Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.267
      1 /*	$NetBSD: kern_proc.c,v 1.267 2022/05/07 19:44:40 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.267 2022/05/07 19:44:40 mrg Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 #include <sys/futex.h>
    110 #include <sys/pserialize.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 
    114 /*
    115  * Process lists.
    116  */
    117 
    118 struct proclist		allproc		__cacheline_aligned;
    119 struct proclist		zombproc	__cacheline_aligned;
    120 
    121  kmutex_t		proc_lock	__cacheline_aligned;
    122 static pserialize_t	proc_psz;
    123 
    124 /*
    125  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126  * Since pid numbers are only allocated when an empty slot
    127  * has been found, there is no need to search any lists ever.
    128  * (an orphaned pgrp will lock the slot, a session will lock
    129  * the pgrp with the same number.)
    130  * If the table is too small it is reallocated with twice the
    131  * previous size and the entries 'unzipped' into the two halves.
    132  * A linked list of free entries is passed through the pt_lwp
    133  * field of 'free' items - set odd to be an invalid ptr.  Two
    134  * additional bits are also used to indicate if the slot is
    135  * currently occupied by a proc or lwp, and if the PID is
    136  * hidden from certain kinds of lookups.  We thus require a
    137  * minimum alignment for proc and lwp structures (LWPs are
    138  * at least 32-byte aligned).
    139  */
    140 
    141 struct pid_table {
    142 	uintptr_t	pt_slot;
    143 	struct pgrp	*pt_pgrp;
    144 	pid_t		pt_pid;
    145 };
    146 
    147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148 #define	PT_F_LWP		0	/* pseudo-flag */
    149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150 
    151 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    152 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
    153 
    154 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    155 #define	PT_RESERVED(s)		((s) == 0)
    156 #define	PT_NEXT(s)		((u_int)(s) >> 1)
    157 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    158 #define	PT_SET_LWP(l)		((uintptr_t)(l))
    159 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    160 #define	PT_SET_RESERVED		0
    161 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    162 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    163 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    164 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    165 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    166 
    167 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    168 
    169 /*
    170  * Table of process IDs (PIDs).
    171  */
    172 static struct pid_table *pid_table	__read_mostly;
    173 
    174 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    175 
    176 /* Table mask, threshold for growing and number of allocated PIDs. */
    177 static u_int		pid_tbl_mask	__read_mostly;
    178 static u_int		pid_alloc_lim	__read_mostly;
    179 static u_int		pid_alloc_cnt	__cacheline_aligned;
    180 
    181 /* Next free, last free and maximum PIDs. */
    182 static u_int		next_free_pt	__cacheline_aligned;
    183 static u_int		last_free_pt	__cacheline_aligned;
    184 static pid_t		pid_max		__read_mostly;
    185 
    186 /* Components of the first process -- never freed. */
    187 
    188 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
    189 
    190 struct session session0 = {
    191 	.s_count = 1,
    192 	.s_sid = 0,
    193 };
    194 struct pgrp pgrp0 = {
    195 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    196 	.pg_session = &session0,
    197 };
    198 filedesc_t filedesc0;
    199 struct cwdinfo cwdi0 = {
    200 	.cwdi_cmask = CMASK,
    201 	.cwdi_refcnt = 1,
    202 };
    203 struct plimit limit0;
    204 struct pstats pstat0;
    205 struct vmspace vmspace0;
    206 struct sigacts sigacts0;
    207 struct proc proc0 = {
    208 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    209 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    210 	.p_nlwps = 1,
    211 	.p_nrlwps = 1,
    212 	.p_pgrp = &pgrp0,
    213 	.p_comm = "system",
    214 	/*
    215 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    216 	 * when they exit.  init(8) can easily wait them out for us.
    217 	 */
    218 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    219 	.p_stat = SACTIVE,
    220 	.p_nice = NZERO,
    221 	.p_emul = &emul_netbsd,
    222 	.p_cwdi = &cwdi0,
    223 	.p_limit = &limit0,
    224 	.p_fd = &filedesc0,
    225 	.p_vmspace = &vmspace0,
    226 	.p_stats = &pstat0,
    227 	.p_sigacts = &sigacts0,
    228 #ifdef PROC0_MD_INITIALIZERS
    229 	PROC0_MD_INITIALIZERS
    230 #endif
    231 };
    232 kauth_cred_t cred0;
    233 
    234 static const int	nofile	= NOFILE;
    235 static const int	maxuprc	= MAXUPRC;
    236 
    237 static int sysctl_doeproc(SYSCTLFN_PROTO);
    238 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    239 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    240 
    241 #ifdef KASLR
    242 static int kern_expose_address = 0;
    243 #else
    244 static int kern_expose_address = 1;
    245 #endif
    246 /*
    247  * The process list descriptors, used during pid allocation and
    248  * by sysctl.  No locking on this data structure is needed since
    249  * it is completely static.
    250  */
    251 const struct proclist_desc proclists[] = {
    252 	{ &allproc	},
    253 	{ &zombproc	},
    254 	{ NULL		},
    255 };
    256 
    257 static struct pgrp *	pg_remove(pid_t);
    258 static void		pg_delete(pid_t);
    259 static void		orphanpg(struct pgrp *);
    260 
    261 static specificdata_domain_t proc_specificdata_domain;
    262 
    263 static pool_cache_t proc_cache;
    264 
    265 static kauth_listener_t proc_listener;
    266 
    267 static void fill_proc(const struct proc *, struct proc *, bool);
    268 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    269 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    270 
    271 static int
    272 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    273     void *arg0, void *arg1, void *arg2, void *arg3)
    274 {
    275 	struct proc *p;
    276 	int result;
    277 
    278 	result = KAUTH_RESULT_DEFER;
    279 	p = arg0;
    280 
    281 	switch (action) {
    282 	case KAUTH_PROCESS_CANSEE: {
    283 		enum kauth_process_req req;
    284 
    285 		req = (enum kauth_process_req)(uintptr_t)arg1;
    286 
    287 		switch (req) {
    288 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    289 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    290 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    291 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    292 			result = KAUTH_RESULT_ALLOW;
    293 			break;
    294 
    295 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    296 			if (kauth_cred_getuid(cred) !=
    297 			    kauth_cred_getuid(p->p_cred) ||
    298 			    kauth_cred_getuid(cred) !=
    299 			    kauth_cred_getsvuid(p->p_cred))
    300 				break;
    301 
    302 			result = KAUTH_RESULT_ALLOW;
    303 
    304 			break;
    305 
    306 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    307 			if (!kern_expose_address)
    308 				break;
    309 
    310 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    311 				break;
    312 
    313 			result = KAUTH_RESULT_ALLOW;
    314 
    315 			break;
    316 
    317 		default:
    318 			break;
    319 		}
    320 
    321 		break;
    322 		}
    323 
    324 	case KAUTH_PROCESS_FORK: {
    325 		int lnprocs = (int)(unsigned long)arg2;
    326 
    327 		/*
    328 		 * Don't allow a nonprivileged user to use the last few
    329 		 * processes. The variable lnprocs is the current number of
    330 		 * processes, maxproc is the limit.
    331 		 */
    332 		if (__predict_false((lnprocs >= maxproc - 5)))
    333 			break;
    334 
    335 		result = KAUTH_RESULT_ALLOW;
    336 
    337 		break;
    338 		}
    339 
    340 	case KAUTH_PROCESS_CORENAME:
    341 	case KAUTH_PROCESS_STOPFLAG:
    342 		if (proc_uidmatch(cred, p->p_cred) == 0)
    343 			result = KAUTH_RESULT_ALLOW;
    344 
    345 		break;
    346 
    347 	default:
    348 		break;
    349 	}
    350 
    351 	return result;
    352 }
    353 
    354 static int
    355 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    356 {
    357 	struct proc *p = obj;
    358 
    359 	memset(p, 0, sizeof(*p));
    360 	klist_init(&p->p_klist);
    361 
    362 	/*
    363 	 * There is no need for a proc_dtor() to do a klist_fini(),
    364 	 * since knote_proc_exit() ensures that p->p_klist is empty
    365 	 * when a process exits.
    366 	 */
    367 
    368 	return 0;
    369 }
    370 
    371 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    372 
    373 /*
    374  * Initialize global process hashing structures.
    375  */
    376 void
    377 procinit(void)
    378 {
    379 	const struct proclist_desc *pd;
    380 	u_int i;
    381 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    382 
    383 	for (pd = proclists; pd->pd_list != NULL; pd++)
    384 		LIST_INIT(pd->pd_list);
    385 
    386 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
    387 
    388 	proc_psz = pserialize_create();
    389 
    390 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    391 	    * sizeof(struct pid_table), KM_SLEEP);
    392 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    393 	pid_max = PID_MAX;
    394 
    395 	/* Set free list running through table...
    396 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    397 	for (i = 0; i <= pid_tbl_mask; i++) {
    398 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    399 		pid_table[i].pt_pgrp = 0;
    400 		pid_table[i].pt_pid = 0;
    401 	}
    402 	/* slot 0 is just grabbed */
    403 	next_free_pt = 1;
    404 	/* Need to fix last entry. */
    405 	last_free_pt = pid_tbl_mask;
    406 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    407 	/* point at which we grow table - to avoid reusing pids too often */
    408 	pid_alloc_lim = pid_tbl_mask - 1;
    409 #undef LINK_EMPTY
    410 
    411 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    412 	mutex_enter(&proc_lock);
    413 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    414 		panic("failed to reserve PID 1 for init(8)");
    415 	mutex_exit(&proc_lock);
    416 
    417 	proc_specificdata_domain = specificdata_domain_create();
    418 	KASSERT(proc_specificdata_domain != NULL);
    419 
    420 	size_t proc_alignment = coherency_unit;
    421 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    422 		proc_alignment = MIN_PROC_ALIGNMENT;
    423 
    424 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    425 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    426 
    427 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    428 	    proc_listener_cb, NULL);
    429 }
    430 
    431 void
    432 procinit_sysctl(void)
    433 {
    434 	static struct sysctllog *clog;
    435 
    436 	sysctl_createv(&clog, 0, NULL, NULL,
    437 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    438 		       CTLTYPE_INT, "expose_address",
    439 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    440 		       sysctl_security_expose_address, 0,
    441 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    442 	sysctl_createv(&clog, 0, NULL, NULL,
    443 		       CTLFLAG_PERMANENT,
    444 		       CTLTYPE_NODE, "proc",
    445 		       SYSCTL_DESCR("System-wide process information"),
    446 		       sysctl_doeproc, 0, NULL, 0,
    447 		       CTL_KERN, KERN_PROC, CTL_EOL);
    448 	sysctl_createv(&clog, 0, NULL, NULL,
    449 		       CTLFLAG_PERMANENT,
    450 		       CTLTYPE_NODE, "proc2",
    451 		       SYSCTL_DESCR("Machine-independent process information"),
    452 		       sysctl_doeproc, 0, NULL, 0,
    453 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    454 	sysctl_createv(&clog, 0, NULL, NULL,
    455 		       CTLFLAG_PERMANENT,
    456 		       CTLTYPE_NODE, "proc_args",
    457 		       SYSCTL_DESCR("Process argument information"),
    458 		       sysctl_kern_proc_args, 0, NULL, 0,
    459 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    460 
    461 	/*
    462 	  "nodes" under these:
    463 
    464 	  KERN_PROC_ALL
    465 	  KERN_PROC_PID pid
    466 	  KERN_PROC_PGRP pgrp
    467 	  KERN_PROC_SESSION sess
    468 	  KERN_PROC_TTY tty
    469 	  KERN_PROC_UID uid
    470 	  KERN_PROC_RUID uid
    471 	  KERN_PROC_GID gid
    472 	  KERN_PROC_RGID gid
    473 
    474 	  all in all, probably not worth the effort...
    475 	*/
    476 }
    477 
    478 /*
    479  * Initialize process 0.
