kern_proc.c revision 1.272 1 /* $NetBSD: kern_proc.c,v 1.272 2023/10/04 20:28:06 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.272 2023/10/04 20:28:06 ad Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_kstack.h"
70 #include "opt_maxuprc.h"
71 #include "opt_dtrace.h"
72 #include "opt_compat_netbsd32.h"
73 #include "opt_kaslr.h"
74 #endif
75
76 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
77 && !defined(_RUMPKERNEL)
78 #define COMPAT_NETBSD32
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/buf.h>
87 #include <sys/acct.h>
88 #include <sys/wait.h>
89 #include <sys/file.h>
90 #include <ufs/ufs/quota.h>
91 #include <sys/uio.h>
92 #include <sys/pool.h>
93 #include <sys/pset.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/signalvar.h>
97 #include <sys/ras.h>
98 #include <sys/filedesc.h>
99 #include <sys/syscall_stats.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102 #include <sys/atomic.h>
103 #include <sys/kmem.h>
104 #include <sys/namei.h>
105 #include <sys/dtrace_bsd.h>
106 #include <sys/sysctl.h>
107 #include <sys/exec.h>
108 #include <sys/cpu.h>
109 #include <sys/compat_stub.h>
110 #include <sys/futex.h>
111 #include <sys/pserialize.h>
112
113 #include <uvm/uvm_extern.h>
114
115 /*
116 * Process lists.
117 */
118
119 struct proclist allproc __cacheline_aligned;
120 struct proclist zombproc __cacheline_aligned;
121
122 kmutex_t proc_lock __cacheline_aligned;
123 static pserialize_t proc_psz;
124
125 /*
126 * pid to lwp/proc lookup is done by indexing the pid_table array.
127 * Since pid numbers are only allocated when an empty slot
128 * has been found, there is no need to search any lists ever.
129 * (an orphaned pgrp will lock the slot, a session will lock
130 * the pgrp with the same number.)
131 * If the table is too small it is reallocated with twice the
132 * previous size and the entries 'unzipped' into the two halves.
133 * A linked list of free entries is passed through the pt_lwp
134 * field of 'free' items - set odd to be an invalid ptr. Two
135 * additional bits are also used to indicate if the slot is
136 * currently occupied by a proc or lwp, and if the PID is
137 * hidden from certain kinds of lookups. We thus require a
138 * minimum alignment for proc and lwp structures (LWPs are
139 * at least 32-byte aligned).
140 */
141
142 struct pid_table {
143 uintptr_t pt_slot;
144 struct pgrp *pt_pgrp;
145 pid_t pt_pid;
146 };
147
148 #define PT_F_FREE ((uintptr_t)__BIT(0))
149 #define PT_F_LWP 0 /* pseudo-flag */
150 #define PT_F_PROC ((uintptr_t)__BIT(1))
151
152 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
153 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
154
155 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
156 #define PT_RESERVED(s) ((s) == 0)
157 #define PT_NEXT(s) ((u_int)(s) >> 1)
158 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
159 #define PT_SET_LWP(l) ((uintptr_t)(l))
160 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
161 #define PT_SET_RESERVED 0
162 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
163 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
164 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
165 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
166 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
167
168 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
169
170 /*
171 * Table of process IDs (PIDs).
172 */
173 static struct pid_table *pid_table __read_mostly;
174
175 #define INITIAL_PID_TABLE_SIZE (1 << 5)
176
177 /* Table mask, threshold for growing and number of allocated PIDs. */
178 static u_int pid_tbl_mask __read_mostly;
179 static u_int pid_alloc_lim __read_mostly;
180 static u_int pid_alloc_cnt __cacheline_aligned;
181
182 /* Next free, last free and maximum PIDs. */
183 static u_int next_free_pt __cacheline_aligned;
184 static u_int last_free_pt __cacheline_aligned;
185 static pid_t pid_max __read_mostly;
186
187 /* Components of the first process -- never freed. */
188
189 struct session session0 = {
190 .s_count = 1,
191 .s_sid = 0,
192 };
193 struct pgrp pgrp0 = {
194 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
195 .pg_session = &session0,
196 };
197 filedesc_t filedesc0;
198 struct cwdinfo cwdi0 = {
199 .cwdi_cmask = CMASK,
200 .cwdi_refcnt = 1,
201 };
202 struct plimit limit0;
203 struct pstats pstat0;
204 struct vmspace vmspace0;
205 struct sigacts sigacts0;
206 struct proc proc0 = {
207 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
208 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
209 .p_nlwps = 1,
210 .p_nrlwps = 1,
211 .p_pgrp = &pgrp0,
212 .p_comm = "system",
213 /*
214 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
215 * when they exit. init(8) can easily wait them out for us.
216 */
217 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
218 .p_stat = SACTIVE,
219 .p_nice = NZERO,
220 .p_emul = &emul_netbsd,
221 .p_cwdi = &cwdi0,
222 .p_limit = &limit0,
223 .p_fd = &filedesc0,
224 .p_vmspace = &vmspace0,
225 .p_stats = &pstat0,
226 .p_sigacts = &sigacts0,
227 #ifdef PROC0_MD_INITIALIZERS
228 PROC0_MD_INITIALIZERS
229 #endif
230 };
231 kauth_cred_t cred0;
232
233 static const int nofile = NOFILE;
234 static const int maxuprc = MAXUPRC;
235
236 static int sysctl_doeproc(SYSCTLFN_PROTO);
237 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
238 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
239
240 #ifdef KASLR
241 static int kern_expose_address = 0;
242 #else
243 static int kern_expose_address = 1;
244 #endif
245 /*
246 * The process list descriptors, used during pid allocation and
247 * by sysctl. No locking on this data structure is needed since
248 * it is completely static.
249 */
250 const struct proclist_desc proclists[] = {
251 { &allproc },
252 { &zombproc },
253 { NULL },
254 };
255
256 static struct pgrp * pg_remove(pid_t);
257 static void pg_delete(pid_t);
258 static void orphanpg(struct pgrp *);
259
260 static specificdata_domain_t proc_specificdata_domain;
261
262 static pool_cache_t proc_cache;
263
264 static kauth_listener_t proc_listener;
265
266 static void fill_proc(const struct proc *, struct proc *, bool);
267 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
268 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
269
270 static int
271 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
272 void *arg0, void *arg1, void *arg2, void *arg3)
273 {
274 struct proc *p;
275 int result;
276
277 result = KAUTH_RESULT_DEFER;
278 p = arg0;
279
280 switch (action) {
281 case KAUTH_PROCESS_CANSEE: {
282 enum kauth_process_req req;
283
284 req = (enum kauth_process_req)(uintptr_t)arg1;
285
286 switch (req) {
287 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
288 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
289 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
290 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
291 result = KAUTH_RESULT_ALLOW;
292 break;
293
294 case KAUTH_REQ_PROCESS_CANSEE_ENV:
295 if (kauth_cred_getuid(cred) !=
296 kauth_cred_getuid(p->p_cred) ||
297 kauth_cred_getuid(cred) !=
298 kauth_cred_getsvuid(p->p_cred))
299 break;
300
301 result = KAUTH_RESULT_ALLOW;
302
303 break;
304
305 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
306 if (!kern_expose_address)
307 break;
308
309 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
310 break;
311
312 result = KAUTH_RESULT_ALLOW;
313
314 break;
315
316 default:
317 break;
318 }
319
320 break;
321 }
322
323 case KAUTH_PROCESS_FORK: {
324 int lnprocs = (int)(unsigned long)arg2;
325
326 /*
327 * Don't allow a nonprivileged user to use the last few
328 * processes. The variable lnprocs is the current number of
329 * processes, maxproc is the limit.
