 			break;
   2177 
   2178 		default:
   2179 			error = EINVAL;
   2180 			mutex_exit(p->p_lock);
   2181 			goto cleanup;
   2182 		}
   2183 		if (!match) {
   2184 			mutex_exit(p->p_lock);
   2185 			continue;
   2186 		}
   2187 
   2188 		/*
   2189 		 * Grab a hold on the process.
   2190 		 */
   2191 		if (mmmbrains) {
   2192 			zombie = true;
   2193 		} else {
   2194 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2195 		}
   2196 		if (zombie) {
   2197 			LIST_INSERT_AFTER(p, marker, p_list);
   2198 		}
   2199 
   2200 		if (buflen >= elem_size &&
   2201 		    (type == KERN_PROC || elem_count > 0)) {
   2202 			ruspace(p);	/* Update process vm resource use */
   2203 
   2204 			if (type == KERN_PROC) {
   2205 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2206 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2207 				    allowaddr);
   2208 			} else {
   2209 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2210 				    allowaddr);
   2211 				elem_count--;
   2212 			}
   2213 			mutex_exit(p->p_lock);
   2214 			mutex_exit(&proc_lock);
   2215 			/*
   2216 			 * Copy out elem_size, but not larger than kelem_size
   2217 			 */
   2218 			error = sysctl_copyout(l, kbuf, dp,
   2219 			    uimin(kelem_size, elem_size));
   2220 			mutex_enter(&proc_lock);
   2221 			if (error) {
   2222 				goto bah;
   2223 			}
   2224 			dp += elem_size;
   2225 			buflen -= elem_size;
   2226 		} else {
   2227 			mutex_exit(p->p_lock);
   2228 		}
   2229 		needed += elem_size;
   2230 
   2231 		/*
   2232 		 * Release reference to process.
   2233 		 */
   2234 	 	if (zombie) {
   2235 			next = LIST_NEXT(marker, p_list);
   2236  			LIST_REMOVE(marker, p_list);
   2237 		} else {
   2238 			rw_exit(&p->p_reflock);
   2239 			next = LIST_NEXT(p, p_list);
   2240 		}
   2241 
   2242 		/*
   2243 		 * Short-circuit break quickly!
   2244 		 */
   2245 		if (op == KERN_PROC_PID)
   2246                 	break;
   2247 	}
   2248 	mutex_exit(&proc_lock);
   2249 
   2250 	if (where != NULL) {
   2251 		*oldlenp = dp - where;
   2252 		if (needed > *oldlenp) {
   2253 			error = ENOMEM;
   2254 			goto out;
   2255 		}
   2256 	} else {
   2257 		needed += KERN_PROCSLOP;
   2258 		*oldlenp = needed;
   2259 	}
   2260 	kmem_free(kbuf, sizeof(*kbuf));
   2261 	kmem_free(marker, sizeof(*marker));
   2262 	sysctl_relock();
   2263 	return 0;
   2264  bah:
   2265  	if (zombie)
   2266  		LIST_REMOVE(marker, p_list);
   2267 	else
   2268 		rw_exit(&p->p_reflock);
   2269  cleanup:
   2270 	mutex_exit(&proc_lock);
   2271  out:
   2272 	kmem_free(kbuf, sizeof(*kbuf));
   2273 	kmem_free(marker, sizeof(*marker));
   2274 	sysctl_relock();
   2275 	return error;
   2276 }
   2277 
   2278 int
   2279 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2280 {
   2281 #if !defined(_RUMPKERNEL)
   2282 	int retval;
   2283 
   2284 	if (p->p_flag & PK_32) {
   2285 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2286 		    enosys(), retval);
   2287 		return retval;
   2288 	}
   2289 #endif /* !defined(_RUMPKERNEL) */
   2290 
   2291 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2292 }
   2293 
   2294 static int
   2295 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2296 {
   2297 	void **cookie = cookie_;
   2298 	struct lwp *l = cookie[0];
   2299 	char *dst = cookie[1];
   2300 
   2301 	return sysctl_copyout(l, src, dst + off, len);
   2302 }
   2303 
   2304 /*
   2305  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2306  */
   2307 static int
   2308 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2309 {
   2310 	struct ps_strings pss;
   2311 	struct proc *p;
   2312 	pid_t pid;
   2313 	int type, error;
   2314 	void *cookie[2];
   2315 
   2316 	if (namelen == 1 && name[0] == CTL_QUERY)
