kern_proc.c revision 1.267 1 /* $NetBSD: kern_proc.c,v 1.267 2022/05/07 19:44:40 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.267 2022/05/07 19:44:40 mrg Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109 #include <sys/futex.h>
110 #include <sys/pserialize.h>
111
112 #include <uvm/uvm_extern.h>
113
114 /*
115 * Process lists.
116 */
117
118 struct proclist allproc __cacheline_aligned;
119 struct proclist zombproc __cacheline_aligned;
120
121 kmutex_t proc_lock __cacheline_aligned;
122 static pserialize_t proc_psz;
123
124 /*
125 * pid to lwp/proc lookup is done by indexing the pid_table array.
126 * Since pid numbers are only allocated when an empty slot
127 * has been found, there is no need to search any lists ever.
128 * (an orphaned pgrp will lock the slot, a session will lock
129 * the pgrp with the same number.)
130 * If the table is too small it is reallocated with twice the
131 * previous size and the entries 'unzipped' into the two halves.
132 * A linked list of free entries is passed through the pt_lwp
133 * field of 'free' items - set odd to be an invalid ptr. Two
134 * additional bits are also used to indicate if the slot is
135 * currently occupied by a proc or lwp, and if the PID is
136 * hidden from certain kinds of lookups. We thus require a
137 * minimum alignment for proc and lwp structures (LWPs are
138 * at least 32-byte aligned).
139 */
140
141 struct pid_table {
142 uintptr_t pt_slot;
143 struct pgrp *pt_pgrp;
144 pid_t pt_pid;
145 };
146
147 #define PT_F_FREE ((uintptr_t)__BIT(0))
148 #define PT_F_LWP 0 /* pseudo-flag */
149 #define PT_F_PROC ((uintptr_t)__BIT(1))
150
151 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
152 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
153
154 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
155 #define PT_RESERVED(s) ((s) == 0)
156 #define PT_NEXT(s) ((u_int)(s) >> 1)
157 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
158 #define PT_SET_LWP(l) ((uintptr_t)(l))
159 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
160 #define PT_SET_RESERVED 0
161 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
162 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
163 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
164 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
165 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
166
167 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
168
169 /*
170 * Table of process IDs (PIDs).
171 */
172 static struct pid_table *pid_table __read_mostly;
173
174 #define INITIAL_PID_TABLE_SIZE (1 << 5)
175
176 /* Table mask, threshold for growing and number of allocated PIDs. */
177 static u_int pid_tbl_mask __read_mostly;
178 static u_int pid_alloc_lim __read_mostly;
179 static u_int pid_alloc_cnt __cacheline_aligned;
180
181 /* Next free, last free and maximum PIDs. */
182 static u_int next_free_pt __cacheline_aligned;
183 static u_int last_free_pt __cacheline_aligned;
184 static pid_t pid_max __read_mostly;
185
186 /* Components of the first process -- never freed. */
187
188 extern struct emul emul_netbsd; /* defined in kern_exec.c */
189
190 struct session session0 = {
191 .s_count = 1,
192 .s_sid = 0,
193 };
194 struct pgrp pgrp0 = {
195 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
196 .pg_session = &session0,
197 };
198 filedesc_t filedesc0;
199 struct cwdinfo cwdi0 = {
200 .cwdi_cmask = CMASK,
201 .cwdi_refcnt = 1,
202 };
203 struct plimit limit0;
204 struct pstats pstat0;
205 struct vmspace vmspace0;
206 struct sigacts sigacts0;
207 struct proc proc0 = {
208 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
209 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
210 .p_nlwps = 1,
211 .p_nrlwps = 1,
212 .p_pgrp = &pgrp0,
213 .p_comm = "system",
214 /*
215 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
216 * when they exit. init(8) can easily wait them out for us.
217 */
218 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
219 .p_stat = SACTIVE,
220 .p_nice = NZERO,
221 .p_emul = &emul_netbsd,
222 .p_cwdi = &cwdi0,
223 .p_limit = &limit0,
224 .p_fd = &filedesc0,
225 .p_vmspace = &vmspace0,
226 .p_stats = &pstat0,
227 .p_sigacts = &sigacts0,
228 #ifdef PROC0_MD_INITIALIZERS
229 PROC0_MD_INITIALIZERS
230 #endif
231 };
232 kauth_cred_t cred0;
233
234 static const int nofile = NOFILE;
235 static const int maxuprc = MAXUPRC;
236
237 static int sysctl_doeproc(SYSCTLFN_PROTO);
238 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
239 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
240
241 #ifdef KASLR
242 static int kern_expose_address = 0;
243 #else
244 static int kern_expose_address = 1;
245 #endif
246 /*
247 * The process list descriptors, used during pid allocation and
248 * by sysctl. No locking on this data structure is needed since
249 * it is completely static.
250 */
251 const struct proclist_desc proclists[] = {
252 { &allproc },
253 { &zombproc },
254 { NULL },
255 };
256
257 static struct pgrp * pg_remove(pid_t);
258 static void pg_delete(pid_t);
259 static void orphanpg(struct pgrp *);
260
261 static specificdata_domain_t proc_specificdata_domain;
262
263 static pool_cache_t proc_cache;
264
265 static kauth_listener_t proc_listener;
266
267 static void fill_proc(const struct proc *, struct proc *, bool);
268 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
269 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
270
271 static int
272 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
273 void *arg0, void *arg1, void *arg2, void *arg3)
274 {
275 struct proc *p;
276 int result;
277
278 result = KAUTH_RESULT_DEFER;
279 p = arg0;
280
281 switch (action) {
282 case KAUTH_PROCESS_CANSEE: {
283 enum kauth_process_req req;
284
285 req = (enum kauth_process_req)(uintptr_t)arg1;
286
287 switch (req) {
288 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
289 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
290 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
291 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
292 result = KAUTH_RESULT_ALLOW;
293 break;
294
295 case KAUTH_REQ_PROCESS_CANSEE_ENV:
296 if (kauth_cred_getuid(cred) !=
297 kauth_cred_getuid(p->p_cred) ||
298 kauth_cred_getuid(cred) !=
299 kauth_cred_getsvuid(p->p_cred))
300 break;
301
302 result = KAUTH_RESULT_ALLOW;
303
304 break;
305
306 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
307 if (!kern_expose_address)
308 break;
309
310 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
311 break;
312
313 result = KAUTH_RESULT_ALLOW;
314
315 break;
316
317 default:
318 break;
319 }
320
321 break;
322 }
323
324 case KAUTH_PROCESS_FORK: {
325 int lnprocs = (int)(unsigned long)arg2;
326
327 /*
328 * Don't allow a nonprivileged user to use the last few
329 * processes. The variable lnprocs is the current number of
330 * processes, maxproc is the limit.
331 */
332 if (__predict_false((lnprocs >= maxproc - 5)))
333 break;
334
335 result = KAUTH_RESULT_ALLOW;
336
337 break;
338 }
339
340 case KAUTH_PROCESS_CORENAME:
341 case KAUTH_PROCESS_STOPFLAG:
342 if (proc_uidmatch(cred, p->p_cred) == 0)
343 result = KAUTH_RESULT_ALLOW;
344
345 break;
346
347 default:
348 break;
349 }
350
351 return result;
352 }
353
354 static int
355 proc_ctor(void *arg __unused, void *obj, int flags __unused)
356 {
357 struct proc *p = obj;
358
359 memset(p, 0, sizeof(*p));
360 klist_init(&p->p_klist);
361
362 /*
363 * There is no need for a proc_dtor() to do a klist_fini(),
364 * since knote_proc_exit() ensures that p->p_klist is empty
365 * when a process exits.
366 */
367
368 return 0;
369 }
370
371 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
372
373 /*
374 * Initialize global process hashing structures.
375 */
376 void
377 procinit(void)
378 {
379 const struct proclist_desc *pd;
380 u_int i;
381 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
382
383 for (pd = proclists; pd->pd_list != NULL; pd++)
384 LIST_INIT(pd->pd_list);
385
386 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
387
388 proc_psz = pserialize_create();
389
390 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
391 * sizeof(struct pid_table), KM_SLEEP);
392 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
393 pid_max = PID_MAX;
394
395 /* Set free list running through table...
396 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
397 for (i = 0; i <= pid_tbl_mask; i++) {
398 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
399 pid_table[i].pt_pgrp = 0;
400 pid_table[i].pt_pid = 0;
401 }
402 /* slot 0 is just grabbed */
403 next_free_pt = 1;
404 /* Need to fix last entry. */
405 last_free_pt = pid_tbl_mask;
406 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
407 /* point at which we grow table - to avoid reusing pids too often */
408 pid_alloc_lim = pid_tbl_mask - 1;
409 #undef LINK_EMPTY
410
411 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
412 mutex_enter(&proc_lock);
413 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
414 panic("failed to reserve PID 1 for init(8)");
415 mutex_exit(&proc_lock);
416
417 proc_specificdata_domain = specificdata_domain_create();
418 KASSERT(proc_specificdata_domain != NULL);
419
420 size_t proc_alignment = coherency_unit;
421 if (proc_alignment < MIN_PROC_ALIGNMENT)
422 proc_alignment = MIN_PROC_ALIGNMENT;
423
424 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
425 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
426
427 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
428 proc_listener_cb, NULL);
429 }
430
431 void
432 procinit_sysctl(void)
433 {
434 static struct sysctllog *clog;
435
436 sysctl_createv(&clog, 0, NULL, NULL,
437 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
438 CTLTYPE_INT, "expose_address",
439 SYSCTL_DESCR("Enable exposing kernel addresses"),
440 sysctl_security_expose_address, 0,
441 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
442 sysctl_createv(&clog, 0, NULL, NULL,
443 CTLFLAG_PERMANENT,
444 CTLTYPE_NODE, "proc",
445 SYSCTL_DESCR("System-wide process information"),
446 sysctl_doeproc, 0, NULL, 0,
447 CTL_KERN, KERN_PROC, CTL_EOL);
448 sysctl_createv(&clog, 0, NULL, NULL,
449 CTLFLAG_PERMANENT,
450 CTLTYPE_NODE, "proc2",
451 SYSCTL_DESCR("Machine-independent process information"),
452 sysctl_doeproc, 0, NULL, 0,
453 CTL_KERN, KERN_PROC2, CTL_EOL);
454 sysctl_createv(&clog, 0, NULL, NULL,
455 CTLFLAG_PERMANENT,
456 CTLTYPE_NODE, "proc_args",
457 SYSCTL_DESCR("Process argument information"),
458 sysctl_kern_proc_args, 0, NULL, 0,
459 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
460
461 /*
462 "nodes" under these:
463
464 KERN_PROC_ALL
465 KERN_PROC_PID pid
466 KERN_PROC_PGRP pgrp
467 KERN_PROC_SESSION sess
468 KERN_PROC_TTY tty
469 KERN_PROC_UID uid
470 KERN_PROC_RUID uid
471 KERN_PROC_GID gid
472 KERN_PROC_RGID gid
473
474 all in all, probably not worth the effort...
475 */
476 }
477
478 /*
479 * Initialize process 0.