330 */
331 if (__predict_false((lnprocs >= maxproc - 5)))
332 break;
333
334 result = KAUTH_RESULT_ALLOW;
335
336 break;
337 }
338
339 case KAUTH_PROCESS_CORENAME:
340 case KAUTH_PROCESS_STOPFLAG:
341 if (proc_uidmatch(cred, p->p_cred) == 0)
342 result = KAUTH_RESULT_ALLOW;
343
344 break;
345
346 default:
347 break;
348 }
349
350 return result;
351 }
352
353 static int
354 proc_ctor(void *arg __unused, void *obj, int flags __unused)
355 {
356 struct proc *p = obj;
357
358 memset(p, 0, sizeof(*p));
359 klist_init(&p->p_klist);
360
361 /*
362 * There is no need for a proc_dtor() to do a klist_fini(),
363 * since knote_proc_exit() ensures that p->p_klist is empty
364 * when a process exits.
365 */
366
367 return 0;
368 }
369
370 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
371
372 /*
373 * Initialize global process hashing structures.
374 */
375 void
376 procinit(void)
377 {
378 const struct proclist_desc *pd;
379 u_int i;
380 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
381
382 for (pd = proclists; pd->pd_list != NULL; pd++)
383 LIST_INIT(pd->pd_list);
384
385 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
386
387 proc_psz = pserialize_create();
388
389 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
390 * sizeof(struct pid_table), KM_SLEEP);
391 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
392 pid_max = PID_MAX;
393
394 /* Set free list running through table...
395 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
396 for (i = 0; i <= pid_tbl_mask; i++) {
397 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
398 pid_table[i].pt_pgrp = 0;
399 pid_table[i].pt_pid = 0;
400 }
401 /* slot 0 is just grabbed */
402 next_free_pt = 1;
403 /* Need to fix last entry. */
404 last_free_pt = pid_tbl_mask;
405 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
406 /* point at which we grow table - to avoid reusing pids too often */
407 pid_alloc_lim = pid_tbl_mask - 1;
408 #undef LINK_EMPTY
409
410 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
411 mutex_enter(&proc_lock);
412 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
413 panic("failed to reserve PID 1 for init(8)");
414 mutex_exit(&proc_lock);
415
416 proc_specificdata_domain = specificdata_domain_create();
417 KASSERT(proc_specificdata_domain != NULL);
418
419 size_t proc_alignment = coherency_unit;
420 if (proc_alignment < MIN_PROC_ALIGNMENT)
421 proc_alignment = MIN_PROC_ALIGNMENT;
422
423 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
424 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
425
426 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
427 proc_listener_cb, NULL);
428 }
429
430 void
431 procinit_sysctl(void)
432 {
433 static struct sysctllog *clog;
434
435 sysctl_createv(&clog, 0, NULL, NULL,
436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
437 CTLTYPE_INT, "expose_address",
438 SYSCTL_DESCR("Enable exposing kernel addresses"),
439 sysctl_security_expose_address, 0,
440 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
441 sysctl_createv(&clog, 0, NULL, NULL,
442 CTLFLAG_PERMANENT,
443 CTLTYPE_NODE, "proc",
444 SYSCTL_DESCR("System-wide process information"),
445 sysctl_doeproc, 0, NULL, 0,
446 CTL_KERN, KERN_PROC, CTL_EOL);
447 sysctl_createv(&clog, 0, NULL, NULL,
448 CTLFLAG_PERMANENT,
449 CTLTYPE_NODE, "proc2",
450 SYSCTL_DESCR("Machine-independent process information"),
451 sysctl_doeproc, 0, NULL, 0,
452 CTL_KERN, KERN_PROC2, CTL_EOL);
453 sysctl_createv(&clog, 0, NULL, NULL,
454 CTLFLAG_PERMANENT,
455 CTLTYPE_NODE, "proc_args",
456 SYSCTL_DESCR("Process argument information"),
457 sysctl_kern_proc_args, 0, NULL, 0,
458 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
459
460 /*
461 "nodes" under these:
462
463 KERN_PROC_ALL
464 KERN_PROC_PID pid
465 KERN_PROC_PGRP pgrp
466 KERN_PROC_SESSION sess
467 KERN_PROC_TTY tty
468 KERN_PROC_UID uid
469 KERN_PROC_RUID uid
470 KERN_PROC_GID gid
471 KERN_PROC_RGID gid
472
473 all in all, probably not worth the effort...
474 */
475 }
476
477 /*
478 * Initialize process 0.
479 */
480 void
481 proc0_init(void)
482 {
483 struct proc *p;
484 struct pgrp *pg;
485 struct rlimit *rlim;
486 rlim_t lim;
487 int i;
488
489 p = &proc0;
490 pg = &pgrp0;
491
492 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
493 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
494 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
495
496 rw_init(&p->p_reflock);
497 cv_init(&p->p_waitcv, "wait");
498 cv_init(&p->p_lwpcv, "lwpwait");
499
500 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
501
502 KASSERT(lwp0.l_lid == 0);
503 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
504 LIST_INSERT_HEAD(&allproc, p, p_list);
505
506 pid_table[lwp0.l_lid].pt_pgrp = pg;
507 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
508
509 #ifdef __HAVE_SYSCALL_INTERN
510 (*p->p_emul->e_syscall_intern)(p);
511 #endif
512
513 /* Create credentials. */
514 cred0 = kauth_cred_alloc();
515 p->p_cred = cred0;
516
517 /* Create the CWD info. */
518 rw_init(&cwdi0.cwdi_lock);
519
520 /* Create the limits structures. */
521 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
522
523 rlim = limit0.pl_rlimit;
524 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
525 rlim[i].rlim_cur = RLIM_INFINITY;
526 rlim[i].rlim_max = RLIM_INFINITY;
527 }
528
529 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
530 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
531
532 rlim[RLIMIT_NPROC].rlim_max = maxproc;
533 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
534
535 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
536 rlim[RLIMIT_RSS].rlim_max = lim;
537 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
538 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
539
540 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
541 rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
542
543 /* Note that default core name has zero length. */
544 limit0.pl_corename = defcorename;
545 limit0.pl_cnlen = 0;
546 limit0.pl_refcnt = 1;
547 limit0.pl_writeable = false;
548 limit0.pl_sv_limit = NULL;
549
550 /* Configure virtual memory system, set vm rlimits. */
551 uvm_init_limits(p);
552
553 /* Initialize file descriptor table for proc0. */
554 fd_init(&filedesc0);
555
556 /*
557 * Initialize proc0's vmspace, which uses the kernel pmap.
558 * All kernel processes (which never have user space mappings)
559 * share proc0's vmspace, and thus, the kernel pmap.
560 */
561 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
562 trunc_page(VM_MAXUSER_ADDRESS),
563 #ifdef __USE_TOPDOWN_VM
564 true
565 #else
566 false
567 #endif
568 );
569
570 /* Initialize signal state for proc0. XXX IPL_SCHED */
571 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
572 siginit(p);
573
574 proc_initspecific(p);
575 kdtrace_proc_ctor(NULL, p);
576 }
577
578 /*
579 * Session reference counting.