   2317 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2318 
   2319 	if (newp != NULL || namelen != 2)
   2320 		return (EINVAL);
   2321 	pid = name[0];
   2322 	type = name[1];
   2323 
   2324 	switch (type) {
   2325 	case KERN_PROC_PATHNAME:
   2326 		sysctl_unlock();
   2327 		error = fill_pathname(l, pid, oldp, oldlenp);
   2328 		sysctl_relock();
   2329 		return error;
   2330 
   2331 	case KERN_PROC_CWD:
   2332 		sysctl_unlock();
   2333 		error = fill_cwd(l, pid, oldp, oldlenp);
   2334 		sysctl_relock();
   2335 		return error;
   2336 
   2337 	case KERN_PROC_ARGV:
   2338 	case KERN_PROC_NARGV:
   2339 	case KERN_PROC_ENV:
   2340 	case KERN_PROC_NENV:
   2341 		/* ok */
   2342 		break;
   2343 	default:
   2344 		return (EINVAL);
   2345 	}
   2346 
   2347 	sysctl_unlock();
   2348 
   2349 	/* check pid */
   2350 	mutex_enter(&proc_lock);
   2351 	if ((p = proc_find(pid)) == NULL) {
   2352 		error = EINVAL;
   2353 		goto out_locked;
   2354 	}
   2355 	mutex_enter(p->p_lock);
   2356 
   2357 	/* Check permission. */
   2358 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2359 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2360 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2361 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2362 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2363 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2364 	else
   2365 		error = EINVAL; /* XXXGCC */
   2366 	if (error) {
   2367 		mutex_exit(p->p_lock);
   2368 		goto out_locked;
   2369 	}
   2370 
   2371 	if (oldp == NULL) {
   2372 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2373 			*oldlenp = sizeof (int);
   2374 		else
   2375 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2376 		error = 0;
   2377 		mutex_exit(p->p_lock);
   2378 		goto out_locked;
   2379 	}
   2380 
   2381 	/*
   2382 	 * Zombies don't have a stack, so we can't read their psstrings.
   2383 	 * System processes also don't have a user stack.
   2384 	 */
   2385 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2386 		error = EINVAL;
   2387 		mutex_exit(p->p_lock);
   2388 		goto out_locked;
   2389 	}
   2390 
   2391 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2392 	mutex_exit(p->p_lock);
   2393 	if (error) {
   2394 		goto out_locked;
   2395 	}
   2396 	mutex_exit(&proc_lock);
   2397 
   2398 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2399 		int value;
   2400 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2401 			if (type == KERN_PROC_NARGV)
   2402 				value = pss.ps_nargvstr;
   2403 			else
   2404 				value = pss.ps_nenvstr;
   2405 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2406 			*oldlenp = sizeof(value);
   2407 		}
   2408 	} else {
   2409 		cookie[0] = l;
   2410 		cookie[1] = oldp;
   2411 		error = copy_procargs(p, type, oldlenp,
   2412 		    copy_procargs_sysctl_cb, cookie);
   2413 	}
   2414 	rw_exit(&p->p_reflock);
   2415 	sysctl_relock();
   2416 	return error;
   2417 
   2418 out_locked:
   2419 	mutex_exit(&proc_lock);
   2420 	sysctl_relock();
   2421 	return error;
   2422 }
   2423 
   2424 int
   2425 copy_procargs(struct proc *p, int oid, size_t *limit,
   2426     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2427 {
   2428 	struct ps_strings pss;
   2429 	size_t len, i, loaded, entry_len;
   2430 	struct uio auio;
   2431 	struct iovec aiov;
   2432 	int error, argvlen;
   2433 	char *arg;
   2434 	char **argv;
   2435 	vaddr_t user_argv;
   2436 	struct vmspace *vmspace;
   2437 
   2438 	/*
   2439 	 * Allocate a temporary buffer to hold the argument vector and
   2440 	 * the arguments themselve.
   2441 	 */
   2442 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2443 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2444 
   2445 	/*
   2446 	 * Lock the process down in memory.