    480  */
    481 void
    482 proc0_init(void)
    483 {
    484 	struct proc *p;
    485 	struct pgrp *pg;
    486 	struct rlimit *rlim;
    487 	rlim_t lim;
    488 	int i;
    489 
    490 	p = &proc0;
    491 	pg = &pgrp0;
    492 
    493 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    494 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    495 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    496 
    497 	rw_init(&p->p_reflock);
    498 	cv_init(&p->p_waitcv, "wait");
    499 	cv_init(&p->p_lwpcv, "lwpwait");
    500 
    501 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    502 
    503 	KASSERT(lwp0.l_lid == 0);
    504 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    505 	LIST_INSERT_HEAD(&allproc, p, p_list);
    506 
    507 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    508 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    509 
    510 #ifdef __HAVE_SYSCALL_INTERN
    511 	(*p->p_emul->e_syscall_intern)(p);
    512 #endif
    513 
    514 	/* Create credentials. */
    515 	cred0 = kauth_cred_alloc();
    516 	p->p_cred = cred0;
    517 
    518 	/* Create the CWD info. */
    519 	rw_init(&cwdi0.cwdi_lock);
    520 
    521 	/* Create the limits structures. */
    522 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    523 
    524 	rlim = limit0.pl_rlimit;
    525 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    526 		rlim[i].rlim_cur = RLIM_INFINITY;
    527 		rlim[i].rlim_max = RLIM_INFINITY;
    528 	}
    529 
    530 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    531 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    532 
    533 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    534 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    535 
    536 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
    537 	rlim[RLIMIT_RSS].rlim_max = lim;
    538 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    539 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    540 
    541 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    542 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
    543 
    544 	/* Note that default core name has zero length. */
    545 	limit0.pl_corename = defcorename;
    546 	limit0.pl_cnlen = 0;
    547 	limit0.pl_refcnt = 1;
    548 	limit0.pl_writeable = false;
    549 	limit0.pl_sv_limit = NULL;
    550 
    551 	/* Configure virtual memory system, set vm rlimits. */
    552 	uvm_init_limits(p);
    553 
    554 	/* Initialize file descriptor table for proc0. */
    555 	fd_init(&filedesc0);
    556 
    557 	/*
    558 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    559 	 * All kernel processes (which never have user space mappings)
    560 	 * share proc0's vmspace, and thus, the kernel pmap.
    561 	 */
    562 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    563 	    trunc_page(VM_MAXUSER_ADDRESS),
    564 #ifdef __USE_TOPDOWN_VM
    565 	    true
    566 #else
    567 	    false
    568 #endif
    569 	    );
    570 
    571 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    572 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    573 	siginit(p);
    574 
    575 	proc_initspecific(p);
    576 	kdtrace_proc_ctor(NULL, p);
    577 }
    578 
    579 /*
    580  * Session reference counting.
    581  */
    582 
    583 void
    584 proc_sesshold(struct session *ss)
    585 {
    586 
    587 	KASSERT(mutex_owned(&proc_lock));
    588 	ss->s_count++;
    589 }
    590 
    591 void
    592 proc_sessrele(struct session *ss)
    593 {
    594 	struct pgrp *pg;
    595 
    596 	KASSERT(mutex_owned(&proc_lock));
    597 	KASSERT(ss->s_count > 0);
    598 
    599 	/*
    600 	 * We keep the pgrp with the same id as the session in order to
    601 	 * stop a process being given the same pid.  Since the pgrp holds
    602 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    603 	 */
    604 	if (--ss->s_count == 0) {
    605 		pg = pg_remove(ss->s_sid);
    606 	} else {
    607 		pg = NULL;
    608 		ss = NULL;
    609 	}
    610 
    611 	mutex_exit(&proc_lock);
    612 
    613 	if (pg)
    614 		kmem_free(pg, sizeof(struct pgrp));
    615 	if (ss)
    616 		kmem_free(ss, sizeof(struct session));
    617 }
    618 
    619 /*
    620  * Check that the specified process group is in the session of the
    621  * specified process.
    622  * Treats -ve ids as process ids.
    623  * Used to validate TIOCSPGRP requests.
    624  */
    625 int
    626 pgid_in_session(struct proc *p, pid_t pg_id)
    627 {
    628 	struct pgrp *pgrp;
    629 	struct session *session;
    630 	int error;
    631 
    632 	if (pg_id == INT_MIN)
    633 		return EINVAL;
    634 
    635 	mutex_enter(&proc_lock);
    636 	if (pg_id < 0) {
    637 		struct proc *p1 = proc_find(-pg_id);
    638 		if (p1 == NULL) {
    639 			error = EINVAL;
    640 			goto fail;
    641 		}
    642 		pgrp = p1->p_pgrp;
    643 	} else {
    644 		pgrp = pgrp_find(pg_id);
    645 		if (pgrp == NULL) {
    646 			error = EINVAL;
    647 			goto fail;
    648 		}
    649 	}
    650 	session = pgrp->pg_session;
    651 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    652 fail:
    653 	mutex_exit(&proc_lock);
    654 	return error;
    655 }
    656 
    657 /*
    658  * p_inferior: is p an inferior of q?
    659  */
    660 static inline bool
    661 p_inferior(struct proc *p, struct proc *q)
    662 {
    663 
    664 	KASSERT(mutex_owned(&proc_lock));
    665 
    666 	for (; p != q; p = p->p_pptr)
    667 		if (p->p_pid == 0)
    668 			return false;
    669 	return true;
    670 }
    671 
    672 /*
    673  * proc_find_lwp: locate an lwp in said proc by the ID.
    674  *
    675  * => Must be called with p::p_lock held.
    676  * => LSIDL lwps are not returned because they are only partially
    677  *    constructed while occupying the slot.
    678  * => Callers need to be careful about lwp::l_stat of the returned
    679  *    lwp.
    680  */
    681 struct lwp *
    682 proc_find_lwp(proc_t *p, pid_t pid)
    683 {
    684 	struct pid_table *pt;
    685 	unsigned pt_mask;
    686 	struct lwp *l = NULL;
    687 	uintptr_t slot;
    688 	int s;
    689 
    690 	KASSERT(mutex_owned(p->p_lock));
    691 
    692 	/*
    693 	 * Look in the pid_table.  This is done unlocked inside a
    694 	 * pserialize read section covering pid_table's memory
    695 	 * allocation only, so take care to read things in the correct
    696 	 * order:
    697 	 *
    698 	 * 1. First read the table mask -- this only ever increases, in
    699 	 *    expand_pid_table, so a stale value is safely
    700 	 *    conservative.
    701 	 *
    702 	 * 2. Next read the pid table -- this is always set _before_
    703 	 *    the mask increases, so if we see a new table and stale
    704 	 *    mask, the mask is still valid for the table.
    705 	 */
    706 	s = pserialize_read_enter();
    707 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
    708 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
    709 	slot = atomic_load_consume(&pt->pt_slot);
    710 	if (__predict_false(!PT_IS_LWP(slot))) {
    711 		pserialize_read_exit(s);
    712 		return NULL;
    713 	}
    714 
    715 	/*
    716 	 * Check to see if the LWP is from the correct process.  We won't
    717 	 * see entries in pid_table from a prior process that also used "p",
    718 	 * by virtue of the fact that allocating "p" means all prior updates
    719 	 * to dependant data structures are visible to this thread.
    720 	 */
    721 	l = PT_GET_LWP(slot);
    722 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
    723 		pserialize_read_exit(s);
    724 		return NULL;
    725 	}
    726 
    727 	/*
    728 	 * We now know that p->p_lock holds this LWP stable.
    729 	 *
    730 	 * If the status is not LSIDL, it means the LWP is intended to be
    731 	 * findable by LID and l_lid cannot change behind us.
    732 	 *
    733 	 * No need to acquire the LWP's lock to check for LSIDL, as
    734 	 * p->p_lock must be held to transition in and out of LSIDL.
    735 	 * Any other observed state of is no particular interest.
    736 	 */
    737 	pserialize_read_exit(s);
    738 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
    739 }
    740 
    741 /*
    742  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
    743  *
    744  * => Called in a pserialize read section with no locks held.
    745  * => LSIDL lwps are not returned because they are only partially
    746  *    constructed while occupying the slot.
    747  * => Callers need to be careful about lwp::l_stat of the returned
    748  *    lwp.
    749  * => If an LWP is found, it's returned locked.
    750  */
    751 struct lwp *
    752 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
    753 {
    754 	struct pid_table *pt;
    755 	unsigned pt_mask;
    756 	struct lwp *l = NULL;
    757 	uintptr_t slot;
    758 
    759 	KASSERT(pserialize_in_read_section());
    760 
    761 	/*
    762 	 * Look in the pid_table.  This is done unlocked inside a
    763 	 * pserialize read section covering pid_table's memory
    764 	 * allocation only, so take care to read things in the correct
    765 	 * order:
    766 	 *
    767 	 * 1. First read the table mask -- this only ever increases, in
    768 	 *    expand_pid_table, so a stale value is safely
    769 	 *    conservative.
    770 	 *
    771 	 * 2. Next read the pid table -- this is always set _before_
    772 	 *    the mask increases, so if we see a new table and stale
    773 	 *    mask, the mask is still valid for the table.
    774 	 */
    775 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
    776 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
    777 	slot = atomic_load_consume(&pt->pt_slot);
    778 	if (__predict_false(!PT_IS_LWP(slot))) {
    779 		return NULL;
    780 	}
    781 
    782 	/*
    783 	 * Lock the LWP we found to get it stable.  If it's embryonic or
    784 	 * reaped (LSIDL) then none of the other fields can safely be
    785 	 * checked.
    786 	 */
    787 	l = PT_GET_LWP(slot);
    788 	lwp_lock(l);
    789 	if (__predict_false(l->l_stat == LSIDL)) {
    790 		lwp_unlock(l);
    791 		return NULL;
    792 	}
    793 
    794 	/*
    795 	 * l_proc and l_lid are now known stable because the LWP is not
    796 	 * LSIDL, so check those fields too to make sure we found the
    797 	 * right thing.
    798 	 */
    799 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
    800 		lwp_unlock(l);
    801 		return NULL;
    802 	}
    803 
    804 	/* Everything checks out, return it locked. */
    805 	return l;
    806 }
    807 
    808 /*
    809  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
    810  * on its containing proc.
    811  *
    812  * => Similar to proc_find_lwp(), but does not require you to have
    813  *    the proc a priori.
    814  * => Also returns proc * to caller, with p::p_lock held.
    815  * => Same caveats apply.
    816  */
    817 struct lwp *
    818 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
    819 {
    820 	struct pid_table *pt;
    821 	struct proc *p = NULL;
    822 	struct lwp *l = NULL;
    823 	uintptr_t slot;
    824 
    825 	KASSERT(pp != NULL);
    826 	mutex_enter(&proc_lock);
    827 	pt = &pid_table[pid & pid_tbl_mask];
    828 
    829 	slot = pt->pt_slot;
    830 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    831 		l = PT_GET_LWP(slot);
    832 		p = l->l_proc;
    833 		mutex_enter(p->p_lock);
    834 		if (__predict_false(l->l_stat == LSIDL)) {
    835 			mutex_exit(p->p_lock);
    836 			l = NULL;
    837 			p = NULL;
    838 		}
    839 	}
    840 	mutex_exit(&proc_lock);
    841 
    842 	KASSERT(p == NULL || mutex_owned(p->p_lock));
    843 	*pp = p;
    844 	return l;
    845 }
    846 
    847 /*
    848  * proc_find_raw_pid_table_locked: locate a process by the ID.
    849  *
    850  * => Must be called with proc_lock held.
    851  */
    852 static proc_t *
    853 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
    854 {
    855 	struct pid_table *pt;
    856 	proc_t *p = NULL;
    857 	uintptr_t slot;
    858 
    859 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
    860 	pt = &pid_table[pid & pid_tbl_mask];
    861 
    862 	slot = pt->pt_slot;
    863 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    864 		/*
    865 		 * When looking up processes, require a direct match
    866 		 * on the PID assigned to the proc, not just one of
    867 		 * its LWPs.
    868 		 *
    869 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
    870 		 * valid here.