580 */
581
582 void
583 proc_sesshold(struct session *ss)
584 {
585
586 KASSERT(mutex_owned(&proc_lock));
587 ss->s_count++;
588 }
589
590 void
591 proc_sessrele(struct session *ss)
592 {
593 struct pgrp *pg;
594
595 KASSERT(mutex_owned(&proc_lock));
596 KASSERT(ss->s_count > 0);
597
598 /*
599 * We keep the pgrp with the same id as the session in order to
600 * stop a process being given the same pid. Since the pgrp holds
601 * a reference to the session, it must be a 'zombie' pgrp by now.
602 */
603 if (--ss->s_count == 0) {
604 pg = pg_remove(ss->s_sid);
605 } else {
606 pg = NULL;
607 ss = NULL;
608 }
609
610 mutex_exit(&proc_lock);
611
612 if (pg)
613 kmem_free(pg, sizeof(struct pgrp));
614 if (ss)
615 kmem_free(ss, sizeof(struct session));
616 }
617
618 /*
619 * Check that the specified process group is in the session of the
620 * specified process.
621 * Treats -ve ids as process ids.
622 * Used to validate TIOCSPGRP requests.
623 */
624 int
625 pgid_in_session(struct proc *p, pid_t pg_id)
626 {
627 struct pgrp *pgrp;
628 struct session *session;
629 int error;
630
631 if (pg_id == INT_MIN)
632 return EINVAL;
633
634 mutex_enter(&proc_lock);
635 if (pg_id < 0) {
636 struct proc *p1 = proc_find(-pg_id);
637 if (p1 == NULL) {
638 error = EINVAL;
639 goto fail;
640 }
641 pgrp = p1->p_pgrp;
642 } else {
643 pgrp = pgrp_find(pg_id);
644 if (pgrp == NULL) {
645 error = EINVAL;
646 goto fail;
647 }
648 }
649 session = pgrp->pg_session;
650 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
651 fail:
652 mutex_exit(&proc_lock);
653 return error;
654 }
655
656 /*
657 * p_inferior: is p an inferior of q?
658 */
659 static inline bool
660 p_inferior(struct proc *p, struct proc *q)
661 {
662
663 KASSERT(mutex_owned(&proc_lock));
664
665 for (; p != q; p = p->p_pptr)
666 if (p->p_pid == 0)
667 return false;
668 return true;
669 }
670
671 /*
672 * proc_find_lwp: locate an lwp in said proc by the ID.
673 *
674 * => Must be called with p::p_lock held.
675 * => LSIDL lwps are not returned because they are only partially
676 * constructed while occupying the slot.
677 * => Callers need to be careful about lwp::l_stat of the returned
678 * lwp.
679 */
680 struct lwp *
681 proc_find_lwp(proc_t *p, pid_t pid)
682 {
683 struct pid_table *pt;
684 unsigned pt_mask;
685 struct lwp *l = NULL;
686 uintptr_t slot;
687 int s;
688
689 KASSERT(mutex_owned(p->p_lock));
690
691 /*
692 * Look in the pid_table. This is done unlocked inside a
693 * pserialize read section covering pid_table's memory
694 * allocation only, so take care to read things in the correct
695 * order:
696 *
697 * 1. First read the table mask -- this only ever increases, in
698 * expand_pid_table, so a stale value is safely
699 * conservative.
700 *
701 * 2. Next read the pid table -- this is always set _before_
702 * the mask increases, so if we see a new table and stale
703 * mask, the mask is still valid for the table.
704 */
705 s = pserialize_read_enter();
706 pt_mask = atomic_load_acquire(&pid_tbl_mask);
707 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
708 slot = atomic_load_consume(&pt->pt_slot);
709 if (__predict_false(!PT_IS_LWP(slot))) {
710 pserialize_read_exit(s);
711 return NULL;
712 }
713
714 /*
715 * Check to see if the LWP is from the correct process. We won't
716 * see entries in pid_table from a prior process that also used "p",
717 * by virtue of the fact that allocating "p" means all prior updates
718 * to dependant data structures are visible to this thread.
719 */
720 l = PT_GET_LWP(slot);
721 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
722 pserialize_read_exit(s);
723 return NULL;
724 }
725
726 /*
727 * We now know that p->p_lock holds this LWP stable.
728 *
729 * If the status is not LSIDL, it means the LWP is intended to be
730 * findable by LID and l_lid cannot change behind us.
731 *
732 * No need to acquire the LWP's lock to check for LSIDL, as
733 * p->p_lock must be held to transition in and out of LSIDL.
734 * Any other observed state of is no particular interest.
735 */
736 pserialize_read_exit(s);
737 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
738 }
739
740 /*
741 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
742 *
743 * => Called in a pserialize read section with no locks held.
744 * => LSIDL lwps are not returned because they are only partially
745 * constructed while occupying the slot.
746 * => Callers need to be careful about lwp::l_stat of the returned
747 * lwp.
748 * => If an LWP is found, it's returned locked.
749 */
750 struct lwp *
751 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
752 {
753 struct pid_table *pt;
754 unsigned pt_mask;
755 struct lwp *l = NULL;
756 uintptr_t slot;
757
758 KASSERT(pserialize_in_read_section());
759
760 /*
761 * Look in the pid_table. This is done unlocked inside a
762 * pserialize read section covering pid_table's memory
763 * allocation only, so take care to read things in the correct
764 * order:
765 *
766 * 1. First read the table mask -- this only ever increases, in
767 * expand_pid_table, so a stale value is safely
768 * conservative.
769 *
770 * 2. Next read the pid table -- this is always set _before_
771 * the mask increases, so if we see a new table and stale
772 * mask, the mask is still valid for the table.
773 */
774 pt_mask = atomic_load_acquire(&pid_tbl_mask);
775 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
776 slot = atomic_load_consume(&pt->pt_slot);
777 if (__predict_false(!PT_IS_LWP(slot))) {
778 return NULL;
779 }
780
781 /*
782 * Lock the LWP we found to get it stable. If it's embryonic or
783 * reaped (LSIDL) then none of the other fields can safely be
784 * checked.
785 */
786 l = PT_GET_LWP(slot);
787 lwp_lock(l);
788 if (__predict_false(l->l_stat == LSIDL)) {
789 lwp_unlock(l);
790 return NULL;
791 }
792
793 /*
794 * l_proc and l_lid are now known stable because the LWP is not
795 * LSIDL, so check those fields too to make sure we found the
796 * right thing.
797 */
798 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
799 lwp_unlock(l);
800 return NULL;
801 }
802
803 /* Everything checks out, return it locked. */
804 return l;
805 }
806
807 /*
808 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
809 * on its containing proc.
810 *
811 * => Similar to proc_find_lwp(), but does not require you to have
812 * the proc a priori.
813 * => Also returns proc * to caller, with p::p_lock held.
814 * => Same caveats apply.