   2447 	 */
   2448 	vmspace = p->p_vmspace;
   2449 	uvmspace_addref(vmspace);
   2450 
   2451 	/*
   2452 	 * Read in the ps_strings structure.
   2453 	 */
   2454 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2455 		goto done;
   2456 
   2457 	/*
   2458 	 * Now read the address of the argument vector.
   2459 	 */
   2460 	switch (oid) {
   2461 	case KERN_PROC_ARGV:
   2462 		user_argv = (uintptr_t)pss.ps_argvstr;
   2463 		argvlen = pss.ps_nargvstr;
   2464 		break;
   2465 	case KERN_PROC_ENV:
   2466 		user_argv = (uintptr_t)pss.ps_envstr;
   2467 		argvlen = pss.ps_nenvstr;
   2468 		break;
   2469 	default:
   2470 		error = EINVAL;
   2471 		goto done;
   2472 	}
   2473 
   2474 	if (argvlen < 0) {
   2475 		error = EIO;
   2476 		goto done;
   2477 	}
   2478 
   2479 
   2480 	/*
   2481 	 * Now copy each string.
   2482 	 */
   2483 	len = 0; /* bytes written to user buffer */
   2484 	loaded = 0; /* bytes from argv already processed */
   2485 	i = 0; /* To make compiler happy */
   2486 	entry_len = PROC_PTRSZ(p);
   2487 
   2488 	for (; argvlen; --argvlen) {
   2489 		int finished = 0;
   2490 		vaddr_t base;
   2491 		size_t xlen;
   2492 		int j;
   2493 
   2494 		if (loaded == 0) {
   2495 			size_t rem = entry_len * argvlen;
   2496 			loaded = MIN(rem, PAGE_SIZE);
   2497 			error = copyin_vmspace(vmspace,
   2498 			    (const void *)user_argv, argv, loaded);
   2499 			if (error)
   2500 				break;
   2501 			user_argv += loaded;
   2502 			i = 0;
   2503 		}
   2504 
   2505 #if !defined(_RUMPKERNEL)
   2506 		if (p->p_flag & PK_32)
   2507 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2508 			    (argv, i++), 0, base);
   2509 		else
   2510 #endif /* !defined(_RUMPKERNEL) */
   2511 			base = (vaddr_t)argv[i++];
   2512 		loaded -= entry_len;
   2513 
   2514 		/*
   2515 		 * The program has messed around with its arguments,
   2516 		 * possibly deleting some, and replacing them with
   2517 		 * NULL's. Treat this as the last argument and not
   2518 		 * a failure.
   2519 		 */
   2520 		if (base == 0)
   2521 			break;
   2522 
   2523 		while (!finished) {
   2524 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2525 
   2526 			aiov.iov_base = arg;
   2527 			aiov.iov_len = PAGE_SIZE;
   2528 			auio.uio_iov = &aiov;
   2529 			auio.uio_iovcnt = 1;
   2530 			auio.uio_offset = base;
   2531 			auio.uio_resid = xlen;
   2532 			auio.uio_rw = UIO_READ;
   2533 			UIO_SETUP_SYSSPACE(&auio);
   2534 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2535 			if (error)
   2536 				goto done;
   2537 
   2538 			/* Look for the end of the string */
   2539 			for (j = 0; j < xlen; j++) {
   2540 				if (arg[j] == '\0') {
   2541 					xlen = j + 1;
   2542 					finished = 1;
   2543 					break;
   2544 				}
   2545 			}
   2546 
   2547 			/* Check for user buffer overflow */
   2548 			if (len + xlen > *limit) {
   2549 				finished = 1;
   2550 				if (len > *limit)
   2551 					xlen = 0;
   2552 				else
   2553 					xlen = *limit - len;
   2554 			}
   2555 
   2556 			/* Copyout the page */
   2557 			error = (*cb)(cookie, arg, len, xlen);
   2558 			if (error)
   2559 				goto done;
   2560 
   2561 			len += xlen;
   2562 			base += xlen;
   2563 		}
   2564 	}
   2565 	*limit = len;
   2566 
   2567 done:
   2568 	kmem_free(argv, PAGE_SIZE);
   2569 	kmem_free(arg, PAGE_SIZE);
   2570 	uvmspace_free(vmspace);
   2571 	return error;
   2572 }
   2573 
   2574 /*
   2575  * Fill in a proc structure for the specified process.