480 */
481 void
482 proc0_init(void)
483 {
484 struct proc *p;
485 struct pgrp *pg;
486 struct rlimit *rlim;
487 rlim_t lim;
488 int i;
489
490 p = &proc0;
491 pg = &pgrp0;
492
493 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
494 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
495 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
496
497 rw_init(&p->p_reflock);
498 cv_init(&p->p_waitcv, "wait");
499 cv_init(&p->p_lwpcv, "lwpwait");
500
501 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
502
503 KASSERT(lwp0.l_lid == 0);
504 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
505 LIST_INSERT_HEAD(&allproc, p, p_list);
506
507 pid_table[lwp0.l_lid].pt_pgrp = pg;
508 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
509
510 #ifdef __HAVE_SYSCALL_INTERN
511 (*p->p_emul->e_syscall_intern)(p);
512 #endif
513
514 /* Create credentials. */
515 cred0 = kauth_cred_alloc();
516 p->p_cred = cred0;
517
518 /* Create the CWD info. */
519 rw_init(&cwdi0.cwdi_lock);
520
521 /* Create the limits structures. */
522 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
523
524 rlim = limit0.pl_rlimit;
525 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
526 rlim[i].rlim_cur = RLIM_INFINITY;
527 rlim[i].rlim_max = RLIM_INFINITY;
528 }
529
530 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
531 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
532
533 rlim[RLIMIT_NPROC].rlim_max = maxproc;
534 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
535
536 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
537 rlim[RLIMIT_RSS].rlim_max = lim;
538 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
539 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
540
541 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
542 rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
543
544 /* Note that default core name has zero length. */
545 limit0.pl_corename = defcorename;
546 limit0.pl_cnlen = 0;
547 limit0.pl_refcnt = 1;
548 limit0.pl_writeable = false;
549 limit0.pl_sv_limit = NULL;
550
551 /* Configure virtual memory system, set vm rlimits. */
552 uvm_init_limits(p);
553
554 /* Initialize file descriptor table for proc0. */
555 fd_init(&filedesc0);
556
557 /*
558 * Initialize proc0's vmspace, which uses the kernel pmap.
559 * All kernel processes (which never have user space mappings)
560 * share proc0's vmspace, and thus, the kernel pmap.
561 */
562 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
563 trunc_page(VM_MAXUSER_ADDRESS),
564 #ifdef __USE_TOPDOWN_VM
565 true
566 #else
567 false
568 #endif
569 );
570
571 /* Initialize signal state for proc0. XXX IPL_SCHED */
572 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
573 siginit(p);
574
575 proc_initspecific(p);
576 kdtrace_proc_ctor(NULL, p);
577 }
578
579 /*
580 * Session reference counting.
581 */
582
583 void
584 proc_sesshold(struct session *ss)
585 {
586
587 KASSERT(mutex_owned(&proc_lock));
588 ss->s_count++;
589 }
590
591 void
592 proc_sessrele(struct session *ss)
593 {
594 struct pgrp *pg;
595
596 KASSERT(mutex_owned(&proc_lock));
597 KASSERT(ss->s_count > 0);
598
599 /*
600 * We keep the pgrp with the same id as the session in order to
601 * stop a process being given the same pid. Since the pgrp holds
602 * a reference to the session, it must be a 'zombie' pgrp by now.
603 */
604 if (--ss->s_count == 0) {
605 pg = pg_remove(ss->s_sid);
606 } else {
607 pg = NULL;
608 ss = NULL;
609 }
610
611 mutex_exit(&proc_lock);
612
613 if (pg)
614 kmem_free(pg, sizeof(struct pgrp));
615 if (ss)
616 kmem_free(ss, sizeof(struct session));
617 }
618
619 /*
620 * Check that the specified process group is in the session of the
621 * specified process.
622 * Treats -ve ids as process ids.
623 * Used to validate TIOCSPGRP requests.
624 */
625 int
626 pgid_in_session(struct proc *p, pid_t pg_id)
627 {
628 struct pgrp *pgrp;
629 struct session *session;
630 int error;
631
632 if (pg_id == INT_MIN)
633 return EINVAL;
634
635 mutex_enter(&proc_lock);
636 if (pg_id < 0) {
637 struct proc *p1 = proc_find(-pg_id);
638 if (p1 == NULL) {
639 error = EINVAL;
640 goto fail;
641 }
642 pgrp = p1->p_pgrp;
643 } else {
644 pgrp = pgrp_find(pg_id);
645 if (pgrp == NULL) {
646 error = EINVAL;
647 goto fail;
648 }
649 }
650 session = pgrp->pg_session;
651 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
652 fail:
653 mutex_exit(&proc_lock);
654 return error;
655 }
656
657 /*
658 * p_inferior: is p an inferior of q?
659 */
660 static inline bool
661 p_inferior(struct proc *p, struct proc *q)
662 {
663
664 KASSERT(mutex_owned(&proc_lock));
665
666 for (; p != q; p = p->p_pptr)
667 if (p->p_pid == 0)
668 return false;
669 return true;
670 }
671
672 /*
673 * proc_find_lwp: locate an lwp in said proc by the ID.
674 *
675 * => Must be called with p::p_lock held.
676 * => LSIDL lwps are not returned because they are only partially
677 * constructed while occupying the slot.
678 * => Callers need to be careful about lwp::l_stat of the returned
679 * lwp.
680 */
681 struct lwp *
682 proc_find_lwp(proc_t *p, pid_t pid)
683 {
684 struct pid_table *pt;
685 unsigned pt_mask;
686 struct lwp *l = NULL;
687 uintptr_t slot;
688 int s;
689
690 KASSERT(mutex_owned(p->p_lock));
691
692 /*
693 * Look in the pid_table. This is done unlocked inside a
694 * pserialize read section covering pid_table's memory
695 * allocation only, so take care to read things in the correct
696 * order:
697 *
698 * 1. First read the table mask -- this only ever increases, in
699 * expand_pid_table, so a stale value is safely
700 * conservative.
701 *
702 * 2. Next read the pid table -- this is always set _before_
703 * the mask increases, so if we see a new table and stale
704 * mask, the mask is still valid for the table.
705 */
706 s = pserialize_read_enter();
707 pt_mask = atomic_load_acquire(&pid_tbl_mask);
708 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
709 slot = atomic_load_consume(&pt->pt_slot);
710 if (__predict_false(!PT_IS_LWP(slot))) {
711 pserialize_read_exit(s);
712 return NULL;
713 }
714
715 /*
716 * Check to see if the LWP is from the correct process. We won't
717 * see entries in pid_table from a prior process that also used "p",
718 * by virtue of the fact that allocating "p" means all prior updates
719 * to dependant data structures are visible to this thread.
720 */
721 l = PT_GET_LWP(slot);
722 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
723 pserialize_read_exit(s);
724 return NULL;
725 }
726
727 /*
728 * We now know that p->p_lock holds this LWP stable.
729 *
730 * If the status is not LSIDL, it means the LWP is intended to be
731 * findable by LID and l_lid cannot change behind us.
732 *
733 * No need to acquire the LWP's lock to check for LSIDL, as
734 * p->p_lock must be held to transition in and out of LSIDL.
735 * Any other observed state of is no particular interest.
736 */
737 pserialize_read_exit(s);
738 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
739 }
740
741 /*
742 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
743 *
744 * => Called in a pserialize read section with no locks held.
745 * => LSIDL lwps are not returned because they are only partially
746 * constructed while occupying the slot.
747 * => Callers need to be careful about lwp::l_stat of the returned
748 * lwp.
749 * => If an LWP is found, it's returned locked.
750 */
751 struct lwp *
752 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
753 {
754 struct pid_table *pt;
755 unsigned pt_mask;
756 struct lwp *l = NULL;
757 uintptr_t slot;
758
759 KASSERT(pserialize_in_read_section());
760
761 /*
762 * Look in the pid_table. This is done unlocked inside a
763 * pserialize read section covering pid_table's memory
764 * allocation only, so take care to read things in the correct
765 * order:
766 *
767 * 1. First read the table mask -- this only ever increases, in
768 * expand_pid_table, so a stale value is safely
769 * conservative.
770 *
771 * 2. Next read the pid table -- this is always set _before_
772 * the mask increases, so if we see a new table and stale
773 * mask, the mask is still valid for the table.
774 */
775 pt_mask = atomic_load_acquire(&pid_tbl_mask);
776 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
777 slot = atomic_load_consume(&pt->pt_slot);
778 if (__predict_false(!PT_IS_LWP(slot))) {
779 return NULL;
780 }
781
782 /*
783 * Lock the LWP we found to get it stable. If it's embryonic or
784 * reaped (LSIDL) then none of the other fields can safely be
785 * checked.
786 */
787 l = PT_GET_LWP(slot);
788 lwp_lock(l);
789 if (__predict_false(l->l_stat == LSIDL)) {
790 lwp_unlock(l);
791 return NULL;
792 }
793
794 /*
795 * l_proc and l_lid are now known stable because the LWP is not
796 * LSIDL, so check those fields too to make sure we found the
797 * right thing.
798 */
799 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
800 lwp_unlock(l);
801 return NULL;
802 }
803
804 /* Everything checks out, return it locked. */
805 return l;
806 }
807
808 /*
809 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
810 * on its containing proc.
811 *
812 * => Similar to proc_find_lwp(), but does not require you to have
813 * the proc a priori.
814 * => Also returns proc * to caller, with p::p_lock held.
815 * => Same caveats apply.
816 */
817 struct lwp *
818 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
819 {
820 struct pid_table *pt;
821 struct proc *p = NULL;
822 struct lwp *l = NULL;
823 uintptr_t slot;
824
825 KASSERT(pp != NULL);
826 mutex_enter(&proc_lock);
827 pt = &pid_table[pid & pid_tbl_mask];
828
829 slot = pt->pt_slot;
830 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
831 l = PT_GET_LWP(slot);
832 p = l->l_proc;
833 mutex_enter(p->p_lock);
834 if (__predict_false(l->l_stat == LSIDL)) {
835 mutex_exit(p->p_lock);
836 l = NULL;
837 p = NULL;
838 }
839 }
840 mutex_exit(&proc_lock);
841
842 KASSERT(p == NULL || mutex_owned(p->p_lock));
843 *pp = p;
844 return l;
845 }
846
847 /*
848 * proc_find_raw_pid_table_locked: locate a process by the ID.
849 *
850 * => Must be called with proc_lock held.
851 */
852 static proc_t *
853 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
854 {
855 struct pid_table *pt;
856 proc_t *p = NULL;
857 uintptr_t slot;
858
859 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
860 pt = &pid_table[pid & pid_tbl_mask];
861
862 slot = pt->pt_slot;
863 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
864 /*
865 * When looking up processes, require a direct match
866 * on the PID assigned to the proc, not just one of
867 * its LWPs.
868 *
869 * N.B. We require lwp::l_proc of LSIDL LWPs to be
870 * valid here.