    871 		 */
    872 		p = PT_GET_LWP(slot)->l_proc;
    873 		if (__predict_false(p->p_pid != pid && !any_lwpid))
    874 			p = NULL;
    875 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    876 		p = PT_GET_PROC(slot);
    877 	}
    878 	return p;
    879 }
    880 
    881 proc_t *
    882 proc_find_raw(pid_t pid)
    883 {
    884 
    885 	return proc_find_raw_pid_table_locked(pid, false);
    886 }
    887 
    888 static proc_t *
    889 proc_find_internal(pid_t pid, bool any_lwpid)
    890 {
    891 	proc_t *p;
    892 
    893 	KASSERT(mutex_owned(&proc_lock));
    894 
    895 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
    896 	if (__predict_false(p == NULL)) {
    897 		return NULL;
    898 	}
    899 
    900 	/*
    901 	 * Only allow live processes to be found by PID.
    902 	 * XXX: p_stat might change, since proc unlocked.
    903 	 */
    904 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    905 		return p;
    906 	}
    907 	return NULL;
    908 }
    909 
    910 proc_t *
    911 proc_find(pid_t pid)
    912 {
    913 	return proc_find_internal(pid, false);
    914 }
    915 
    916 proc_t *
    917 proc_find_lwpid(pid_t pid)
    918 {
    919 	return proc_find_internal(pid, true);
    920 }
    921 
    922 /*
    923  * pgrp_find: locate a process group by the ID.
    924  *
    925  * => Must be called with proc_lock held.
    926  */
    927 struct pgrp *
    928 pgrp_find(pid_t pgid)
    929 {
    930 	struct pgrp *pg;
    931 
    932 	KASSERT(mutex_owned(&proc_lock));
    933 
    934 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    935 
    936 	/*
    937 	 * Cannot look up a process group that only exists because the
    938 	 * session has not died yet (traditional).
    939 	 */
    940 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    941 		return NULL;
    942 	}
    943 	return pg;
    944 }
    945 
    946 static void
    947 expand_pid_table(void)
    948 {
    949 	size_t pt_size, tsz;
    950 	struct pid_table *n_pt, *new_pt;
    951 	uintptr_t slot;
    952 	struct pgrp *pgrp;
    953 	pid_t pid, rpid;
    954 	u_int i;
    955 	uint new_pt_mask;
    956 
    957 	KASSERT(mutex_owned(&proc_lock));
    958 
    959 	/* Unlock the pid_table briefly to allocate memory. */
    960 	pt_size = pid_tbl_mask + 1;
    961 	mutex_exit(&proc_lock);
    962 
    963 	tsz = pt_size * 2 * sizeof(struct pid_table);
    964 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    965 	new_pt_mask = pt_size * 2 - 1;
    966 
    967 	/* XXX For now.  The pratical limit is much lower anyway. */
    968 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    969 
    970 	mutex_enter(&proc_lock);
    971 	if (pt_size != pid_tbl_mask + 1) {
    972 		/* Another process beat us to it... */
    973 		mutex_exit(&proc_lock);
    974 		kmem_free(new_pt, tsz);
    975 		goto out;
    976 	}
    977 
    978 	/*
    979 	 * Copy entries from old table into new one.
    980 	 * If 'pid' is 'odd' we need to place in the upper half,
    981 	 * even pid's to the lower half.
    982 	 * Free items stay in the low half so we don't have to
    983 	 * fixup the reference to them.
    984 	 * We stuff free items on the front of the freelist
    985 	 * because we can't write to unmodified entries.
    986 	 * Processing the table backwards maintains a semblance
    987 	 * of issuing pid numbers that increase with time.
    988 	 */
    989 	i = pt_size - 1;
    990 	n_pt = new_pt + i;
    991 	for (; ; i--, n_pt--) {
    992 		slot = pid_table[i].pt_slot;
    993 		pgrp = pid_table[i].pt_pgrp;
    994 		if (!PT_VALID(slot)) {
    995 			/* Up 'use count' so that link is valid */
    996 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    997 			rpid = 0;
    998 			slot = PT_SET_FREE(pid);
    999 			if (pgrp)
   1000 				pid = pgrp->pg_id;
   1001 		} else {
   1002 			pid = pid_table[i].pt_pid;
   1003 			rpid = pid;
   1004 		}
   1005 
   1006 		/* Save entry in appropriate half of table */
   1007 		n_pt[pid & pt_size].pt_slot = slot;
   1008 		n_pt[pid & pt_size].pt_pgrp = pgrp;
   1009 		n_pt[pid & pt_size].pt_pid = rpid;
   1010 
   1011 		/* Put other piece on start of free list */
   1012 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
   1013 		n_pt[pid & pt_size].pt_slot =
   1014 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
   1015 		n_pt[pid & pt_size].pt_pgrp = 0;
   1016 		n_pt[pid & pt_size].pt_pid = 0;
   1017 
   1018 		next_free_pt = i | (pid & pt_size);
   1019 		if (i == 0)
   1020 			break;
   1021 	}
   1022 
   1023 	/* Save old table size and switch tables */
   1024 	tsz = pt_size * sizeof(struct pid_table);
   1025 	n_pt = pid_table;
   1026 	atomic_store_release(&pid_table, new_pt);
   1027 	KASSERT(new_pt_mask >= pid_tbl_mask);
   1028 	atomic_store_release(&pid_tbl_mask, new_pt_mask);
   1029 
   1030 	/*
   1031 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
   1032 	 * allocated pids we need it to be larger!
   1033 	 */
   1034 	if (pid_tbl_mask > PID_MAX) {
   1035 		pid_max = pid_tbl_mask * 2 + 1;
   1036 		pid_alloc_lim |= pid_alloc_lim << 1;
   1037 	} else
   1038 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
   1039 
   1040 	mutex_exit(&proc_lock);
   1041 
   1042 	/*
   1043 	 * Make sure that unlocked access to the old pid_table is complete
   1044 	 * and then free it.
   1045 	 */
   1046 	pserialize_perform(proc_psz);
   1047 	kmem_free(n_pt, tsz);
   1048 
   1049  out:	/* Return with proc_lock held again. */
   1050 	mutex_enter(&proc_lock);
   1051 }
   1052 
   1053 struct proc *
   1054 proc_alloc(void)
   1055 {
   1056 	struct proc *p;
   1057 
   1058 	p = pool_cache_get(proc_cache, PR_WAITOK);
   1059 	p->p_stat = SIDL;			/* protect against others */
   1060 	proc_initspecific(p);
   1061 	kdtrace_proc_ctor(NULL, p);
   1062 
   1063 	/*
   1064 	 * Allocate a placeholder in the pid_table.  When we create the
   1065 	 * first LWP for this process, it will take ownership of the
   1066 	 * slot.
   1067 	 */
   1068 	if (__predict_false(proc_alloc_pid(p) == -1)) {
   1069 		/* Allocating the PID failed; unwind. */
   1070 		proc_finispecific(p);
   1071 		proc_free_mem(p);
   1072 		p = NULL;
   1073 	}
   1074 	return p;
   1075 }
   1076 
   1077 /*
   1078  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
   1079  * proc_find_raw() can find it by the PID.
   1080  */
   1081 static pid_t __noinline
   1082 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1083 {
   1084 	struct pid_table *pt;
   1085 	pid_t pid;
   1086 	int nxt;
   1087 
   1088 	KASSERT(mutex_owned(&proc_lock));
   1089 
   1090 	for (;;expand_pid_table()) {
   1091 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1092 			/* ensure pids cycle through 2000+ values */
   1093 			continue;
   1094 		}
   1095 		/*
   1096 		 * The first user process *must* be given PID 1.
   1097 		 * it has already been reserved for us.  This
   1098 		 * will be coming in from the proc_alloc() call
   1099 		 * above, and the entry will be usurped later when
   1100 		 * the first user LWP is created.
   1101 		 * XXX this is slightly gross.
   1102 		 */
   1103 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1104 				    p != &proc0)) {
   1105 			KASSERT(PT_IS_PROC(slot));
   1106 			pt = &pid_table[1];
   1107 			pt->pt_slot = slot;
   1108 			return 1;
   1109 		}
   1110 		pt = &pid_table[next_free_pt];
   1111 #ifdef DIAGNOSTIC
   1112 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1113 			panic("proc_alloc: slot busy");
   1114 #endif
   1115 		nxt = PT_NEXT(pt->pt_slot);
   1116 		if (nxt & pid_tbl_mask)
   1117 			break;
   1118 		/* Table full - expand (NB last entry not used....) */
   1119 	}
   1120 
   1121 	/* pid is 'saved use count' + 'size' + entry */
   1122 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1123 	if ((uint)pid > (uint)pid_max)
   1124 		pid &= pid_tbl_mask;
   1125 	next_free_pt = nxt & pid_tbl_mask;
   1126 
   1127 	/* XXX For now.  The pratical limit is much lower anyway. */
   1128 	KASSERT(pid <= FUTEX_TID_MASK);
   1129 
   1130 	/* Grab table slot */
   1131 	pt->pt_slot = slot;
   1132 
   1133 	KASSERT(pt->pt_pid == 0);
   1134 	pt->pt_pid = pid;
   1135 	pid_alloc_cnt++;
   1136 
   1137 	return pid;
   1138 }
   1139 
   1140 pid_t
   1141 proc_alloc_pid(struct proc *p)
   1142 {
   1143 	pid_t pid;
   1144 
   1145 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1146 	KASSERT(p->p_stat == SIDL);
   1147 
   1148 	mutex_enter(&proc_lock);
   1149 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1150 	if (pid != -1)
   1151 		p->p_pid = pid;
   1152 	mutex_exit(&proc_lock);
   1153 
   1154 	return pid;
   1155 }
   1156 
   1157 pid_t
   1158 proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1159 {
   1160 	struct pid_table *pt;
   1161 	pid_t pid;
   1162 
   1163 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1164 	KASSERT(l->l_proc == p);
   1165 	KASSERT(l->l_stat == LSIDL);
   1166 
   1167 	/*
   1168 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
   1169 	 * is globally visible before the LWP becomes visible via the
   1170 	 * pid_table.
   1171 	 */
   1172 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1173 	membar_producer();
   1174 #endif
   1175 
   1176 	/*
   1177 	 * If the slot for p->p_pid currently points to the proc,
   1178 	 * then we should usurp this ID for the LWP.  This happens
   1179 	 * at least once per process (for the first LWP), and can
   1180 	 * happen again if the first LWP for a process exits and
   1181 	 * before the process creates another.
   1182 	 */
   1183 	mutex_enter(&proc_lock);
   1184 	pid = p->p_pid;
   1185 	pt = &pid_table[pid & pid_tbl_mask];
   1186 	KASSERT(pt->pt_pid == pid);
   1187 	if (PT_IS_PROC(pt->pt_slot)) {
   1188 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1189 		l->l_lid = pid;
   1190 		pt->pt_slot = PT_SET_LWP(l);
   1191 	} else {
   1192 		/* Need to allocate a new slot. */
   1193 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1194 		if (pid != -1)
   1195 			l->l_lid = pid;
   1196 	}
   1197 	mutex_exit(&proc_lock);
   1198 
   1199 	return pid;
   1200 }
   1201 
   1202 static void __noinline
   1203 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1204 {
   1205 	struct pid_table *pt;
   1206 
   1207 	KASSERT(mutex_owned(&proc_lock));
   1208 
   1209 	pt = &pid_table[pid & pid_tbl_mask];
   1210 
   1211 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1212 	KASSERT(pt->pt_pid == pid);
   1213 
   1214 	/* save pid use count in slot */
   1215 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1216 	pt->pt_pid = 0;
   1217 
   1218 	if (pt->pt_pgrp == NULL) {
   1219 		/* link last freed entry onto ours */
   1220 		pid &= pid_tbl_mask;
   1221 		pt = &pid_table[last_free_pt];
   1222 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1223 		pt->pt_pid = 0;
   1224 		last_free_pt = pid;
   1225 		pid_alloc_cnt--;
   1226 	}
   1227 }
   1228 
   1229 /*
   1230  * Free a process id - called from proc_free (in kern_exit.c)
   1231  *
   1232  * Called with the proc_lock held.
   1233  */
   1234 void
   1235 proc_free_pid(pid_t pid)
   1236 {
   1237 
   1238 	KASSERT(mutex_owned(&proc_lock));
   1239 	proc_free_pid_internal(pid, PT_F_PROC);
   1240 }
   1241 
   1242 /*
   1243  * Free a process id used by an LWP.  If this was the process's
   1244  * first LWP, we convert the slot to point to the process; the
   1245  * entry will get cleaned up later when the process finishes exiting.
