Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.271
      1 /*	$NetBSD: kern_proc.c,v 1.271 2023/09/04 09:13:23 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.271 2023/09/04 09:13:23 simonb Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_kstack.h"
     69 #include "opt_maxuprc.h"
     70 #include "opt_dtrace.h"
     71 #include "opt_compat_netbsd32.h"
     72 #include "opt_kaslr.h"
     73 #endif
     74 
     75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
     76     && !defined(_RUMPKERNEL)
     77 #define COMPAT_NETBSD32
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/acct.h>
     87 #include <sys/wait.h>
     88 #include <sys/file.h>
     89 #include <ufs/ufs/quota.h>
     90 #include <sys/uio.h>
     91 #include <sys/pool.h>
     92 #include <sys/pset.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/syscall_stats.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/atomic.h>
    102 #include <sys/kmem.h>
    103 #include <sys/namei.h>
    104 #include <sys/dtrace_bsd.h>
    105 #include <sys/sysctl.h>
    106 #include <sys/exec.h>
    107 #include <sys/cpu.h>
    108 #include <sys/compat_stub.h>
    109 #include <sys/futex.h>
    110 #include <sys/pserialize.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 
    114 /*
    115  * Process lists.
    116  */
    117 
    118 struct proclist		allproc		__cacheline_aligned;
    119 struct proclist		zombproc	__cacheline_aligned;
    120 
    121 kmutex_t		proc_lock	__cacheline_aligned;
    122 static pserialize_t	proc_psz;
    123 
    124 /*
    125  * pid to lwp/proc lookup is done by indexing the pid_table array.
    126  * Since pid numbers are only allocated when an empty slot
    127  * has been found, there is no need to search any lists ever.
    128  * (an orphaned pgrp will lock the slot, a session will lock
    129  * the pgrp with the same number.)
    130  * If the table is too small it is reallocated with twice the
    131  * previous size and the entries 'unzipped' into the two halves.
    132  * A linked list of free entries is passed through the pt_lwp
    133  * field of 'free' items - set odd to be an invalid ptr.  Two
    134  * additional bits are also used to indicate if the slot is
    135  * currently occupied by a proc or lwp, and if the PID is
    136  * hidden from certain kinds of lookups.  We thus require a
    137  * minimum alignment for proc and lwp structures (LWPs are
    138  * at least 32-byte aligned).
    139  */
    140 
    141 struct pid_table {
    142 	uintptr_t	pt_slot;
    143 	struct pgrp	*pt_pgrp;
    144 	pid_t		pt_pid;
    145 };
    146 
    147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
    148 #define	PT_F_LWP		0	/* pseudo-flag */
    149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
    150 
    151 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
    152 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
    153 
    154 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
    155 #define	PT_RESERVED(s)		((s) == 0)
    156 #define	PT_NEXT(s)		((u_int)(s) >> 1)
    157 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
    158 #define	PT_SET_LWP(l)		((uintptr_t)(l))
    159 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
    160 #define	PT_SET_RESERVED		0
    161 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
    162 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
    163 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
    164 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
    165 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
    166 
    167 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
    168 
    169 /*
    170  * Table of process IDs (PIDs).
    171  */
    172 static struct pid_table *pid_table	__read_mostly;
    173 
    174 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
    175 
    176 /* Table mask, threshold for growing and number of allocated PIDs. */
    177 static u_int		pid_tbl_mask	__read_mostly;
    178 static u_int		pid_alloc_lim	__read_mostly;
    179 static u_int		pid_alloc_cnt	__cacheline_aligned;
    180 
    181 /* Next free, last free and maximum PIDs. */
    182 static u_int		next_free_pt	__cacheline_aligned;
    183 static u_int		last_free_pt	__cacheline_aligned;
    184 static pid_t		pid_max		__read_mostly;
    185 
    186 /* Components of the first process -- never freed. */
    187 
    188 struct session session0 = {
    189 	.s_count = 1,
    190 	.s_sid = 0,
    191 };
    192 struct pgrp pgrp0 = {
    193 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
    194 	.pg_session = &session0,
    195 };
    196 filedesc_t filedesc0;
    197 struct cwdinfo cwdi0 = {
    198 	.cwdi_cmask = CMASK,
    199 	.cwdi_refcnt = 1,
    200 };
    201 struct plimit limit0;
    202 struct pstats pstat0;
    203 struct vmspace vmspace0;
    204 struct sigacts sigacts0;
    205 struct proc proc0 = {
    206 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
    207 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
    208 	.p_nlwps = 1,
    209 	.p_nrlwps = 1,
    210 	.p_pgrp = &pgrp0,
    211 	.p_comm = "system",
    212 	/*
    213 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
    214 	 * when they exit.  init(8) can easily wait them out for us.
    215 	 */
    216 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
    217 	.p_stat = SACTIVE,
    218 	.p_nice = NZERO,
    219 	.p_emul = &emul_netbsd,
    220 	.p_cwdi = &cwdi0,
    221 	.p_limit = &limit0,
    222 	.p_fd = &filedesc0,
    223 	.p_vmspace = &vmspace0,
    224 	.p_stats = &pstat0,
    225 	.p_sigacts = &sigacts0,
    226 #ifdef PROC0_MD_INITIALIZERS
    227 	PROC0_MD_INITIALIZERS
    228 #endif
    229 };
    230 kauth_cred_t cred0;
    231 
    232 static const int	nofile	= NOFILE;
    233 static const int	maxuprc	= MAXUPRC;
    234 
    235 static int sysctl_doeproc(SYSCTLFN_PROTO);
    236 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
    237 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
    238 
    239 #ifdef KASLR
    240 static int kern_expose_address = 0;
    241 #else
    242 static int kern_expose_address = 1;
    243 #endif
    244 /*
    245  * The process list descriptors, used during pid allocation and
    246  * by sysctl.  No locking on this data structure is needed since
    247  * it is completely static.
    248  */
    249 const struct proclist_desc proclists[] = {
    250 	{ &allproc	},
    251 	{ &zombproc	},
    252 	{ NULL		},
    253 };
    254 
    255 static struct pgrp *	pg_remove(pid_t);
    256 static void		pg_delete(pid_t);
    257 static void		orphanpg(struct pgrp *);
    258 
    259 static specificdata_domain_t proc_specificdata_domain;
    260 
    261 static pool_cache_t proc_cache;
    262 
    263 static kauth_listener_t proc_listener;
    264 
    265 static void fill_proc(const struct proc *, struct proc *, bool);
    266 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
    267 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
    268 
    269 static int
    270 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    271     void *arg0, void *arg1, void *arg2, void *arg3)
    272 {
    273 	struct proc *p;
    274 	int result;
    275 
    276 	result = KAUTH_RESULT_DEFER;
    277 	p = arg0;
    278 
    279 	switch (action) {
    280 	case KAUTH_PROCESS_CANSEE: {
    281 		enum kauth_process_req req;
    282 
    283 		req = (enum kauth_process_req)(uintptr_t)arg1;
    284 
    285 		switch (req) {
    286 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
    287 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
    288 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
    289 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
    290 			result = KAUTH_RESULT_ALLOW;
    291 			break;
    292 
    293 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
    294 			if (kauth_cred_getuid(cred) !=
    295 			    kauth_cred_getuid(p->p_cred) ||
    296 			    kauth_cred_getuid(cred) !=
    297 			    kauth_cred_getsvuid(p->p_cred))
    298 				break;
    299 
    300 			result = KAUTH_RESULT_ALLOW;
    301 
    302 			break;
    303 
    304 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
    305 			if (!kern_expose_address)
    306 				break;
    307 
    308 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
    309 				break;
    310 
    311 			result = KAUTH_RESULT_ALLOW;
    312 
    313 			break;
    314 
    315 		default:
    316 			break;
    317 		}
    318 
    319 		break;
    320 		}
    321 
    322 	case KAUTH_PROCESS_FORK: {
    323 		int lnprocs = (int)(unsigned long)arg2;
    324 
    325 		/*
    326 		 * Don't allow a nonprivileged user to use the last few
    327 		 * processes. The variable lnprocs is the current number of
    328 		 * processes, maxproc is the limit.
    329 		 */
    330 		if (__predict_false((lnprocs >= maxproc - 5)))
    331 			break;
    332 
    333 		result = KAUTH_RESULT_ALLOW;
    334 
    335 		break;
    336 		}
    337 
    338 	case KAUTH_PROCESS_CORENAME:
    339 	case KAUTH_PROCESS_STOPFLAG:
    340 		if (proc_uidmatch(cred, p->p_cred) == 0)
    341 			result = KAUTH_RESULT_ALLOW;
    342 
    343 		break;
    344 
    345 	default:
    346 		break;
    347 	}
    348 
    349 	return result;
    350 }
    351 
    352 static int
    353 proc_ctor(void *arg __unused, void *obj, int flags __unused)
    354 {
    355 	struct proc *p = obj;
    356 
    357 	memset(p, 0, sizeof(*p));
    358 	klist_init(&p->p_klist);
    359 
    360 	/*
    361 	 * There is no need for a proc_dtor() to do a klist_fini(),
    362 	 * since knote_proc_exit() ensures that p->p_klist is empty
    363 	 * when a process exits.
    364 	 */
    365 
    366 	return 0;
    367 }
    368 
    369 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
    370 
    371 /*
    372  * Initialize global process hashing structures.
    373  */
    374 void
    375 procinit(void)
    376 {
    377 	const struct proclist_desc *pd;
    378 	u_int i;
    379 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    380 
    381 	for (pd = proclists; pd->pd_list != NULL; pd++)
    382 		LIST_INIT(pd->pd_list);
    383 
    384 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
    385 
    386 	proc_psz = pserialize_create();
    387 
    388 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
    389 	    * sizeof(struct pid_table), KM_SLEEP);
    390 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    391 	pid_max = PID_MAX;
    392 
    393 	/* Set free list running through table...
    394 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    395 	for (i = 0; i <= pid_tbl_mask; i++) {
    396 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
    397 		pid_table[i].pt_pgrp = 0;
    398 		pid_table[i].pt_pid = 0;
    399 	}
    400 	/* slot 0 is just grabbed */
    401 	next_free_pt = 1;
    402 	/* Need to fix last entry. */
    403 	last_free_pt = pid_tbl_mask;
    404 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
    405 	/* point at which we grow table - to avoid reusing pids too often */
    406 	pid_alloc_lim = pid_tbl_mask - 1;
    407 #undef LINK_EMPTY
    408 
    409 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
    410 	mutex_enter(&proc_lock);
    411 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
    412 		panic("failed to reserve PID 1 for init(8)");
    413 	mutex_exit(&proc_lock);
    414 
    415 	proc_specificdata_domain = specificdata_domain_create();
    416 	KASSERT(proc_specificdata_domain != NULL);
    417 
    418 	size_t proc_alignment = coherency_unit;
    419 	if (proc_alignment < MIN_PROC_ALIGNMENT)
    420 		proc_alignment = MIN_PROC_ALIGNMENT;
    421 
    422 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
    423 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
    424 
    425 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    426 	    proc_listener_cb, NULL);
    427 }
    428 
    429 void
    430 procinit_sysctl(void)
    431 {
    432 	static struct sysctllog *clog;
    433 
    434 	sysctl_createv(&clog, 0, NULL, NULL,
    435 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    436 		       CTLTYPE_INT, "expose_address",
    437 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
    438 		       sysctl_security_expose_address, 0,
    439 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
    440 	sysctl_createv(&clog, 0, NULL, NULL,
    441 		       CTLFLAG_PERMANENT,
    442 		       CTLTYPE_NODE, "proc",
    443 		       SYSCTL_DESCR("System-wide process information"),
    444 		       sysctl_doeproc, 0, NULL, 0,
    445 		       CTL_KERN, KERN_PROC, CTL_EOL);
    446 	sysctl_createv(&clog, 0, NULL, NULL,
    447 		       CTLFLAG_PERMANENT,
    448 		       CTLTYPE_NODE, "proc2",
    449 		       SYSCTL_DESCR("Machine-independent process information"),
    450 		       sysctl_doeproc, 0, NULL, 0,
    451 		       CTL_KERN, KERN_PROC2, CTL_EOL);
    452 	sysctl_createv(&clog, 0, NULL, NULL,
    453 		       CTLFLAG_PERMANENT,
    454 		       CTLTYPE_NODE, "proc_args",
    455 		       SYSCTL_DESCR("Process argument information"),
    456 		       sysctl_kern_proc_args, 0, NULL, 0,
    457 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
    458 
    459 	/*
    460 	  "nodes" under these:
    461 
    462 	  KERN_PROC_ALL
    463 	  KERN_PROC_PID pid
    464 	  KERN_PROC_PGRP pgrp
    465 	  KERN_PROC_SESSION sess
    466 	  KERN_PROC_TTY tty
    467 	  KERN_PROC_UID uid
    468 	  KERN_PROC_RUID uid
    469 	  KERN_PROC_GID gid
    470 	  KERN_PROC_RGID gid
    471 
    472 	  all in all, probably not worth the effort...