   2576  */
   2577 static void
   2578 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2579 {
   2580 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
   2581 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
   2582 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
   2583 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
   2584 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
   2585 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2586 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2587 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
   2588 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
   2589 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2590 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
   2591 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
   2592 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2593 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2594 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
   2595 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2596 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
   2597 	p->p_exitsig = psrc->p_exitsig;
   2598 	p->p_flag = psrc->p_flag;
   2599 	p->p_sflag = psrc->p_sflag;
   2600 	p->p_slflag = psrc->p_slflag;
   2601 	p->p_lflag = psrc->p_lflag;
   2602 	p->p_stflag = psrc->p_stflag;
   2603 	p->p_stat = psrc->p_stat;
   2604 	p->p_trace_enabled = psrc->p_trace_enabled;
   2605 	p->p_pid = psrc->p_pid;
   2606 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
   2607 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
   2608 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
   2609 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
   2610 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
   2611 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
   2612 	p->p_nlwps = psrc->p_nlwps;
   2613 	p->p_nzlwps = psrc->p_nzlwps;
   2614 	p->p_nrlwps = psrc->p_nrlwps;
   2615 	p->p_nlwpwait = psrc->p_nlwpwait;
   2616 	p->p_ndlwps = psrc->p_ndlwps;
   2617 	p->p_nstopchild = psrc->p_nstopchild;
   2618 	p->p_waited = psrc->p_waited;
   2619 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2620 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2621 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2622 	p->p_estcpu = psrc->p_estcpu;
   2623 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2624 	p->p_forktime = psrc->p_forktime;
   2625 	p->p_pctcpu = psrc->p_pctcpu;
   2626 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
   2627 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
   2628 	p->p_rtime = psrc->p_rtime;
   2629 	p->p_uticks = psrc->p_uticks;
   2630 	p->p_sticks = psrc->p_sticks;
   2631 	p->p_iticks = psrc->p_iticks;
   2632 	p->p_xutime = psrc->p_xutime;
   2633 	p->p_xstime = psrc->p_xstime;
   2634 	p->p_traceflag = psrc->p_traceflag;
   2635 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
   2636 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
   2637 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
   2638 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2639 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
   2640 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
   2641 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2642 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
   2643 	    allowaddr);
   2644 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
   2645 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2646 	p->p_ppid = psrc->p_ppid;
   2647 	p->p_oppid = psrc->p_oppid;
   2648 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
   2649 	p->p_sigctx = psrc->p_sigctx;
   2650 	p->p_nice = psrc->p_nice;
   2651 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2652 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2653 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2654 	p->p_pax = psrc->p_pax;
   2655 	p->p_xexit = psrc->p_xexit;
   2656 	p->p_xsig = psrc->p_xsig;
   2657 	p->p_acflag = psrc->p_acflag;
   2658 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
   2659 	p->p_stackbase = psrc->p_stackbase;
   2660 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2661 }
   2662 
   2663 /*
   2664  * Fill in an eproc structure for the specified process.
   2665  */
   2666 void
   2667 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2668 {
   2669 	struct tty *tp;
   2670 	struct lwp *l;
   2671 
   2672 	KASSERT(mutex_owned(&proc_lock));
   2673 	KASSERT(mutex_owned(p->p_lock));
   2674 
   2675 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
   2676 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
   2677 	if (p->p_cred) {
   2678 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2679 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2680 	}
   2681 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2682 		struct vmspace *vm = p->p_vmspace;
   2683 
   2684 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2685 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2686 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2687 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2688 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2689 
   2690 		/* Pick the primary (first) LWP */
   2691 		l = proc_active_lwp(p);
   2692 		KASSERT(l != NULL);
   2693 		lwp_lock(l);
   2694 		if (l->l_wchan)
   2695 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2696 		lwp_unlock(l);
   2697 	}
   2698 	ep->e_ppid = p->p_ppid;
   2699 	if (p->p_pgrp && p->p_session) {
   2700 		ep->e_pgid = p->p_pgrp->pg_id;
   2701 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2702 		ep->e_sid = p->p_session->s_sid;
   2703 		if ((p->p_lflag & PL_CONTROLT) &&
   2704 		    (tp = p->p_session->s_ttyp)) {
   2705 			ep->e_tdev = tp->t_dev;
   2706 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2707 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
   2708 		} else
   2709 			ep->e_tdev = (uint32_t)NODEV;
   2710 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2711 		if (SESS_LEADER(p))
   2712 			ep->e_flag |= EPROC_SLEADER;
   2713 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2714 	}
   2715 	ep->e_xsize = ep->e_xrssize = 0;
   2716 	ep->e_xccount = ep->e_xswrss = 0;
   2717 }
   2718 
   2719 /*
   2720  * Fill in a kinfo_proc2 structure for the specified process.