   1246  *
   1247  * If not, then it's the same as proc_free_pid().
   1248  */
   1249 void
   1250 proc_free_lwpid(struct proc *p, pid_t pid)
   1251 {
   1252 
   1253 	KASSERT(mutex_owned(&proc_lock));
   1254 
   1255 	if (__predict_true(p->p_pid == pid)) {
   1256 		struct pid_table *pt;
   1257 
   1258 		pt = &pid_table[pid & pid_tbl_mask];
   1259 
   1260 		KASSERT(pt->pt_pid == pid);
   1261 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1262 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1263 
   1264 		pt->pt_slot = PT_SET_PROC(p);
   1265 		return;
   1266 	}
   1267 	proc_free_pid_internal(pid, PT_F_LWP);
   1268 }
   1269 
   1270 void
   1271 proc_free_mem(struct proc *p)
   1272 {
   1273 
   1274 	kdtrace_proc_dtor(NULL, p);
   1275 	pool_cache_put(proc_cache, p);
   1276 }
   1277 
   1278 /*
   1279  * proc_enterpgrp: move p to a new or existing process group (and session).
   1280  *
   1281  * If we are creating a new pgrp, the pgid should equal
   1282  * the calling process' pid.
   1283  * If is only valid to enter a process group that is in the session
   1284  * of the process.
   1285  * Also mksess should only be set if we are creating a process group
   1286  *
   1287  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1288  */
   1289 int
   1290 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1291 {
   1292 	struct pgrp *new_pgrp, *pgrp;
   1293 	struct session *sess;
   1294 	struct proc *p;
   1295 	int rval;
   1296 	pid_t pg_id = NO_PGID;
   1297 
   1298 	/* Allocate data areas we might need before doing any validity checks */
   1299 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1300 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1301 
   1302 	mutex_enter(&proc_lock);
   1303 	rval = EPERM;	/* most common error (to save typing) */
   1304 
   1305 	/* Check pgrp exists or can be created */
   1306 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1307 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1308 		goto done;
   1309 
   1310 	/* Can only set another process under restricted circumstances. */
   1311 	if (pid != curp->p_pid) {
   1312 		/* Must exist and be one of our children... */
   1313 		p = proc_find_internal(pid, false);
   1314 		if (p == NULL || !p_inferior(p, curp)) {
   1315 			rval = ESRCH;
   1316 			goto done;
   1317 		}
   1318 		/* ... in the same session... */
   1319 		if (sess != NULL || p->p_session != curp->p_session)
   1320 			goto done;
   1321 		/* ... existing pgid must be in same session ... */
   1322 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1323 			goto done;
   1324 		/* ... and not done an exec. */
   1325 		if (p->p_flag & PK_EXEC) {
   1326 			rval = EACCES;
   1327 			goto done;
   1328 		}
   1329 	} else {
   1330 		/* ... setsid() cannot re-enter a pgrp */
   1331 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1332 		    pgrp_find(curp->p_pid)))
   1333 			goto done;
   1334 		p = curp;
   1335 	}
   1336 
   1337 	/* Changing the process group/session of a session
   1338 	   leader is definitely off limits. */
   1339 	if (SESS_LEADER(p)) {
   1340 		if (sess == NULL && p->p_pgrp == pgrp)
   1341 			/* unless it's a definite noop */
   1342 			rval = 0;
   1343 		goto done;
   1344 	}
   1345 
   1346 	/* Can only create a process group with id of process */
   1347 	if (pgrp == NULL && pgid != pid)
   1348 		goto done;
   1349 
   1350 	/* Can only create a session if creating pgrp */
   1351 	if (sess != NULL && pgrp != NULL)
   1352 		goto done;
   1353 
   1354 	/* Check we allocated memory for a pgrp... */
   1355 	if (pgrp == NULL && new_pgrp == NULL)
   1356 		goto done;
   1357 
   1358 	/* Don't attach to 'zombie' pgrp */
   1359 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1360 		goto done;
   1361 
   1362 	/* Expect to succeed now */
   1363 	rval = 0;
   1364 
   1365 	if (pgrp == p->p_pgrp)
   1366 		/* nothing to do */
   1367 		goto done;
   1368 
   1369 	/* Ok all setup, link up required structures */
   1370 
   1371 	if (pgrp == NULL) {
   1372 		pgrp = new_pgrp;
   1373 		new_pgrp = NULL;
   1374 		if (sess != NULL) {
   1375 			sess->s_sid = p->p_pid;
   1376 			sess->s_leader = p;
   1377 			sess->s_count = 1;
   1378 			sess->s_ttyvp = NULL;
   1379 			sess->s_ttyp = NULL;
   1380 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1381 			memcpy(sess->s_login, p->p_session->s_login,
   1382 			    sizeof(sess->s_login));
   1383 			p->p_lflag &= ~PL_CONTROLT;
   1384 		} else {
   1385 			sess = p->p_pgrp->pg_session;
   1386 			proc_sesshold(sess);
   1387 		}
   1388 		pgrp->pg_session = sess;
   1389 		sess = NULL;
   1390 
   1391 		pgrp->pg_id = pgid;
   1392 		LIST_INIT(&pgrp->pg_members);
   1393 #ifdef DIAGNOSTIC
   1394 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1395 			panic("enterpgrp: pgrp table slot in use");
   1396 		if (__predict_false(mksess && p != curp))
   1397 			panic("enterpgrp: mksession and p != curproc");
   1398 #endif
   1399 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1400 		pgrp->pg_jobc = 0;
   1401 	}
   1402 
   1403 	/*
   1404 	 * Adjust eligibility of affected pgrps to participate in job control.
   1405 	 * Increment eligibility counts before decrementing, otherwise we
   1406 	 * could reach 0 spuriously during the first call.
   1407 	 */
   1408 	fixjobc(p, pgrp, 1);
   1409 	fixjobc(p, p->p_pgrp, 0);
   1410 
   1411 	/* Interlock with ttread(). */
   1412 	mutex_spin_enter(&tty_lock);
   1413 
   1414 	/* Move process to requested group. */
   1415 	LIST_REMOVE(p, p_pglist);
   1416 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1417 		/* defer delete until we've dumped the lock */
   1418 		pg_id = p->p_pgrp->pg_id;
   1419 	p->p_pgrp = pgrp;
   1420 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1421 
   1422 	/* Done with the swap; we can release the tty mutex. */
   1423 	mutex_spin_exit(&tty_lock);
   1424 
   1425     done:
   1426 	if (pg_id != NO_PGID) {
   1427 		/* Releases proc_lock. */
   1428 		pg_delete(pg_id);
   1429 	} else {
   1430 		mutex_exit(&proc_lock);
   1431 	}
   1432 	if (sess != NULL)
   1433 		kmem_free(sess, sizeof(*sess));
   1434 	if (new_pgrp != NULL)
   1435 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1436 #ifdef DEBUG_PGRP
   1437 	if (__predict_false(rval))
   1438 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1439 			pid, pgid, mksess, curp->p_pid, rval);
   1440 #endif
   1441 	return rval;
   1442 }
   1443 
   1444 /*
   1445  * proc_leavepgrp: remove a process from its process group.
   1446  *  => must be called with the proc_lock held, which will be released;
   1447  */
   1448 void
   1449 proc_leavepgrp(struct proc *p)
   1450 {
   1451 	struct pgrp *pgrp;
   1452 
   1453 	KASSERT(mutex_owned(&proc_lock));
   1454 
   1455 	/* Interlock with ttread() */
   1456 	mutex_spin_enter(&tty_lock);
   1457 	pgrp = p->p_pgrp;
   1458 	LIST_REMOVE(p, p_pglist);
   1459 	p->p_pgrp = NULL;
   1460 	mutex_spin_exit(&tty_lock);
   1461 
   1462 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1463 		/* Releases proc_lock. */
   1464 		pg_delete(pgrp->pg_id);
   1465 	} else {
   1466 		mutex_exit(&proc_lock);
   1467 	}
   1468 }
   1469 
   1470 /*
   1471  * pg_remove: remove a process group from the table.
   1472  *  => must be called with the proc_lock held;
   1473  *  => returns process group to free;
   1474  */
   1475 static struct pgrp *
   1476 pg_remove(pid_t pg_id)
   1477 {
   1478 	struct pgrp *pgrp;
   1479 	struct pid_table *pt;
   1480 
   1481 	KASSERT(mutex_owned(&proc_lock));
   1482 
   1483 	pt = &pid_table[pg_id & pid_tbl_mask];
   1484 	pgrp = pt->pt_pgrp;
   1485 
   1486 	KASSERT(pgrp != NULL);
   1487 	KASSERT(pgrp->pg_id == pg_id);
   1488 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1489 
   1490 	pt->pt_pgrp = NULL;
   1491 
   1492 	if (!PT_VALID(pt->pt_slot)) {
   1493 		/* Orphaned pgrp, put slot onto free list. */
   1494 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1495 		pg_id &= pid_tbl_mask;
   1496 		pt = &pid_table[last_free_pt];
   1497 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1498 		KASSERT(pt->pt_pid == 0);
   1499 		last_free_pt = pg_id;
   1500 		pid_alloc_cnt--;
   1501 	}
   1502 	return pgrp;
   1503 }
   1504 
   1505 /*
   1506  * pg_delete: delete and free a process group.
   1507  *  => must be called with the proc_lock held, which will be released.
   1508  */
   1509 static void
   1510 pg_delete(pid_t pg_id)
   1511 {
   1512 	struct pgrp *pg;
   1513 	struct tty *ttyp;
   1514 	struct session *ss;
   1515 
   1516 	KASSERT(mutex_owned(&proc_lock));
   1517 
   1518 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1519 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1520 		mutex_exit(&proc_lock);
   1521 		return;
   1522 	}
   1523 
   1524 	ss = pg->pg_session;
   1525 
   1526 	/* Remove reference (if any) from tty to this process group */
   1527 	mutex_spin_enter(&tty_lock);
   1528 	ttyp = ss->s_ttyp;
   1529 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1530 		ttyp->t_pgrp = NULL;
   1531 		KASSERT(ttyp->t_session == ss);
   1532 	}
   1533 	mutex_spin_exit(&tty_lock);
   1534 
   1535 	/*
   1536 	 * The leading process group in a session is freed by proc_sessrele(),
   1537 	 * if last reference.  It will also release the locks.
   1538 	 */
   1539 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1540 	proc_sessrele(ss);
   1541 
   1542 	if (pg != NULL) {
   1543 		/* Free it, if was not done above. */
   1544 		kmem_free(pg, sizeof(struct pgrp));
   1545 	}
   1546 }
   1547 
   1548 /*
   1549  * Adjust pgrp jobc counters when specified process changes process group.
   1550  * We count the number of processes in each process group that "qualify"
   1551  * the group for terminal job control (those with a parent in a different
   1552  * process group of the same session).  If that count reaches zero, the
   1553  * process group becomes orphaned.  Check both the specified process'
   1554  * process group and that of its children.
   1555  * entering == 0 => p is leaving specified group.
   1556  * entering == 1 => p is entering specified group.
   1557  *
   1558  * Call with proc_lock held.
   1559  */
   1560 void
   1561 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1562 {
   1563 	struct pgrp *hispgrp;
   1564 	struct session *mysession = pgrp->pg_session;
   1565 	struct proc *child;
   1566 
   1567 	KASSERT(mutex_owned(&proc_lock));
   1568 
   1569 	/*
   1570 	 * Check p's parent to see whether p qualifies its own process
   1571 	 * group; if so, adjust count for p's process group.
   1572 	 */
   1573 	hispgrp = p->p_pptr->p_pgrp;
   1574 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1575 		if (entering) {
   1576 			pgrp->pg_jobc++;
   1577 			p->p_lflag &= ~PL_ORPHANPG;
   1578 		} else {
   1579 			/* KASSERT(pgrp->pg_jobc > 0); */
   1580 			if (--pgrp->pg_jobc == 0)
   1581 				orphanpg(pgrp);
   1582 		}
   1583 	}
   1584 
   1585 	/*
   1586 	 * Check this process' children to see whether they qualify
   1587 	 * their process groups; if so, adjust counts for children's
   1588 	 * process groups.