    473 	*/
    474 }
    475 
    476 /*
    477  * Initialize process 0.
    478  */
    479 void
    480 proc0_init(void)
    481 {
    482 	struct proc *p;
    483 	struct pgrp *pg;
    484 	struct rlimit *rlim;
    485 	rlim_t lim;
    486 	int i;
    487 
    488 	p = &proc0;
    489 	pg = &pgrp0;
    490 
    491 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    492 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    493 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    494 
    495 	rw_init(&p->p_reflock);
    496 	cv_init(&p->p_waitcv, "wait");
    497 	cv_init(&p->p_lwpcv, "lwpwait");
    498 
    499 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
    500 
    501 	KASSERT(lwp0.l_lid == 0);
    502 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
    503 	LIST_INSERT_HEAD(&allproc, p, p_list);
    504 
    505 	pid_table[lwp0.l_lid].pt_pgrp = pg;
    506 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    507 
    508 #ifdef __HAVE_SYSCALL_INTERN
    509 	(*p->p_emul->e_syscall_intern)(p);
    510 #endif
    511 
    512 	/* Create credentials. */
    513 	cred0 = kauth_cred_alloc();
    514 	p->p_cred = cred0;
    515 
    516 	/* Create the CWD info. */
    517 	rw_init(&cwdi0.cwdi_lock);
    518 
    519 	/* Create the limits structures. */
    520 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
    521 
    522 	rlim = limit0.pl_rlimit;
    523 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
    524 		rlim[i].rlim_cur = RLIM_INFINITY;
    525 		rlim[i].rlim_max = RLIM_INFINITY;
    526 	}
    527 
    528 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
    529 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
    530 
    531 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
    532 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
    533 
    534 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
    535 	rlim[RLIMIT_RSS].rlim_max = lim;
    536 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
    537 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    538 
    539 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
    540 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
    541 
    542 	/* Note that default core name has zero length. */
    543 	limit0.pl_corename = defcorename;
    544 	limit0.pl_cnlen = 0;
    545 	limit0.pl_refcnt = 1;
    546 	limit0.pl_writeable = false;
    547 	limit0.pl_sv_limit = NULL;
    548 
    549 	/* Configure virtual memory system, set vm rlimits. */
    550 	uvm_init_limits(p);
    551 
    552 	/* Initialize file descriptor table for proc0. */
    553 	fd_init(&filedesc0);
    554 
    555 	/*
    556 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    557 	 * All kernel processes (which never have user space mappings)
    558 	 * share proc0's vmspace, and thus, the kernel pmap.
    559 	 */
    560 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    561 	    trunc_page(VM_MAXUSER_ADDRESS),
    562 #ifdef __USE_TOPDOWN_VM
    563 	    true
    564 #else
    565 	    false
    566 #endif
    567 	    );
    568 
    569 	/* Initialize signal state for proc0. XXX IPL_SCHED */
    570 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    571 	siginit(p);
    572 
    573 	proc_initspecific(p);
    574 	kdtrace_proc_ctor(NULL, p);
    575 }
    576 
    577 /*
    578  * Session reference counting.
    579  */
    580 
    581 void
    582 proc_sesshold(struct session *ss)
    583 {
    584 
    585 	KASSERT(mutex_owned(&proc_lock));
    586 	ss->s_count++;
    587 }
    588 
    589 void
    590 proc_sessrele(struct session *ss)
    591 {
    592 	struct pgrp *pg;
    593 
    594 	KASSERT(mutex_owned(&proc_lock));
    595 	KASSERT(ss->s_count > 0);
    596 
    597 	/*
    598 	 * We keep the pgrp with the same id as the session in order to
    599 	 * stop a process being given the same pid.  Since the pgrp holds
    600 	 * a reference to the session, it must be a 'zombie' pgrp by now.
    601 	 */
    602 	if (--ss->s_count == 0) {
    603 		pg = pg_remove(ss->s_sid);
    604 	} else {
    605 		pg = NULL;
    606 		ss = NULL;
    607 	}
    608 
    609 	mutex_exit(&proc_lock);
    610 
    611 	if (pg)
    612 		kmem_free(pg, sizeof(struct pgrp));
    613 	if (ss)
    614 		kmem_free(ss, sizeof(struct session));
    615 }
    616 
    617 /*
    618  * Check that the specified process group is in the session of the
    619  * specified process.
    620  * Treats -ve ids as process ids.
    621  * Used to validate TIOCSPGRP requests.
    622  */
    623 int
    624 pgid_in_session(struct proc *p, pid_t pg_id)
    625 {
    626 	struct pgrp *pgrp;
    627 	struct session *session;
    628 	int error;
    629 
    630 	if (pg_id == INT_MIN)
    631 		return EINVAL;
    632 
    633 	mutex_enter(&proc_lock);
    634 	if (pg_id < 0) {
    635 		struct proc *p1 = proc_find(-pg_id);
    636 		if (p1 == NULL) {
    637 			error = EINVAL;
    638 			goto fail;
    639 		}
    640 		pgrp = p1->p_pgrp;
    641 	} else {
    642 		pgrp = pgrp_find(pg_id);
    643 		if (pgrp == NULL) {
    644 			error = EINVAL;
    645 			goto fail;
    646 		}
    647 	}
    648 	session = pgrp->pg_session;
    649 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
    650 fail:
    651 	mutex_exit(&proc_lock);
    652 	return error;
    653 }
    654 
    655 /*
    656  * p_inferior: is p an inferior of q?
    657  */
    658 static inline bool
    659 p_inferior(struct proc *p, struct proc *q)
    660 {
    661 
    662 	KASSERT(mutex_owned(&proc_lock));
    663 
    664 	for (; p != q; p = p->p_pptr)
    665 		if (p->p_pid == 0)
    666 			return false;
    667 	return true;
    668 }
    669 
    670 /*
    671  * proc_find_lwp: locate an lwp in said proc by the ID.
    672  *
    673  * => Must be called with p::p_lock held.
    674  * => LSIDL lwps are not returned because they are only partially
    675  *    constructed while occupying the slot.
    676  * => Callers need to be careful about lwp::l_stat of the returned
    677  *    lwp.
    678  */
    679 struct lwp *
    680 proc_find_lwp(proc_t *p, pid_t pid)
    681 {
    682 	struct pid_table *pt;
    683 	unsigned pt_mask;
    684 	struct lwp *l = NULL;
    685 	uintptr_t slot;
    686 	int s;
    687 
    688 	KASSERT(mutex_owned(p->p_lock));
    689 
    690 	/*
    691 	 * Look in the pid_table.  This is done unlocked inside a
    692 	 * pserialize read section covering pid_table's memory
    693 	 * allocation only, so take care to read things in the correct
    694 	 * order:
    695 	 *
    696 	 * 1. First read the table mask -- this only ever increases, in
    697 	 *    expand_pid_table, so a stale value is safely
    698 	 *    conservative.
    699 	 *
    700 	 * 2. Next read the pid table -- this is always set _before_
    701 	 *    the mask increases, so if we see a new table and stale
    702 	 *    mask, the mask is still valid for the table.
    703 	 */
    704 	s = pserialize_read_enter();
    705 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
    706 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
    707 	slot = atomic_load_consume(&pt->pt_slot);
    708 	if (__predict_false(!PT_IS_LWP(slot))) {
    709 		pserialize_read_exit(s);
    710 		return NULL;
    711 	}
    712 
    713 	/*
    714 	 * Check to see if the LWP is from the correct process.  We won't
    715 	 * see entries in pid_table from a prior process that also used "p",
    716 	 * by virtue of the fact that allocating "p" means all prior updates
    717 	 * to dependant data structures are visible to this thread.
    718 	 */
    719 	l = PT_GET_LWP(slot);
    720 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
    721 		pserialize_read_exit(s);
    722 		return NULL;
    723 	}
    724 
    725 	/*
    726 	 * We now know that p->p_lock holds this LWP stable.
    727 	 *
    728 	 * If the status is not LSIDL, it means the LWP is intended to be
    729 	 * findable by LID and l_lid cannot change behind us.
    730 	 *
    731 	 * No need to acquire the LWP's lock to check for LSIDL, as
    732 	 * p->p_lock must be held to transition in and out of LSIDL.
    733 	 * Any other observed state of is no particular interest.
    734 	 */
    735 	pserialize_read_exit(s);
    736 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
    737 }
    738 
    739 /*
    740  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
    741  *
    742  * => Called in a pserialize read section with no locks held.
    743  * => LSIDL lwps are not returned because they are only partially
    744  *    constructed while occupying the slot.
    745  * => Callers need to be careful about lwp::l_stat of the returned
    746  *    lwp.
    747  * => If an LWP is found, it's returned locked.
    748  */
    749 struct lwp *
    750 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
    751 {
    752 	struct pid_table *pt;
    753 	unsigned pt_mask;
    754 	struct lwp *l = NULL;
    755 	uintptr_t slot;
    756 
    757 	KASSERT(pserialize_in_read_section());
    758 
    759 	/*
    760 	 * Look in the pid_table.  This is done unlocked inside a
    761 	 * pserialize read section covering pid_table's memory
    762 	 * allocation only, so take care to read things in the correct
    763 	 * order:
    764 	 *
    765 	 * 1. First read the table mask -- this only ever increases, in
    766 	 *    expand_pid_table, so a stale value is safely
    767 	 *    conservative.
    768 	 *
    769 	 * 2. Next read the pid table -- this is always set _before_
    770 	 *    the mask increases, so if we see a new table and stale
    771 	 *    mask, the mask is still valid for the table.
    772 	 */
    773 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
    774 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
    775 	slot = atomic_load_consume(&pt->pt_slot);
    776 	if (__predict_false(!PT_IS_LWP(slot))) {
    777 		return NULL;
    778 	}
    779 
    780 	/*
    781 	 * Lock the LWP we found to get it stable.  If it's embryonic or
    782 	 * reaped (LSIDL) then none of the other fields can safely be
    783 	 * checked.
    784 	 */
    785 	l = PT_GET_LWP(slot);
    786 	lwp_lock(l);
    787 	if (__predict_false(l->l_stat == LSIDL)) {
    788 		lwp_unlock(l);
    789 		return NULL;
    790 	}
    791 
    792 	/*
    793 	 * l_proc and l_lid are now known stable because the LWP is not
    794 	 * LSIDL, so check those fields too to make sure we found the
    795 	 * right thing.
    796 	 */
    797 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
    798 		lwp_unlock(l);
    799 		return NULL;
    800 	}
    801 
    802 	/* Everything checks out, return it locked. */
    803 	return l;
    804 }
    805 
    806 /*
    807  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
    808  * on its containing proc.
    809  *
    810  * => Similar to proc_find_lwp(), but does not require you to have
    811  *    the proc a priori.
    812  * => Also returns proc * to caller, with p::p_lock held.
    813  * => Same caveats apply.
    814  */
    815 struct lwp *
    816 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
    817 {
    818 	struct pid_table *pt;
    819 	struct proc *p = NULL;
    820 	struct lwp *l = NULL;
    821 	uintptr_t slot;
    822 
    823 	KASSERT(pp != NULL);
    824 	mutex_enter(&proc_lock);
    825 	pt = &pid_table[pid & pid_tbl_mask];
    826 
    827 	slot = pt->pt_slot;
    828 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    829 		l = PT_GET_LWP(slot);
    830 		p = l->l_proc;
    831 		mutex_enter(p->p_lock);
    832 		if (__predict_false(l->l_stat == LSIDL)) {
    833 			mutex_exit(p->p_lock);
    834 			l = NULL;
    835 			p = NULL;
    836 		}
    837 	}
    838 	mutex_exit(&proc_lock);
    839 
    840 	KASSERT(p == NULL || mutex_owned(p->p_lock));
    841 	*pp = p;
    842 	return l;
    843 }
    844 
    845 /*
    846  * proc_find_raw_pid_table_locked: locate a process by the ID.
    847  *
    848  * => Must be called with proc_lock held.
    849  */
    850 static proc_t *
    851 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
    852 {
    853 	struct pid_table *pt;
    854 	proc_t *p = NULL;
    855 	uintptr_t slot;
    856 
    857 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
    858 	pt = &pid_table[pid & pid_tbl_mask];
    859 
    860 	slot = pt->pt_slot;
    861 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
    862 		/*
    863 		 * When looking up processes, require a direct match
    864 		 * on the PID assigned to the proc, not just one of
    865 		 * its LWPs.
    866 		 *
    867 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
    868 		 * valid here.