871 */
872 p = PT_GET_LWP(slot)->l_proc;
873 if (__predict_false(p->p_pid != pid && !any_lwpid))
874 p = NULL;
875 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
876 p = PT_GET_PROC(slot);
877 }
878 return p;
879 }
880
881 proc_t *
882 proc_find_raw(pid_t pid)
883 {
884
885 return proc_find_raw_pid_table_locked(pid, false);
886 }
887
888 static proc_t *
889 proc_find_internal(pid_t pid, bool any_lwpid)
890 {
891 proc_t *p;
892
893 KASSERT(mutex_owned(&proc_lock));
894
895 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
896 if (__predict_false(p == NULL)) {
897 return NULL;
898 }
899
900 /*
901 * Only allow live processes to be found by PID.
902 * XXX: p_stat might change, since proc unlocked.
903 */
904 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
905 return p;
906 }
907 return NULL;
908 }
909
910 proc_t *
911 proc_find(pid_t pid)
912 {
913 return proc_find_internal(pid, false);
914 }
915
916 proc_t *
917 proc_find_lwpid(pid_t pid)
918 {
919 return proc_find_internal(pid, true);
920 }
921
922 /*
923 * pgrp_find: locate a process group by the ID.
924 *
925 * => Must be called with proc_lock held.
926 */
927 struct pgrp *
928 pgrp_find(pid_t pgid)
929 {
930 struct pgrp *pg;
931
932 KASSERT(mutex_owned(&proc_lock));
933
934 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
935
936 /*
937 * Cannot look up a process group that only exists because the
938 * session has not died yet (traditional).
939 */
940 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
941 return NULL;
942 }
943 return pg;
944 }
945
946 static void
947 expand_pid_table(void)
948 {
949 size_t pt_size, tsz;
950 struct pid_table *n_pt, *new_pt;
951 uintptr_t slot;
952 struct pgrp *pgrp;
953 pid_t pid, rpid;
954 u_int i;
955 uint new_pt_mask;
956
957 KASSERT(mutex_owned(&proc_lock));
958
959 /* Unlock the pid_table briefly to allocate memory. */
960 pt_size = pid_tbl_mask + 1;
961 mutex_exit(&proc_lock);
962
963 tsz = pt_size * 2 * sizeof(struct pid_table);
964 new_pt = kmem_alloc(tsz, KM_SLEEP);
965 new_pt_mask = pt_size * 2 - 1;
966
967 /* XXX For now. The pratical limit is much lower anyway. */
968 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
969
970 mutex_enter(&proc_lock);
971 if (pt_size != pid_tbl_mask + 1) {
972 /* Another process beat us to it... */
973 mutex_exit(&proc_lock);
974 kmem_free(new_pt, tsz);
975 goto out;
976 }
977
978 /*
979 * Copy entries from old table into new one.
980 * If 'pid' is 'odd' we need to place in the upper half,
981 * even pid's to the lower half.
982 * Free items stay in the low half so we don't have to
983 * fixup the reference to them.
984 * We stuff free items on the front of the freelist
985 * because we can't write to unmodified entries.
986 * Processing the table backwards maintains a semblance
987 * of issuing pid numbers that increase with time.
988 */
989 i = pt_size - 1;
990 n_pt = new_pt + i;
991 for (; ; i--, n_pt--) {
992 slot = pid_table[i].pt_slot;
993 pgrp = pid_table[i].pt_pgrp;
994 if (!PT_VALID(slot)) {
995 /* Up 'use count' so that link is valid */
996 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
997 rpid = 0;
998 slot = PT_SET_FREE(pid);
999 if (pgrp)
1000 pid = pgrp->pg_id;
1001 } else {
1002 pid = pid_table[i].pt_pid;
1003 rpid = pid;
1004 }
1005
1006 /* Save entry in appropriate half of table */
1007 n_pt[pid & pt_size].pt_slot = slot;
1008 n_pt[pid & pt_size].pt_pgrp = pgrp;
1009 n_pt[pid & pt_size].pt_pid = rpid;
1010
1011 /* Put other piece on start of free list */
1012 pid = (pid ^ pt_size) & ~pid_tbl_mask;
1013 n_pt[pid & pt_size].pt_slot =
1014 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1015 n_pt[pid & pt_size].pt_pgrp = 0;
1016 n_pt[pid & pt_size].pt_pid = 0;
1017
1018 next_free_pt = i | (pid & pt_size);
1019 if (i == 0)
1020 break;
1021 }
1022
1023 /* Save old table size and switch tables */
1024 tsz = pt_size * sizeof(struct pid_table);
1025 n_pt = pid_table;
1026 atomic_store_release(&pid_table, new_pt);
1027 KASSERT(new_pt_mask >= pid_tbl_mask);
1028 atomic_store_release(&pid_tbl_mask, new_pt_mask);
1029
1030 /*
1031 * pid_max starts as PID_MAX (= 30000), once we have 16384
1032 * allocated pids we need it to be larger!
1033 */
1034 if (pid_tbl_mask > PID_MAX) {
1035 pid_max = pid_tbl_mask * 2 + 1;
1036 pid_alloc_lim |= pid_alloc_lim << 1;
1037 } else
1038 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1039
1040 mutex_exit(&proc_lock);
1041
1042 /*
1043 * Make sure that unlocked access to the old pid_table is complete
1044 * and then free it.
1045 */
1046 pserialize_perform(proc_psz);
1047 kmem_free(n_pt, tsz);
1048
1049 out: /* Return with proc_lock held again. */
1050 mutex_enter(&proc_lock);
1051 }
1052
1053 struct proc *
1054 proc_alloc(void)
1055 {
1056 struct proc *p;
1057
1058 p = pool_cache_get(proc_cache, PR_WAITOK);
1059 p->p_stat = SIDL; /* protect against others */
1060 proc_initspecific(p);
1061 kdtrace_proc_ctor(NULL, p);
1062
1063 /*
1064 * Allocate a placeholder in the pid_table. When we create the
1065 * first LWP for this process, it will take ownership of the
1066 * slot.
1067 */
1068 if (__predict_false(proc_alloc_pid(p) == -1)) {
1069 /* Allocating the PID failed; unwind. */
1070 proc_finispecific(p);
1071 proc_free_mem(p);
1072 p = NULL;
1073 }
1074 return p;
1075 }
1076
1077 /*
1078 * proc_alloc_pid_slot: allocate PID and record the occcupant so that
1079 * proc_find_raw() can find it by the PID.
1080 */
1081 static pid_t __noinline
1082 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1083 {
1084 struct pid_table *pt;
1085 pid_t pid;
1086 int nxt;
1087
1088 KASSERT(mutex_owned(&proc_lock));
1089
1090 for (;;expand_pid_table()) {
1091 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1092 /* ensure pids cycle through 2000+ values */
1093 continue;
1094 }
1095 /*
1096 * The first user process *must* be given PID 1.
1097 * it has already been reserved for us. This
1098 * will be coming in from the proc_alloc() call
1099 * above, and the entry will be usurped later when
1100 * the first user LWP is created.
1101 * XXX this is slightly gross.
1102 */
1103 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1104 p != &proc0)) {
1105 KASSERT(PT_IS_PROC(slot));
1106 pt = &pid_table[1];
1107 pt->pt_slot = slot;
1108 return 1;
1109 }
1110 pt = &pid_table[next_free_pt];
1111 #ifdef DIAGNOSTIC
1112 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1113 panic("proc_alloc: slot busy");
1114 #endif
1115 nxt = PT_NEXT(pt->pt_slot);
1116 if (nxt & pid_tbl_mask)
1117 break;
1118 /* Table full - expand (NB last entry not used....) */
1119 }
1120
1121 /* pid is 'saved use count' + 'size' + entry */
1122 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1123 if ((uint)pid > (uint)pid_max)
1124 pid &= pid_tbl_mask;
1125 next_free_pt = nxt & pid_tbl_mask;
1126
1127 /* XXX For now. The pratical limit is much lower anyway. */
1128 KASSERT(pid <= FUTEX_TID_MASK);
1129
1130 /* Grab table slot */
1131 pt->pt_slot = slot;
1132
1133 KASSERT(pt->pt_pid == 0);
1134 pt->pt_pid = pid;
1135 pid_alloc_cnt++;
1136
1137 return pid;
1138 }
1139
1140 pid_t
1141 proc_alloc_pid(struct proc *p)
1142 {
1143 pid_t pid;
1144
1145 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1146 KASSERT(p->p_stat == SIDL);
1147
1148 mutex_enter(&proc_lock);
1149 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1150 if (pid != -1)
1151 p->p_pid = pid;
1152 mutex_exit(&proc_lock);
1153
1154 return pid;
1155 }
1156
1157 pid_t
1158 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1159 {
1160 struct pid_table *pt;
1161 pid_t pid;
1162
1163 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1164 KASSERT(l->l_proc == p);
1165 KASSERT(l->l_stat == LSIDL);
1166
1167 /*
1168 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1169 * is globally visible before the LWP becomes visible via the
1170 * pid_table.
1171 */
1172 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1173 membar_producer();
1174 #endif
1175
1176 /*
1177 * If the slot for p->p_pid currently points to the proc,
1178 * then we should usurp this ID for the LWP. This happens
1179 * at least once per process (for the first LWP), and can
1180 * happen again if the first LWP for a process exits and
1181 * before the process creates another.
1182 */
1183 mutex_enter(&proc_lock);
1184 pid = p->p_pid;
1185 pt = &pid_table[pid & pid_tbl_mask];
1186 KASSERT(pt->pt_pid == pid);
1187 if (PT_IS_PROC(pt->pt_slot)) {
1188 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1189 l->l_lid = pid;
1190 pt->pt_slot = PT_SET_LWP(l);
1191 } else {
1192 /* Need to allocate a new slot. */
1193 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1194 if (pid != -1)
1195 l->l_lid = pid;
1196 }
1197 mutex_exit(&proc_lock);
1198
1199 return pid;
1200 }
1201
1202 static void __noinline
1203 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1204 {
1205 struct pid_table *pt;
1206
1207 KASSERT(mutex_owned(&proc_lock));
1208
1209 pt = &pid_table[pid & pid_tbl_mask];
1210
1211 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1212 KASSERT(pt->pt_pid == pid);
1213
1214 /* save pid use count in slot */
1215 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1216 pt->pt_pid = 0;
1217
1218 if (pt->pt_pgrp == NULL) {
1219 /* link last freed entry onto ours */
1220 pid &= pid_tbl_mask;
1221 pt = &pid_table[last_free_pt];
1222 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1223 pt->pt_pid = 0;
1224 last_free_pt = pid;
1225 pid_alloc_cnt--;
1226 }
1227 }
1228
1229 /*
1230 * Free a process id - called from proc_free (in kern_exit.c)
1231 *
1232 * Called with the proc_lock held.
1233 */
1234 void
1235 proc_free_pid(pid_t pid)
1236 {
1237
1238 KASSERT(mutex_owned(&proc_lock));
1239 proc_free_pid_internal(pid, PT_F_PROC);
1240 }
1241
1242 /*
1243 * Free a process id used by an LWP. If this was the process's
1244 * first LWP, we convert the slot to point to the process; the
1245 * entry will get cleaned up later when the process finishes exiting.
1246 *
1247 * If not, then it's the same as proc_free_pid().