815 */
816 struct lwp *
817 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
818 {
819 struct pid_table *pt;
820 struct proc *p = NULL;
821 struct lwp *l = NULL;
822 uintptr_t slot;
823
824 KASSERT(pp != NULL);
825 mutex_enter(&proc_lock);
826 pt = &pid_table[pid & pid_tbl_mask];
827
828 slot = pt->pt_slot;
829 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
830 l = PT_GET_LWP(slot);
831 p = l->l_proc;
832 mutex_enter(p->p_lock);
833 if (__predict_false(l->l_stat == LSIDL)) {
834 mutex_exit(p->p_lock);
835 l = NULL;
836 p = NULL;
837 }
838 }
839 mutex_exit(&proc_lock);
840
841 KASSERT(p == NULL || mutex_owned(p->p_lock));
842 *pp = p;
843 return l;
844 }
845
846 /*
847 * proc_find_raw_pid_table_locked: locate a process by the ID.
848 *
849 * => Must be called with proc_lock held.
850 */
851 static proc_t *
852 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
853 {
854 struct pid_table *pt;
855 proc_t *p = NULL;
856 uintptr_t slot;
857
858 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
859 pt = &pid_table[pid & pid_tbl_mask];
860
861 slot = pt->pt_slot;
862 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
863 /*
864 * When looking up processes, require a direct match
865 * on the PID assigned to the proc, not just one of
866 * its LWPs.
867 *
868 * N.B. We require lwp::l_proc of LSIDL LWPs to be
869 * valid here.
870 */
871 p = PT_GET_LWP(slot)->l_proc;
872 if (__predict_false(p->p_pid != pid && !any_lwpid))
873 p = NULL;
874 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
875 p = PT_GET_PROC(slot);
876 }
877 return p;
878 }
879
880 proc_t *
881 proc_find_raw(pid_t pid)
882 {
883
884 return proc_find_raw_pid_table_locked(pid, false);
885 }
886
887 static proc_t *
888 proc_find_internal(pid_t pid, bool any_lwpid)
889 {
890 proc_t *p;
891
892 KASSERT(mutex_owned(&proc_lock));
893
894 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
895 if (__predict_false(p == NULL)) {
896 return NULL;
897 }
898
899 /*
900 * Only allow live processes to be found by PID.
901 * XXX: p_stat might change, since proc unlocked.
902 */
903 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
904 return p;
905 }
906 return NULL;
907 }
908
909 proc_t *
910 proc_find(pid_t pid)
911 {
912 return proc_find_internal(pid, false);
913 }
914
915 proc_t *
916 proc_find_lwpid(pid_t pid)
917 {
918 return proc_find_internal(pid, true);
919 }
920
921 /*
922 * pgrp_find: locate a process group by the ID.
923 *
924 * => Must be called with proc_lock held.
925 */
926 struct pgrp *
927 pgrp_find(pid_t pgid)
928 {
929 struct pgrp *pg;
930
931 KASSERT(mutex_owned(&proc_lock));
932
933 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
934
935 /*
936 * Cannot look up a process group that only exists because the
937 * session has not died yet (traditional).
938 */
939 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
940 return NULL;
941 }
942 return pg;
943 }
944
945 static void
946 expand_pid_table(void)
947 {
948 size_t pt_size, tsz;
949 struct pid_table *n_pt, *new_pt;
950 uintptr_t slot;
951 struct pgrp *pgrp;
952 pid_t pid, rpid;
953 u_int i;
954 uint new_pt_mask;
955
956 KASSERT(mutex_owned(&proc_lock));
957
958 /* Unlock the pid_table briefly to allocate memory. */
959 pt_size = pid_tbl_mask + 1;
960 mutex_exit(&proc_lock);
961
962 tsz = pt_size * 2 * sizeof(struct pid_table);
963 new_pt = kmem_alloc(tsz, KM_SLEEP);
964 new_pt_mask = pt_size * 2 - 1;
965
966 /* XXX For now. The pratical limit is much lower anyway. */
967 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
968
969 mutex_enter(&proc_lock);
970 if (pt_size != pid_tbl_mask + 1) {
971 /* Another process beat us to it... */
972 mutex_exit(&proc_lock);
973 kmem_free(new_pt, tsz);
974 goto out;
975 }
976
977 /*
978 * Copy entries from old table into new one.
979 * If 'pid' is 'odd' we need to place in the upper half,
980 * even pid's to the lower half.
981 * Free items stay in the low half so we don't have to
982 * fixup the reference to them.
983 * We stuff free items on the front of the freelist
984 * because we can't write to unmodified entries.
985 * Processing the table backwards maintains a semblance
986 * of issuing pid numbers that increase with time.
987 */
988 i = pt_size - 1;
989 n_pt = new_pt + i;
990 for (; ; i--, n_pt--) {
991 slot = pid_table[i].pt_slot;
992 pgrp = pid_table[i].pt_pgrp;
993 if (!PT_VALID(slot)) {
994 /* Up 'use count' so that link is valid */
995 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
996 rpid = 0;
997 slot = PT_SET_FREE(pid);
998 if (pgrp)
999 pid = pgrp->pg_id;
1000 } else {
1001 pid = pid_table[i].pt_pid;
1002 rpid = pid;
1003 }
1004
1005 /* Save entry in appropriate half of table */
1006 n_pt[pid & pt_size].pt_slot = slot;
1007 n_pt[pid & pt_size].pt_pgrp = pgrp;
1008 n_pt[pid & pt_size].pt_pid = rpid;
1009
1010 /* Put other piece on start of free list */
1011 pid = (pid ^ pt_size) & ~pid_tbl_mask;
1012 n_pt[pid & pt_size].pt_slot =
1013 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1014 n_pt[pid & pt_size].pt_pgrp = 0;
1015 n_pt[pid & pt_size].pt_pid = 0;
1016
1017 next_free_pt = i | (pid & pt_size);
1018 if (i == 0)
1019 break;
1020 }
1021
1022 /* Save old table size and switch tables */
1023 tsz = pt_size * sizeof(struct pid_table);
1024 n_pt = pid_table;
1025 atomic_store_release(&pid_table, new_pt);
1026 KASSERT(new_pt_mask >= pid_tbl_mask);
1027 atomic_store_release(&pid_tbl_mask, new_pt_mask);
1028
1029 /*
1030 * pid_max starts as PID_MAX (= 30000), once we have 16384
1031 * allocated pids we need it to be larger!
1032 */
1033 if (pid_tbl_mask > PID_MAX) {
1034 pid_max = pid_tbl_mask * 2 + 1;
1035 pid_alloc_lim |= pid_alloc_lim << 1;
1036 } else
1037 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1038
1039 mutex_exit(&proc_lock);
1040
1041 /*
1042 * Make sure that unlocked access to the old pid_table is complete
1043 * and then free it.
1044 */
1045 pserialize_perform(proc_psz);
1046 kmem_free(n_pt, tsz);
1047
1048 out: /* Return with proc_lock held again. */
1049 mutex_enter(&proc_lock);
1050 }
1051
1052 struct proc *
1053 proc_alloc(void)
1054 {
1055 struct proc *p;
1056
1057 p = pool_cache_get(proc_cache, PR_WAITOK);
1058 p->p_stat = SIDL; /* protect against others */
1059 proc_initspecific(p);
1060 kdtrace_proc_ctor(NULL, p);
1061
1062 /*
1063 * Allocate a placeholder in the pid_table. When we create the
1064 * first LWP for this process, it will take ownership of the
1065 * slot.