    869 		 */
    870 		p = PT_GET_LWP(slot)->l_proc;
    871 		if (__predict_false(p->p_pid != pid && !any_lwpid))
    872 			p = NULL;
    873 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
    874 		p = PT_GET_PROC(slot);
    875 	}
    876 	return p;
    877 }
    878 
    879 proc_t *
    880 proc_find_raw(pid_t pid)
    881 {
    882 
    883 	return proc_find_raw_pid_table_locked(pid, false);
    884 }
    885 
    886 static proc_t *
    887 proc_find_internal(pid_t pid, bool any_lwpid)
    888 {
    889 	proc_t *p;
    890 
    891 	KASSERT(mutex_owned(&proc_lock));
    892 
    893 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
    894 	if (__predict_false(p == NULL)) {
    895 		return NULL;
    896 	}
    897 
    898 	/*
    899 	 * Only allow live processes to be found by PID.
    900 	 * XXX: p_stat might change, since proc unlocked.
    901 	 */
    902 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
    903 		return p;
    904 	}
    905 	return NULL;
    906 }
    907 
    908 proc_t *
    909 proc_find(pid_t pid)
    910 {
    911 	return proc_find_internal(pid, false);
    912 }
    913 
    914 proc_t *
    915 proc_find_lwpid(pid_t pid)
    916 {
    917 	return proc_find_internal(pid, true);
    918 }
    919 
    920 /*
    921  * pgrp_find: locate a process group by the ID.
    922  *
    923  * => Must be called with proc_lock held.
    924  */
    925 struct pgrp *
    926 pgrp_find(pid_t pgid)
    927 {
    928 	struct pgrp *pg;
    929 
    930 	KASSERT(mutex_owned(&proc_lock));
    931 
    932 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    933 
    934 	/*
    935 	 * Cannot look up a process group that only exists because the
    936 	 * session has not died yet (traditional).
    937 	 */
    938 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    939 		return NULL;
    940 	}
    941 	return pg;
    942 }
    943 
    944 static void
    945 expand_pid_table(void)
    946 {
    947 	size_t pt_size, tsz;
    948 	struct pid_table *n_pt, *new_pt;
    949 	uintptr_t slot;
    950 	struct pgrp *pgrp;
    951 	pid_t pid, rpid;
    952 	u_int i;
    953 	uint new_pt_mask;
    954 
    955 	KASSERT(mutex_owned(&proc_lock));
    956 
    957 	/* Unlock the pid_table briefly to allocate memory. */
    958 	pt_size = pid_tbl_mask + 1;
    959 	mutex_exit(&proc_lock);
    960 
    961 	tsz = pt_size * 2 * sizeof(struct pid_table);
    962 	new_pt = kmem_alloc(tsz, KM_SLEEP);
    963 	new_pt_mask = pt_size * 2 - 1;
    964 
    965 	/* XXX For now.  The pratical limit is much lower anyway. */
    966 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
    967 
    968 	mutex_enter(&proc_lock);
    969 	if (pt_size != pid_tbl_mask + 1) {
    970 		/* Another process beat us to it... */
    971 		mutex_exit(&proc_lock);
    972 		kmem_free(new_pt, tsz);
    973 		goto out;
    974 	}
    975 
    976 	/*
    977 	 * Copy entries from old table into new one.
    978 	 * If 'pid' is 'odd' we need to place in the upper half,
    979 	 * even pid's to the lower half.
    980 	 * Free items stay in the low half so we don't have to
    981 	 * fixup the reference to them.
    982 	 * We stuff free items on the front of the freelist
    983 	 * because we can't write to unmodified entries.
    984 	 * Processing the table backwards maintains a semblance
    985 	 * of issuing pid numbers that increase with time.
    986 	 */
    987 	i = pt_size - 1;
    988 	n_pt = new_pt + i;
    989 	for (; ; i--, n_pt--) {
    990 		slot = pid_table[i].pt_slot;
    991 		pgrp = pid_table[i].pt_pgrp;
    992 		if (!PT_VALID(slot)) {
    993 			/* Up 'use count' so that link is valid */
    994 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
    995 			rpid = 0;
    996 			slot = PT_SET_FREE(pid);
    997 			if (pgrp)
    998 				pid = pgrp->pg_id;
    999 		} else {
   1000 			pid = pid_table[i].pt_pid;
   1001 			rpid = pid;
   1002 		}
   1003 
   1004 		/* Save entry in appropriate half of table */
   1005 		n_pt[pid & pt_size].pt_slot = slot;
   1006 		n_pt[pid & pt_size].pt_pgrp = pgrp;
   1007 		n_pt[pid & pt_size].pt_pid = rpid;
   1008 
   1009 		/* Put other piece on start of free list */
   1010 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
   1011 		n_pt[pid & pt_size].pt_slot =
   1012 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
   1013 		n_pt[pid & pt_size].pt_pgrp = 0;
   1014 		n_pt[pid & pt_size].pt_pid = 0;
   1015 
   1016 		next_free_pt = i | (pid & pt_size);
   1017 		if (i == 0)
   1018 			break;
   1019 	}
   1020 
   1021 	/* Save old table size and switch tables */
   1022 	tsz = pt_size * sizeof(struct pid_table);
   1023 	n_pt = pid_table;
   1024 	atomic_store_release(&pid_table, new_pt);
   1025 	KASSERT(new_pt_mask >= pid_tbl_mask);
   1026 	atomic_store_release(&pid_tbl_mask, new_pt_mask);
   1027 
   1028 	/*
   1029 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
   1030 	 * allocated pids we need it to be larger!
   1031 	 */
   1032 	if (pid_tbl_mask > PID_MAX) {
   1033 		pid_max = pid_tbl_mask * 2 + 1;
   1034 		pid_alloc_lim |= pid_alloc_lim << 1;
   1035 	} else
   1036 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
   1037 
   1038 	mutex_exit(&proc_lock);
   1039 
   1040 	/*
   1041 	 * Make sure that unlocked access to the old pid_table is complete
   1042 	 * and then free it.
   1043 	 */
   1044 	pserialize_perform(proc_psz);
   1045 	kmem_free(n_pt, tsz);
   1046 
   1047  out:	/* Return with proc_lock held again. */
   1048 	mutex_enter(&proc_lock);
   1049 }
   1050 
   1051 struct proc *
   1052 proc_alloc(void)
   1053 {
   1054 	struct proc *p;
   1055 
   1056 	p = pool_cache_get(proc_cache, PR_WAITOK);
   1057 	p->p_stat = SIDL;			/* protect against others */
   1058 	proc_initspecific(p);
   1059 	kdtrace_proc_ctor(NULL, p);
   1060 
   1061 	/*
   1062 	 * Allocate a placeholder in the pid_table.  When we create the
   1063 	 * first LWP for this process, it will take ownership of the
   1064 	 * slot.
   1065 	 */
   1066 	if (__predict_false(proc_alloc_pid(p) == -1)) {
   1067 		/* Allocating the PID failed; unwind. */
   1068 		proc_finispecific(p);
   1069 		proc_free_mem(p);
   1070 		p = NULL;
   1071 	}
   1072 	return p;
   1073 }
   1074 
   1075 /*
   1076  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
   1077  * proc_find_raw() can find it by the PID.
   1078  */
   1079 static pid_t __noinline
   1080 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
   1081 {
   1082 	struct pid_table *pt;
   1083 	pid_t pid;
   1084 	int nxt;
   1085 
   1086 	KASSERT(mutex_owned(&proc_lock));
   1087 
   1088 	for (;;expand_pid_table()) {
   1089 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
   1090 			/* ensure pids cycle through 2000+ values */
   1091 			continue;
   1092 		}
   1093 		/*
   1094 		 * The first user process *must* be given PID 1.
   1095 		 * it has already been reserved for us.  This
   1096 		 * will be coming in from the proc_alloc() call
   1097 		 * above, and the entry will be usurped later when
   1098 		 * the first user LWP is created.
   1099 		 * XXX this is slightly gross.
   1100 		 */
   1101 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
   1102 				    p != &proc0)) {
   1103 			KASSERT(PT_IS_PROC(slot));
   1104 			pt = &pid_table[1];
   1105 			pt->pt_slot = slot;
   1106 			return 1;
   1107 		}
   1108 		pt = &pid_table[next_free_pt];
   1109 #ifdef DIAGNOSTIC
   1110 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
   1111 			panic("proc_alloc: slot busy");
   1112 #endif
   1113 		nxt = PT_NEXT(pt->pt_slot);
   1114 		if (nxt & pid_tbl_mask)
   1115 			break;
   1116 		/* Table full - expand (NB last entry not used....) */
   1117 	}
   1118 
   1119 	/* pid is 'saved use count' + 'size' + entry */
   1120 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
   1121 	if ((uint)pid > (uint)pid_max)
   1122 		pid &= pid_tbl_mask;
   1123 	next_free_pt = nxt & pid_tbl_mask;
   1124 
   1125 	/* XXX For now.  The pratical limit is much lower anyway. */
   1126 	KASSERT(pid <= FUTEX_TID_MASK);
   1127 
   1128 	/* Grab table slot */
   1129 	pt->pt_slot = slot;
   1130 
   1131 	KASSERT(pt->pt_pid == 0);
   1132 	pt->pt_pid = pid;
   1133 	pid_alloc_cnt++;
   1134 
   1135 	return pid;
   1136 }
   1137 
   1138 pid_t
   1139 proc_alloc_pid(struct proc *p)
   1140 {
   1141 	pid_t pid;
   1142 
   1143 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
   1144 	KASSERT(p->p_stat == SIDL);
   1145 
   1146 	mutex_enter(&proc_lock);
   1147 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
   1148 	if (pid != -1)
   1149 		p->p_pid = pid;
   1150 	mutex_exit(&proc_lock);
   1151 
   1152 	return pid;
   1153 }
   1154 
   1155 pid_t
   1156 proc_alloc_lwpid(struct proc *p, struct lwp *l)
   1157 {
   1158 	struct pid_table *pt;
   1159 	pid_t pid;
   1160 
   1161 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
   1162 	KASSERT(l->l_proc == p);
   1163 	KASSERT(l->l_stat == LSIDL);
   1164 
   1165 	/*
   1166 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
   1167 	 * is globally visible before the LWP becomes visible via the
   1168 	 * pid_table.
   1169 	 */
   1170 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1171 	membar_producer();
   1172 #endif
   1173 
   1174 	/*
   1175 	 * If the slot for p->p_pid currently points to the proc,
   1176 	 * then we should usurp this ID for the LWP.  This happens
   1177 	 * at least once per process (for the first LWP), and can
   1178 	 * happen again if the first LWP for a process exits and
   1179 	 * before the process creates another.
   1180 	 */
   1181 	mutex_enter(&proc_lock);
   1182 	pid = p->p_pid;
   1183 	pt = &pid_table[pid & pid_tbl_mask];
   1184 	KASSERT(pt->pt_pid == pid);
   1185 	if (PT_IS_PROC(pt->pt_slot)) {
   1186 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
   1187 		l->l_lid = pid;
   1188 		pt->pt_slot = PT_SET_LWP(l);
   1189 	} else {
   1190 		/* Need to allocate a new slot. */
   1191 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
   1192 		if (pid != -1)
   1193 			l->l_lid = pid;
   1194 	}
   1195 	mutex_exit(&proc_lock);
   1196 
   1197 	return pid;
   1198 }
   1199 
   1200 static void __noinline
   1201 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
   1202 {
   1203 	struct pid_table *pt;
   1204 
   1205 	KASSERT(mutex_owned(&proc_lock));
   1206 
   1207 	pt = &pid_table[pid & pid_tbl_mask];
   1208 
   1209 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
   1210 	KASSERT(pt->pt_pid == pid);
   1211 
   1212 	/* save pid use count in slot */
   1213 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
   1214 	pt->pt_pid = 0;
   1215 
   1216 	if (pt->pt_pgrp == NULL) {
   1217 		/* link last freed entry onto ours */
   1218 		pid &= pid_tbl_mask;
   1219 		pt = &pid_table[last_free_pt];
   1220 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
   1221 		pt->pt_pid = 0;
   1222 		last_free_pt = pid;
   1223 		pid_alloc_cnt--;
   1224 	}
   1225 }
   1226 
   1227 /*
   1228  * Free a process id - called from proc_free (in kern_exit.c)
   1229  *
   1230  * Called with the proc_lock held.
   1231  */
   1232 void
   1233 proc_free_pid(pid_t pid)
   1234 {
   1235 
   1236 	KASSERT(mutex_owned(&proc_lock));
   1237 	proc_free_pid_internal(pid, PT_F_PROC);
   1238 }
   1239 
   1240 /*
   1241  * Free a process id used by an LWP.  If this was the process's
   1242  * first LWP, we convert the slot to point to the process; the
   1243  * entry will get cleaned up later when the process finishes exiting.
   1244  *
   1245  * If not, then it's the same as proc_free_pid().