   1589 	 */
   1590 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1591 		hispgrp = child->p_pgrp;
   1592 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1593 		    !P_ZOMBIE(child)) {
   1594 			if (entering) {
   1595 				child->p_lflag &= ~PL_ORPHANPG;
   1596 				hispgrp->pg_jobc++;
   1597 			} else {
   1598 				KASSERT(hispgrp->pg_jobc > 0);
   1599 				if (--hispgrp->pg_jobc == 0)
   1600 					orphanpg(hispgrp);
   1601 			}
   1602 		}
   1603 	}
   1604 }
   1605 
   1606 /*
   1607  * A process group has become orphaned;
   1608  * if there are any stopped processes in the group,
   1609  * hang-up all process in that group.
   1610  *
   1611  * Call with proc_lock held.
   1612  */
   1613 static void
   1614 orphanpg(struct pgrp *pg)
   1615 {
   1616 	struct proc *p;
   1617 
   1618 	KASSERT(mutex_owned(&proc_lock));
   1619 
   1620 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1621 		if (p->p_stat == SSTOP) {
   1622 			p->p_lflag |= PL_ORPHANPG;
   1623 			psignal(p, SIGHUP);
   1624 			psignal(p, SIGCONT);
   1625 		}
   1626 	}
   1627 }
   1628 
   1629 #ifdef DDB
   1630 #include <ddb/db_output.h>
   1631 void pidtbl_dump(void);
   1632 void
   1633 pidtbl_dump(void)
   1634 {
   1635 	struct pid_table *pt;
   1636 	struct proc *p;
   1637 	struct pgrp *pgrp;
   1638 	uintptr_t slot;
   1639 	int id;
   1640 
   1641 	db_printf("pid table %p size %x, next %x, last %x\n",
   1642 		pid_table, pid_tbl_mask+1,
   1643 		next_free_pt, last_free_pt);
   1644 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1645 		slot = pt->pt_slot;
   1646 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1647 			continue;
   1648 		if (PT_IS_LWP(slot)) {
   1649 			p = PT_GET_LWP(slot)->l_proc;
   1650 		} else if (PT_IS_PROC(slot)) {
   1651 			p = PT_GET_PROC(slot);
   1652 		} else {
   1653 			p = NULL;
   1654 		}
   1655 		db_printf("  id %x: ", id);
   1656 		if (p != NULL)
   1657 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1658 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1659 		else
   1660 			db_printf("next %x use %x\n",
   1661 				PT_NEXT(slot) & pid_tbl_mask,
   1662 				PT_NEXT(slot) & ~pid_tbl_mask);
   1663 		if ((pgrp = pt->pt_pgrp)) {
   1664 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1665 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1666 			    pgrp->pg_session->s_count,
   1667 			    pgrp->pg_session->s_login);
   1668 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1669 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1670 			    LIST_FIRST(&pgrp->pg_members));
   1671 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1672 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1673 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1674 			}
   1675 		}
   1676 	}
   1677 }
   1678 #endif /* DDB */
   1679 
   1680 #ifdef KSTACK_CHECK_MAGIC
   1681 
   1682 #define	KSTACK_MAGIC	0xdeadbeaf
   1683 
   1684 /* XXX should be per process basis? */
   1685 static int	kstackleftmin = KSTACK_SIZE;
   1686 static int	kstackleftthres = KSTACK_SIZE / 8;
   1687 
   1688 void
   1689 kstack_setup_magic(const struct lwp *l)
   1690 {
   1691 	uint32_t *ip;
   1692 	uint32_t const *end;
   1693 
   1694 	KASSERT(l != NULL);
   1695 	KASSERT(l != &lwp0);
   1696 
   1697 	/*
   1698 	 * fill all the stack with magic number
   1699 	 * so that later modification on it can be detected.
   1700 	 */
   1701 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1702 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1703 	for (; ip < end; ip++) {
   1704 		*ip = KSTACK_MAGIC;
   1705 	}
   1706 }
   1707 
   1708 void
   1709 kstack_check_magic(const struct lwp *l)
   1710 {
   1711 	uint32_t const *ip, *end;
   1712 	int stackleft;
   1713 
   1714 	KASSERT(l != NULL);
   1715 
   1716 	/* don't check proc0 */ /*XXX*/
   1717 	if (l == &lwp0)
   1718 		return;
   1719 
   1720 #ifdef __MACHINE_STACK_GROWS_UP
   1721 	/* stack grows upwards (eg. hppa) */
   1722 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1723 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1724 	for (ip--; ip >= end; ip--)
   1725 		if (*ip != KSTACK_MAGIC)
   1726 			break;
   1727 
   1728 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1729 #else /* __MACHINE_STACK_GROWS_UP */
   1730 	/* stack grows downwards (eg. i386) */
   1731 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1732 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1733 	for (; ip < end; ip++)
   1734 		if (*ip != KSTACK_MAGIC)
   1735 			break;
   1736 
   1737 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1738 #endif /* __MACHINE_STACK_GROWS_UP */
   1739 
   1740 	if (kstackleftmin > stackleft) {
   1741 		kstackleftmin = stackleft;
   1742 		if (stackleft < kstackleftthres)
   1743 			printf("warning: kernel stack left %d bytes"
   1744 			    "(pid %u:lid %u)\n", stackleft,
   1745 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1746 	}
   1747 
   1748 	if (stackleft <= 0) {
   1749 		panic("magic on the top of kernel stack changed for "
   1750 		    "pid %u, lid %u: maybe kernel stack overflow",
   1751 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1752 	}
   1753 }
   1754 #endif /* KSTACK_CHECK_MAGIC */
   1755 
   1756 int
   1757 proclist_foreach_call(struct proclist *list,
   1758     int (*callback)(struct proc *, void *arg), void *arg)
   1759 {
   1760 	struct proc marker;
   1761 	struct proc *p;
   1762 	int ret = 0;
   1763 
   1764 	marker.p_flag = PK_MARKER;
   1765 	mutex_enter(&proc_lock);
   1766 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1767 		if (p->p_flag & PK_MARKER) {
   1768 			p = LIST_NEXT(p, p_list);
   1769 			continue;
   1770 		}
   1771 		LIST_INSERT_AFTER(p, &marker, p_list);
   1772 		ret = (*callback)(p, arg);
   1773 		KASSERT(mutex_owned(&proc_lock));
   1774 		p = LIST_NEXT(&marker, p_list);
   1775 		LIST_REMOVE(&marker, p_list);
   1776 	}
   1777 	mutex_exit(&proc_lock);
   1778 
   1779 	return ret;
   1780 }
   1781 
   1782 int
   1783 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1784 {
   1785 
   1786 	/* XXXCDC: how should locking work here? */
   1787 
   1788 	/* curproc exception is for coredump. */
   1789 
   1790 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1791 	    (p->p_vmspace->vm_refcnt < 1)) {
   1792 		return EFAULT;
   1793 	}
   1794 
   1795 	uvmspace_addref(p->p_vmspace);
   1796 	*vm = p->p_vmspace;
   1797 
   1798 	return 0;
   1799 }
   1800 
   1801 /*
   1802  * Acquire a write lock on the process credential.
   1803  */
   1804 void
   1805 proc_crmod_enter(void)
   1806 {
   1807 	struct lwp *l = curlwp;
   1808 	struct proc *p = l->l_proc;
   1809 	kauth_cred_t oc;
   1810 
   1811 	/* Reset what needs to be reset in plimit. */
   1812 	if (p->p_limit->pl_corename != defcorename) {
   1813 		lim_setcorename(p, defcorename, 0);
   1814 	}
   1815 
   1816 	mutex_enter(p->p_lock);
   1817 
   1818 	/* Ensure the LWP cached credentials are up to date. */
   1819 	if ((oc = l->l_cred) != p->p_cred) {
   1820 		kauth_cred_hold(p->p_cred);
   1821 		l->l_cred = p->p_cred;
   1822 		kauth_cred_free(oc);
   1823 	}
   1824 }
   1825 
   1826 /*
   1827  * Set in a new process credential, and drop the write lock.  The credential
   1828  * must have a reference already.  Optionally, free a no-longer required
   1829  * credential.  The scheduler also needs to inspect p_cred, so we also
   1830  * briefly acquire the sched state mutex.
   1831  */
   1832 void
   1833 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1834 {
   1835 	struct lwp *l = curlwp, *l2;
   1836 	struct proc *p = l->l_proc;
   1837 	kauth_cred_t oc;
   1838 
   1839 	KASSERT(mutex_owned(p->p_lock));
   1840 
   1841 	/* Is there a new credential to set in? */
   1842 	if (scred != NULL) {
   1843 		p->p_cred = scred;
   1844 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1845 			if (l2 != l)
   1846 				l2->l_prflag |= LPR_CRMOD;
   1847 		}
   1848 
   1849 		/* Ensure the LWP cached credentials are up to date. */
   1850 		if ((oc = l->l_cred) != scred) {
   1851 			kauth_cred_hold(scred);
   1852 			l->l_cred = scred;
   1853 		}
   1854 	} else
   1855 		oc = NULL;	/* XXXgcc */
   1856 
   1857 	if (sugid) {
   1858 		/*
   1859 		 * Mark process as having changed credentials, stops
   1860 		 * tracing etc.
   1861 		 */
   1862 		p->p_flag |= PK_SUGID;
   1863 	}
   1864 
   1865 	mutex_exit(p->p_lock);
   1866 
   1867 	/* If there is a credential to be released, free it now. */
   1868 	if (fcred != NULL) {
   1869 		KASSERT(scred != NULL);
   1870 		kauth_cred_free(fcred);
   1871 		if (oc != scred)
   1872 			kauth_cred_free(oc);
   1873 	}
   1874 }
   1875 
   1876 /*
   1877  * proc_specific_key_create --
   1878  *	Create a key for subsystem proc-specific data.
   1879  */
   1880 int
   1881 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1882 {
   1883 
   1884 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1885 }
   1886 
   1887 /*
   1888  * proc_specific_key_delete --
   1889  *	Delete a key for subsystem proc-specific data.
   1890  */
   1891 void
   1892 proc_specific_key_delete(specificdata_key_t key)
   1893 {
   1894 
   1895 	specificdata_key_delete(proc_specificdata_domain, key);
   1896 }
   1897 
   1898 /*
   1899  * proc_initspecific --
   1900  *	Initialize a proc's specificdata container.
   1901  */
   1902 void
   1903 proc_initspecific(struct proc *p)
   1904 {
   1905 	int error __diagused;
   1906 
   1907 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1908 	KASSERT(error == 0);
   1909 }
   1910 
   1911 /*
   1912  * proc_finispecific --
   1913  *	Finalize a proc's specificdata container.
   1914  */
   1915 void
   1916 proc_finispecific(struct proc *p)
   1917 {
   1918 
   1919 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1920 }
   1921 
   1922 /*
   1923  * proc_getspecific --
   1924  *	Return proc-specific data corresponding to the specified key.
   1925  */
   1926 void *
   1927 proc_getspecific(struct proc *p, specificdata_key_t key)
   1928 {
   1929 
   1930 	return (specificdata_getspecific(proc_specificdata_domain,
   1931 					 &p->p_specdataref, key));
   1932 }
   1933 
   1934 /*
   1935  * proc_setspecific --
   1936  *	Set proc-specific data corresponding to the specified key.