1248 */
1249 void
1250 proc_free_lwpid(struct proc *p, pid_t pid)
1251 {
1252
1253 KASSERT(mutex_owned(&proc_lock));
1254
1255 if (__predict_true(p->p_pid == pid)) {
1256 struct pid_table *pt;
1257
1258 pt = &pid_table[pid & pid_tbl_mask];
1259
1260 KASSERT(pt->pt_pid == pid);
1261 KASSERT(PT_IS_LWP(pt->pt_slot));
1262 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1263
1264 pt->pt_slot = PT_SET_PROC(p);
1265 return;
1266 }
1267 proc_free_pid_internal(pid, PT_F_LWP);
1268 }
1269
1270 void
1271 proc_free_mem(struct proc *p)
1272 {
1273
1274 kdtrace_proc_dtor(NULL, p);
1275 pool_cache_put(proc_cache, p);
1276 }
1277
1278 /*
1279 * proc_enterpgrp: move p to a new or existing process group (and session).
1280 *
1281 * If we are creating a new pgrp, the pgid should equal
1282 * the calling process' pid.
1283 * If is only valid to enter a process group that is in the session
1284 * of the process.
1285 * Also mksess should only be set if we are creating a process group
1286 *
1287 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1288 */
1289 int
1290 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1291 {
1292 struct pgrp *new_pgrp, *pgrp;
1293 struct session *sess;
1294 struct proc *p;
1295 int rval;
1296 pid_t pg_id = NO_PGID;
1297
1298 /* Allocate data areas we might need before doing any validity checks */
1299 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1300 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1301
1302 mutex_enter(&proc_lock);
1303 rval = EPERM; /* most common error (to save typing) */
1304
1305 /* Check pgrp exists or can be created */
1306 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1307 if (pgrp != NULL && pgrp->pg_id != pgid)
1308 goto done;
1309
1310 /* Can only set another process under restricted circumstances. */
1311 if (pid != curp->p_pid) {
1312 /* Must exist and be one of our children... */
1313 p = proc_find_internal(pid, false);
1314 if (p == NULL || !p_inferior(p, curp)) {
1315 rval = ESRCH;
1316 goto done;
1317 }
1318 /* ... in the same session... */
1319 if (sess != NULL || p->p_session != curp->p_session)
1320 goto done;
1321 /* ... existing pgid must be in same session ... */
1322 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1323 goto done;
1324 /* ... and not done an exec. */
1325 if (p->p_flag & PK_EXEC) {
1326 rval = EACCES;
1327 goto done;
1328 }
1329 } else {
1330 /* ... setsid() cannot re-enter a pgrp */
1331 if (mksess && (curp->p_pgid == curp->p_pid ||
1332 pgrp_find(curp->p_pid)))
1333 goto done;
1334 p = curp;
1335 }
1336
1337 /* Changing the process group/session of a session
1338 leader is definitely off limits. */
1339 if (SESS_LEADER(p)) {
1340 if (sess == NULL && p->p_pgrp == pgrp)
1341 /* unless it's a definite noop */
1342 rval = 0;
1343 goto done;
1344 }
1345
1346 /* Can only create a process group with id of process */
1347 if (pgrp == NULL && pgid != pid)
1348 goto done;
1349
1350 /* Can only create a session if creating pgrp */
1351 if (sess != NULL && pgrp != NULL)
1352 goto done;
1353
1354 /* Check we allocated memory for a pgrp... */
1355 if (pgrp == NULL && new_pgrp == NULL)
1356 goto done;
1357
1358 /* Don't attach to 'zombie' pgrp */
1359 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1360 goto done;
1361
1362 /* Expect to succeed now */
1363 rval = 0;
1364
1365 if (pgrp == p->p_pgrp)
1366 /* nothing to do */
1367 goto done;
1368
1369 /* Ok all setup, link up required structures */
1370
1371 if (pgrp == NULL) {
1372 pgrp = new_pgrp;
1373 new_pgrp = NULL;
1374 if (sess != NULL) {
1375 sess->s_sid = p->p_pid;
1376 sess->s_leader = p;
1377 sess->s_count = 1;
1378 sess->s_ttyvp = NULL;
1379 sess->s_ttyp = NULL;
1380 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1381 memcpy(sess->s_login, p->p_session->s_login,
1382 sizeof(sess->s_login));
1383 p->p_lflag &= ~PL_CONTROLT;
1384 } else {
1385 sess = p->p_pgrp->pg_session;
1386 proc_sesshold(sess);
1387 }
1388 pgrp->pg_session = sess;
1389 sess = NULL;
1390
1391 pgrp->pg_id = pgid;
1392 LIST_INIT(&pgrp->pg_members);
1393 #ifdef DIAGNOSTIC
1394 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1395 panic("enterpgrp: pgrp table slot in use");
1396 if (__predict_false(mksess && p != curp))
1397 panic("enterpgrp: mksession and p != curproc");
1398 #endif
1399 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1400 pgrp->pg_jobc = 0;
1401 }
1402
1403 /*
1404 * Adjust eligibility of affected pgrps to participate in job control.
1405 * Increment eligibility counts before decrementing, otherwise we
1406 * could reach 0 spuriously during the first call.
1407 */
1408 fixjobc(p, pgrp, 1);
1409 fixjobc(p, p->p_pgrp, 0);
1410
1411 /* Interlock with ttread(). */
1412 mutex_spin_enter(&tty_lock);
1413
1414 /* Move process to requested group. */
1415 LIST_REMOVE(p, p_pglist);
1416 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1417 /* defer delete until we've dumped the lock */
1418 pg_id = p->p_pgrp->pg_id;
1419 p->p_pgrp = pgrp;
1420 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1421
1422 /* Done with the swap; we can release the tty mutex. */
1423 mutex_spin_exit(&tty_lock);
1424
1425 done:
1426 if (pg_id != NO_PGID) {
1427 /* Releases proc_lock. */
1428 pg_delete(pg_id);
1429 } else {
1430 mutex_exit(&proc_lock);
1431 }
1432 if (sess != NULL)
1433 kmem_free(sess, sizeof(*sess));
1434 if (new_pgrp != NULL)
1435 kmem_free(new_pgrp, sizeof(*new_pgrp));
1436 #ifdef DEBUG_PGRP
1437 if (__predict_false(rval))
1438 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1439 pid, pgid, mksess, curp->p_pid, rval);
1440 #endif
1441 return rval;
1442 }
1443
1444 /*
1445 * proc_leavepgrp: remove a process from its process group.
1446 * => must be called with the proc_lock held, which will be released;
1447 */
1448 void
1449 proc_leavepgrp(struct proc *p)
1450 {
1451 struct pgrp *pgrp;
1452
1453 KASSERT(mutex_owned(&proc_lock));
1454
1455 /* Interlock with ttread() */
1456 mutex_spin_enter(&tty_lock);
1457 pgrp = p->p_pgrp;
1458 LIST_REMOVE(p, p_pglist);
1459 p->p_pgrp = NULL;
1460 mutex_spin_exit(&tty_lock);
1461
1462 if (LIST_EMPTY(&pgrp->pg_members)) {
1463 /* Releases proc_lock. */
1464 pg_delete(pgrp->pg_id);
1465 } else {
1466 mutex_exit(&proc_lock);
1467 }
1468 }
1469
1470 /*
1471 * pg_remove: remove a process group from the table.
1472 * => must be called with the proc_lock held;
1473 * => returns process group to free;
1474 */
1475 static struct pgrp *
1476 pg_remove(pid_t pg_id)
1477 {
1478 struct pgrp *pgrp;
1479 struct pid_table *pt;
1480
1481 KASSERT(mutex_owned(&proc_lock));
1482
1483 pt = &pid_table[pg_id & pid_tbl_mask];
1484 pgrp = pt->pt_pgrp;
1485
1486 KASSERT(pgrp != NULL);
1487 KASSERT(pgrp->pg_id == pg_id);
1488 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1489
1490 pt->pt_pgrp = NULL;
1491
1492 if (!PT_VALID(pt->pt_slot)) {
1493 /* Orphaned pgrp, put slot onto free list. */
1494 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1495 pg_id &= pid_tbl_mask;
1496 pt = &pid_table[last_free_pt];
1497 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1498 KASSERT(pt->pt_pid == 0);
1499 last_free_pt = pg_id;
1500 pid_alloc_cnt--;
1501 }
1502 return pgrp;
1503 }
1504
1505 /*
1506 * pg_delete: delete and free a process group.
1507 * => must be called with the proc_lock held, which will be released.
1508 */
1509 static void
1510 pg_delete(pid_t pg_id)
1511 {
1512 struct pgrp *pg;
1513 struct tty *ttyp;
1514 struct session *ss;
1515
1516 KASSERT(mutex_owned(&proc_lock));
1517
1518 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1519 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1520 mutex_exit(&proc_lock);
1521 return;
1522 }
1523
1524 ss = pg->pg_session;
1525
1526 /* Remove reference (if any) from tty to this process group */
1527 mutex_spin_enter(&tty_lock);
1528 ttyp = ss->s_ttyp;
1529 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1530 ttyp->t_pgrp = NULL;
1531 KASSERT(ttyp->t_session == ss);
1532 }
1533 mutex_spin_exit(&tty_lock);
1534
1535 /*
1536 * The leading process group in a session is freed by proc_sessrele(),
1537 * if last reference. It will also release the locks.
1538 */
1539 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1540 proc_sessrele(ss);
1541
1542 if (pg != NULL) {
1543 /* Free it, if was not done above. */
1544 kmem_free(pg, sizeof(struct pgrp));
1545 }
1546 }
1547
1548 /*
1549 * Adjust pgrp jobc counters when specified process changes process group.
1550 * We count the number of processes in each process group that "qualify"
1551 * the group for terminal job control (those with a parent in a different
1552 * process group of the same session). If that count reaches zero, the
1553 * process group becomes orphaned. Check both the specified process'
1554 * process group and that of its children.
1555 * entering == 0 => p is leaving specified group.
1556 * entering == 1 => p is entering specified group.
1557 *
1558 * Call with proc_lock held.
1559 */
1560 void
1561 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1562 {
1563 struct pgrp *hispgrp;
1564 struct session *mysession = pgrp->pg_session;
1565 struct proc *child;
1566
1567 KASSERT(mutex_owned(&proc_lock));
1568
1569 /*
1570 * Check p's parent to see whether p qualifies its own process
1571 * group; if so, adjust count for p's process group.
1572 */
1573 hispgrp = p->p_pptr->p_pgrp;
1574 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1575 if (entering) {
1576 pgrp->pg_jobc++;
1577 p->p_lflag &= ~PL_ORPHANPG;
1578 } else {
1579 /* KASSERT(pgrp->pg_jobc > 0); */
1580 if (--pgrp->pg_jobc == 0)
1581 orphanpg(pgrp);
1582 }
1583 }
1584
1585 /*
1586 * Check this process' children to see whether they qualify
1587 * their process groups; if so, adjust counts for children's
1588 * process groups.
1589 */
1590 LIST_FOREACH(child, &p->p_children, p_sibling) {
1591 hispgrp = child->p_pgrp;
1592 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1593 !P_ZOMBIE(child)) {
1594 if (entering) {
1595 child->p_lflag &= ~PL_ORPHANPG;
1596 hispgrp->pg_jobc++;
1597 } else {
1598 KASSERT(hispgrp->pg_jobc > 0);
1599 if (--hispgrp->pg_jobc == 0)
1600 orphanpg(hispgrp);
1601 }
1602 }
1603 }
1604 }
1605
1606 /*
1607 * A process group has become orphaned;
1608 * if there are any stopped processes in the group,
1609 * hang-up all process in that group.