1066 */
1067 if (__predict_false(proc_alloc_pid(p) == -1)) {
1068 /* Allocating the PID failed; unwind. */
1069 proc_finispecific(p);
1070 proc_free_mem(p);
1071 p = NULL;
1072 }
1073 return p;
1074 }
1075
1076 /*
1077 * proc_alloc_pid_slot: allocate PID and record the occcupant so that
1078 * proc_find_raw() can find it by the PID.
1079 */
1080 static pid_t __noinline
1081 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1082 {
1083 struct pid_table *pt;
1084 pid_t pid;
1085 int nxt;
1086
1087 KASSERT(mutex_owned(&proc_lock));
1088
1089 for (;;expand_pid_table()) {
1090 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1091 /* ensure pids cycle through 2000+ values */
1092 continue;
1093 }
1094 /*
1095 * The first user process *must* be given PID 1.
1096 * it has already been reserved for us. This
1097 * will be coming in from the proc_alloc() call
1098 * above, and the entry will be usurped later when
1099 * the first user LWP is created.
1100 * XXX this is slightly gross.
1101 */
1102 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1103 p != &proc0)) {
1104 KASSERT(PT_IS_PROC(slot));
1105 pt = &pid_table[1];
1106 pt->pt_slot = slot;
1107 return 1;
1108 }
1109 pt = &pid_table[next_free_pt];
1110 #ifdef DIAGNOSTIC
1111 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1112 panic("proc_alloc: slot busy");
1113 #endif
1114 nxt = PT_NEXT(pt->pt_slot);
1115 if (nxt & pid_tbl_mask)
1116 break;
1117 /* Table full - expand (NB last entry not used....) */
1118 }
1119
1120 /* pid is 'saved use count' + 'size' + entry */
1121 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1122 if ((uint)pid > (uint)pid_max)
1123 pid &= pid_tbl_mask;
1124 next_free_pt = nxt & pid_tbl_mask;
1125
1126 /* XXX For now. The pratical limit is much lower anyway. */
1127 KASSERT(pid <= FUTEX_TID_MASK);
1128
1129 /* Grab table slot */
1130 pt->pt_slot = slot;
1131
1132 KASSERT(pt->pt_pid == 0);
1133 pt->pt_pid = pid;
1134 pid_alloc_cnt++;
1135
1136 return pid;
1137 }
1138
1139 pid_t
1140 proc_alloc_pid(struct proc *p)
1141 {
1142 pid_t pid;
1143
1144 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1145 KASSERT(p->p_stat == SIDL);
1146
1147 mutex_enter(&proc_lock);
1148 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1149 if (pid != -1)
1150 p->p_pid = pid;
1151 mutex_exit(&proc_lock);
1152
1153 return pid;
1154 }
1155
1156 pid_t
1157 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1158 {
1159 struct pid_table *pt;
1160 pid_t pid;
1161
1162 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1163 KASSERT(l->l_proc == p);
1164 KASSERT(l->l_stat == LSIDL);
1165
1166 /*
1167 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1168 * is globally visible before the LWP becomes visible via the
1169 * pid_table.
1170 */
1171 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1172 membar_producer();
1173 #endif
1174
1175 /*
1176 * If the slot for p->p_pid currently points to the proc,
1177 * then we should usurp this ID for the LWP. This happens
1178 * at least once per process (for the first LWP), and can
1179 * happen again if the first LWP for a process exits and
1180 * before the process creates another.
1181 */
1182 mutex_enter(&proc_lock);
1183 pid = p->p_pid;
1184 pt = &pid_table[pid & pid_tbl_mask];
1185 KASSERT(pt->pt_pid == pid);
1186 if (PT_IS_PROC(pt->pt_slot)) {
1187 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1188 l->l_lid = pid;
1189 pt->pt_slot = PT_SET_LWP(l);
1190 } else {
1191 /* Need to allocate a new slot. */
1192 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1193 if (pid != -1)
1194 l->l_lid = pid;
1195 }
1196 mutex_exit(&proc_lock);
1197
1198 return pid;
1199 }
1200
1201 static void __noinline
1202 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1203 {
1204 struct pid_table *pt;
1205
1206 KASSERT(mutex_owned(&proc_lock));
1207
1208 pt = &pid_table[pid & pid_tbl_mask];
1209
1210 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1211 KASSERT(pt->pt_pid == pid);
1212
1213 /* save pid use count in slot */
1214 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1215 pt->pt_pid = 0;
1216
1217 if (pt->pt_pgrp == NULL) {
1218 /* link last freed entry onto ours */
1219 pid &= pid_tbl_mask;
1220 pt = &pid_table[last_free_pt];
1221 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1222 pt->pt_pid = 0;
1223 last_free_pt = pid;
1224 pid_alloc_cnt--;
1225 }
1226 }
1227
1228 /*
1229 * Free a process id - called from proc_free (in kern_exit.c)
1230 *
1231 * Called with the proc_lock held.
1232 */
1233 void
1234 proc_free_pid(pid_t pid)
1235 {
1236
1237 KASSERT(mutex_owned(&proc_lock));
1238 proc_free_pid_internal(pid, PT_F_PROC);
1239 }
1240
1241 /*
1242 * Free a process id used by an LWP. If this was the process's
1243 * first LWP, we convert the slot to point to the process; the
1244 * entry will get cleaned up later when the process finishes exiting.
1245 *
1246 * If not, then it's the same as proc_free_pid().
1247 */
1248 void
1249 proc_free_lwpid(struct proc *p, pid_t pid)
1250 {
1251
1252 KASSERT(mutex_owned(&proc_lock));
1253
1254 if (__predict_true(p->p_pid == pid)) {
1255 struct pid_table *pt;
1256
1257 pt = &pid_table[pid & pid_tbl_mask];
1258
1259 KASSERT(pt->pt_pid == pid);
1260 KASSERT(PT_IS_LWP(pt->pt_slot));
1261 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1262
1263 pt->pt_slot = PT_SET_PROC(p);
1264 return;
1265 }
1266 proc_free_pid_internal(pid, PT_F_LWP);
1267 }
1268
1269 void
1270 proc_free_mem(struct proc *p)
1271 {
1272
1273 kdtrace_proc_dtor(NULL, p);
1274 pool_cache_put(proc_cache, p);
1275 }
1276
1277 /*
1278 * proc_enterpgrp: move p to a new or existing process group (and session).
1279 *
1280 * If we are creating a new pgrp, the pgid should equal
1281 * the calling process' pid.
1282 * If is only valid to enter a process group that is in the session
1283 * of the process.