   1246  */
   1247 void
   1248 proc_free_lwpid(struct proc *p, pid_t pid)
   1249 {
   1250 
   1251 	KASSERT(mutex_owned(&proc_lock));
   1252 
   1253 	if (__predict_true(p->p_pid == pid)) {
   1254 		struct pid_table *pt;
   1255 
   1256 		pt = &pid_table[pid & pid_tbl_mask];
   1257 
   1258 		KASSERT(pt->pt_pid == pid);
   1259 		KASSERT(PT_IS_LWP(pt->pt_slot));
   1260 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
   1261 
   1262 		pt->pt_slot = PT_SET_PROC(p);
   1263 		return;
   1264 	}
   1265 	proc_free_pid_internal(pid, PT_F_LWP);
   1266 }
   1267 
   1268 void
   1269 proc_free_mem(struct proc *p)
   1270 {
   1271 
   1272 	kdtrace_proc_dtor(NULL, p);
   1273 	pool_cache_put(proc_cache, p);
   1274 }
   1275 
   1276 /*
   1277  * proc_enterpgrp: move p to a new or existing process group (and session).
   1278  *
   1279  * If we are creating a new pgrp, the pgid should equal
   1280  * the calling process' pid.
   1281  * If is only valid to enter a process group that is in the session
   1282  * of the process.
   1283  * Also mksess should only be set if we are creating a process group
   1284  *
   1285  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
   1286  */
   1287 int
   1288 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
   1289 {
   1290 	struct pgrp *new_pgrp, *pgrp;
   1291 	struct session *sess;
   1292 	struct proc *p;
   1293 	int rval;
   1294 	pid_t pg_id = NO_PGID;
   1295 
   1296 	/* Allocate data areas we might need before doing any validity checks */
   1297 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
   1298 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
   1299 
   1300 	mutex_enter(&proc_lock);
   1301 	rval = EPERM;	/* most common error (to save typing) */
   1302 
   1303 	/* Check pgrp exists or can be created */
   1304 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
   1305 	if (pgrp != NULL && pgrp->pg_id != pgid)
   1306 		goto done;
   1307 
   1308 	/* Can only set another process under restricted circumstances. */
   1309 	if (pid != curp->p_pid) {
   1310 		/* Must exist and be one of our children... */
   1311 		p = proc_find_internal(pid, false);
   1312 		if (p == NULL || !p_inferior(p, curp)) {
   1313 			rval = ESRCH;
   1314 			goto done;
   1315 		}
   1316 		/* ... in the same session... */
   1317 		if (sess != NULL || p->p_session != curp->p_session)
   1318 			goto done;
   1319 		/* ... existing pgid must be in same session ... */
   1320 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
   1321 			goto done;
   1322 		/* ... and not done an exec. */
   1323 		if (p->p_flag & PK_EXEC) {
   1324 			rval = EACCES;
   1325 			goto done;
   1326 		}
   1327 	} else {
   1328 		/* ... setsid() cannot re-enter a pgrp */
   1329 		if (mksess && (curp->p_pgid == curp->p_pid ||
   1330 		    pgrp_find(curp->p_pid)))
   1331 			goto done;
   1332 		p = curp;
   1333 	}
   1334 
   1335 	/* Changing the process group/session of a session
   1336 	   leader is definitely off limits. */
   1337 	if (SESS_LEADER(p)) {
   1338 		if (sess == NULL && p->p_pgrp == pgrp)
   1339 			/* unless it's a definite noop */
   1340 			rval = 0;
   1341 		goto done;
   1342 	}
   1343 
   1344 	/* Can only create a process group with id of process */
   1345 	if (pgrp == NULL && pgid != pid)
   1346 		goto done;
   1347 
   1348 	/* Can only create a session if creating pgrp */
   1349 	if (sess != NULL && pgrp != NULL)
   1350 		goto done;
   1351 
   1352 	/* Check we allocated memory for a pgrp... */
   1353 	if (pgrp == NULL && new_pgrp == NULL)
   1354 		goto done;
   1355 
   1356 	/* Don't attach to 'zombie' pgrp */
   1357 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
   1358 		goto done;
   1359 
   1360 	/* Expect to succeed now */
   1361 	rval = 0;
   1362 
   1363 	if (pgrp == p->p_pgrp)
   1364 		/* nothing to do */
   1365 		goto done;
   1366 
   1367 	/* Ok all setup, link up required structures */
   1368 
   1369 	if (pgrp == NULL) {
   1370 		pgrp = new_pgrp;
   1371 		new_pgrp = NULL;
   1372 		if (sess != NULL) {
   1373 			sess->s_sid = p->p_pid;
   1374 			sess->s_leader = p;
   1375 			sess->s_count = 1;
   1376 			sess->s_ttyvp = NULL;
   1377 			sess->s_ttyp = NULL;
   1378 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
   1379 			memcpy(sess->s_login, p->p_session->s_login,
   1380 			    sizeof(sess->s_login));
   1381 			p->p_lflag &= ~PL_CONTROLT;
   1382 		} else {
   1383 			sess = p->p_pgrp->pg_session;
   1384 			proc_sesshold(sess);
   1385 		}
   1386 		pgrp->pg_session = sess;
   1387 		sess = NULL;
   1388 
   1389 		pgrp->pg_id = pgid;
   1390 		LIST_INIT(&pgrp->pg_members);
   1391 #ifdef DIAGNOSTIC
   1392 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
   1393 			panic("enterpgrp: pgrp table slot in use");
   1394 		if (__predict_false(mksess && p != curp))
   1395 			panic("enterpgrp: mksession and p != curproc");
   1396 #endif
   1397 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
   1398 		pgrp->pg_jobc = 0;
   1399 	}
   1400 
   1401 	/*
   1402 	 * Adjust eligibility of affected pgrps to participate in job control.
   1403 	 * Increment eligibility counts before decrementing, otherwise we
   1404 	 * could reach 0 spuriously during the first call.
   1405 	 */
   1406 	fixjobc(p, pgrp, 1);
   1407 	fixjobc(p, p->p_pgrp, 0);
   1408 
   1409 	/* Interlock with ttread(). */
   1410 	mutex_spin_enter(&tty_lock);
   1411 
   1412 	/* Move process to requested group. */
   1413 	LIST_REMOVE(p, p_pglist);
   1414 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
   1415 		/* defer delete until we've dumped the lock */
   1416 		pg_id = p->p_pgrp->pg_id;
   1417 	p->p_pgrp = pgrp;
   1418 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
   1419 
   1420 	/* Done with the swap; we can release the tty mutex. */
   1421 	mutex_spin_exit(&tty_lock);
   1422 
   1423     done:
   1424 	if (pg_id != NO_PGID) {
   1425 		/* Releases proc_lock. */
   1426 		pg_delete(pg_id);
   1427 	} else {
   1428 		mutex_exit(&proc_lock);
   1429 	}
   1430 	if (sess != NULL)
   1431 		kmem_free(sess, sizeof(*sess));
   1432 	if (new_pgrp != NULL)
   1433 		kmem_free(new_pgrp, sizeof(*new_pgrp));
   1434 #ifdef DEBUG_PGRP
   1435 	if (__predict_false(rval))
   1436 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
   1437 			pid, pgid, mksess, curp->p_pid, rval);
   1438 #endif
   1439 	return rval;
   1440 }
   1441 
   1442 /*
   1443  * proc_leavepgrp: remove a process from its process group.
   1444  *  => must be called with the proc_lock held, which will be released;
   1445  */
   1446 void
   1447 proc_leavepgrp(struct proc *p)
   1448 {
   1449 	struct pgrp *pgrp;
   1450 
   1451 	KASSERT(mutex_owned(&proc_lock));
   1452 
   1453 	/* Interlock with ttread() */
   1454 	mutex_spin_enter(&tty_lock);
   1455 	pgrp = p->p_pgrp;
   1456 	LIST_REMOVE(p, p_pglist);
   1457 	p->p_pgrp = NULL;
   1458 	mutex_spin_exit(&tty_lock);
   1459 
   1460 	if (LIST_EMPTY(&pgrp->pg_members)) {
   1461 		/* Releases proc_lock. */
   1462 		pg_delete(pgrp->pg_id);
   1463 	} else {
   1464 		mutex_exit(&proc_lock);
   1465 	}
   1466 }
   1467 
   1468 /*
   1469  * pg_remove: remove a process group from the table.
   1470  *  => must be called with the proc_lock held;
   1471  *  => returns process group to free;
   1472  */
   1473 static struct pgrp *
   1474 pg_remove(pid_t pg_id)
   1475 {
   1476 	struct pgrp *pgrp;
   1477 	struct pid_table *pt;
   1478 
   1479 	KASSERT(mutex_owned(&proc_lock));
   1480 
   1481 	pt = &pid_table[pg_id & pid_tbl_mask];
   1482 	pgrp = pt->pt_pgrp;
   1483 
   1484 	KASSERT(pgrp != NULL);
   1485 	KASSERT(pgrp->pg_id == pg_id);
   1486 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
   1487 
   1488 	pt->pt_pgrp = NULL;
   1489 
   1490 	if (!PT_VALID(pt->pt_slot)) {
   1491 		/* Orphaned pgrp, put slot onto free list. */
   1492 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
   1493 		pg_id &= pid_tbl_mask;
   1494 		pt = &pid_table[last_free_pt];
   1495 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
   1496 		KASSERT(pt->pt_pid == 0);
   1497 		last_free_pt = pg_id;
   1498 		pid_alloc_cnt--;
   1499 	}
   1500 	return pgrp;
   1501 }
   1502 
   1503 /*
   1504  * pg_delete: delete and free a process group.
   1505  *  => must be called with the proc_lock held, which will be released.
   1506  */
   1507 static void
   1508 pg_delete(pid_t pg_id)
   1509 {
   1510 	struct pgrp *pg;
   1511 	struct tty *ttyp;
   1512 	struct session *ss;
   1513 
   1514 	KASSERT(mutex_owned(&proc_lock));
   1515 
   1516 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
   1517 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
   1518 		mutex_exit(&proc_lock);
   1519 		return;
   1520 	}
   1521 
   1522 	ss = pg->pg_session;
   1523 
   1524 	/* Remove reference (if any) from tty to this process group */
   1525 	mutex_spin_enter(&tty_lock);
   1526 	ttyp = ss->s_ttyp;
   1527 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
   1528 		ttyp->t_pgrp = NULL;
   1529 		KASSERT(ttyp->t_session == ss);
   1530 	}
   1531 	mutex_spin_exit(&tty_lock);
   1532 
   1533 	/*
   1534 	 * The leading process group in a session is freed by proc_sessrele(),
   1535 	 * if last reference.  It will also release the locks.
   1536 	 */
   1537 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
   1538 	proc_sessrele(ss);
   1539 
   1540 	if (pg != NULL) {
   1541 		/* Free it, if was not done above. */
   1542 		kmem_free(pg, sizeof(struct pgrp));
   1543 	}
   1544 }
   1545 
   1546 /*
   1547  * Adjust pgrp jobc counters when specified process changes process group.
   1548  * We count the number of processes in each process group that "qualify"
   1549  * the group for terminal job control (those with a parent in a different
   1550  * process group of the same session).  If that count reaches zero, the
   1551  * process group becomes orphaned.  Check both the specified process'
   1552  * process group and that of its children.
   1553  * entering == 0 => p is leaving specified group.
   1554  * entering == 1 => p is entering specified group.
   1555  *
   1556  * Call with proc_lock held.
   1557  */
   1558 void
   1559 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1560 {
   1561 	struct pgrp *hispgrp;
   1562 	struct session *mysession = pgrp->pg_session;
   1563 	struct proc *child;
   1564 
   1565 	KASSERT(mutex_owned(&proc_lock));
   1566 
   1567 	/*
   1568 	 * Check p's parent to see whether p qualifies its own process
   1569 	 * group; if so, adjust count for p's process group.
   1570 	 */
   1571 	hispgrp = p->p_pptr->p_pgrp;
   1572 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1573 		if (entering) {
   1574 			pgrp->pg_jobc++;
   1575 			p->p_lflag &= ~PL_ORPHANPG;
   1576 		} else {
   1577 			/* KASSERT(pgrp->pg_jobc > 0); */
   1578 			if (--pgrp->pg_jobc == 0)
   1579 				orphanpg(pgrp);
   1580 		}
   1581 	}
   1582 
   1583 	/*
   1584 	 * Check this process' children to see whether they qualify
   1585 	 * their process groups; if so, adjust counts for children's
   1586 	 * process groups.
   1587 	 */
   1588 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1589 		hispgrp = child->p_pgrp;
   1590 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1591 		    !P_ZOMBIE(child)) {
   1592 			if (entering) {
   1593 				child->p_lflag &= ~PL_ORPHANPG;
   1594 				hispgrp->pg_jobc++;
   1595 			} else {
   1596 				KASSERT(hispgrp->pg_jobc > 0);
   1597 				if (--hispgrp->pg_jobc == 0)
   1598 					orphanpg(hispgrp);
   1599 			}
   1600 		}
   1601 	}
   1602 }
   1603 
   1604 /*
   1605  * A process group has become orphaned;
   1606  * if there are any stopped processes in the group,
   1607  * hang-up all process in that group.