1610 *
1611 * Call with proc_lock held.
1612 */
1613 static void
1614 orphanpg(struct pgrp *pg)
1615 {
1616 struct proc *p;
1617
1618 KASSERT(mutex_owned(&proc_lock));
1619
1620 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1621 if (p->p_stat == SSTOP) {
1622 p->p_lflag |= PL_ORPHANPG;
1623 psignal(p, SIGHUP);
1624 psignal(p, SIGCONT);
1625 }
1626 }
1627 }
1628
1629 #ifdef DDB
1630 #include <ddb/db_output.h>
1631 void pidtbl_dump(void);
1632 void
1633 pidtbl_dump(void)
1634 {
1635 struct pid_table *pt;
1636 struct proc *p;
1637 struct pgrp *pgrp;
1638 uintptr_t slot;
1639 int id;
1640
1641 db_printf("pid table %p size %x, next %x, last %x\n",
1642 pid_table, pid_tbl_mask+1,
1643 next_free_pt, last_free_pt);
1644 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1645 slot = pt->pt_slot;
1646 if (!PT_VALID(slot) && !pt->pt_pgrp)
1647 continue;
1648 if (PT_IS_LWP(slot)) {
1649 p = PT_GET_LWP(slot)->l_proc;
1650 } else if (PT_IS_PROC(slot)) {
1651 p = PT_GET_PROC(slot);
1652 } else {
1653 p = NULL;
1654 }
1655 db_printf(" id %x: ", id);
1656 if (p != NULL)
1657 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1658 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1659 else
1660 db_printf("next %x use %x\n",
1661 PT_NEXT(slot) & pid_tbl_mask,
1662 PT_NEXT(slot) & ~pid_tbl_mask);
1663 if ((pgrp = pt->pt_pgrp)) {
1664 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1665 pgrp->pg_session, pgrp->pg_session->s_sid,
1666 pgrp->pg_session->s_count,
1667 pgrp->pg_session->s_login);
1668 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1669 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1670 LIST_FIRST(&pgrp->pg_members));
1671 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1672 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1673 p->p_pid, p, p->p_pgrp, p->p_comm);
1674 }
1675 }
1676 }
1677 }
1678 #endif /* DDB */
1679
1680 #ifdef KSTACK_CHECK_MAGIC
1681
1682 #define KSTACK_MAGIC 0xdeadbeaf
1683
1684 /* XXX should be per process basis? */
1685 static int kstackleftmin = KSTACK_SIZE;
1686 static int kstackleftthres = KSTACK_SIZE / 8;
1687
1688 void
1689 kstack_setup_magic(const struct lwp *l)
1690 {
1691 uint32_t *ip;
1692 uint32_t const *end;
1693
1694 KASSERT(l != NULL);
1695 KASSERT(l != &lwp0);
1696
1697 /*
1698 * fill all the stack with magic number
1699 * so that later modification on it can be detected.
1700 */
1701 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1702 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1703 for (; ip < end; ip++) {
1704 *ip = KSTACK_MAGIC;
1705 }
1706 }
1707
1708 void
1709 kstack_check_magic(const struct lwp *l)
1710 {
1711 uint32_t const *ip, *end;
1712 int stackleft;
1713
1714 KASSERT(l != NULL);
1715
1716 /* don't check proc0 */ /*XXX*/
1717 if (l == &lwp0)
1718 return;
1719
1720 #ifdef __MACHINE_STACK_GROWS_UP
1721 /* stack grows upwards (eg. hppa) */
1722 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1723 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1724 for (ip--; ip >= end; ip--)
1725 if (*ip != KSTACK_MAGIC)
1726 break;
1727
1728 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1729 #else /* __MACHINE_STACK_GROWS_UP */
1730 /* stack grows downwards (eg. i386) */
1731 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1732 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1733 for (; ip < end; ip++)
1734 if (*ip != KSTACK_MAGIC)
1735 break;
1736
1737 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1738 #endif /* __MACHINE_STACK_GROWS_UP */
1739
1740 if (kstackleftmin > stackleft) {
1741 kstackleftmin = stackleft;
1742 if (stackleft < kstackleftthres)
1743 printf("warning: kernel stack left %d bytes"
1744 "(pid %u:lid %u)\n", stackleft,
1745 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1746 }
1747
1748 if (stackleft <= 0) {
1749 panic("magic on the top of kernel stack changed for "
1750 "pid %u, lid %u: maybe kernel stack overflow",
1751 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1752 }
1753 }
1754 #endif /* KSTACK_CHECK_MAGIC */
1755
1756 int
1757 proclist_foreach_call(struct proclist *list,
1758 int (*callback)(struct proc *, void *arg), void *arg)
1759 {
1760 struct proc marker;
1761 struct proc *p;
1762 int ret = 0;
1763
1764 marker.p_flag = PK_MARKER;
1765 mutex_enter(&proc_lock);
1766 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1767 if (p->p_flag & PK_MARKER) {
1768 p = LIST_NEXT(p, p_list);
1769 continue;
1770 }
1771 LIST_INSERT_AFTER(p, &marker, p_list);
1772 ret = (*callback)(p, arg);
1773 KASSERT(mutex_owned(&proc_lock));
1774 p = LIST_NEXT(&marker, p_list);
1775 LIST_REMOVE(&marker, p_list);
1776 }
1777 mutex_exit(&proc_lock);
1778
1779 return ret;
1780 }
1781
1782 int
1783 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1784 {
1785
1786 /* XXXCDC: how should locking work here? */
1787
1788 /* curproc exception is for coredump. */
1789
1790 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1791 (p->p_vmspace->vm_refcnt < 1)) {
1792 return EFAULT;
1793 }
1794
1795 uvmspace_addref(p->p_vmspace);
1796 *vm = p->p_vmspace;
1797
1798 return 0;
1799 }
1800
1801 /*
1802 * Acquire a write lock on the process credential.
1803 */
1804 void
1805 proc_crmod_enter(void)
1806 {
1807 struct lwp *l = curlwp;
1808 struct proc *p = l->l_proc;
1809 kauth_cred_t oc;
1810
1811 /* Reset what needs to be reset in plimit. */
1812 if (p->p_limit->pl_corename != defcorename) {
1813 lim_setcorename(p, defcorename, 0);
1814 }
1815
1816 mutex_enter(p->p_lock);
1817
1818 /* Ensure the LWP cached credentials are up to date. */
1819 if ((oc = l->l_cred) != p->p_cred) {
1820 kauth_cred_hold(p->p_cred);
1821 l->l_cred = p->p_cred;
1822 kauth_cred_free(oc);
1823 }
1824 }
1825
1826 /*
1827 * Set in a new process credential, and drop the write lock. The credential
1828 * must have a reference already. Optionally, free a no-longer required
1829 * credential. The scheduler also needs to inspect p_cred, so we also
1830 * briefly acquire the sched state mutex.
1831 */
1832 void
1833 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1834 {
1835 struct lwp *l = curlwp, *l2;
1836 struct proc *p = l->l_proc;
1837 kauth_cred_t oc;
1838
1839 KASSERT(mutex_owned(p->p_lock));
1840
1841 /* Is there a new credential to set in? */
1842 if (scred != NULL) {
1843 p->p_cred = scred;
1844 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1845 if (l2 != l)
1846 l2->l_prflag |= LPR_CRMOD;
1847 }
1848
1849 /* Ensure the LWP cached credentials are up to date. */
1850 if ((oc = l->l_cred) != scred) {
1851 kauth_cred_hold(scred);
1852 l->l_cred = scred;
1853 }
1854 } else
1855 oc = NULL; /* XXXgcc */
1856
1857 if (sugid) {
1858 /*
1859 * Mark process as having changed credentials, stops
1860 * tracing etc.
1861 */
1862 p->p_flag |= PK_SUGID;
1863 }
1864
1865 mutex_exit(p->p_lock);
1866
1867 /* If there is a credential to be released, free it now. */
1868 if (fcred != NULL) {
1869 KASSERT(scred != NULL);
1870 kauth_cred_free(fcred);
1871 if (oc != scred)
1872 kauth_cred_free(oc);
1873 }
1874 }
1875
1876 /*
1877 * proc_specific_key_create --
1878 * Create a key for subsystem proc-specific data.
1879 */
1880 int
1881 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1882 {
1883
1884 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1885 }
1886
1887 /*
1888 * proc_specific_key_delete --
1889 * Delete a key for subsystem proc-specific data.
1890 */
1891 void
1892 proc_specific_key_delete(specificdata_key_t key)
1893 {
1894
1895 specificdata_key_delete(proc_specificdata_domain, key);
1896 }
1897
1898 /*
1899 * proc_initspecific --
1900 * Initialize a proc's specificdata container.
1901 */
1902 void
1903 proc_initspecific(struct proc *p)
1904 {
1905 int error __diagused;
1906
1907 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1908 KASSERT(error == 0);
1909 }
1910
1911 /*
1912 * proc_finispecific --
1913 * Finalize a proc's specificdata container.
1914 */
1915 void
1916 proc_finispecific(struct proc *p)
1917 {
1918
1919 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1920 }
1921
1922 /*
1923 * proc_getspecific --
1924 * Return proc-specific data corresponding to the specified key.
1925 */
1926 void *
1927 proc_getspecific(struct proc *p, specificdata_key_t key)
1928 {
1929
1930 return (specificdata_getspecific(proc_specificdata_domain,
1931 &p->p_specdataref, key));
1932 }
1933
1934 /*
1935 * proc_setspecific --
1936 * Set proc-specific data corresponding to the specified key.