   1937  */
   1938 void
   1939 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1940 {
   1941 
   1942 	specificdata_setspecific(proc_specificdata_domain,
   1943 				 &p->p_specdataref, key, data);
   1944 }
   1945 
   1946 int
   1947 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1948 {
   1949 	int r = 0;
   1950 
   1951 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1952 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1953 		/*
   1954 		 * suid proc of ours or proc not ours
   1955 		 */
   1956 		r = EPERM;
   1957 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1958 		/*
   1959 		 * sgid proc has sgid back to us temporarily
   1960 		 */
   1961 		r = EPERM;
   1962 	} else {
   1963 		/*
   1964 		 * our rgid must be in target's group list (ie,
   1965 		 * sub-processes started by a sgid process)
   1966 		 */
   1967 		int ismember = 0;
   1968 
   1969 		if (kauth_cred_ismember_gid(cred,
   1970 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1971 		    !ismember)
   1972 			r = EPERM;
   1973 	}
   1974 
   1975 	return (r);
   1976 }
   1977 
   1978 /*
   1979  * sysctl stuff
   1980  */
   1981 
   1982 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1983 
   1984 static const u_int sysctl_flagmap[] = {
   1985 	PK_ADVLOCK, P_ADVLOCK,
   1986 	PK_EXEC, P_EXEC,
   1987 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1988 	PK_32, P_32,
   1989 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1990 	PK_SUGID, P_SUGID,
   1991 	0
   1992 };
   1993 
   1994 static const u_int sysctl_sflagmap[] = {
   1995 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1996 	PS_WEXIT, P_WEXIT,
   1997 	PS_STOPFORK, P_STOPFORK,
   1998 	PS_STOPEXEC, P_STOPEXEC,
   1999 	PS_STOPEXIT, P_STOPEXIT,
   2000 	0
   2001 };
   2002 
   2003 static const u_int sysctl_slflagmap[] = {
   2004 	PSL_TRACED, P_TRACED,
   2005 	PSL_CHTRACED, P_CHTRACED,
   2006 	PSL_SYSCALL, P_SYSCALL,
   2007 	0
   2008 };
   2009 
   2010 static const u_int sysctl_lflagmap[] = {
   2011 	PL_CONTROLT, P_CONTROLT,
   2012 	PL_PPWAIT, P_PPWAIT,
   2013 	0
   2014 };
   2015 
   2016 static const u_int sysctl_stflagmap[] = {
   2017 	PST_PROFIL, P_PROFIL,
   2018 	0
   2019 
   2020 };
   2021 
   2022 /* used by kern_lwp also */
   2023 const u_int sysctl_lwpflagmap[] = {
   2024 	LW_SINTR, L_SINTR,
   2025 	LW_SYSTEM, L_SYSTEM,
   2026 	0
   2027 };
   2028 
   2029 /*
   2030  * Find the most ``active'' lwp of a process and return it for ps display
   2031  * purposes
   2032  */
   2033 static struct lwp *
   2034 proc_active_lwp(struct proc *p)
   2035 {
   2036 	static const int ostat[] = {
   2037 		0,
   2038 		2,	/* LSIDL */
   2039 		6,	/* LSRUN */
   2040 		5,	/* LSSLEEP */
   2041 		4,	/* LSSTOP */
   2042 		0,	/* LSZOMB */
   2043 		1,	/* LSDEAD */
   2044 		7,	/* LSONPROC */
   2045 		3	/* LSSUSPENDED */
   2046 	};
   2047 
   2048 	struct lwp *l, *lp = NULL;
   2049 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2050 		KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
   2051 		if (lp == NULL ||
   2052 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   2053 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   2054 		    l->l_cpticks > lp->l_cpticks)) {
   2055 			lp = l;
   2056 			continue;
   2057 		}
   2058 	}
   2059 	return lp;
   2060 }
   2061 
   2062 static int
   2063 sysctl_doeproc(SYSCTLFN_ARGS)
   2064 {
   2065 	union {
   2066 		struct kinfo_proc kproc;
   2067 		struct kinfo_proc2 kproc2;
   2068 	} *kbuf;
   2069 	struct proc *p, *next, *marker;
   2070 	char *where, *dp;
   2071 	int type, op, arg, error;
   2072 	u_int elem_size, kelem_size, elem_count;
   2073 	size_t buflen, needed;
   2074 	bool match, zombie, mmmbrains;
   2075 	const bool allowaddr = get_expose_address(curproc);
   2076 
   2077 	if (namelen == 1 && name[0] == CTL_QUERY)
   2078 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2079 
   2080 	dp = where = oldp;
   2081 	buflen = where != NULL ? *oldlenp : 0;
   2082 	error = 0;
   2083 	needed = 0;
   2084 	type = rnode->sysctl_num;
   2085 
   2086 	if (type == KERN_PROC) {
   2087 		if (namelen == 0)
   2088 			return EINVAL;
   2089 		switch (op = name[0]) {
   2090 		case KERN_PROC_ALL:
   2091 			if (namelen != 1)
   2092 				return EINVAL;
   2093 			arg = 0;
   2094 			break;
   2095 		default:
   2096 			if (namelen != 2)
   2097 				return EINVAL;
   2098 			arg = name[1];
   2099 			break;
   2100 		}
   2101 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2102 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2103 	} else {
   2104 		if (namelen != 4)
   2105 			return EINVAL;
   2106 		op = name[0];
   2107 		arg = name[1];
   2108 		elem_size = name[2];
   2109 		elem_count = name[3];
   2110 		kelem_size = sizeof(kbuf->kproc2);
   2111 	}
   2112 
   2113 	sysctl_unlock();
   2114 
   2115 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2116 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2117 	marker->p_flag = PK_MARKER;
   2118 
   2119 	mutex_enter(&proc_lock);
   2120 	/*
   2121 	 * Start with zombies to prevent reporting processes twice, in case they
   2122 	 * are dying and being moved from the list of alive processes to zombies.
   2123 	 */
   2124 	mmmbrains = true;
   2125 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2126 		if (p == NULL) {
   2127 			if (mmmbrains) {
   2128 				p = LIST_FIRST(&allproc);
   2129 				mmmbrains = false;
   2130 			}
   2131 			if (p == NULL)
   2132 				break;
   2133 		}
   2134 		next = LIST_NEXT(p, p_list);
   2135 		if ((p->p_flag & PK_MARKER) != 0)
   2136 			continue;
   2137 
   2138 		/*
   2139 		 * Skip embryonic processes.
   2140 		 */
   2141 		if (p->p_stat == SIDL)
   2142 			continue;
   2143 
   2144 		mutex_enter(p->p_lock);
   2145 		error = kauth_authorize_process(l->l_cred,
   2146 		    KAUTH_PROCESS_CANSEE, p,
   2147 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2148 		if (error != 0) {
   2149 			mutex_exit(p->p_lock);
   2150 			continue;
   2151 		}
   2152 
   2153 		/*
   2154 		 * Hande all the operations in one switch on the cost of
   2155 		 * algorithm complexity is on purpose. The win splitting this
   2156 		 * function into several similar copies makes maintenance
   2157 		 * burden, code grow and boost is negligible in practical
   2158 		 * systems.
   2159 		 */
   2160 		switch (op) {
   2161 		case KERN_PROC_PID:
   2162 			match = (p->p_pid == (pid_t)arg);
   2163 			break;
   2164 
   2165 		case KERN_PROC_PGRP:
   2166 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2167 			break;
   2168 
   2169 		case KERN_PROC_SESSION:
   2170 			match = (p->p_session->s_sid == (pid_t)arg);
   2171 			break;
   2172 
   2173 		case KERN_PROC_TTY:
   2174 			match = true;
   2175 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2176 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2177 				    p->p_session->s_ttyp == NULL ||
   2178 				    p->p_session->s_ttyvp != NULL) {
   2179 				    	match = false;
   2180 				}
   2181 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2182 			    p->p_session->s_ttyp == NULL) {
   2183 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2184 					match = false;
   2185 				}
   2186 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2187 				match = false;
   2188 			}
   2189 			break;
   2190 
   2191 		case KERN_PROC_UID:
   2192 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2193 			break;
   2194 
   2195 		case KERN_PROC_RUID:
   2196 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2197 			break;
   2198 
   2199 		case KERN_PROC_GID:
   2200 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2201 			break;
   2202 
   2203 		case KERN_PROC_RGID:
   2204 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2205 			break;
   2206 
   2207 		case KERN_PROC_ALL:
   2208 			match = true;
   2209 			/* allow everything */
   2210 			break;
   2211 
   2212 		default:
   2213 			error = EINVAL;
   2214 			mutex_exit(p->p_lock);
   2215 			goto cleanup;
   2216 		}
   2217 		if (!match) {
   2218 			mutex_exit(p->p_lock);
   2219 			continue;
   2220 		}
   2221 
   2222 		/*
   2223 		 * Grab a hold on the process.
   2224 		 */
   2225 		if (mmmbrains) {
   2226 			zombie = true;
   2227 		} else {
   2228 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2229 		}
   2230 		if (zombie) {
   2231 			LIST_INSERT_AFTER(p, marker, p_list);
   2232 		}
   2233 
   2234 		if (buflen >= elem_size &&
   2235 		    (type == KERN_PROC || elem_count > 0)) {
   2236 			ruspace(p);	/* Update process vm resource use */
   2237 
   2238 			if (type == KERN_PROC) {
   2239 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2240 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2241 				    allowaddr);
   2242 			} else {
   2243 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2244 				    allowaddr);
   2245 				elem_count--;
   2246 			}
   2247 			mutex_exit(p->p_lock);
   2248 			mutex_exit(&proc_lock);
   2249 			/*
   2250 			 * Copy out elem_size, but not larger than kelem_size
   2251 			 */
   2252 			error = sysctl_copyout(l, kbuf, dp,
   2253 			    uimin(kelem_size, elem_size));
   2254 			mutex_enter(&proc_lock);
   2255 			if (error) {
   2256 				goto bah;
   2257 			}
   2258 			dp += elem_size;
   2259 			buflen -= elem_size;
   2260 		} else {
   2261 			mutex_exit(p->p_lock);
   2262 		}
   2263 		needed += elem_size;
   2264 
   2265 		/*
   2266 		 * Release reference to process.
   2267 		 */
   2268 	 	if (zombie) {
   2269 			next = LIST_NEXT(marker, p_list);
   2270  			LIST_REMOVE(marker, p_list);
   2271 		} else {
   2272 			rw_exit(&p->p_reflock);
   2273 			next = LIST_NEXT(p, p_list);
   2274 		}
   2275 
   2276 		/*
   2277 		 * Short-circuit break quickly!
   2278 		 */
   2279 		if (op == KERN_PROC_PID)
   2280                 	break;
   2281 	}
   2282 	mutex_exit(&proc_lock);
   2283 
   2284 	if (where != NULL) {
   2285 		*oldlenp = dp - where;
   2286 		if (needed > *oldlenp) {
   2287 			error = ENOMEM;
   2288 			goto out;
   2289 		}
   2290 	} else {
   2291 		needed += KERN_PROCSLOP;
   2292 		*oldlenp = needed;
   2293 	}
   2294 	kmem_free(kbuf, sizeof(*kbuf));
   2295 	kmem_free(marker, sizeof(*marker));
   2296 	sysctl_relock();
   2297 	return 0;
   2298  bah:
   2299  	if (zombie)
   2300  		LIST_REMOVE(marker, p_list);
   2301 	else
   2302 		rw_exit(&p->p_reflock);
   2303  cleanup:
   2304 	mutex_exit(&proc_lock);
   2305  out:
   2306 	kmem_free(kbuf, sizeof(*kbuf));
   2307 	kmem_free(marker, sizeof(*marker));
   2308 	sysctl_relock();
   2309 	return error;
   2310 }
   2311 
   2312 int
   2313 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2314 {
   2315 #if !defined(_RUMPKERNEL)
   2316 	int retval;
   2317 
   2318 	if (p->p_flag & PK_32) {
   2319 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2320 		    enosys(), retval);
   2321 		return retval;
   2322 	}
   2323 #endif /* !defined(_RUMPKERNEL) */
   2324 
   2325 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2326 }
   2327 
   2328 static int
   2329 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2330 {
   2331 	void **cookie = cookie_;
   2332 	struct lwp *l = cookie[0];
   2333 	char *dst = cookie[1];
   2334 
   2335 	return sysctl_copyout(l, src, dst + off, len);
   2336 }
   2337 
   2338 /*
   2339  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2340  */
   2341 static int
   2342 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2343 {
   2344 	struct ps_strings pss;
   2345 	struct proc *p;
   2346 	pid_t pid;
   2347 	int type, error;
   2348 	void *cookie[2];
   2349 
   2350 	if (namelen == 1 && name[0] == CTL_QUERY)
   2351 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2352 
   2353 	if (newp != NULL || namelen != 2)
   2354 		return (EINVAL);
   2355 	pid = name[0];
   2356 	type = name[1];
   2357 
   2358 	switch (type) {
   2359 	case KERN_PROC_PATHNAME:
   2360 		sysctl_unlock();
   2361 		error = fill_pathname(l, pid, oldp, oldlenp);
   2362 		sysctl_relock();
   2363 		return error;
   2364 
   2365 	case KERN_PROC_CWD:
   2366 		sysctl_unlock();
   2367 		error = fill_cwd(l, pid, oldp, oldlenp);
   2368 		sysctl_relock();
   2369 		return error;
   2370 
   2371 	case KERN_PROC_ARGV:
   2372 	case KERN_PROC_NARGV:
   2373 	case KERN_PROC_ENV:
   2374 	case KERN_PROC_NENV:
   2375 		/* ok */
   2376 		break;
   2377 	default:
   2378 		return (EINVAL);
   2379 	}
   2380 
   2381 	sysctl_unlock();
   2382 
   2383 	/* check pid */
   2384 	mutex_enter(&proc_lock);
   2385 	if ((p = proc_find(pid)) == NULL) {
   2386 		error = EINVAL;
   2387 		goto out_locked;
   2388 	}
   2389 	mutex_enter(p->p_lock);
   2390 
   2391 	/* Check permission. */
   2392 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2393 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2394 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2395 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2396 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2397 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2398 	else
   2399 		error = EINVAL; /* XXXGCC */
   2400 	if (error) {
   2401 		mutex_exit(p->p_lock);
   2402 		goto out_locked;
   2403 	}
   2404 
   2405 	if (oldp == NULL) {
   2406 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2407 			*oldlenp = sizeof (int);
   2408 		else
   2409 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2410 		error = 0;
   2411 		mutex_exit(p->p_lock);
   2412 		goto out_locked;
   2413 	}
   2414 
   2415 	/*
   2416 	 * Zombies don't have a stack, so we can't read their psstrings.