   1608  *
   1609  * Call with proc_lock held.
   1610  */
   1611 static void
   1612 orphanpg(struct pgrp *pg)
   1613 {
   1614 	struct proc *p;
   1615 
   1616 	KASSERT(mutex_owned(&proc_lock));
   1617 
   1618 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1619 		if (p->p_stat == SSTOP) {
   1620 			p->p_lflag |= PL_ORPHANPG;
   1621 			psignal(p, SIGHUP);
   1622 			psignal(p, SIGCONT);
   1623 		}
   1624 	}
   1625 }
   1626 
   1627 #ifdef DDB
   1628 #include <ddb/db_output.h>
   1629 void pidtbl_dump(void);
   1630 void
   1631 pidtbl_dump(void)
   1632 {
   1633 	struct pid_table *pt;
   1634 	struct proc *p;
   1635 	struct pgrp *pgrp;
   1636 	uintptr_t slot;
   1637 	int id;
   1638 
   1639 	db_printf("pid table %p size %x, next %x, last %x\n",
   1640 		pid_table, pid_tbl_mask+1,
   1641 		next_free_pt, last_free_pt);
   1642 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1643 		slot = pt->pt_slot;
   1644 		if (!PT_VALID(slot) && !pt->pt_pgrp)
   1645 			continue;
   1646 		if (PT_IS_LWP(slot)) {
   1647 			p = PT_GET_LWP(slot)->l_proc;
   1648 		} else if (PT_IS_PROC(slot)) {
   1649 			p = PT_GET_PROC(slot);
   1650 		} else {
   1651 			p = NULL;
   1652 		}
   1653 		db_printf("  id %x: ", id);
   1654 		if (p != NULL)
   1655 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
   1656 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
   1657 		else
   1658 			db_printf("next %x use %x\n",
   1659 				PT_NEXT(slot) & pid_tbl_mask,
   1660 				PT_NEXT(slot) & ~pid_tbl_mask);
   1661 		if ((pgrp = pt->pt_pgrp)) {
   1662 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1663 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1664 			    pgrp->pg_session->s_count,
   1665 			    pgrp->pg_session->s_login);
   1666 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1667 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1668 			    LIST_FIRST(&pgrp->pg_members));
   1669 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
   1670 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1671 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1672 			}
   1673 		}
   1674 	}
   1675 }
   1676 #endif /* DDB */
   1677 
   1678 #ifdef KSTACK_CHECK_MAGIC
   1679 
   1680 #define	KSTACK_MAGIC	0xdeadbeaf
   1681 
   1682 /* XXX should be per process basis? */
   1683 static int	kstackleftmin = KSTACK_SIZE;
   1684 static int	kstackleftthres = KSTACK_SIZE / 8;
   1685 
   1686 void
   1687 kstack_setup_magic(const struct lwp *l)
   1688 {
   1689 	uint32_t *ip;
   1690 	uint32_t const *end;
   1691 
   1692 	KASSERT(l != NULL);
   1693 	KASSERT(l != &lwp0);
   1694 
   1695 	/*
   1696 	 * fill all the stack with magic number
   1697 	 * so that later modification on it can be detected.
   1698 	 */
   1699 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1700 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1701 	for (; ip < end; ip++) {
   1702 		*ip = KSTACK_MAGIC;
   1703 	}
   1704 }
   1705 
   1706 void
   1707 kstack_check_magic(const struct lwp *l)
   1708 {
   1709 	uint32_t const *ip, *end;
   1710 	int stackleft;
   1711 
   1712 	KASSERT(l != NULL);
   1713 
   1714 	/* don't check proc0 */ /*XXX*/
   1715 	if (l == &lwp0)
   1716 		return;
   1717 
   1718 #ifdef __MACHINE_STACK_GROWS_UP
   1719 	/* stack grows upwards (eg. hppa) */
   1720 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1721 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1722 	for (ip--; ip >= end; ip--)
   1723 		if (*ip != KSTACK_MAGIC)
   1724 			break;
   1725 
   1726 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
   1727 #else /* __MACHINE_STACK_GROWS_UP */
   1728 	/* stack grows downwards (eg. i386) */
   1729 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1730 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1731 	for (; ip < end; ip++)
   1732 		if (*ip != KSTACK_MAGIC)
   1733 			break;
   1734 
   1735 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1736 #endif /* __MACHINE_STACK_GROWS_UP */
   1737 
   1738 	if (kstackleftmin > stackleft) {
   1739 		kstackleftmin = stackleft;
   1740 		if (stackleft < kstackleftthres)
   1741 			printf("warning: kernel stack left %d bytes"
   1742 			    "(pid %u:lid %u)\n", stackleft,
   1743 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1744 	}
   1745 
   1746 	if (stackleft <= 0) {
   1747 		panic("magic on the top of kernel stack changed for "
   1748 		    "pid %u, lid %u: maybe kernel stack overflow",
   1749 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1750 	}
   1751 }
   1752 #endif /* KSTACK_CHECK_MAGIC */
   1753 
   1754 int
   1755 proclist_foreach_call(struct proclist *list,
   1756     int (*callback)(struct proc *, void *arg), void *arg)
   1757 {
   1758 	struct proc marker;
   1759 	struct proc *p;
   1760 	int ret = 0;
   1761 
   1762 	marker.p_flag = PK_MARKER;
   1763 	mutex_enter(&proc_lock);
   1764 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1765 		if (p->p_flag & PK_MARKER) {
   1766 			p = LIST_NEXT(p, p_list);
   1767 			continue;
   1768 		}
   1769 		LIST_INSERT_AFTER(p, &marker, p_list);
   1770 		ret = (*callback)(p, arg);
   1771 		KASSERT(mutex_owned(&proc_lock));
   1772 		p = LIST_NEXT(&marker, p_list);
   1773 		LIST_REMOVE(&marker, p_list);
   1774 	}
   1775 	mutex_exit(&proc_lock);
   1776 
   1777 	return ret;
   1778 }
   1779 
   1780 int
   1781 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1782 {
   1783 
   1784 	/* XXXCDC: how should locking work here? */
   1785 
   1786 	/* curproc exception is for coredump. */
   1787 
   1788 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1789 	    (p->p_vmspace->vm_refcnt < 1)) {
   1790 		return EFAULT;
   1791 	}
   1792 
   1793 	uvmspace_addref(p->p_vmspace);
   1794 	*vm = p->p_vmspace;
   1795 
   1796 	return 0;
   1797 }
   1798 
   1799 /*
   1800  * Acquire a write lock on the process credential.
   1801  */
   1802 void
   1803 proc_crmod_enter(void)
   1804 {
   1805 	struct lwp *l = curlwp;
   1806 	struct proc *p = l->l_proc;
   1807 	kauth_cred_t oc;
   1808 
   1809 	/* Reset what needs to be reset in plimit. */
   1810 	if (p->p_limit->pl_corename != defcorename) {
   1811 		lim_setcorename(p, defcorename, 0);
   1812 	}
   1813 
   1814 	mutex_enter(p->p_lock);
   1815 
   1816 	/* Ensure the LWP cached credentials are up to date. */
   1817 	if ((oc = l->l_cred) != p->p_cred) {
   1818 		kauth_cred_hold(p->p_cred);
   1819 		l->l_cred = p->p_cred;
   1820 		kauth_cred_free(oc);
   1821 	}
   1822 }
   1823 
   1824 /*
   1825  * Set in a new process credential, and drop the write lock.  The credential
   1826  * must have a reference already.  Optionally, free a no-longer required
   1827  * credential.
   1828  */
   1829 void
   1830 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1831 {
   1832 	struct lwp *l = curlwp, *l2;
   1833 	struct proc *p = l->l_proc;
   1834 	kauth_cred_t oc;
   1835 
   1836 	KASSERT(mutex_owned(p->p_lock));
   1837 
   1838 	/* Is there a new credential to set in? */
   1839 	if (scred != NULL) {
   1840 		p->p_cred = scred;
   1841 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1842 			if (l2 != l)
   1843 				l2->l_prflag |= LPR_CRMOD;
   1844 		}
   1845 
   1846 		/* Ensure the LWP cached credentials are up to date. */
   1847 		if ((oc = l->l_cred) != scred) {
   1848 			kauth_cred_hold(scred);
   1849 			l->l_cred = scred;
   1850 		}
   1851 	} else
   1852 		oc = NULL;	/* XXXgcc */
   1853 
   1854 	if (sugid) {
   1855 		/*
   1856 		 * Mark process as having changed credentials, stops
   1857 		 * tracing etc.
   1858 		 */
   1859 		p->p_flag |= PK_SUGID;
   1860 	}
   1861 
   1862 	mutex_exit(p->p_lock);
   1863 
   1864 	/* If there is a credential to be released, free it now. */
   1865 	if (fcred != NULL) {
   1866 		KASSERT(scred != NULL);
   1867 		kauth_cred_free(fcred);
   1868 		if (oc != scred)
   1869 			kauth_cred_free(oc);
   1870 	}
   1871 }
   1872 
   1873 /*
   1874  * proc_specific_key_create --
   1875  *	Create a key for subsystem proc-specific data.
   1876  */
   1877 int
   1878 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1879 {
   1880 
   1881 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1882 }
   1883 
   1884 /*
   1885  * proc_specific_key_delete --
   1886  *	Delete a key for subsystem proc-specific data.
   1887  */
   1888 void
   1889 proc_specific_key_delete(specificdata_key_t key)
   1890 {
   1891 
   1892 	specificdata_key_delete(proc_specificdata_domain, key);
   1893 }
   1894 
   1895 /*
   1896  * proc_initspecific --
   1897  *	Initialize a proc's specificdata container.
   1898  */
   1899 void
   1900 proc_initspecific(struct proc *p)
   1901 {
   1902 	int error __diagused;
   1903 
   1904 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1905 	KASSERT(error == 0);
   1906 }
   1907 
   1908 /*
   1909  * proc_finispecific --
   1910  *	Finalize a proc's specificdata container.
   1911  */
   1912 void
   1913 proc_finispecific(struct proc *p)
   1914 {
   1915 
   1916 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1917 }
   1918 
   1919 /*
   1920  * proc_getspecific --
   1921  *	Return proc-specific data corresponding to the specified key.
   1922  */
   1923 void *
   1924 proc_getspecific(struct proc *p, specificdata_key_t key)
   1925 {
   1926 
   1927 	return (specificdata_getspecific(proc_specificdata_domain,
   1928 					 &p->p_specdataref, key));
   1929 }
   1930 
   1931 /*
   1932  * proc_setspecific --
   1933  *	Set proc-specific data corresponding to the specified key.