1284 * Also mksess should only be set if we are creating a process group
1285 *
1286 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1287 */
1288 int
1289 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1290 {
1291 struct pgrp *new_pgrp, *pgrp;
1292 struct session *sess;
1293 struct proc *p;
1294 int rval;
1295 pid_t pg_id = NO_PGID;
1296
1297 /* Allocate data areas we might need before doing any validity checks */
1298 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1299 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1300
1301 mutex_enter(&proc_lock);
1302 rval = EPERM; /* most common error (to save typing) */
1303
1304 /* Check pgrp exists or can be created */
1305 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1306 if (pgrp != NULL && pgrp->pg_id != pgid)
1307 goto done;
1308
1309 /* Can only set another process under restricted circumstances. */
1310 if (pid != curp->p_pid) {
1311 /* Must exist and be one of our children... */
1312 p = proc_find_internal(pid, false);
1313 if (p == NULL || !p_inferior(p, curp)) {
1314 rval = ESRCH;
1315 goto done;
1316 }
1317 /* ... in the same session... */
1318 if (sess != NULL || p->p_session != curp->p_session)
1319 goto done;
1320 /* ... existing pgid must be in same session ... */
1321 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1322 goto done;
1323 /* ... and not done an exec. */
1324 if (p->p_flag & PK_EXEC) {
1325 rval = EACCES;
1326 goto done;
1327 }
1328 } else {
1329 /* ... setsid() cannot re-enter a pgrp */
1330 if (mksess && (curp->p_pgid == curp->p_pid ||
1331 pgrp_find(curp->p_pid)))
1332 goto done;
1333 p = curp;
1334 }
1335
1336 /* Changing the process group/session of a session
1337 leader is definitely off limits. */
1338 if (SESS_LEADER(p)) {
1339 if (sess == NULL && p->p_pgrp == pgrp)
1340 /* unless it's a definite noop */
1341 rval = 0;
1342 goto done;
1343 }
1344
1345 /* Can only create a process group with id of process */
1346 if (pgrp == NULL && pgid != pid)
1347 goto done;
1348
1349 /* Can only create a session if creating pgrp */
1350 if (sess != NULL && pgrp != NULL)
1351 goto done;
1352
1353 /* Check we allocated memory for a pgrp... */
1354 if (pgrp == NULL && new_pgrp == NULL)
1355 goto done;
1356
1357 /* Don't attach to 'zombie' pgrp */
1358 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1359 goto done;
1360
1361 /* Expect to succeed now */
1362 rval = 0;
1363
1364 if (pgrp == p->p_pgrp)
1365 /* nothing to do */
1366 goto done;
1367
1368 /* Ok all setup, link up required structures */
1369
1370 if (pgrp == NULL) {
1371 pgrp = new_pgrp;
1372 new_pgrp = NULL;
1373 if (sess != NULL) {
1374 sess->s_sid = p->p_pid;
1375 sess->s_leader = p;
1376 sess->s_count = 1;
1377 sess->s_ttyvp = NULL;
1378 sess->s_ttyp = NULL;
1379 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1380 memcpy(sess->s_login, p->p_session->s_login,
1381 sizeof(sess->s_login));
1382 p->p_lflag &= ~PL_CONTROLT;
1383 } else {
1384 sess = p->p_pgrp->pg_session;
1385 proc_sesshold(sess);
1386 }
1387 pgrp->pg_session = sess;
1388 sess = NULL;
1389
1390 pgrp->pg_id = pgid;
1391 LIST_INIT(&pgrp->pg_members);
1392 #ifdef DIAGNOSTIC
1393 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1394 panic("enterpgrp: pgrp table slot in use");
1395 if (__predict_false(mksess && p != curp))
1396 panic("enterpgrp: mksession and p != curproc");
1397 #endif
1398 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1399 pgrp->pg_jobc = 0;
1400 }
1401
1402 /*
1403 * Adjust eligibility of affected pgrps to participate in job control.
1404 * Increment eligibility counts before decrementing, otherwise we
1405 * could reach 0 spuriously during the first call.
1406 */
1407 fixjobc(p, pgrp, 1);
1408 fixjobc(p, p->p_pgrp, 0);
1409
1410 /* Interlock with ttread(). */
1411 mutex_spin_enter(&tty_lock);
1412
1413 /* Move process to requested group. */
1414 LIST_REMOVE(p, p_pglist);
1415 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1416 /* defer delete until we've dumped the lock */
1417 pg_id = p->p_pgrp->pg_id;
1418 p->p_pgrp = pgrp;
1419 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1420
1421 /* Done with the swap; we can release the tty mutex. */
1422 mutex_spin_exit(&tty_lock);
1423
1424 done:
1425 if (pg_id != NO_PGID) {
1426 /* Releases proc_lock. */
1427 pg_delete(pg_id);
1428 } else {
1429 mutex_exit(&proc_lock);
1430 }
1431 if (sess != NULL)
1432 kmem_free(sess, sizeof(*sess));
1433 if (new_pgrp != NULL)
1434 kmem_free(new_pgrp, sizeof(*new_pgrp));
1435 #ifdef DEBUG_PGRP
1436 if (__predict_false(rval))
1437 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1438 pid, pgid, mksess, curp->p_pid, rval);
1439 #endif
1440 return rval;
1441 }
1442
1443 /*
1444 * proc_leavepgrp: remove a process from its process group.
1445 * => must be called with the proc_lock held, which will be released;
1446 */
1447 void
1448 proc_leavepgrp(struct proc *p)
1449 {
1450 struct pgrp *pgrp;
1451
1452 KASSERT(mutex_owned(&proc_lock));
1453
1454 /* Interlock with ttread() */
1455 mutex_spin_enter(&tty_lock);
1456 pgrp = p->p_pgrp;
1457 LIST_REMOVE(p, p_pglist);
1458 p->p_pgrp = NULL;
1459 mutex_spin_exit(&tty_lock);
1460
1461 if (LIST_EMPTY(&pgrp->pg_members)) {
1462 /* Releases proc_lock. */
1463 pg_delete(pgrp->pg_id);
1464 } else {
1465 mutex_exit(&proc_lock);
1466 }
1467 }
1468
1469 /*
1470 * pg_remove: remove a process group from the table.
1471 * => must be called with the proc_lock held;
1472 * => returns process group to free;
1473 */
1474 static struct pgrp *
1475 pg_remove(pid_t pg_id)
1476 {
1477 struct pgrp *pgrp;
1478 struct pid_table *pt;
1479
1480 KASSERT(mutex_owned(&proc_lock));
1481
1482 pt = &pid_table[pg_id & pid_tbl_mask];
1483 pgrp = pt->pt_pgrp;
1484
1485 KASSERT(pgrp != NULL);
1486 KASSERT(pgrp->pg_id == pg_id);
1487 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1488
1489 pt->pt_pgrp = NULL;
1490
1491 if (!PT_VALID(pt->pt_slot)) {
1492 /* Orphaned pgrp, put slot onto free list. */
1493 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1494 pg_id &= pid_tbl_mask;
1495 pt = &pid_table[last_free_pt];
1496 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1497 KASSERT(pt->pt_pid == 0);
1498 last_free_pt = pg_id;
1499 pid_alloc_cnt--;
1500 }
1501 return pgrp;
1502 }
1503
1504 /*
1505 * pg_delete: delete and free a process group.
1506 * => must be called with the proc_lock held, which will be released.
1507 */
1508 static void
1509 pg_delete(pid_t pg_id)
1510 {
1511 struct pgrp *pg;
1512 struct tty *ttyp;
1513 struct session *ss;
1514
1515 KASSERT(mutex_owned(&proc_lock));
1516
1517 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1518 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1519 mutex_exit(&proc_lock);
1520 return;
1521 }
1522
1523 ss = pg->pg_session;
1524
1525 /* Remove reference (if any) from tty to this process group */
1526 mutex_spin_enter(&tty_lock);
1527 ttyp = ss->s_ttyp;
1528 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1529 ttyp->t_pgrp = NULL;
1530 KASSERT(ttyp->t_session == ss);
1531 }
1532 mutex_spin_exit(&tty_lock);
1533
1534 /*
1535 * The leading process group in a session is freed by proc_sessrele(),
1536 * if last reference. It will also release the locks.