   2417 	 * System processes also don't have a user stack.
   2418 	 */
   2419 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2420 		error = EINVAL;
   2421 		mutex_exit(p->p_lock);
   2422 		goto out_locked;
   2423 	}
   2424 
   2425 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2426 	mutex_exit(p->p_lock);
   2427 	if (error) {
   2428 		goto out_locked;
   2429 	}
   2430 	mutex_exit(&proc_lock);
   2431 
   2432 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2433 		int value;
   2434 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2435 			if (type == KERN_PROC_NARGV)
   2436 				value = pss.ps_nargvstr;
   2437 			else
   2438 				value = pss.ps_nenvstr;
   2439 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2440 			*oldlenp = sizeof(value);
   2441 		}
   2442 	} else {
   2443 		cookie[0] = l;
   2444 		cookie[1] = oldp;
   2445 		error = copy_procargs(p, type, oldlenp,
   2446 		    copy_procargs_sysctl_cb, cookie);
   2447 	}
   2448 	rw_exit(&p->p_reflock);
   2449 	sysctl_relock();
   2450 	return error;
   2451 
   2452 out_locked:
   2453 	mutex_exit(&proc_lock);
   2454 	sysctl_relock();
   2455 	return error;
   2456 }
   2457 
   2458 int
   2459 copy_procargs(struct proc *p, int oid, size_t *limit,
   2460     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2461 {
   2462 	struct ps_strings pss;
   2463 	size_t len, i, loaded, entry_len;
   2464 	struct uio auio;
   2465 	struct iovec aiov;
   2466 	int error, argvlen;
   2467 	char *arg;
   2468 	char **argv;
   2469 	vaddr_t user_argv;
   2470 	struct vmspace *vmspace;
   2471 
   2472 	/*
   2473 	 * Allocate a temporary buffer to hold the argument vector and
   2474 	 * the arguments themselve.
   2475 	 */
   2476 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2477 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2478 
   2479 	/*
   2480 	 * Lock the process down in memory.
   2481 	 */
   2482 	vmspace = p->p_vmspace;
   2483 	uvmspace_addref(vmspace);
   2484 
   2485 	/*
   2486 	 * Read in the ps_strings structure.
   2487 	 */
   2488 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2489 		goto done;
   2490 
   2491 	/*
   2492 	 * Now read the address of the argument vector.
   2493 	 */
   2494 	switch (oid) {
   2495 	case KERN_PROC_ARGV:
   2496 		user_argv = (uintptr_t)pss.ps_argvstr;
   2497 		argvlen = pss.ps_nargvstr;
   2498 		break;
   2499 	case KERN_PROC_ENV:
   2500 		user_argv = (uintptr_t)pss.ps_envstr;
   2501 		argvlen = pss.ps_nenvstr;
   2502 		break;
   2503 	default:
   2504 		error = EINVAL;
   2505 		goto done;
   2506 	}
   2507 
   2508 	if (argvlen < 0) {
   2509 		error = EIO;
   2510 		goto done;
   2511 	}
   2512 
   2513 
   2514 	/*
   2515 	 * Now copy each string.
   2516 	 */
   2517 	len = 0; /* bytes written to user buffer */
   2518 	loaded = 0; /* bytes from argv already processed */
   2519 	i = 0; /* To make compiler happy */
   2520 	entry_len = PROC_PTRSZ(p);
   2521 
   2522 	for (; argvlen; --argvlen) {
   2523 		int finished = 0;
   2524 		vaddr_t base;
   2525 		size_t xlen;
   2526 		int j;
   2527 
   2528 		if (loaded == 0) {
   2529 			size_t rem = entry_len * argvlen;
   2530 			loaded = MIN(rem, PAGE_SIZE);
   2531 			error = copyin_vmspace(vmspace,
   2532 			    (const void *)user_argv, argv, loaded);
   2533 			if (error)
   2534 				break;
   2535 			user_argv += loaded;
   2536 			i = 0;
   2537 		}
   2538 
   2539 #if !defined(_RUMPKERNEL)
   2540 		if (p->p_flag & PK_32)
   2541 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2542 			    (argv, i++), 0, base);
   2543 		else
   2544 #endif /* !defined(_RUMPKERNEL) */
   2545 			base = (vaddr_t)argv[i++];
   2546 		loaded -= entry_len;
   2547 
   2548 		/*
   2549 		 * The program has messed around with its arguments,
   2550 		 * possibly deleting some, and replacing them with
   2551 		 * NULL's. Treat this as the last argument and not
   2552 		 * a failure.
   2553 		 */
   2554 		if (base == 0)
   2555 			break;
   2556 
   2557 		while (!finished) {
   2558 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2559 
   2560 			aiov.iov_base = arg;
   2561 			aiov.iov_len = PAGE_SIZE;
   2562 			auio.uio_iov = &aiov;
   2563 			auio.uio_iovcnt = 1;
   2564 			auio.uio_offset = base;
   2565 			auio.uio_resid = xlen;
   2566 			auio.uio_rw = UIO_READ;
   2567 			UIO_SETUP_SYSSPACE(&auio);
   2568 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2569 			if (error)
   2570 				goto done;
   2571 
   2572 			/* Look for the end of the string */
   2573 			for (j = 0; j < xlen; j++) {
   2574 				if (arg[j] == '\0') {
   2575 					xlen = j + 1;
   2576 					finished = 1;
   2577 					break;
   2578 				}
   2579 			}
   2580 
   2581 			/* Check for user buffer overflow */
   2582 			if (len + xlen > *limit) {
   2583 				finished = 1;
   2584 				if (len > *limit)
   2585 					xlen = 0;
   2586 				else
   2587 					xlen = *limit - len;
   2588 			}
   2589 
   2590 			/* Copyout the page */
   2591 			error = (*cb)(cookie, arg, len, xlen);
   2592 			if (error)
   2593 				goto done;
   2594 
   2595 			len += xlen;
   2596 			base += xlen;
   2597 		}
   2598 	}
   2599 	*limit = len;
   2600 
   2601 done:
   2602 	kmem_free(argv, PAGE_SIZE);
   2603 	kmem_free(arg, PAGE_SIZE);
   2604 	uvmspace_free(vmspace);
   2605 	return error;
   2606 }
   2607 
   2608 /*
   2609  * Fill in a proc structure for the specified process.
   2610  */
   2611 static void
   2612 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2613 {
   2614 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
   2615 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
   2616 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
   2617 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
   2618 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
   2619 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2620 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2621 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
   2622 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
   2623 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2624 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
   2625 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
   2626 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2627 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2628 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
   2629 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2630 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
   2631 	p->p_exitsig = psrc->p_exitsig;
   2632 	p->p_flag = psrc->p_flag;
   2633 	p->p_sflag = psrc->p_sflag;
   2634 	p->p_slflag = psrc->p_slflag;
   2635 	p->p_lflag = psrc->p_lflag;
   2636 	p->p_stflag = psrc->p_stflag;
   2637 	p->p_stat = psrc->p_stat;
   2638 	p->p_trace_enabled = psrc->p_trace_enabled;
   2639 	p->p_pid = psrc->p_pid;
   2640 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
   2641 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
   2642 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
   2643 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
   2644 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
   2645 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
   2646 	p->p_nlwps = psrc->p_nlwps;
   2647 	p->p_nzlwps = psrc->p_nzlwps;
   2648 	p->p_nrlwps = psrc->p_nrlwps;
   2649 	p->p_nlwpwait = psrc->p_nlwpwait;
   2650 	p->p_ndlwps = psrc->p_ndlwps;
   2651 	p->p_nstopchild = psrc->p_nstopchild;
   2652 	p->p_waited = psrc->p_waited;
   2653 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2654 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2655 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2656 	p->p_estcpu = psrc->p_estcpu;
   2657 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2658 	p->p_forktime = psrc->p_forktime;
   2659 	p->p_pctcpu = psrc->p_pctcpu;
   2660 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
   2661 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
   2662 	p->p_rtime = psrc->p_rtime;
   2663 	p->p_uticks = psrc->p_uticks;
   2664 	p->p_sticks = psrc->p_sticks;
   2665 	p->p_iticks = psrc->p_iticks;
   2666 	p->p_xutime = psrc->p_xutime;
   2667 	p->p_xstime = psrc->p_xstime;
   2668 	p->p_traceflag = psrc->p_traceflag;
   2669 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
   2670 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
   2671 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
   2672 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2673 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
   2674 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
   2675 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2676 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
   2677 	    allowaddr);
   2678 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
   2679 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2680 	p->p_ppid = psrc->p_ppid;
   2681 	p->p_oppid = psrc->p_oppid;
   2682 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
   2683 	p->p_sigctx = psrc->p_sigctx;
   2684 	p->p_nice = psrc->p_nice;
   2685 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2686 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2687 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2688 	p->p_pax = psrc->p_pax;
   2689 	p->p_xexit = psrc->p_xexit;
   2690 	p->p_xsig = psrc->p_xsig;
   2691 	p->p_acflag = psrc->p_acflag;
   2692 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
   2693 	p->p_stackbase = psrc->p_stackbase;
   2694 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2695 }
   2696 
   2697 /*
   2698  * Fill in an eproc structure for the specified process.
   2699  */
   2700 void
   2701 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2702 {
   2703 	struct tty *tp;
   2704 	struct lwp *l;
   2705 
   2706 	KASSERT(mutex_owned(&proc_lock));
   2707 	KASSERT(mutex_owned(p->p_lock));
   2708 
   2709 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
   2710 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
   2711 	if (p->p_cred) {
   2712 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2713 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2714 	}
   2715 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2716 		struct vmspace *vm = p->p_vmspace;
   2717 
   2718 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2719 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2720 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2721 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2722 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2723 
   2724 		/* Pick the primary (first) LWP */
   2725 		l = proc_active_lwp(p);
   2726 		KASSERT(l != NULL);
   2727 		lwp_lock(l);
   2728 		if (l->l_wchan)
   2729 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2730 		lwp_unlock(l);
   2731 	}
   2732 	ep->e_ppid = p->p_ppid;
   2733 	if (p->p_pgrp && p->p_session) {
   2734 		ep->e_pgid = p->p_pgrp->pg_id;
   2735 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2736 		ep->e_sid = p->p_session->s_sid;
   2737 		if ((p->p_lflag & PL_CONTROLT) &&
   2738 		    (tp = p->p_session->s_ttyp)) {
   2739 			ep->e_tdev = tp->t_dev;
   2740 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2741 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
   2742 		} else
   2743 			ep->e_tdev = (uint32_t)NODEV;
   2744 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2745 		if (SESS_LEADER(p))
   2746 			ep->e_flag |= EPROC_SLEADER;
   2747 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2748 	}
   2749 	ep->e_xsize = ep->e_xrssize = 0;
   2750 	ep->e_xccount = ep->e_xswrss = 0;
   2751 }
   2752 
   2753 /*
   2754  * Fill in a kinfo_proc2 structure for the specified process.