   1934  */
   1935 void
   1936 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1937 {
   1938 
   1939 	specificdata_setspecific(proc_specificdata_domain,
   1940 				 &p->p_specdataref, key, data);
   1941 }
   1942 
   1943 int
   1944 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
   1945 {
   1946 	int r = 0;
   1947 
   1948 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
   1949 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
   1950 		/*
   1951 		 * suid proc of ours or proc not ours
   1952 		 */
   1953 		r = EPERM;
   1954 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
   1955 		/*
   1956 		 * sgid proc has sgid back to us temporarily
   1957 		 */
   1958 		r = EPERM;
   1959 	} else {
   1960 		/*
   1961 		 * our rgid must be in target's group list (ie,
   1962 		 * sub-processes started by a sgid process)
   1963 		 */
   1964 		int ismember = 0;
   1965 
   1966 		if (kauth_cred_ismember_gid(cred,
   1967 		    kauth_cred_getgid(target), &ismember) != 0 ||
   1968 		    !ismember)
   1969 			r = EPERM;
   1970 	}
   1971 
   1972 	return (r);
   1973 }
   1974 
   1975 /*
   1976  * sysctl stuff
   1977  */
   1978 
   1979 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
   1980 
   1981 static const u_int sysctl_flagmap[] = {
   1982 	PK_ADVLOCK, P_ADVLOCK,
   1983 	PK_EXEC, P_EXEC,
   1984 	PK_NOCLDWAIT, P_NOCLDWAIT,
   1985 	PK_32, P_32,
   1986 	PK_CLDSIGIGN, P_CLDSIGIGN,
   1987 	PK_SUGID, P_SUGID,
   1988 	0
   1989 };
   1990 
   1991 static const u_int sysctl_sflagmap[] = {
   1992 	PS_NOCLDSTOP, P_NOCLDSTOP,
   1993 	PS_WEXIT, P_WEXIT,
   1994 	PS_STOPFORK, P_STOPFORK,
   1995 	PS_STOPEXEC, P_STOPEXEC,
   1996 	PS_STOPEXIT, P_STOPEXIT,
   1997 	0
   1998 };
   1999 
   2000 static const u_int sysctl_slflagmap[] = {
   2001 	PSL_TRACED, P_TRACED,
   2002 	PSL_CHTRACED, P_CHTRACED,
   2003 	PSL_SYSCALL, P_SYSCALL,
   2004 	0
   2005 };
   2006 
   2007 static const u_int sysctl_lflagmap[] = {
   2008 	PL_CONTROLT, P_CONTROLT,
   2009 	PL_PPWAIT, P_PPWAIT,
   2010 	0
   2011 };
   2012 
   2013 static const u_int sysctl_stflagmap[] = {
   2014 	PST_PROFIL, P_PROFIL,
   2015 	0
   2016 
   2017 };
   2018 
   2019 /* used by kern_lwp also */
   2020 const u_int sysctl_lwpflagmap[] = {
   2021 	LW_SINTR, L_SINTR,
   2022 	LW_SYSTEM, L_SYSTEM,
   2023 	0
   2024 };
   2025 
   2026 /*
   2027  * Find the most ``active'' lwp of a process and return it for ps display
   2028  * purposes
   2029  */
   2030 static struct lwp *
   2031 proc_active_lwp(struct proc *p)
   2032 {
   2033 	static const int ostat[] = {
   2034 		0,
   2035 		2,	/* LSIDL */
   2036 		6,	/* LSRUN */
   2037 		5,	/* LSSLEEP */
   2038 		4,	/* LSSTOP */
   2039 		0,	/* LSZOMB */
   2040 		1,	/* LSDEAD */
   2041 		7,	/* LSONPROC */
   2042 		3	/* LSSUSPENDED */
   2043 	};
   2044 
   2045 	struct lwp *l, *lp = NULL;
   2046 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2047 		KASSERT(l->l_stat >= 0);
   2048 		KASSERT(l->l_stat < __arraycount(ostat));
   2049 		if (lp == NULL ||
   2050 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
   2051 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
   2052 		    l->l_cpticks > lp->l_cpticks)) {
   2053 			lp = l;
   2054 			continue;
   2055 		}
   2056 	}
   2057 	return lp;
   2058 }
   2059 
   2060 static int
   2061 sysctl_doeproc(SYSCTLFN_ARGS)
   2062 {
   2063 	union {
   2064 		struct kinfo_proc kproc;
   2065 		struct kinfo_proc2 kproc2;
   2066 	} *kbuf;
   2067 	struct proc *p, *next, *marker;
   2068 	char *where, *dp;
   2069 	int type, op, arg, error;
   2070 	u_int elem_size, kelem_size, elem_count;
   2071 	size_t buflen, needed;
   2072 	bool match, zombie, mmmbrains;
   2073 	const bool allowaddr = get_expose_address(curproc);
   2074 
   2075 	if (namelen == 1 && name[0] == CTL_QUERY)
   2076 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2077 
   2078 	dp = where = oldp;
   2079 	buflen = where != NULL ? *oldlenp : 0;
   2080 	error = 0;
   2081 	needed = 0;
   2082 	type = rnode->sysctl_num;
   2083 
   2084 	if (type == KERN_PROC) {
   2085 		if (namelen == 0)
   2086 			return EINVAL;
   2087 		switch (op = name[0]) {
   2088 		case KERN_PROC_ALL:
   2089 			if (namelen != 1)
   2090 				return EINVAL;
   2091 			arg = 0;
   2092 			break;
   2093 		default:
   2094 			if (namelen != 2)
   2095 				return EINVAL;
   2096 			arg = name[1];
   2097 			break;
   2098 		}
   2099 		elem_count = 0;	/* Hush little compiler, don't you cry */
   2100 		kelem_size = elem_size = sizeof(kbuf->kproc);
   2101 	} else {
   2102 		if (namelen != 4)
   2103 			return EINVAL;
   2104 		op = name[0];
   2105 		arg = name[1];
   2106 		elem_size = name[2];
   2107 		elem_count = name[3];
   2108 		kelem_size = sizeof(kbuf->kproc2);
   2109 	}
   2110 
   2111 	sysctl_unlock();
   2112 
   2113 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
   2114 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
   2115 	marker->p_flag = PK_MARKER;
   2116 
   2117 	mutex_enter(&proc_lock);
   2118 	/*
   2119 	 * Start with zombies to prevent reporting processes twice, in case they
   2120 	 * are dying and being moved from the list of alive processes to zombies.
   2121 	 */
   2122 	mmmbrains = true;
   2123 	for (p = LIST_FIRST(&zombproc);; p = next) {
   2124 		if (p == NULL) {
   2125 			if (mmmbrains) {
   2126 				p = LIST_FIRST(&allproc);
   2127 				mmmbrains = false;
   2128 			}
   2129 			if (p == NULL)
   2130 				break;
   2131 		}
   2132 		next = LIST_NEXT(p, p_list);
   2133 		if ((p->p_flag & PK_MARKER) != 0)
   2134 			continue;
   2135 
   2136 		/*
   2137 		 * Skip embryonic processes.
   2138 		 */
   2139 		if (p->p_stat == SIDL)
   2140 			continue;
   2141 
   2142 		mutex_enter(p->p_lock);
   2143 		error = kauth_authorize_process(l->l_cred,
   2144 		    KAUTH_PROCESS_CANSEE, p,
   2145 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
   2146 		if (error != 0) {
   2147 			mutex_exit(p->p_lock);
   2148 			continue;
   2149 		}
   2150 
   2151 		/*
   2152 		 * Hande all the operations in one switch on the cost of
   2153 		 * algorithm complexity is on purpose. The win splitting this
   2154 		 * function into several similar copies makes maintenance
   2155 		 * burden, code grow and boost is negligible in practical
   2156 		 * systems.
   2157 		 */
   2158 		switch (op) {
   2159 		case KERN_PROC_PID:
   2160 			match = (p->p_pid == (pid_t)arg);
   2161 			break;
   2162 
   2163 		case KERN_PROC_PGRP:
   2164 			match = (p->p_pgrp->pg_id == (pid_t)arg);
   2165 			break;
   2166 
   2167 		case KERN_PROC_SESSION:
   2168 			match = (p->p_session->s_sid == (pid_t)arg);
   2169 			break;
   2170 
   2171 		case KERN_PROC_TTY:
   2172 			match = true;
   2173 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
   2174 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2175 				    p->p_session->s_ttyp == NULL ||
   2176 				    p->p_session->s_ttyvp != NULL) {
   2177 				    	match = false;
   2178 				}
   2179 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
   2180 			    p->p_session->s_ttyp == NULL) {
   2181 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
   2182 					match = false;
   2183 				}
   2184 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
   2185 				match = false;
   2186 			}
   2187 			break;
   2188 
   2189 		case KERN_PROC_UID:
   2190 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
   2191 			break;
   2192 
   2193 		case KERN_PROC_RUID:
   2194 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
   2195 			break;
   2196 
   2197 		case KERN_PROC_GID:
   2198 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
   2199 			break;
   2200 
   2201 		case KERN_PROC_RGID:
   2202 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
   2203 			break;
   2204 
   2205 		case KERN_PROC_ALL:
   2206 			match = true;
   2207 			/* allow everything */
   2208 			break;
   2209 
   2210 		default:
   2211 			error = EINVAL;
   2212 			mutex_exit(p->p_lock);
   2213 			goto cleanup;
   2214 		}
   2215 		if (!match) {
   2216 			mutex_exit(p->p_lock);
   2217 			continue;
   2218 		}
   2219 
   2220 		/*
   2221 		 * Grab a hold on the process.
   2222 		 */
   2223 		if (mmmbrains) {
   2224 			zombie = true;
   2225 		} else {
   2226 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
   2227 		}
   2228 		if (zombie) {
   2229 			LIST_INSERT_AFTER(p, marker, p_list);
   2230 		}
   2231 
   2232 		if (buflen >= elem_size &&
   2233 		    (type == KERN_PROC || elem_count > 0)) {
   2234 			ruspace(p);	/* Update process vm resource use */
   2235 
   2236 			if (type == KERN_PROC) {
   2237 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
   2238 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
   2239 				    allowaddr);
   2240 			} else {
   2241 				fill_kproc2(p, &kbuf->kproc2, zombie,
   2242 				    allowaddr);
   2243 				elem_count--;
   2244 			}
   2245 			mutex_exit(p->p_lock);
   2246 			mutex_exit(&proc_lock);
   2247 			/*
   2248 			 * Copy out elem_size, but not larger than kelem_size
   2249 			 */
   2250 			error = sysctl_copyout(l, kbuf, dp,
   2251 			    uimin(kelem_size, elem_size));
   2252 			mutex_enter(&proc_lock);
   2253 			if (error) {
   2254 				goto bah;
   2255 			}
   2256 			dp += elem_size;
   2257 			buflen -= elem_size;
   2258 		} else {
   2259 			mutex_exit(p->p_lock);
   2260 		}
   2261 		needed += elem_size;
   2262 
   2263 		/*
   2264 		 * Release reference to process.
   2265 		 */
   2266 	 	if (zombie) {
   2267 			next = LIST_NEXT(marker, p_list);
   2268  			LIST_REMOVE(marker, p_list);
   2269 		} else {
   2270 			rw_exit(&p->p_reflock);
   2271 			next = LIST_NEXT(p, p_list);
   2272 		}
   2273 
   2274 		/*
   2275 		 * Short-circuit break quickly!
   2276 		 */
   2277 		if (op == KERN_PROC_PID)
   2278                 	break;
   2279 	}
   2280 	mutex_exit(&proc_lock);
   2281 
   2282 	if (where != NULL) {
   2283 		*oldlenp = dp - where;
   2284 		if (needed > *oldlenp) {
   2285 			error = ENOMEM;
   2286 			goto out;
   2287 		}
   2288 	} else {
   2289 		needed += KERN_PROCSLOP;
   2290 		*oldlenp = needed;
   2291 	}
   2292 	kmem_free(kbuf, sizeof(*kbuf));
   2293 	kmem_free(marker, sizeof(*marker));
   2294 	sysctl_relock();
   2295 	return 0;
   2296  bah:
   2297  	if (zombie)
   2298  		LIST_REMOVE(marker, p_list);
   2299 	else
   2300 		rw_exit(&p->p_reflock);
   2301  cleanup:
   2302 	mutex_exit(&proc_lock);
   2303  out:
   2304 	kmem_free(kbuf, sizeof(*kbuf));
   2305 	kmem_free(marker, sizeof(*marker));
   2306 	sysctl_relock();
   2307 	return error;
   2308 }
   2309 
   2310 int
   2311 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
   2312 {
   2313 #if !defined(_RUMPKERNEL)
   2314 	int retval;
   2315 
   2316 	if (p->p_flag & PK_32) {
   2317 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
   2318 		    enosys(), retval);
   2319 		return retval;
   2320 	}
   2321 #endif /* !defined(_RUMPKERNEL) */
   2322 
   2323 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
   2324 }
   2325 
   2326 static int
   2327 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
   2328 {
   2329 	void **cookie = cookie_;
   2330 	struct lwp *l = cookie[0];
   2331 	char *dst = cookie[1];
   2332 
   2333 	return sysctl_copyout(l, src, dst + off, len);
   2334 }
   2335 
   2336 /*
   2337  * sysctl helper routine for kern.proc_args pseudo-subtree.
   2338  */
   2339 static int
   2340 sysctl_kern_proc_args(SYSCTLFN_ARGS)
   2341 {
   2342 	struct ps_strings pss;
   2343 	struct proc *p;
   2344 	pid_t pid;
   2345 	int type, error;
   2346 	void *cookie[2];
   2347 
   2348 	if (namelen == 1 && name[0] == CTL_QUERY)
   2349 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2350 
   2351 	if (newp != NULL || namelen != 2)
   2352 		return (EINVAL);
   2353 	pid = name[0];
   2354 	type = name[1];
   2355 
   2356 	switch (type) {
   2357 	case KERN_PROC_PATHNAME:
   2358 		sysctl_unlock();
   2359 		error = fill_pathname(l, pid, oldp, oldlenp);
   2360 		sysctl_relock();
   2361 		return error;
   2362 
   2363 	case KERN_PROC_CWD:
   2364 		sysctl_unlock();
   2365 		error = fill_cwd(l, pid, oldp, oldlenp);
   2366 		sysctl_relock();
   2367 		return error;
   2368 
   2369 	case KERN_PROC_ARGV:
   2370 	case KERN_PROC_NARGV:
   2371 	case KERN_PROC_ENV:
   2372 	case KERN_PROC_NENV:
   2373 		/* ok */
   2374 		break;
   2375 	default:
   2376 		return (EINVAL);
   2377 	}
   2378 
   2379 	sysctl_unlock();
   2380 
   2381 	/* check pid */
   2382 	mutex_enter(&proc_lock);
   2383 	if ((p = proc_find(pid)) == NULL) {
   2384 		error = EINVAL;
   2385 		goto out_locked;
   2386 	}
   2387 	mutex_enter(p->p_lock);
   2388 
   2389 	/* Check permission. */
   2390 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
   2391 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2392 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
   2393 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
   2394 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
   2395 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
   2396 	else
   2397 		error = EINVAL; /* XXXGCC */
   2398 	if (error) {
   2399 		mutex_exit(p->p_lock);
   2400 		goto out_locked;
   2401 	}
   2402 
   2403 	if (oldp == NULL) {
   2404 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
   2405 			*oldlenp = sizeof (int);
   2406 		else
   2407 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
   2408 		error = 0;
   2409 		mutex_exit(p->p_lock);
   2410 		goto out_locked;
   2411 	}
   2412 
   2413 	/*
   2414 	 * Zombies don't have a stack, so we can't read their psstrings.