1537 */
1538 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1539 proc_sessrele(ss);
1540
1541 if (pg != NULL) {
1542 /* Free it, if was not done above. */
1543 kmem_free(pg, sizeof(struct pgrp));
1544 }
1545 }
1546
1547 /*
1548 * Adjust pgrp jobc counters when specified process changes process group.
1549 * We count the number of processes in each process group that "qualify"
1550 * the group for terminal job control (those with a parent in a different
1551 * process group of the same session). If that count reaches zero, the
1552 * process group becomes orphaned. Check both the specified process'
1553 * process group and that of its children.
1554 * entering == 0 => p is leaving specified group.
1555 * entering == 1 => p is entering specified group.
1556 *
1557 * Call with proc_lock held.
1558 */
1559 void
1560 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1561 {
1562 struct pgrp *hispgrp;
1563 struct session *mysession = pgrp->pg_session;
1564 struct proc *child;
1565
1566 KASSERT(mutex_owned(&proc_lock));
1567
1568 /*
1569 * Check p's parent to see whether p qualifies its own process
1570 * group; if so, adjust count for p's process group.
1571 */
1572 hispgrp = p->p_pptr->p_pgrp;
1573 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1574 if (entering) {
1575 pgrp->pg_jobc++;
1576 p->p_lflag &= ~PL_ORPHANPG;
1577 } else {
1578 /* KASSERT(pgrp->pg_jobc > 0); */
1579 if (--pgrp->pg_jobc == 0)
1580 orphanpg(pgrp);
1581 }
1582 }
1583
1584 /*
1585 * Check this process' children to see whether they qualify
1586 * their process groups; if so, adjust counts for children's
1587 * process groups.
1588 */
1589 LIST_FOREACH(child, &p->p_children, p_sibling) {
1590 hispgrp = child->p_pgrp;
1591 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1592 !P_ZOMBIE(child)) {
1593 if (entering) {
1594 child->p_lflag &= ~PL_ORPHANPG;
1595 hispgrp->pg_jobc++;
1596 } else {
1597 KASSERT(hispgrp->pg_jobc > 0);
1598 if (--hispgrp->pg_jobc == 0)
1599 orphanpg(hispgrp);
1600 }
1601 }
1602 }
1603 }
1604
1605 /*
1606 * A process group has become orphaned;
1607 * if there are any stopped processes in the group,
1608 * hang-up all process in that group.
1609 *
1610 * Call with proc_lock held.
1611 */
1612 static void
1613 orphanpg(struct pgrp *pg)
1614 {
1615 struct proc *p;
1616
1617 KASSERT(mutex_owned(&proc_lock));
1618
1619 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1620 if (p->p_stat == SSTOP) {
1621 p->p_lflag |= PL_ORPHANPG;
1622 psignal(p, SIGHUP);
1623 psignal(p, SIGCONT);
1624 }
1625 }
1626 }
1627
1628 #ifdef DDB
1629 #include <ddb/db_output.h>
1630 void pidtbl_dump(void);
1631 void
1632 pidtbl_dump(void)
1633 {
1634 struct pid_table *pt;
1635 struct proc *p;
1636 struct pgrp *pgrp;
1637 uintptr_t slot;
1638 int id;
1639
1640 db_printf("pid table %p size %x, next %x, last %x\n",
1641 pid_table, pid_tbl_mask+1,
1642 next_free_pt, last_free_pt);
1643 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1644 slot = pt->pt_slot;
1645 if (!PT_VALID(slot) && !pt->pt_pgrp)
1646 continue;
1647 if (PT_IS_LWP(slot)) {
1648 p = PT_GET_LWP(slot)->l_proc;
1649 } else if (PT_IS_PROC(slot)) {
1650 p = PT_GET_PROC(slot);
1651 } else {
1652 p = NULL;
1653 }
1654 db_printf(" id %x: ", id);
1655 if (p != NULL)
1656 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1657 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1658 else
1659 db_printf("next %x use %x\n",
1660 PT_NEXT(slot) & pid_tbl_mask,
1661 PT_NEXT(slot) & ~pid_tbl_mask);
1662 if ((pgrp = pt->pt_pgrp)) {
1663 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1664 pgrp->pg_session, pgrp->pg_session->s_sid,
1665 pgrp->pg_session->s_count,
1666 pgrp->pg_session->s_login);
1667 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1668 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1669 LIST_FIRST(&pgrp->pg_members));
1670 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1671 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1672 p->p_pid, p, p->p_pgrp, p->p_comm);
1673 }
1674 }
1675 }
1676 }
1677 #endif /* DDB */
1678
1679 #ifdef KSTACK_CHECK_MAGIC
1680
1681 #define KSTACK_MAGIC 0xdeadbeaf
1682
1683 /* XXX should be per process basis? */
1684 static int kstackleftmin = KSTACK_SIZE;
1685 static int kstackleftthres = KSTACK_SIZE / 8;
1686
1687 void
1688 kstack_setup_magic(const struct lwp *l)
1689 {
1690 uint32_t *ip;
1691 uint32_t const *end;
1692
1693 KASSERT(l != NULL);
1694 KASSERT(l != &lwp0);
1695
1696 /*
1697 * fill all the stack with magic number
1698 * so that later modification on it can be detected.
1699 */
1700 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1701 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1702 for (; ip < end; ip++) {
1703 *ip = KSTACK_MAGIC;
1704 }
1705 }
1706
1707 void
1708 kstack_check_magic(const struct lwp *l)
1709 {
1710 uint32_t const *ip, *end;
1711 int stackleft;
1712
1713 KASSERT(l != NULL);
1714
1715 /* don't check proc0 */ /*XXX*/
1716 if (l == &lwp0)
1717 return;
1718
1719 #ifdef __MACHINE_STACK_GROWS_UP
1720 /* stack grows upwards (eg. hppa) */
1721 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1722 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1723 for (ip--; ip >= end; ip--)
1724 if (*ip != KSTACK_MAGIC)
1725 break;
1726
1727 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1728 #else /* __MACHINE_STACK_GROWS_UP */
1729 /* stack grows downwards (eg. i386) */
1730 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1731 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1732 for (; ip < end; ip++)
1733 if (*ip != KSTACK_MAGIC)
1734 break;
1735
1736 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1737 #endif /* __MACHINE_STACK_GROWS_UP */
1738
1739 if (kstackleftmin > stackleft) {
1740 kstackleftmin = stackleft;
1741 if (stackleft < kstackleftthres)
1742 printf("warning: kernel stack left %d bytes"
1743 "(pid %u:lid %u)\n", stackleft,
1744 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1745 }
1746
1747 if (stackleft <= 0) {
1748 panic("magic on the top of kernel stack changed for "
1749 "pid %u, lid %u: maybe kernel stack overflow",
1750 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1751 }
1752 }
1753 #endif /* KSTACK_CHECK_MAGIC */
1754
1755 int
1756 proclist_foreach_call(struct proclist *list,
1757 int (*callback)(struct proc *, void *arg), void *arg)
1758 {
1759 struct proc marker;
1760 struct proc *p;
1761 int ret = 0;
1762
1763 marker.p_flag = PK_MARKER;
1764 mutex_enter(&proc_lock);
1765 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1766 if (p->p_flag & PK_MARKER) {
1767 p = LIST_NEXT(p, p_list);
1768 continue;
1769 }
1770 LIST_INSERT_AFTER(p, &marker, p_list);
1771 ret = (*callback)(p, arg);
1772 KASSERT(mutex_owned(&proc_lock));
1773 p = LIST_NEXT(&marker, p_list);
1774 LIST_REMOVE(&marker, p_list);
1775 }
1776 mutex_exit(&proc_lock);
1777
1778 return ret;
1779 }
1780
1781 int
1782 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1783 {
1784
1785 /* XXXCDC: how should locking work here? */
1786
1787 /* curproc exception is for coredump. */
1788
1789 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1790 (p->p_vmspace->vm_refcnt < 1)) {
1791 return EFAULT;
1792 }
1793
1794 uvmspace_addref(p->p_vmspace);
1795 *vm = p->p_vmspace;
1796
1797 return 0;
1798 }
1799
1800 /*
1801 * Acquire a write lock on the process credential.