1937 */
1938 void
1939 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1940 {
1941
1942 specificdata_setspecific(proc_specificdata_domain,
1943 &p->p_specdataref, key, data);
1944 }
1945
1946 int
1947 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1948 {
1949 int r = 0;
1950
1951 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1952 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1953 /*
1954 * suid proc of ours or proc not ours
1955 */
1956 r = EPERM;
1957 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1958 /*
1959 * sgid proc has sgid back to us temporarily
1960 */
1961 r = EPERM;
1962 } else {
1963 /*
1964 * our rgid must be in target's group list (ie,
1965 * sub-processes started by a sgid process)
1966 */
1967 int ismember = 0;
1968
1969 if (kauth_cred_ismember_gid(cred,
1970 kauth_cred_getgid(target), &ismember) != 0 ||
1971 !ismember)
1972 r = EPERM;
1973 }
1974
1975 return (r);
1976 }
1977
1978 /*
1979 * sysctl stuff
1980 */
1981
1982 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1983
1984 static const u_int sysctl_flagmap[] = {
1985 PK_ADVLOCK, P_ADVLOCK,
1986 PK_EXEC, P_EXEC,
1987 PK_NOCLDWAIT, P_NOCLDWAIT,
1988 PK_32, P_32,
1989 PK_CLDSIGIGN, P_CLDSIGIGN,
1990 PK_SUGID, P_SUGID,
1991 0
1992 };
1993
1994 static const u_int sysctl_sflagmap[] = {
1995 PS_NOCLDSTOP, P_NOCLDSTOP,
1996 PS_WEXIT, P_WEXIT,
1997 PS_STOPFORK, P_STOPFORK,
1998 PS_STOPEXEC, P_STOPEXEC,
1999 PS_STOPEXIT, P_STOPEXIT,
2000 0
2001 };
2002
2003 static const u_int sysctl_slflagmap[] = {
2004 PSL_TRACED, P_TRACED,
2005 PSL_CHTRACED, P_CHTRACED,
2006 PSL_SYSCALL, P_SYSCALL,
2007 0
2008 };
2009
2010 static const u_int sysctl_lflagmap[] = {
2011 PL_CONTROLT, P_CONTROLT,
2012 PL_PPWAIT, P_PPWAIT,
2013 0
2014 };
2015
2016 static const u_int sysctl_stflagmap[] = {
2017 PST_PROFIL, P_PROFIL,
2018 0
2019
2020 };
2021
2022 /* used by kern_lwp also */
2023 const u_int sysctl_lwpflagmap[] = {
2024 LW_SINTR, L_SINTR,
2025 LW_SYSTEM, L_SYSTEM,
2026 0
2027 };
2028
2029 /*
2030 * Find the most ``active'' lwp of a process and return it for ps display
2031 * purposes
2032 */
2033 static struct lwp *
2034 proc_active_lwp(struct proc *p)
2035 {
2036 static const int ostat[] = {
2037 0,
2038 2, /* LSIDL */
2039 6, /* LSRUN */
2040 5, /* LSSLEEP */
2041 4, /* LSSTOP */
2042 0, /* LSZOMB */
2043 1, /* LSDEAD */
2044 7, /* LSONPROC */
2045 3 /* LSSUSPENDED */
2046 };
2047
2048 struct lwp *l, *lp = NULL;
2049 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2050 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2051 if (lp == NULL ||
2052 ostat[l->l_stat] > ostat[lp->l_stat] ||
2053 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2054 l->l_cpticks > lp->l_cpticks)) {
2055 lp = l;
2056 continue;
2057 }
2058 }
2059 return lp;
2060 }
2061
2062 static int
2063 sysctl_doeproc(SYSCTLFN_ARGS)
2064 {
2065 union {
2066 struct kinfo_proc kproc;
2067 struct kinfo_proc2 kproc2;
2068 } *kbuf;
2069 struct proc *p, *next, *marker;
2070 char *where, *dp;
2071 int type, op, arg, error;
2072 u_int elem_size, kelem_size, elem_count;
2073 size_t buflen, needed;
2074 bool match, zombie, mmmbrains;
2075 const bool allowaddr = get_expose_address(curproc);
2076
2077 if (namelen == 1 && name[0] == CTL_QUERY)
2078 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2079
2080 dp = where = oldp;
2081 buflen = where != NULL ? *oldlenp : 0;
2082 error = 0;
2083 needed = 0;
2084 type = rnode->sysctl_num;
2085
2086 if (type == KERN_PROC) {
2087 if (namelen == 0)
2088 return EINVAL;
2089 switch (op = name[0]) {
2090 case KERN_PROC_ALL:
2091 if (namelen != 1)
2092 return EINVAL;
2093 arg = 0;
2094 break;
2095 default:
2096 if (namelen != 2)
2097 return EINVAL;
2098 arg = name[1];
2099 break;
2100 }
2101 elem_count = 0; /* Hush little compiler, don't you cry */
2102 kelem_size = elem_size = sizeof(kbuf->kproc);
2103 } else {
2104 if (namelen != 4)
2105 return EINVAL;
2106 op = name[0];
2107 arg = name[1];
2108 elem_size = name[2];
2109 elem_count = name[3];
2110 kelem_size = sizeof(kbuf->kproc2);
2111 }
2112
2113 sysctl_unlock();
2114
2115 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2116 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2117 marker->p_flag = PK_MARKER;
2118
2119 mutex_enter(&proc_lock);
2120 /*
2121 * Start with zombies to prevent reporting processes twice, in case they
2122 * are dying and being moved from the list of alive processes to zombies.
2123 */
2124 mmmbrains = true;
2125 for (p = LIST_FIRST(&zombproc);; p = next) {
2126 if (p == NULL) {
2127 if (mmmbrains) {
2128 p = LIST_FIRST(&allproc);
2129 mmmbrains = false;
2130 }
2131 if (p == NULL)
2132 break;
2133 }
2134 next = LIST_NEXT(p, p_list);
2135 if ((p->p_flag & PK_MARKER) != 0)
2136 continue;
2137
2138 /*
2139 * Skip embryonic processes.
2140 */
2141 if (p->p_stat == SIDL)
2142 continue;
2143
2144 mutex_enter(p->p_lock);
2145 error = kauth_authorize_process(l->l_cred,
2146 KAUTH_PROCESS_CANSEE, p,
2147 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2148 if (error != 0) {
2149 mutex_exit(p->p_lock);
2150 continue;
2151 }
2152
2153 /*
2154 * Hande all the operations in one switch on the cost of
2155 * algorithm complexity is on purpose. The win splitting this
2156 * function into several similar copies makes maintenance
2157 * burden, code grow and boost is negligible in practical
2158 * systems.
2159 */
2160 switch (op) {
2161 case KERN_PROC_PID:
2162 match = (p->p_pid == (pid_t)arg);
2163 break;
2164
2165 case KERN_PROC_PGRP:
2166 match = (p->p_pgrp->pg_id == (pid_t)arg);
2167 break;
2168
2169 case KERN_PROC_SESSION:
2170 match = (p->p_session->s_sid == (pid_t)arg);
2171 break;
2172
2173 case KERN_PROC_TTY:
2174 match = true;
2175 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2176 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2177 p->p_session->s_ttyp == NULL ||
2178 p->p_session->s_ttyvp != NULL) {
2179 match = false;
2180 }
2181 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2182 p->p_session->s_ttyp == NULL) {
2183 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2184 match = false;
2185 }
2186 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2187 match = false;
2188 }
2189 break;
2190
2191 case KERN_PROC_UID:
2192 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2193 break;
2194
2195 case KERN_PROC_RUID:
2196 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2197 break;
2198
2199 case KERN_PROC_GID:
2200 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2201 break;
2202
2203 case KERN_PROC_RGID:
2204 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2205 break;
2206
2207 case KERN_PROC_ALL:
2208 match = true;
2209 /* allow everything */
2210 break;
2211
2212 default:
2213 error = EINVAL;
2214 mutex_exit(p->p_lock);
2215 goto cleanup;
2216 }
2217 if (!match) {
2218 mutex_exit(p->p_lock);
2219 continue;
2220 }
2221
2222 /*
2223 * Grab a hold on the process.
2224 */
2225 if (mmmbrains) {
2226 zombie = true;
2227 } else {
2228 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2229 }
2230 if (zombie) {
2231 LIST_INSERT_AFTER(p, marker, p_list);
2232 }
2233
2234 if (buflen >= elem_size &&
2235 (type == KERN_PROC || elem_count > 0)) {
2236 ruspace(p); /* Update process vm resource use */
2237
2238 if (type == KERN_PROC) {
2239 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2240 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2241 allowaddr);
2242 } else {
2243 fill_kproc2(p, &kbuf->kproc2, zombie,
2244 allowaddr);
2245 elem_count--;
2246 }
2247 mutex_exit(p->p_lock);
2248 mutex_exit(&proc_lock);
2249 /*
2250 * Copy out elem_size, but not larger than kelem_size
2251 */
2252 error = sysctl_copyout(l, kbuf, dp,
2253 uimin(kelem_size, elem_size));
2254 mutex_enter(&proc_lock);
2255 if (error) {
2256 goto bah;
2257 }
2258 dp += elem_size;
2259 buflen -= elem_size;
2260 } else {
2261 mutex_exit(p->p_lock);
2262 }
2263 needed += elem_size;
2264
2265 /*
2266 * Release reference to process.
2267 */
2268 if (zombie) {
2269 next = LIST_NEXT(marker, p_list);
2270 LIST_REMOVE(marker, p_list);
2271 } else {
2272 rw_exit(&p->p_reflock);
2273 next = LIST_NEXT(p, p_list);
2274 }
2275
2276 /*
2277 * Short-circuit break quickly!
2278 */
2279 if (op == KERN_PROC_PID)
2280 break;
2281 }
2282 mutex_exit(&proc_lock);
2283
2284 if (where != NULL) {
2285 *oldlenp = dp - where;
2286 if (needed > *oldlenp) {
2287 error = ENOMEM;
2288 goto out;
2289 }
2290 } else {
2291 needed += KERN_PROCSLOP;
2292 *oldlenp = needed;
2293 }
2294 kmem_free(kbuf, sizeof(*kbuf));
2295 kmem_free(marker, sizeof(*marker));
2296 sysctl_relock();
2297 return 0;
2298 bah:
2299 if (zombie)
2300 LIST_REMOVE(marker, p_list);
2301 else
2302 rw_exit(&p->p_reflock);
2303 cleanup:
2304 mutex_exit(&proc_lock);
2305 out:
2306 kmem_free(kbuf, sizeof(*kbuf));
2307 kmem_free(marker, sizeof(*marker));
2308 sysctl_relock();
2309 return error;
2310 }
2311
2312 int
2313 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2314 {
2315 #if !defined(_RUMPKERNEL)
2316 int retval;
2317
2318 if (p->p_flag & PK_32) {
2319 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2320 enosys(), retval);
2321 return retval;
2322 }
2323 #endif /* !defined(_RUMPKERNEL) */
2324
2325 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2326 }
2327
2328 static int
2329 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2330 {
2331 void **cookie = cookie_;
2332 struct lwp *l = cookie[0];
2333 char *dst = cookie[1];
2334
2335 return sysctl_copyout(l, src, dst + off, len);
2336 }
2337
2338 /*
2339 * sysctl helper routine for kern.proc_args pseudo-subtree.
2340 */
2341 static int
2342 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2343 {
2344 struct ps_strings pss;
2345 struct proc *p;
2346 pid_t pid;
2347 int type, error;
2348 void *cookie[2];
2349
2350 if (namelen == 1 && name[0] == CTL_QUERY)
2351 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2352
2353 if (newp != NULL || namelen != 2)
2354 return (EINVAL);
2355 pid = name[0];
2356 type = name[1];
2357
2358 switch (type) {
2359 case KERN_PROC_PATHNAME:
2360 sysctl_unlock();
2361 error = fill_pathname(l, pid, oldp, oldlenp);
2362 sysctl_relock();
2363 return error;
2364
2365 case KERN_PROC_CWD:
2366 sysctl_unlock();
2367 error = fill_cwd(l, pid, oldp, oldlenp);
2368 sysctl_relock();
2369 return error;
2370
2371 case KERN_PROC_ARGV:
2372 case KERN_PROC_NARGV:
2373 case KERN_PROC_ENV:
2374 case KERN_PROC_NENV:
2375 /* ok */
2376 break;
2377 default:
2378 return (EINVAL);
2379 }
2380
2381 sysctl_unlock();
2382
2383 /* check pid */
2384 mutex_enter(&proc_lock);
2385 if ((p = proc_find(pid)) == NULL) {
2386 error = EINVAL;
2387 goto out_locked;
2388 }
2389 mutex_enter(p->p_lock);
2390
2391 /* Check permission. */
2392 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2393 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2394 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2395 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2396 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2397 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2398 else
2399 error = EINVAL; /* XXXGCC */
2400 if (error) {
2401 mutex_exit(p->p_lock);
2402 goto out_locked;
2403 }
2404
2405 if (oldp == NULL) {
2406 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2407 *oldlenp = sizeof (int);
2408 else
2409 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2410 error = 0;
2411 mutex_exit(p->p_lock);
2412 goto out_locked;
2413 }
2414
2415 /*
2416 * Zombies don't have a stack, so we can't read their psstrings.