   2721  */
   2722 void
   2723 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2724 {
   2725 	struct tty *tp;
   2726 	struct lwp *l, *l2;
   2727 	struct timeval ut, st, rt;
   2728 	sigset_t ss1, ss2;
   2729 	struct rusage ru;
   2730 	struct vmspace *vm;
   2731 
   2732 	KASSERT(mutex_owned(&proc_lock));
   2733 	KASSERT(mutex_owned(p->p_lock));
   2734 
   2735 	sigemptyset(&ss1);
   2736 	sigemptyset(&ss2);
   2737 
   2738 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2739 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2740 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2741 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2742 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2743 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2744 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2745 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2746 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2747 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2748 	ki->p_eflag = 0;
   2749 	ki->p_exitsig = p->p_exitsig;
   2750 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2751 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2752 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2753 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2754 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2755 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2756 	ki->p_pid = p->p_pid;
   2757 	ki->p_ppid = p->p_ppid;
   2758 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2759 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2760 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2761 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2762 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2763 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2764 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2765 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2766 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2767 	    UIO_SYSSPACE);
   2768 
   2769 	ki->p_uticks = p->p_uticks;
   2770 	ki->p_sticks = p->p_sticks;
   2771 	ki->p_iticks = p->p_iticks;
   2772 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2773 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2774 	ki->p_traceflag = p->p_traceflag;
   2775 
   2776 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2777 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2778 
   2779 	ki->p_cpticks = 0;
   2780 	ki->p_pctcpu = p->p_pctcpu;
   2781 	ki->p_estcpu = 0;
   2782 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2783 	ki->p_realstat = p->p_stat;
   2784 	ki->p_nice = p->p_nice;
   2785 	ki->p_xstat = P_WAITSTATUS(p);
   2786 	ki->p_acflag = p->p_acflag;
   2787 
   2788 	strncpy(ki->p_comm, p->p_comm,
   2789 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2790 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2791 
   2792 	ki->p_nlwps = p->p_nlwps;
   2793 	ki->p_realflag = ki->p_flag;
   2794 
   2795 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2796 		vm = p->p_vmspace;
   2797 		ki->p_vm_rssize = vm_resident_count(vm);
   2798 		ki->p_vm_tsize = vm->vm_tsize;
   2799 		ki->p_vm_dsize = vm->vm_dsize;
   2800 		ki->p_vm_ssize = vm->vm_ssize;
   2801 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2802 		/*
   2803 		 * Since the stack is initially mapped mostly with
   2804 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2805 		 * to skip the unused stack portion.