   2415 	 * System processes also don't have a user stack.
   2416 	 */
   2417 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
   2418 		error = EINVAL;
   2419 		mutex_exit(p->p_lock);
   2420 		goto out_locked;
   2421 	}
   2422 
   2423 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
   2424 	mutex_exit(p->p_lock);
   2425 	if (error) {
   2426 		goto out_locked;
   2427 	}
   2428 	mutex_exit(&proc_lock);
   2429 
   2430 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
   2431 		int value;
   2432 		if ((error = copyin_psstrings(p, &pss)) == 0) {
   2433 			if (type == KERN_PROC_NARGV)
   2434 				value = pss.ps_nargvstr;
   2435 			else
   2436 				value = pss.ps_nenvstr;
   2437 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
   2438 			*oldlenp = sizeof(value);
   2439 		}
   2440 	} else {
   2441 		cookie[0] = l;
   2442 		cookie[1] = oldp;
   2443 		error = copy_procargs(p, type, oldlenp,
   2444 		    copy_procargs_sysctl_cb, cookie);
   2445 	}
   2446 	rw_exit(&p->p_reflock);
   2447 	sysctl_relock();
   2448 	return error;
   2449 
   2450 out_locked:
   2451 	mutex_exit(&proc_lock);
   2452 	sysctl_relock();
   2453 	return error;
   2454 }
   2455 
   2456 int
   2457 copy_procargs(struct proc *p, int oid, size_t *limit,
   2458     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
   2459 {
   2460 	struct ps_strings pss;
   2461 	size_t len, i, loaded, entry_len;
   2462 	struct uio auio;
   2463 	struct iovec aiov;
   2464 	int error, argvlen;
   2465 	char *arg;
   2466 	char **argv;
   2467 	vaddr_t user_argv;
   2468 	struct vmspace *vmspace;
   2469 
   2470 	/*
   2471 	 * Allocate a temporary buffer to hold the argument vector and
   2472 	 * the arguments themselve.
   2473 	 */
   2474 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2475 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
   2476 
   2477 	/*
   2478 	 * Lock the process down in memory.
   2479 	 */
   2480 	vmspace = p->p_vmspace;
   2481 	uvmspace_addref(vmspace);
   2482 
   2483 	/*
   2484 	 * Read in the ps_strings structure.
   2485 	 */
   2486 	if ((error = copyin_psstrings(p, &pss)) != 0)
   2487 		goto done;
   2488 
   2489 	/*
   2490 	 * Now read the address of the argument vector.
   2491 	 */
   2492 	switch (oid) {
   2493 	case KERN_PROC_ARGV:
   2494 		user_argv = (uintptr_t)pss.ps_argvstr;
   2495 		argvlen = pss.ps_nargvstr;
   2496 		break;
   2497 	case KERN_PROC_ENV:
   2498 		user_argv = (uintptr_t)pss.ps_envstr;
   2499 		argvlen = pss.ps_nenvstr;
   2500 		break;
   2501 	default:
   2502 		error = EINVAL;
   2503 		goto done;
   2504 	}
   2505 
   2506 	if (argvlen < 0) {
   2507 		error = EIO;
   2508 		goto done;
   2509 	}
   2510 
   2511 
   2512 	/*
   2513 	 * Now copy each string.
   2514 	 */
   2515 	len = 0; /* bytes written to user buffer */
   2516 	loaded = 0; /* bytes from argv already processed */
   2517 	i = 0; /* To make compiler happy */
   2518 	entry_len = PROC_PTRSZ(p);
   2519 
   2520 	for (; argvlen; --argvlen) {
   2521 		int finished = 0;
   2522 		vaddr_t base;
   2523 		size_t xlen;
   2524 		int j;
   2525 
   2526 		if (loaded == 0) {
   2527 			size_t rem = entry_len * argvlen;
   2528 			loaded = MIN(rem, PAGE_SIZE);
   2529 			error = copyin_vmspace(vmspace,
   2530 			    (const void *)user_argv, argv, loaded);
   2531 			if (error)
   2532 				break;
   2533 			user_argv += loaded;
   2534 			i = 0;
   2535 		}
   2536 
   2537 #if !defined(_RUMPKERNEL)
   2538 		if (p->p_flag & PK_32)
   2539 			MODULE_HOOK_CALL(kern_proc32_base_hook,
   2540 			    (argv, i++), 0, base);
   2541 		else
   2542 #endif /* !defined(_RUMPKERNEL) */
   2543 			base = (vaddr_t)argv[i++];
   2544 		loaded -= entry_len;
   2545 
   2546 		/*
   2547 		 * The program has messed around with its arguments,
   2548 		 * possibly deleting some, and replacing them with
   2549 		 * NULL's. Treat this as the last argument and not
   2550 		 * a failure.
   2551 		 */
   2552 		if (base == 0)
   2553 			break;
   2554 
   2555 		while (!finished) {
   2556 			xlen = PAGE_SIZE - (base & PAGE_MASK);
   2557 
   2558 			aiov.iov_base = arg;
   2559 			aiov.iov_len = PAGE_SIZE;
   2560 			auio.uio_iov = &aiov;
   2561 			auio.uio_iovcnt = 1;
   2562 			auio.uio_offset = base;
   2563 			auio.uio_resid = xlen;
   2564 			auio.uio_rw = UIO_READ;
   2565 			UIO_SETUP_SYSSPACE(&auio);
   2566 			error = uvm_io(&vmspace->vm_map, &auio, 0);
   2567 			if (error)
   2568 				goto done;
   2569 
   2570 			/* Look for the end of the string */
   2571 			for (j = 0; j < xlen; j++) {
   2572 				if (arg[j] == '\0') {
   2573 					xlen = j + 1;
   2574 					finished = 1;
   2575 					break;
   2576 				}
   2577 			}
   2578 
   2579 			/* Check for user buffer overflow */
   2580 			if (len + xlen > *limit) {
   2581 				finished = 1;
   2582 				if (len > *limit)
   2583 					xlen = 0;
   2584 				else
   2585 					xlen = *limit - len;
   2586 			}
   2587 
   2588 			/* Copyout the page */
   2589 			error = (*cb)(cookie, arg, len, xlen);
   2590 			if (error)
   2591 				goto done;
   2592 
   2593 			len += xlen;
   2594 			base += xlen;
   2595 		}
   2596 	}
   2597 	*limit = len;
   2598 
   2599 done:
   2600 	kmem_free(argv, PAGE_SIZE);
   2601 	kmem_free(arg, PAGE_SIZE);
   2602 	uvmspace_free(vmspace);
   2603 	return error;
   2604 }
   2605 
   2606 /*
   2607  * Fill in a proc structure for the specified process.
   2608  */
   2609 static void
   2610 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
   2611 {
   2612 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
   2613 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
   2614 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
   2615 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
   2616 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
   2617 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
   2618 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
   2619 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
   2620 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
   2621 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
   2622 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
   2623 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
   2624 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
   2625 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
   2626 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
   2627 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
   2628 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
   2629 	p->p_exitsig = psrc->p_exitsig;
   2630 	p->p_flag = psrc->p_flag;
   2631 	p->p_sflag = psrc->p_sflag;
   2632 	p->p_slflag = psrc->p_slflag;
   2633 	p->p_lflag = psrc->p_lflag;
   2634 	p->p_stflag = psrc->p_stflag;
   2635 	p->p_stat = psrc->p_stat;
   2636 	p->p_trace_enabled = psrc->p_trace_enabled;
   2637 	p->p_pid = psrc->p_pid;
   2638 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
   2639 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
   2640 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
   2641 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
   2642 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
   2643 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
   2644 	p->p_nlwps = psrc->p_nlwps;
   2645 	p->p_nzlwps = psrc->p_nzlwps;
   2646 	p->p_nrlwps = psrc->p_nrlwps;
   2647 	p->p_nlwpwait = psrc->p_nlwpwait;
   2648 	p->p_ndlwps = psrc->p_ndlwps;
   2649 	p->p_nstopchild = psrc->p_nstopchild;
   2650 	p->p_waited = psrc->p_waited;
   2651 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
   2652 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
   2653 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
   2654 	p->p_estcpu = psrc->p_estcpu;
   2655 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
   2656 	p->p_forktime = psrc->p_forktime;
   2657 	p->p_pctcpu = psrc->p_pctcpu;
   2658 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
   2659 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
   2660 	p->p_rtime = psrc->p_rtime;
   2661 	p->p_uticks = psrc->p_uticks;
   2662 	p->p_sticks = psrc->p_sticks;
   2663 	p->p_iticks = psrc->p_iticks;
   2664 	p->p_xutime = psrc->p_xutime;
   2665 	p->p_xstime = psrc->p_xstime;
   2666 	p->p_traceflag = psrc->p_traceflag;
   2667 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
   2668 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
   2669 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
   2670 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
   2671 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
   2672 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
   2673 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
   2674 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
   2675 	    allowaddr);
   2676 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
   2677 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
   2678 	p->p_ppid = psrc->p_ppid;
   2679 	p->p_oppid = psrc->p_oppid;
   2680 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
   2681 	p->p_sigctx = psrc->p_sigctx;
   2682 	p->p_nice = psrc->p_nice;
   2683 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
   2684 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
   2685 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
   2686 	p->p_pax = psrc->p_pax;
   2687 	p->p_xexit = psrc->p_xexit;
   2688 	p->p_xsig = psrc->p_xsig;
   2689 	p->p_acflag = psrc->p_acflag;
   2690 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
   2691 	p->p_stackbase = psrc->p_stackbase;
   2692 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
   2693 }
   2694 
   2695 /*
   2696  * Fill in an eproc structure for the specified process.
   2697  */
   2698 void
   2699 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
   2700 {
   2701 	struct tty *tp;
   2702 	struct lwp *l;
   2703 
   2704 	KASSERT(mutex_owned(&proc_lock));
   2705 	KASSERT(mutex_owned(p->p_lock));
   2706 
   2707 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
   2708 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
   2709 	if (p->p_cred) {
   2710 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
   2711 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
   2712 	}
   2713 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2714 		struct vmspace *vm = p->p_vmspace;
   2715 
   2716 		ep->e_vm.vm_rssize = vm_resident_count(vm);
   2717 		ep->e_vm.vm_tsize = vm->vm_tsize;
   2718 		ep->e_vm.vm_dsize = vm->vm_dsize;
   2719 		ep->e_vm.vm_ssize = vm->vm_ssize;
   2720 		ep->e_vm.vm_map.size = vm->vm_map.size;
   2721 
   2722 		/* Pick the primary (first) LWP */
   2723 		l = proc_active_lwp(p);
   2724 		KASSERT(l != NULL);
   2725 		lwp_lock(l);
   2726 		if (l->l_wchan)
   2727 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
   2728 		lwp_unlock(l);
   2729 	}
   2730 	ep->e_ppid = p->p_ppid;
   2731 	if (p->p_pgrp && p->p_session) {
   2732 		ep->e_pgid = p->p_pgrp->pg_id;
   2733 		ep->e_jobc = p->p_pgrp->pg_jobc;
   2734 		ep->e_sid = p->p_session->s_sid;
   2735 		if ((p->p_lflag & PL_CONTROLT) &&
   2736 		    (tp = p->p_session->s_ttyp)) {
   2737 			ep->e_tdev = tp->t_dev;
   2738 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2739 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
   2740 		} else
   2741 			ep->e_tdev = (uint32_t)NODEV;
   2742 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
   2743 		if (SESS_LEADER(p))
   2744 			ep->e_flag |= EPROC_SLEADER;
   2745 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
   2746 	}
   2747 	ep->e_xsize = ep->e_xrssize = 0;
   2748 	ep->e_xccount = ep->e_xswrss = 0;
   2749 }
   2750 
   2751 /*
   2752  * Fill in a kinfo_proc2 structure for the specified process.