2417 * System processes also don't have a user stack.
2418 */
2419 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2420 error = EINVAL;
2421 mutex_exit(p->p_lock);
2422 goto out_locked;
2423 }
2424
2425 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2426 mutex_exit(p->p_lock);
2427 if (error) {
2428 goto out_locked;
2429 }
2430 mutex_exit(&proc_lock);
2431
2432 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2433 int value;
2434 if ((error = copyin_psstrings(p, &pss)) == 0) {
2435 if (type == KERN_PROC_NARGV)
2436 value = pss.ps_nargvstr;
2437 else
2438 value = pss.ps_nenvstr;
2439 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2440 *oldlenp = sizeof(value);
2441 }
2442 } else {
2443 cookie[0] = l;
2444 cookie[1] = oldp;
2445 error = copy_procargs(p, type, oldlenp,
2446 copy_procargs_sysctl_cb, cookie);
2447 }
2448 rw_exit(&p->p_reflock);
2449 sysctl_relock();
2450 return error;
2451
2452 out_locked:
2453 mutex_exit(&proc_lock);
2454 sysctl_relock();
2455 return error;
2456 }
2457
2458 int
2459 copy_procargs(struct proc *p, int oid, size_t *limit,
2460 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2461 {
2462 struct ps_strings pss;
2463 size_t len, i, loaded, entry_len;
2464 struct uio auio;
2465 struct iovec aiov;
2466 int error, argvlen;
2467 char *arg;
2468 char **argv;
2469 vaddr_t user_argv;
2470 struct vmspace *vmspace;
2471
2472 /*
2473 * Allocate a temporary buffer to hold the argument vector and
2474 * the arguments themselve.
2475 */
2476 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2477 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2478
2479 /*
2480 * Lock the process down in memory.
2481 */
2482 vmspace = p->p_vmspace;
2483 uvmspace_addref(vmspace);
2484
2485 /*
2486 * Read in the ps_strings structure.
2487 */
2488 if ((error = copyin_psstrings(p, &pss)) != 0)
2489 goto done;
2490
2491 /*
2492 * Now read the address of the argument vector.
2493 */
2494 switch (oid) {
2495 case KERN_PROC_ARGV:
2496 user_argv = (uintptr_t)pss.ps_argvstr;
2497 argvlen = pss.ps_nargvstr;
2498 break;
2499 case KERN_PROC_ENV:
2500 user_argv = (uintptr_t)pss.ps_envstr;
2501 argvlen = pss.ps_nenvstr;
2502 break;
2503 default:
2504 error = EINVAL;
2505 goto done;
2506 }
2507
2508 if (argvlen < 0) {
2509 error = EIO;
2510 goto done;
2511 }
2512
2513
2514 /*
2515 * Now copy each string.
2516 */
2517 len = 0; /* bytes written to user buffer */
2518 loaded = 0; /* bytes from argv already processed */
2519 i = 0; /* To make compiler happy */
2520 entry_len = PROC_PTRSZ(p);
2521
2522 for (; argvlen; --argvlen) {
2523 int finished = 0;
2524 vaddr_t base;
2525 size_t xlen;
2526 int j;
2527
2528 if (loaded == 0) {
2529 size_t rem = entry_len * argvlen;
2530 loaded = MIN(rem, PAGE_SIZE);
2531 error = copyin_vmspace(vmspace,
2532 (const void *)user_argv, argv, loaded);
2533 if (error)
2534 break;
2535 user_argv += loaded;
2536 i = 0;
2537 }
2538
2539 #if !defined(_RUMPKERNEL)
2540 if (p->p_flag & PK_32)
2541 MODULE_HOOK_CALL(kern_proc32_base_hook,
2542 (argv, i++), 0, base);
2543 else
2544 #endif /* !defined(_RUMPKERNEL) */
2545 base = (vaddr_t)argv[i++];
2546 loaded -= entry_len;
2547
2548 /*
2549 * The program has messed around with its arguments,
2550 * possibly deleting some, and replacing them with
2551 * NULL's. Treat this as the last argument and not
2552 * a failure.
2553 */
2554 if (base == 0)
2555 break;
2556
2557 while (!finished) {
2558 xlen = PAGE_SIZE - (base & PAGE_MASK);
2559
2560 aiov.iov_base = arg;
2561 aiov.iov_len = PAGE_SIZE;
2562 auio.uio_iov = &aiov;
2563 auio.uio_iovcnt = 1;
2564 auio.uio_offset = base;
2565 auio.uio_resid = xlen;
2566 auio.uio_rw = UIO_READ;
2567 UIO_SETUP_SYSSPACE(&auio);
2568 error = uvm_io(&vmspace->vm_map, &auio, 0);
2569 if (error)
2570 goto done;
2571
2572 /* Look for the end of the string */
2573 for (j = 0; j < xlen; j++) {
2574 if (arg[j] == '\0') {
2575 xlen = j + 1;
2576 finished = 1;
2577 break;
2578 }
2579 }
2580
2581 /* Check for user buffer overflow */
2582 if (len + xlen > *limit) {
2583 finished = 1;
2584 if (len > *limit)
2585 xlen = 0;
2586 else
2587 xlen = *limit - len;
2588 }
2589
2590 /* Copyout the page */
2591 error = (*cb)(cookie, arg, len, xlen);
2592 if (error)
2593 goto done;
2594
2595 len += xlen;
2596 base += xlen;
2597 }
2598 }
2599 *limit = len;
2600
2601 done:
2602 kmem_free(argv, PAGE_SIZE);
2603 kmem_free(arg, PAGE_SIZE);
2604 uvmspace_free(vmspace);
2605 return error;
2606 }
2607
2608 /*
2609 * Fill in a proc structure for the specified process.
2610 */
2611 static void
2612 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2613 {
2614 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2615 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2616 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2617 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2618 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2619 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2620 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2621 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2622 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2623 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2624 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2625 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2626 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2627 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2628 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2629 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2630 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2631 p->p_exitsig = psrc->p_exitsig;
2632 p->p_flag = psrc->p_flag;
2633 p->p_sflag = psrc->p_sflag;
2634 p->p_slflag = psrc->p_slflag;
2635 p->p_lflag = psrc->p_lflag;
2636 p->p_stflag = psrc->p_stflag;
2637 p->p_stat = psrc->p_stat;
2638 p->p_trace_enabled = psrc->p_trace_enabled;
2639 p->p_pid = psrc->p_pid;
2640 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2641 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2642 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2643 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2644 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2645 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2646 p->p_nlwps = psrc->p_nlwps;
2647 p->p_nzlwps = psrc->p_nzlwps;
2648 p->p_nrlwps = psrc->p_nrlwps;
2649 p->p_nlwpwait = psrc->p_nlwpwait;
2650 p->p_ndlwps = psrc->p_ndlwps;
2651 p->p_nstopchild = psrc->p_nstopchild;
2652 p->p_waited = psrc->p_waited;
2653 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2654 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2655 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2656 p->p_estcpu = psrc->p_estcpu;
2657 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2658 p->p_forktime = psrc->p_forktime;
2659 p->p_pctcpu = psrc->p_pctcpu;
2660 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2661 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2662 p->p_rtime = psrc->p_rtime;
2663 p->p_uticks = psrc->p_uticks;
2664 p->p_sticks = psrc->p_sticks;
2665 p->p_iticks = psrc->p_iticks;
2666 p->p_xutime = psrc->p_xutime;
2667 p->p_xstime = psrc->p_xstime;
2668 p->p_traceflag = psrc->p_traceflag;
2669 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2670 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2671 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2672 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2673 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2674 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2675 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2676 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2677 allowaddr);
2678 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2679 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2680 p->p_ppid = psrc->p_ppid;
2681 p->p_oppid = psrc->p_oppid;
2682 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2683 p->p_sigctx = psrc->p_sigctx;
2684 p->p_nice = psrc->p_nice;
2685 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2686 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2687 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2688 p->p_pax = psrc->p_pax;
2689 p->p_xexit = psrc->p_xexit;
2690 p->p_xsig = psrc->p_xsig;
2691 p->p_acflag = psrc->p_acflag;
2692 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2693 p->p_stackbase = psrc->p_stackbase;
2694 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2695 }
2696
2697 /*
2698 * Fill in an eproc structure for the specified process.
2699 */
2700 void
2701 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2702 {
2703 struct tty *tp;
2704 struct lwp *l;
2705
2706 KASSERT(mutex_owned(&proc_lock));
2707 KASSERT(mutex_owned(p->p_lock));
2708
2709 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2710 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2711 if (p->p_cred) {
2712 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2713 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2714 }
2715 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2716 struct vmspace *vm = p->p_vmspace;
2717
2718 ep->e_vm.vm_rssize = vm_resident_count(vm);
2719 ep->e_vm.vm_tsize = vm->vm_tsize;
2720 ep->e_vm.vm_dsize = vm->vm_dsize;
2721 ep->e_vm.vm_ssize = vm->vm_ssize;
2722 ep->e_vm.vm_map.size = vm->vm_map.size;
2723
2724 /* Pick the primary (first) LWP */
2725 l = proc_active_lwp(p);
2726 KASSERT(l != NULL);
2727 lwp_lock(l);
2728 if (l->l_wchan)
2729 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2730 lwp_unlock(l);
2731 }
2732 ep->e_ppid = p->p_ppid;
2733 if (p->p_pgrp && p->p_session) {
2734 ep->e_pgid = p->p_pgrp->pg_id;
2735 ep->e_jobc = p->p_pgrp->pg_jobc;
2736 ep->e_sid = p->p_session->s_sid;
2737 if ((p->p_lflag & PL_CONTROLT) &&
2738 (tp = p->p_session->s_ttyp)) {
2739 ep->e_tdev = tp->t_dev;
2740 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2741 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2742 } else
2743 ep->e_tdev = (uint32_t)NODEV;
2744 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2745 if (SESS_LEADER(p))
2746 ep->e_flag |= EPROC_SLEADER;
2747 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2748 }
2749 ep->e_xsize = ep->e_xrssize = 0;
2750 ep->e_xccount = ep->e_xswrss = 0;
2751 }
2752
2753 /*
2754 * Fill in a kinfo_proc2 structure for the specified process.