   2806 		 */
   2807 		ki->p_vm_msize =
   2808 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2809 
   2810 		/* Pick the primary (first) LWP */
   2811 		l = proc_active_lwp(p);
   2812 		KASSERT(l != NULL);
   2813 		lwp_lock(l);
   2814 		ki->p_nrlwps = p->p_nrlwps;
   2815 		ki->p_forw = 0;
   2816 		ki->p_back = 0;
   2817 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2818 		ki->p_stat = l->l_stat;
   2819 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2820 		ki->p_swtime = l->l_swtime;
   2821 		ki->p_slptime = l->l_slptime;
   2822 		if (l->l_stat == LSONPROC)
   2823 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2824 		else
   2825 			ki->p_schedflags = 0;
   2826 		ki->p_priority = lwp_eprio(l);
   2827 		ki->p_usrpri = l->l_priority;
   2828 		if (l->l_wchan)
   2829 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2830 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2831 		ki->p_cpuid = cpu_index(l->l_cpu);
   2832 		lwp_unlock(l);
   2833 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2834 			/* This is hardly correct, but... */
   2835 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2836 			sigplusset(&l->l_sigmask, &ss2);
   2837 			ki->p_cpticks += l->l_cpticks;
   2838 			ki->p_pctcpu += l->l_pctcpu;
   2839 			ki->p_estcpu += l->l_estcpu;
   2840 		}
   2841 	}
   2842 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2843 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2844 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2845 
   2846 	if (p->p_session != NULL) {
   2847 		ki->p_sid = p->p_session->s_sid;
   2848 		ki->p__pgid = p->p_pgrp->pg_id;
   2849 		if (p->p_session->s_ttyvp)
   2850 			ki->p_eflag |= EPROC_CTTY;
   2851 		if (SESS_LEADER(p))
   2852 			ki->p_eflag |= EPROC_SLEADER;
   2853 		strncpy(ki->p_login, p->p_session->s_login,
   2854 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2855 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2856 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2857 			ki->p_tdev = tp->t_dev;
   2858 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2859 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2860 			    allowaddr);
   2861 		} else {
   2862 			ki->p_tdev = (int32_t)NODEV;
   2863 		}
   2864 	}
   2865 
   2866 	if (!P_ZOMBIE(p) && !zombie) {
   2867 		ki->p_uvalid = 1;
   2868 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2869 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2870 
   2871 		calcru(p, &ut, &st, NULL, &rt);
   2872 		ki->p_rtime_sec = rt.tv_sec;
   2873 		ki->p_rtime_usec = rt.tv_usec;
   2874 		ki->p_uutime_sec = ut.tv_sec;
   2875 		ki->p_uutime_usec = ut.tv_usec;
   2876 		ki->p_ustime_sec = st.tv_sec;
   2877 		ki->p_ustime_usec = st.tv_usec;
   2878 
   2879 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2880 		ki->p_uru_nvcsw = 0;
   2881 		ki->p_uru_nivcsw = 0;
   2882 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2883 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2884 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2885 			ruadd(&ru, &l2->l_ru);
   2886 		}
   2887 		ki->p_uru_maxrss = ru.ru_maxrss;
   2888 		ki->p_uru_ixrss = ru.ru_ixrss;
   2889 		ki->p_uru_idrss = ru.ru_idrss;
   2890 		ki->p_uru_isrss = ru.ru_isrss;
   2891 		ki->p_uru_minflt = ru.ru_minflt;
   2892 		ki->p_uru_majflt = ru.ru_majflt;
   2893 		ki->p_uru_nswap = ru.ru_nswap;
   2894 		ki->p_uru_inblock = ru.ru_inblock;
   2895 		ki->p_uru_oublock = ru.ru_oublock;
   2896 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2897 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2898 		ki->p_uru_nsignals = ru.ru_nsignals;
   2899 
   2900 		timeradd(&p->p_stats->p_cru.ru_utime,
   2901 			 &p->p_stats->p_cru.ru_stime, &ut);
   2902 		ki->p_uctime_sec = ut.tv_sec;
   2903 		ki->p_uctime_usec = ut.tv_usec;
   2904 	}
   2905 }
   2906 
   2907 
   2908 int
   2909 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2910 {
   2911 	int error;
   2912 
   2913 	mutex_enter(&proc_lock);
   2914 	if (pid == -1)
   2915 		*p = l->l_proc;
   2916 	else
   2917 		*p = proc_find(pid);
   2918 
   2919 	if (*p == NULL) {
   2920 		if (pid != -1)
   2921 			mutex_exit(&proc_lock);
   2922 		return ESRCH;
   2923 	}
   2924 	if (pid != -1)