   2755  */
   2756 void
   2757 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2758 {
   2759 	struct tty *tp;
   2760 	struct lwp *l, *l2;
   2761 	struct timeval ut, st, rt;
   2762 	sigset_t ss1, ss2;
   2763 	struct rusage ru;
   2764 	struct vmspace *vm;
   2765 
   2766 	KASSERT(mutex_owned(&proc_lock));
   2767 	KASSERT(mutex_owned(p->p_lock));
   2768 
   2769 	sigemptyset(&ss1);
   2770 	sigemptyset(&ss2);
   2771 
   2772 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2773 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2774 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2775 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2776 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2777 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2778 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2779 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2780 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2781 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2782 	ki->p_eflag = 0;
   2783 	ki->p_exitsig = p->p_exitsig;
   2784 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2785 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2786 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2787 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2788 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2789 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2790 	ki->p_pid = p->p_pid;
   2791 	ki->p_ppid = p->p_ppid;
   2792 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2793 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2794 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2795 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2796 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2797 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2798 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2799 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2800 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2801 	    UIO_SYSSPACE);
   2802 
   2803 	ki->p_uticks = p->p_uticks;
   2804 	ki->p_sticks = p->p_sticks;
   2805 	ki->p_iticks = p->p_iticks;
   2806 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2807 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2808 	ki->p_traceflag = p->p_traceflag;
   2809 
   2810 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2811 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2812 
   2813 	ki->p_cpticks = 0;
   2814 	ki->p_pctcpu = p->p_pctcpu;
   2815 	ki->p_estcpu = 0;
   2816 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2817 	ki->p_realstat = p->p_stat;
   2818 	ki->p_nice = p->p_nice;
   2819 	ki->p_xstat = P_WAITSTATUS(p);
   2820 	ki->p_acflag = p->p_acflag;
   2821 
   2822 	strncpy(ki->p_comm, p->p_comm,
   2823 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2824 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2825 
   2826 	ki->p_nlwps = p->p_nlwps;
   2827 	ki->p_realflag = ki->p_flag;
   2828 
   2829 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2830 		vm = p->p_vmspace;
   2831 		ki->p_vm_rssize = vm_resident_count(vm);
   2832 		ki->p_vm_tsize = vm->vm_tsize;
   2833 		ki->p_vm_dsize = vm->vm_dsize;
   2834 		ki->p_vm_ssize = vm->vm_ssize;
   2835 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2836 		/*
   2837 		 * Since the stack is initially mapped mostly with
   2838 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2839 		 * to skip the unused stack portion.
   2840 		 */
   2841 		ki->p_vm_msize =
   2842 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2843 
   2844 		/* Pick the primary (first) LWP */
   2845 		l = proc_active_lwp(p);
   2846 		KASSERT(l != NULL);
   2847 		lwp_lock(l);
   2848 		ki->p_nrlwps = p->p_nrlwps;
   2849 		ki->p_forw = 0;
   2850 		ki->p_back = 0;
   2851 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2852 		ki->p_stat = l->l_stat;
   2853 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2854 		ki->p_swtime = l->l_swtime;
   2855 		ki->p_slptime = l->l_slptime;
   2856 		if (l->l_stat == LSONPROC)
   2857 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2858 		else
   2859 			ki->p_schedflags = 0;
   2860 		ki->p_priority = lwp_eprio(l);
   2861 		ki->p_usrpri = l->l_priority;
   2862 		if (l->l_wchan)
   2863 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2864 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2865 		ki->p_cpuid = cpu_index(l->l_cpu);
   2866 		lwp_unlock(l);
   2867 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2868 			/* This is hardly correct, but... */
   2869 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2870 			sigplusset(&l->l_sigmask, &ss2);
   2871 			ki->p_cpticks += l->l_cpticks;
   2872 			ki->p_pctcpu += l->l_pctcpu;
   2873 			ki->p_estcpu += l->l_estcpu;
   2874 		}
   2875 	}
   2876 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2877 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2878 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2879 
   2880 	if (p->p_session != NULL) {
   2881 		ki->p_sid = p->p_session->s_sid;
   2882 		ki->p__pgid = p->p_pgrp->pg_id;
   2883 		if (p->p_session->s_ttyvp)
   2884 			ki->p_eflag |= EPROC_CTTY;
   2885 		if (SESS_LEADER(p))
   2886 			ki->p_eflag |= EPROC_SLEADER;
   2887 		strncpy(ki->p_login, p->p_session->s_login,
   2888 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2889 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2890 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2891 			ki->p_tdev = tp->t_dev;
   2892 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2893 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2894 			    allowaddr);
   2895 		} else {
   2896 			ki->p_tdev = (int32_t)NODEV;
   2897 		}
   2898 	}
   2899 
   2900 	if (!P_ZOMBIE(p) && !zombie) {
   2901 		ki->p_uvalid = 1;
   2902 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2903 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2904 
   2905 		calcru(p, &ut, &st, NULL, &rt);
   2906 		ki->p_rtime_sec = rt.tv_sec;
   2907 		ki->p_rtime_usec = rt.tv_usec;
   2908 		ki->p_uutime_sec = ut.tv_sec;
   2909 		ki->p_uutime_usec = ut.tv_usec;
   2910 		ki->p_ustime_sec = st.tv_sec;
   2911 		ki->p_ustime_usec = st.tv_usec;
   2912 
   2913 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2914 		ki->p_uru_nvcsw = 0;
   2915 		ki->p_uru_nivcsw = 0;
   2916 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2917 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2918 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2919 			ruadd(&ru, &l2->l_ru);
   2920 		}
   2921 		ki->p_uru_maxrss = ru.ru_maxrss;
   2922 		ki->p_uru_ixrss = ru.ru_ixrss;
   2923 		ki->p_uru_idrss = ru.ru_idrss;
   2924 		ki->p_uru_isrss = ru.ru_isrss;
   2925 		ki->p_uru_minflt = ru.ru_minflt;
   2926 		ki->p_uru_majflt = ru.ru_majflt;
   2927 		ki->p_uru_nswap = ru.ru_nswap;
   2928 		ki->p_uru_inblock = ru.ru_inblock;
   2929 		ki->p_uru_oublock = ru.ru_oublock;
   2930 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2931 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2932 		ki->p_uru_nsignals = ru.ru_nsignals;
   2933 
   2934 		timeradd(&p->p_stats->p_cru.ru_utime,
   2935 			 &p->p_stats->p_cru.ru_stime, &ut);
   2936 		ki->p_uctime_sec = ut.tv_sec;
   2937 		ki->p_uctime_usec = ut.tv_usec;
   2938 	}
   2939 }
   2940 
   2941 
   2942 int
   2943 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2944 {
   2945 	int error;
   2946 
   2947 	mutex_enter(&proc_lock);
   2948 	if (pid == -1)
   2949 		*p = l->l_proc;
   2950 	else
   2951 		*p = proc_find(pid);
   2952 
   2953 	if (*p == NULL) {
   2954 		if (pid != -1)
   2955 			mutex_exit(&proc_lock);
   2956 		return ESRCH;
   2957 	}
   2958 	if (pid != -1)
   2959 		mutex_enter((*p)->p_lock);
   2960 	mutex_exit(&proc_lock);
   2961 
   2962 	error = kauth_authorize_process(l->l_cred,
   2963 	    KAUTH_PROCESS_CANSEE, *p,
   2964 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2965 	if (error) {
   2966 		if (pid != -1)
   2967 			mutex_exit((*p)->p_lock);
   2968 	}
   2969 	return error;
   2970 }
   2971 
   2972 static int
   2973 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2974 {
   2975 	int error;
   2976 	struct proc *p;
   2977 
   2978 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2979 		return error;
   2980 
   2981 	if (p->p_path == NULL) {
   2982 		if (pid != -1)
   2983 			mutex_exit(p->p_lock);
   2984 		return ENOENT;
   2985 	}
   2986 
   2987 	size_t len = strlen(p->p_path) + 1;
   2988 	if (oldp != NULL) {
   2989 		size_t copylen = uimin(len, *oldlenp);
   2990 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2991 		if (error == 0 && *oldlenp < len)
   2992 			error = ENOSPC;
   2993 	}
   2994 	*oldlenp = len;
   2995 	if (pid != -1)
   2996 		mutex_exit(p->p_lock);
   2997 	return error;
   2998 }
   2999 
   3000 static int
   3001 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   3002 {
   3003 	int error;
   3004 	struct proc *p;
   3005 	char *path;
   3006 	char *bp, *bend;
   3007 	struct cwdinfo *cwdi;
   3008 	struct vnode *vp;
   3009 	size_t len, lenused;
   3010 
   3011 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   3012 		return error;
   3013 
   3014 	len = MAXPATHLEN * 4;
   3015 
   3016 	path = kmem_alloc(len, KM_SLEEP);
   3017 
   3018 	bp = &path[len];
   3019 	bend = bp;
   3020 	*(--bp) = '\0';
   3021 
   3022 	cwdi = p->p_cwdi;
   3023 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   3024 	vp = cwdi->cwdi_cdir;
   3025 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   3026 	rw_exit(&cwdi->cwdi_lock);
   3027 
   3028 	if (error)
   3029 		goto out;
   3030 
   3031 	lenused = bend - bp;
   3032 
   3033 	if (oldp != NULL) {
   3034 		size_t copylen = uimin(lenused, *oldlenp);
   3035 		error = sysctl_copyout(l, bp, oldp, copylen);
   3036 		if (error == 0 && *oldlenp < lenused)
   3037 			error = ENOSPC;
   3038 	}
   3039 	*oldlenp = lenused;
   3040 out:
   3041 	if (pid != -1)
   3042 		mutex_exit(p->p_lock);
   3043 	kmem_free(path, len);
   3044 	return error;
   3045 }
   3046 
   3047 int
   3048 proc_getauxv(struct proc *p, void **buf, size_t *len)
   3049 {
   3050 	struct ps_strings pss;
   3051 	int error;
   3052 	void *uauxv, *kauxv;
   3053 	size_t size;
   3054 
   3055 	if ((error = copyin_psstrings(p, &pss)) != 0)
   3056 		return error;
   3057 	if (pss.ps_envstr == NULL)
   3058 		return EIO;
   3059 
   3060 	size = p->p_execsw->es_arglen;
   3061 	if (size == 0)
   3062 		return EIO;
   3063 
   3064 	size_t ptrsz = PROC_PTRSZ(p);
   3065 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   3066 
   3067 	kauxv = kmem_alloc(size, KM_SLEEP);
   3068 
   3069 	error = copyin_proc(p, uauxv, kauxv, size);
   3070 	if (error) {
   3071 		kmem_free(kauxv, size);
   3072 		return error;
   3073 	}
   3074 
   3075 	*buf = kauxv;
   3076 	*len = size;
   3077 
   3078 	return 0;
   3079 }
   3080 
   3081 
   3082 static int
   3083 sysctl_security_expose_address(SYSCTLFN_ARGS)
   3084 {
   3085 	int expose_address, error;
   3086 	struct sysctlnode node;
   3087 
   3088 	node = *rnode;
   3089 	node.sysctl_data = &expose_address;
   3090 	expose_address = *(int *)rnode->sysctl_data;
   3091 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3092 	if (error || newp == NULL)
   3093 		return error;
   3094 
   3095 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3096 	    0, NULL, NULL, NULL))
   3097 		return EPERM;
   3098 
   3099 	switch (expose_address) {
   3100 	case 0:
   3101 	case 1:
   3102 	case 2:
   3103 		break;
   3104 	default:
   3105 		return EINVAL;
   3106 	}
   3107 
   3108 	*(int *)rnode->sysctl_data = expose_address;
   3109 
   3110 	return 0;
   3111 }
   3112 
   3113 bool
   3114 get_expose_address(struct proc *p)
   3115 {
   3116 	/* allow only if sysctl variable is set or privileged */
   3117 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3118 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3119 }
   3120