2755 */
2756 void
2757 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2758 {
2759 struct tty *tp;
2760 struct lwp *l, *l2;
2761 struct timeval ut, st, rt;
2762 sigset_t ss1, ss2;
2763 struct rusage ru;
2764 struct vmspace *vm;
2765
2766 KASSERT(mutex_owned(&proc_lock));
2767 KASSERT(mutex_owned(p->p_lock));
2768
2769 sigemptyset(&ss1);
2770 sigemptyset(&ss2);
2771
2772 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2773 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2774 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2775 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2776 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2777 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2778 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2779 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2780 ki->p_tsess = 0; /* may be changed if controlling tty below */
2781 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2782 ki->p_eflag = 0;
2783 ki->p_exitsig = p->p_exitsig;
2784 ki->p_flag = L_INMEM; /* Process never swapped out */
2785 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2786 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2787 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2788 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2789 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2790 ki->p_pid = p->p_pid;
2791 ki->p_ppid = p->p_ppid;
2792 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2793 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2794 ki->p_gid = kauth_cred_getegid(p->p_cred);
2795 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2796 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2797 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2798 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2799 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2800 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2801 UIO_SYSSPACE);
2802
2803 ki->p_uticks = p->p_uticks;
2804 ki->p_sticks = p->p_sticks;
2805 ki->p_iticks = p->p_iticks;
2806 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2807 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2808 ki->p_traceflag = p->p_traceflag;
2809
2810 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2811 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2812
2813 ki->p_cpticks = 0;
2814 ki->p_pctcpu = p->p_pctcpu;
2815 ki->p_estcpu = 0;
2816 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2817 ki->p_realstat = p->p_stat;
2818 ki->p_nice = p->p_nice;
2819 ki->p_xstat = P_WAITSTATUS(p);
2820 ki->p_acflag = p->p_acflag;
2821
2822 strncpy(ki->p_comm, p->p_comm,
2823 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2824 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2825
2826 ki->p_nlwps = p->p_nlwps;
2827 ki->p_realflag = ki->p_flag;
2828
2829 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2830 vm = p->p_vmspace;
2831 ki->p_vm_rssize = vm_resident_count(vm);
2832 ki->p_vm_tsize = vm->vm_tsize;
2833 ki->p_vm_dsize = vm->vm_dsize;
2834 ki->p_vm_ssize = vm->vm_ssize;
2835 ki->p_vm_vsize = atop(vm->vm_map.size);
2836 /*
2837 * Since the stack is initially mapped mostly with
2838 * PROT_NONE and grown as needed, adjust the "mapped size"
2839 * to skip the unused stack portion.
2840 */
2841 ki->p_vm_msize =
2842 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2843
2844 /* Pick the primary (first) LWP */
2845 l = proc_active_lwp(p);
2846 KASSERT(l != NULL);
2847 lwp_lock(l);
2848 ki->p_nrlwps = p->p_nrlwps;
2849 ki->p_forw = 0;
2850 ki->p_back = 0;
2851 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2852 ki->p_stat = l->l_stat;
2853 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2854 ki->p_swtime = l->l_swtime;
2855 ki->p_slptime = l->l_slptime;
2856 if (l->l_stat == LSONPROC)
2857 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2858 else
2859 ki->p_schedflags = 0;
2860 ki->p_priority = lwp_eprio(l);
2861 ki->p_usrpri = l->l_priority;
2862 if (l->l_wchan)
2863 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2864 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2865 ki->p_cpuid = cpu_index(l->l_cpu);
2866 lwp_unlock(l);
2867 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2868 /* This is hardly correct, but... */
2869 sigplusset(&l->l_sigpend.sp_set, &ss1);
2870 sigplusset(&l->l_sigmask, &ss2);
2871 ki->p_cpticks += l->l_cpticks;
2872 ki->p_pctcpu += l->l_pctcpu;
2873 ki->p_estcpu += l->l_estcpu;
2874 }
2875 }
2876 sigplusset(&p->p_sigpend.sp_set, &ss1);
2877 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2878 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2879
2880 if (p->p_session != NULL) {
2881 ki->p_sid = p->p_session->s_sid;
2882 ki->p__pgid = p->p_pgrp->pg_id;
2883 if (p->p_session->s_ttyvp)
2884 ki->p_eflag |= EPROC_CTTY;
2885 if (SESS_LEADER(p))
2886 ki->p_eflag |= EPROC_SLEADER;
2887 strncpy(ki->p_login, p->p_session->s_login,
2888 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2889 ki->p_jobc = p->p_pgrp->pg_jobc;
2890 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2891 ki->p_tdev = tp->t_dev;
2892 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2893 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2894 allowaddr);
2895 } else {
2896 ki->p_tdev = (int32_t)NODEV;
2897 }
2898 }
2899
2900 if (!P_ZOMBIE(p) && !zombie) {
2901 ki->p_uvalid = 1;
2902 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2903 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2904
2905 calcru(p, &ut, &st, NULL, &rt);
2906 ki->p_rtime_sec = rt.tv_sec;
2907 ki->p_rtime_usec = rt.tv_usec;
2908 ki->p_uutime_sec = ut.tv_sec;
2909 ki->p_uutime_usec = ut.tv_usec;
2910 ki->p_ustime_sec = st.tv_sec;
2911 ki->p_ustime_usec = st.tv_usec;
2912
2913 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2914 ki->p_uru_nvcsw = 0;
2915 ki->p_uru_nivcsw = 0;
2916 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2917 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2918 ki->p_uru_nivcsw += l2->l_nivcsw;
2919 ruadd(&ru, &l2->l_ru);
2920 }
2921 ki->p_uru_maxrss = ru.ru_maxrss;
2922 ki->p_uru_ixrss = ru.ru_ixrss;
2923 ki->p_uru_idrss = ru.ru_idrss;
2924 ki->p_uru_isrss = ru.ru_isrss;
2925 ki->p_uru_minflt = ru.ru_minflt;
2926 ki->p_uru_majflt = ru.ru_majflt;
2927 ki->p_uru_nswap = ru.ru_nswap;
2928 ki->p_uru_inblock = ru.ru_inblock;
2929 ki->p_uru_oublock = ru.ru_oublock;
2930 ki->p_uru_msgsnd = ru.ru_msgsnd;
2931 ki->p_uru_msgrcv = ru.ru_msgrcv;
2932 ki->p_uru_nsignals = ru.ru_nsignals;
2933
2934 timeradd(&p->p_stats->p_cru.ru_utime,
2935 &p->p_stats->p_cru.ru_stime, &ut);
2936 ki->p_uctime_sec = ut.tv_sec;
2937 ki->p_uctime_usec = ut.tv_usec;
2938 }
2939 }
2940
2941
2942 int
2943 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2944 {
2945 int error;
2946
2947 mutex_enter(&proc_lock);
2948 if (pid == -1)
2949 *p = l->l_proc;
2950 else
2951 *p = proc_find(pid);
2952
2953 if (*p == NULL) {
2954 if (pid != -1)
2955 mutex_exit(&proc_lock);
2956 return ESRCH;
2957 }
2958 if (pid != -1)
2959 mutex_enter((*p)->p_lock);
2960 mutex_exit(&proc_lock);
2961
2962 error = kauth_authorize_process(l->l_cred,
2963 KAUTH_PROCESS_CANSEE, *p,
2964 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2965 if (error) {
2966 if (pid != -1)
2967 mutex_exit((*p)->p_lock);
2968 }
2969 return error;
2970 }
2971
2972 static int
2973 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2974 {
2975 int error;
2976 struct proc *p;
2977
2978 if ((error = proc_find_locked(l, &p, pid)) != 0)
2979 return error;
2980
2981 if (p->p_path == NULL) {
2982 if (pid != -1)
2983 mutex_exit(p->p_lock);
2984 return ENOENT;
2985 }
2986
2987 size_t len = strlen(p->p_path) + 1;
2988 if (oldp != NULL) {
2989 size_t copylen = uimin(len, *oldlenp);
2990 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2991 if (error == 0 && *oldlenp < len)
2992 error = ENOSPC;
2993 }
2994 *oldlenp = len;
2995 if (pid != -1)
2996 mutex_exit(p->p_lock);
2997 return error;
2998 }
2999
3000 static int
3001 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
3002 {
3003 int error;
3004 struct proc *p;
3005 char *path;
3006 char *bp, *bend;
3007 struct cwdinfo *cwdi;
3008 struct vnode *vp;
3009 size_t len, lenused;
3010
3011 if ((error = proc_find_locked(l, &p, pid)) != 0)
3012 return error;
3013
3014 len = MAXPATHLEN * 4;
3015
3016 path = kmem_alloc(len, KM_SLEEP);
3017
3018 bp = &path[len];
3019 bend = bp;
3020 *(--bp) = '\0';
3021
3022 cwdi = p->p_cwdi;
3023 rw_enter(&cwdi->cwdi_lock, RW_READER);
3024 vp = cwdi->cwdi_cdir;
3025 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3026 rw_exit(&cwdi->cwdi_lock);
3027
3028 if (error)
3029 goto out;
3030
3031 lenused = bend - bp;
3032
3033 if (oldp != NULL) {
3034 size_t copylen = uimin(lenused, *oldlenp);
3035 error = sysctl_copyout(l, bp, oldp, copylen);
3036 if (error == 0 && *oldlenp < lenused)
3037 error = ENOSPC;
3038 }
3039 *oldlenp = lenused;
3040 out:
3041 if (pid != -1)
3042 mutex_exit(p->p_lock);
3043 kmem_free(path, len);
3044 return error;
3045 }
3046
3047 int
3048 proc_getauxv(struct proc *p, void **buf, size_t *len)
3049 {
3050 struct ps_strings pss;
3051 int error;
3052 void *uauxv, *kauxv;
3053 size_t size;
3054
3055 if ((error = copyin_psstrings(p, &pss)) != 0)
3056 return error;
3057 if (pss.ps_envstr == NULL)
3058 return EIO;
3059
3060 size = p->p_execsw->es_arglen;
3061 if (size == 0)
3062 return EIO;
3063
3064 size_t ptrsz = PROC_PTRSZ(p);
3065 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3066
3067 kauxv = kmem_alloc(size, KM_SLEEP);
3068
3069 error = copyin_proc(p, uauxv, kauxv, size);
3070 if (error) {
3071 kmem_free(kauxv, size);
3072 return error;
3073 }
3074
3075 *buf = kauxv;
3076 *len = size;
3077
3078 return 0;
3079 }
3080
3081
3082 static int
3083 sysctl_security_expose_address(SYSCTLFN_ARGS)
3084 {
3085 int expose_address, error;
3086 struct sysctlnode node;
3087
3088 node = *rnode;
3089 node.sysctl_data = &expose_address;
3090 expose_address = *(int *)rnode->sysctl_data;
3091 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3092 if (error || newp == NULL)
3093 return error;
3094
3095 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3096 0, NULL, NULL, NULL))
3097 return EPERM;
3098
3099 switch (expose_address) {
3100 case 0:
3101 case 1:
3102 case 2:
3103 break;
3104 default:
3105 return EINVAL;
3106 }
3107
3108 *(int *)rnode->sysctl_data = expose_address;
3109
3110 return 0;
3111 }
3112
3113 bool
3114 get_expose_address(struct proc *p)
3115 {
3116 /* allow only if sysctl variable is set or privileged */
3117 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3118 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3119 }
3120