   2753  */
   2754 void
   2755 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
   2756 {
   2757 	struct tty *tp;
   2758 	struct lwp *l, *l2;
   2759 	struct timeval ut, st, rt;
   2760 	sigset_t ss1, ss2;
   2761 	struct rusage ru;
   2762 	struct vmspace *vm;
   2763 
   2764 	KASSERT(mutex_owned(&proc_lock));
   2765 	KASSERT(mutex_owned(p->p_lock));
   2766 
   2767 	sigemptyset(&ss1);
   2768 	sigemptyset(&ss2);
   2769 
   2770 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
   2771 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
   2772 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
   2773 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
   2774 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
   2775 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
   2776 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
   2777 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
   2778 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
   2779 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
   2780 	ki->p_eflag = 0;
   2781 	ki->p_exitsig = p->p_exitsig;
   2782 	ki->p_flag = L_INMEM;   /* Process never swapped out */
   2783 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
   2784 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
   2785 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
   2786 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
   2787 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
   2788 	ki->p_pid = p->p_pid;
   2789 	ki->p_ppid = p->p_ppid;
   2790 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
   2791 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
   2792 	ki->p_gid = kauth_cred_getegid(p->p_cred);
   2793 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
   2794 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
   2795 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
   2796 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
   2797 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
   2798 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
   2799 	    UIO_SYSSPACE);
   2800 
   2801 	ki->p_uticks = p->p_uticks;
   2802 	ki->p_sticks = p->p_sticks;
   2803 	ki->p_iticks = p->p_iticks;
   2804 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
   2805 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
   2806 	ki->p_traceflag = p->p_traceflag;
   2807 
   2808 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
   2809 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
   2810 
   2811 	ki->p_cpticks = 0;
   2812 	ki->p_pctcpu = p->p_pctcpu;
   2813 	ki->p_estcpu = 0;
   2814 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
   2815 	ki->p_realstat = p->p_stat;
   2816 	ki->p_nice = p->p_nice;
   2817 	ki->p_xstat = P_WAITSTATUS(p);
   2818 	ki->p_acflag = p->p_acflag;
   2819 
   2820 	strncpy(ki->p_comm, p->p_comm,
   2821 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
   2822 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
   2823 
   2824 	ki->p_nlwps = p->p_nlwps;
   2825 	ki->p_realflag = ki->p_flag;
   2826 
   2827 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
   2828 		vm = p->p_vmspace;
   2829 		ki->p_vm_rssize = vm_resident_count(vm);
   2830 		ki->p_vm_tsize = vm->vm_tsize;
   2831 		ki->p_vm_dsize = vm->vm_dsize;
   2832 		ki->p_vm_ssize = vm->vm_ssize;
   2833 		ki->p_vm_vsize = atop(vm->vm_map.size);
   2834 		/*
   2835 		 * Since the stack is initially mapped mostly with
   2836 		 * PROT_NONE and grown as needed, adjust the "mapped size"
   2837 		 * to skip the unused stack portion.
   2838 		 */
   2839 		ki->p_vm_msize =
   2840 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
   2841 
   2842 		/* Pick the primary (first) LWP */
   2843 		l = proc_active_lwp(p);
   2844 		KASSERT(l != NULL);
   2845 		lwp_lock(l);
   2846 		ki->p_nrlwps = p->p_nrlwps;
   2847 		ki->p_forw = 0;
   2848 		ki->p_back = 0;
   2849 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
   2850 		ki->p_stat = l->l_stat;
   2851 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
   2852 		ki->p_swtime = l->l_swtime;
   2853 		ki->p_slptime = l->l_slptime;
   2854 		if (l->l_stat == LSONPROC)
   2855 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
   2856 		else
   2857 			ki->p_schedflags = 0;
   2858 		ki->p_priority = lwp_eprio(l);
   2859 		ki->p_usrpri = l->l_priority;
   2860 		if (l->l_wchan)
   2861 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
   2862 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
   2863 		ki->p_cpuid = cpu_index(l->l_cpu);
   2864 		lwp_unlock(l);
   2865 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2866 			/* This is hardly correct, but... */
   2867 			sigplusset(&l->l_sigpend.sp_set, &ss1);
   2868 			sigplusset(&l->l_sigmask, &ss2);
   2869 			ki->p_cpticks += l->l_cpticks;
   2870 			ki->p_pctcpu += l->l_pctcpu;
   2871 			ki->p_estcpu += l->l_estcpu;
   2872 		}
   2873 	}
   2874 	sigplusset(&p->p_sigpend.sp_set, &ss1);
   2875 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
   2876 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
   2877 
   2878 	if (p->p_session != NULL) {
   2879 		ki->p_sid = p->p_session->s_sid;
   2880 		ki->p__pgid = p->p_pgrp->pg_id;
   2881 		if (p->p_session->s_ttyvp)
   2882 			ki->p_eflag |= EPROC_CTTY;
   2883 		if (SESS_LEADER(p))
   2884 			ki->p_eflag |= EPROC_SLEADER;
   2885 		strncpy(ki->p_login, p->p_session->s_login,
   2886 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
   2887 		ki->p_jobc = p->p_pgrp->pg_jobc;
   2888 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
   2889 			ki->p_tdev = tp->t_dev;
   2890 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
   2891 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
   2892 			    allowaddr);
   2893 		} else {
   2894 			ki->p_tdev = (int32_t)NODEV;
   2895 		}
   2896 	}
   2897 
   2898 	if (!P_ZOMBIE(p) && !zombie) {
   2899 		ki->p_uvalid = 1;
   2900 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
   2901 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
   2902 
   2903 		calcru(p, &ut, &st, NULL, &rt);
   2904 		ki->p_rtime_sec = rt.tv_sec;
   2905 		ki->p_rtime_usec = rt.tv_usec;
   2906 		ki->p_uutime_sec = ut.tv_sec;
   2907 		ki->p_uutime_usec = ut.tv_usec;
   2908 		ki->p_ustime_sec = st.tv_sec;
   2909 		ki->p_ustime_usec = st.tv_usec;
   2910 
   2911 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
   2912 		ki->p_uru_nvcsw = 0;
   2913 		ki->p_uru_nivcsw = 0;
   2914 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   2915 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
   2916 			ki->p_uru_nivcsw += l2->l_nivcsw;
   2917 			ruadd(&ru, &l2->l_ru);
   2918 		}
   2919 		ki->p_uru_maxrss = ru.ru_maxrss;
   2920 		ki->p_uru_ixrss = ru.ru_ixrss;
   2921 		ki->p_uru_idrss = ru.ru_idrss;
   2922 		ki->p_uru_isrss = ru.ru_isrss;
   2923 		ki->p_uru_minflt = ru.ru_minflt;
   2924 		ki->p_uru_majflt = ru.ru_majflt;
   2925 		ki->p_uru_nswap = ru.ru_nswap;
   2926 		ki->p_uru_inblock = ru.ru_inblock;
   2927 		ki->p_uru_oublock = ru.ru_oublock;
   2928 		ki->p_uru_msgsnd = ru.ru_msgsnd;
   2929 		ki->p_uru_msgrcv = ru.ru_msgrcv;
   2930 		ki->p_uru_nsignals = ru.ru_nsignals;
   2931 
   2932 		timeradd(&p->p_stats->p_cru.ru_utime,
   2933 			 &p->p_stats->p_cru.ru_stime, &ut);
   2934 		ki->p_uctime_sec = ut.tv_sec;
   2935 		ki->p_uctime_usec = ut.tv_usec;
   2936 	}
   2937 }
   2938 
   2939 
   2940 int
   2941 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
   2942 {
   2943 	int error;
   2944 
   2945 	mutex_enter(&proc_lock);
   2946 	if (pid == -1)
   2947 		*p = l->l_proc;
   2948 	else
   2949 		*p = proc_find(pid);
   2950 
   2951 	if (*p == NULL) {
   2952 		if (pid != -1)
   2953 			mutex_exit(&proc_lock);
   2954 		return ESRCH;
   2955 	}
   2956 	if (pid != -1)
   2957 		mutex_enter((*p)->p_lock);
   2958 	mutex_exit(&proc_lock);
   2959 
   2960 	error = kauth_authorize_process(l->l_cred,
   2961 	    KAUTH_PROCESS_CANSEE, *p,
   2962 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   2963 	if (error) {
   2964 		if (pid != -1)
   2965 			mutex_exit((*p)->p_lock);
   2966 	}
   2967 	return error;
   2968 }
   2969 
   2970 static int
   2971 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   2972 {
   2973 	int error;
   2974 	struct proc *p;
   2975 
   2976 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   2977 		return error;
   2978 
   2979 	if (p->p_path == NULL) {
   2980 		if (pid != -1)
   2981 			mutex_exit(p->p_lock);
   2982 		return ENOENT;
   2983 	}
   2984 
   2985 	size_t len = strlen(p->p_path) + 1;
   2986 	if (oldp != NULL) {
   2987 		size_t copylen = uimin(len, *oldlenp);
   2988 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
   2989 		if (error == 0 && *oldlenp < len)
   2990 			error = ENOSPC;
   2991 	}
   2992 	*oldlenp = len;
   2993 	if (pid != -1)
   2994 		mutex_exit(p->p_lock);
   2995 	return error;
   2996 }
   2997 
   2998 static int
   2999 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
   3000 {
   3001 	int error;
   3002 	struct proc *p;
   3003 	char *path;
   3004 	char *bp, *bend;
   3005 	struct cwdinfo *cwdi;
   3006 	struct vnode *vp;
   3007 	size_t len, lenused;
   3008 
   3009 	if ((error = proc_find_locked(l, &p, pid)) != 0)
   3010 		return error;
   3011 
   3012 	len = MAXPATHLEN * 4;
   3013 
   3014 	path = kmem_alloc(len, KM_SLEEP);
   3015 
   3016 	bp = &path[len];
   3017 	bend = bp;
   3018 	*(--bp) = '\0';
   3019 
   3020 	cwdi = p->p_cwdi;
   3021 	rw_enter(&cwdi->cwdi_lock, RW_READER);
   3022 	vp = cwdi->cwdi_cdir;
   3023 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
   3024 	rw_exit(&cwdi->cwdi_lock);
   3025 
   3026 	if (error)
   3027 		goto out;
   3028 
   3029 	lenused = bend - bp;
   3030 
   3031 	if (oldp != NULL) {
   3032 		size_t copylen = uimin(lenused, *oldlenp);
   3033 		error = sysctl_copyout(l, bp, oldp, copylen);
   3034 		if (error == 0 && *oldlenp < lenused)
   3035 			error = ENOSPC;
   3036 	}
   3037 	*oldlenp = lenused;
   3038 out:
   3039 	if (pid != -1)
   3040 		mutex_exit(p->p_lock);
   3041 	kmem_free(path, len);
   3042 	return error;
   3043 }
   3044 
   3045 int
   3046 proc_getauxv(struct proc *p, void **buf, size_t *len)
   3047 {
   3048 	struct ps_strings pss;
   3049 	int error;
   3050 	void *uauxv, *kauxv;
   3051 	size_t size;
   3052 
   3053 	if ((error = copyin_psstrings(p, &pss)) != 0)
   3054 		return error;
   3055 	if (pss.ps_envstr == NULL)
   3056 		return EIO;
   3057 
   3058 	size = p->p_execsw->es_arglen;
   3059 	if (size == 0)
   3060 		return EIO;
   3061 
   3062 	size_t ptrsz = PROC_PTRSZ(p);
   3063 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
   3064 
   3065 	kauxv = kmem_alloc(size, KM_SLEEP);
   3066 
   3067 	error = copyin_proc(p, uauxv, kauxv, size);
   3068 	if (error) {
   3069 		kmem_free(kauxv, size);
   3070 		return error;
   3071 	}
   3072 
   3073 	*buf = kauxv;
   3074 	*len = size;
   3075 
   3076 	return 0;
   3077 }
   3078 
   3079 
   3080 static int
   3081 sysctl_security_expose_address(SYSCTLFN_ARGS)
   3082 {
   3083 	int expose_address, error;
   3084 	struct sysctlnode node;
   3085 
   3086 	node = *rnode;
   3087 	node.sysctl_data = &expose_address;
   3088 	expose_address = *(int *)rnode->sysctl_data;
   3089 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3090 	if (error || newp == NULL)
   3091 		return error;
   3092 
   3093 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
   3094 	    0, NULL, NULL, NULL))
   3095 		return EPERM;
   3096 
   3097 	switch (expose_address) {
   3098 	case 0:
   3099 	case 1:
   3100 	case 2:
   3101 		break;
   3102 	default:
   3103 		return EINVAL;
   3104 	}
   3105 
   3106 	*(int *)rnode->sysctl_data = expose_address;
   3107 
   3108 	return 0;
   3109 }
   3110 
   3111 bool
   3112 get_expose_address(struct proc *p)
   3113 {
   3114 	/* allow only if sysctl variable is set or privileged */
   3115 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
   3116 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
   3117 }
   3118