   2925 		mutex_enter((*p)->p_lock);
   2926 	mutex_exit(&proc_lock);
   2927 
   2928 	error = kauth_authorize_process(l->l_cred,
   2929 	    KAUTH_PROCESS_CANSEE, *p,
   2930 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2931 	if (error) {
   2932 		if (pid != -1)
   2933 			mutex_exit((*p)->p_lock);
   2934 	}
   2935 	return error;
   2936 }
   2937 
   2938 static int
   2939 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2940 {
   2941 	int error;
   2942 	struct proc *p;
   2943 
   2944 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2945 		return error;
   2946 
   2947 	if (p->p_path == NULL) {
   2948 		if (pid != -1)
   2949 			mutex_exit(p->p_lock);
   2950 		return ENOENT;
   2951 	}
   2952 
   2953 	size_t len = strlen(p->p_path) + 1;
   2954 	if (oldp != NULL) {
   2955 		size_t copylen = uimin(len, *oldlenp);
   2956 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2957 		if (error == 0 && *oldlenp < len)
   2958 			error = ENOSPC;
   2959 	}
   2960 	*oldlenp = len;
   2961 	if (pid != -1)
   2962 		mutex_exit(p->p_lock);
   2963 	return error;
   2964 }
   2965 
   2966 static int
   2967 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2968 {
   2969 	int error;
   2970 	struct proc *p;
   2971 	char *path;
   2972 	char *bp, *bend;
   2973 	struct cwdinfo *cwdi;
   2974 	struct vnode *vp;
   2975 	size_t len, lenused;
   2976 
   2977 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2978 		return error;
   2979 
   2980 	len = MAXPATHLEN * 4;
   2981 
   2982 	path = kmem_alloc(len, KM_SLEEP);
   2983 
   2984 	bp = &path[len];
   2985 	bend = bp;
   2986 	*(--bp) = '\0';
   2987 
   2988 	cwdi = p->p_cwdi;
   2989 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   2990 	vp = cwdi->cwdi_cdir;
   2991 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   2992 	rw_exit(&cwdi->cwdi_lock);
   2993 
   2994 	if (error)
   2995 		goto out;
   2996 
   2997 	lenused = bend - bp;
   2998 
   2999 	if (oldp != NULL) {
   3000 		size_t copylen = uimin(lenused, *oldlenp);
   3001 		error = sysctl_copyout(l, bp, oldp, copylen);
   3002 		if (error == 0 && *oldlenp < lenused)
   3003 			error = ENOSPC;
   3004 	}
   3005 	*oldlenp = lenused;
   3006 out:
   3007 	if (pid != -1)
   3008 		mutex_exit(p->p_lock);
   3009 	kmem_free(path, len);
   3010 	return error;
   3011 }
   3012 
   3013 int
   3014 proc_getauxv(struct proc *p, void **buf, size_t *len)
   3015 {
   3016 	struct ps_strings pss;
   3017 	int error;
   3018 	void *uauxv, *kauxv;
   3019 	size_t size;
   3020 
   3021 	if ((error = copyin_psstrings(p, &pss)) != 0)
   3022 		return error;
   3023 	if (pss.ps_envstr == NULL)
   3024 		return EIO;
   3025 
   3026 	size = p->p_execsw->es_arglen;
   3027 	if (size == 0)
   3028 		return EIO;
   3029 
   3030 	size_t ptrsz = PROC_PTRSZ(p);
   3031 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   3032 
   3033 	kauxv = kmem_alloc(size, KM_SLEEP);
   3034 
   3035 	error = copyin_proc(p, uauxv, kauxv, size);
   3036 	if (error) {
   3037 		kmem_free(kauxv, size);
   3038 		return error;
   3039 	}
   3040 
   3041 	*buf = kauxv;
   3042 	*len = size;
   3043 
   3044 	return 0;
   3045 }
   3046 
   3047 
   3048 static int
   3049 sysctl_security_expose_address(SYSCTLFN_ARGS)
   3050 {
   3051 	int expose_address, error;
   3052 	struct sysctlnode node;
   3053 
   3054 	node = *rnode;
   3055 	node.sysctl_data = &expose_address;
   3056 	expose_address = *(int *)rnode->sysctl_data;
   3057 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3058 	if (error || newp == NULL)
   3059 		return error;
   3060 
   3061 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3062 	    0, NULL, NULL, NULL))
   3063 		return EPERM;
   3064 
   3065 	switch (expose_address) {
   3066 	case 0:
   3067 	case 1:
   3068 	case 2:
   3069 		break;
   3070 	default:
   3071 		return EINVAL;
   3072 	}
   3073 
   3074 	*(int *)rnode->sysctl_data = expose_address;
   3075 
   3076 	return 0;
   3077 }
   3078 
   3079 bool
   3080 get_expose_address(struct proc *p)
   3081 {
   3082 	/* allow only if sysctl variable is set or privileged */
   3083 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3084 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3085 }
   3086