1802 */
1803 void
1804 proc_crmod_enter(void)
1805 {
1806 struct lwp *l = curlwp;
1807 struct proc *p = l->l_proc;
1808 kauth_cred_t oc;
1809
1810 /* Reset what needs to be reset in plimit. */
1811 if (p->p_limit->pl_corename != defcorename) {
1812 lim_setcorename(p, defcorename, 0);
1813 }
1814
1815 mutex_enter(p->p_lock);
1816
1817 /* Ensure the LWP cached credentials are up to date. */
1818 if ((oc = l->l_cred) != p->p_cred) {
1819 kauth_cred_hold(p->p_cred);
1820 l->l_cred = p->p_cred;
1821 kauth_cred_free(oc);
1822 }
1823 }
1824
1825 /*
1826 * Set in a new process credential, and drop the write lock. The credential
1827 * must have a reference already. Optionally, free a no-longer required
1828 * credential.
1829 */
1830 void
1831 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1832 {
1833 struct lwp *l = curlwp, *l2;
1834 struct proc *p = l->l_proc;
1835 kauth_cred_t oc;
1836
1837 KASSERT(mutex_owned(p->p_lock));
1838
1839 /* Is there a new credential to set in? */
1840 if (scred != NULL) {
1841 p->p_cred = scred;
1842 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1843 if (l2 != l)
1844 l2->l_prflag |= LPR_CRMOD;
1845 }
1846
1847 /* Ensure the LWP cached credentials are up to date. */
1848 if ((oc = l->l_cred) != scred) {
1849 kauth_cred_hold(scred);
1850 l->l_cred = scred;
1851 }
1852 } else
1853 oc = NULL; /* XXXgcc */
1854
1855 if (sugid) {
1856 /*
1857 * Mark process as having changed credentials, stops
1858 * tracing etc.
1859 */
1860 p->p_flag |= PK_SUGID;
1861 }
1862
1863 mutex_exit(p->p_lock);
1864
1865 /* If there is a credential to be released, free it now. */
1866 if (fcred != NULL) {
1867 KASSERT(scred != NULL);
1868 kauth_cred_free(fcred);
1869 if (oc != scred)
1870 kauth_cred_free(oc);
1871 }
1872 }
1873
1874 /*
1875 * proc_specific_key_create --
1876 * Create a key for subsystem proc-specific data.
1877 */
1878 int
1879 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1880 {
1881
1882 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1883 }
1884
1885 /*
1886 * proc_specific_key_delete --
1887 * Delete a key for subsystem proc-specific data.
1888 */
1889 void
1890 proc_specific_key_delete(specificdata_key_t key)
1891 {
1892
1893 specificdata_key_delete(proc_specificdata_domain, key);
1894 }
1895
1896 /*
1897 * proc_initspecific --
1898 * Initialize a proc's specificdata container.
1899 */
1900 void
1901 proc_initspecific(struct proc *p)
1902 {
1903 int error __diagused;
1904
1905 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1906 KASSERT(error == 0);
1907 }
1908
1909 /*
1910 * proc_finispecific --
1911 * Finalize a proc's specificdata container.
1912 */
1913 void
1914 proc_finispecific(struct proc *p)
1915 {
1916
1917 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1918 }
1919
1920 /*
1921 * proc_getspecific --
1922 * Return proc-specific data corresponding to the specified key.
1923 */
1924 void *
1925 proc_getspecific(struct proc *p, specificdata_key_t key)
1926 {
1927
1928 return (specificdata_getspecific(proc_specificdata_domain,
1929 &p->p_specdataref, key));
1930 }
1931
1932 /*
1933 * proc_setspecific --
1934 * Set proc-specific data corresponding to the specified key.
1935 */
1936 void
1937 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1938 {
1939
1940 specificdata_setspecific(proc_specificdata_domain,
1941 &p->p_specdataref, key, data);
1942 }
1943
1944 int
1945 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1946 {
1947 int r = 0;
1948
1949 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1950 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1951 /*
1952 * suid proc of ours or proc not ours
1953 */
1954 r = EPERM;
1955 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1956 /*
1957 * sgid proc has sgid back to us temporarily
1958 */
1959 r = EPERM;
1960 } else {
1961 /*
1962 * our rgid must be in target's group list (ie,
1963 * sub-processes started by a sgid process)
1964 */
1965 int ismember = 0;
1966
1967 if (kauth_cred_ismember_gid(cred,
1968 kauth_cred_getgid(target), &ismember) != 0 ||
1969 !ismember)
1970 r = EPERM;
1971 }
1972
1973 return (r);
1974 }
1975
1976 /*
1977 * sysctl stuff
1978 */
1979
1980 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1981
1982 static const u_int sysctl_flagmap[] = {
1983 PK_ADVLOCK, P_ADVLOCK,
1984 PK_EXEC, P_EXEC,
1985 PK_NOCLDWAIT, P_NOCLDWAIT,
1986 PK_32, P_32,
1987 PK_CLDSIGIGN, P_CLDSIGIGN,
1988 PK_SUGID, P_SUGID,
1989 0
1990 };
1991
1992 static const u_int sysctl_sflagmap[] = {
1993 PS_NOCLDSTOP, P_NOCLDSTOP,
1994 PS_WEXIT, P_WEXIT,
1995 PS_STOPFORK, P_STOPFORK,
1996 PS_STOPEXEC, P_STOPEXEC,
1997 PS_STOPEXIT, P_STOPEXIT,
1998 0
1999 };
2000
2001 static const u_int sysctl_slflagmap[] = {
2002 PSL_TRACED, P_TRACED,
2003 PSL_CHTRACED, P_CHTRACED,
2004 PSL_SYSCALL, P_SYSCALL,
2005 0
2006 };
2007
2008 static const u_int sysctl_lflagmap[] = {
2009 PL_CONTROLT, P_CONTROLT,
2010 PL_PPWAIT, P_PPWAIT,
2011 0
2012 };
2013
2014 static const u_int sysctl_stflagmap[] = {
2015 PST_PROFIL, P_PROFIL,
2016 0
2017
2018 };
2019
2020 /* used by kern_lwp also */
2021 const u_int sysctl_lwpflagmap[] = {
2022 LW_SINTR, L_SINTR,
2023 LW_SYSTEM, L_SYSTEM,
2024 0
2025 };
2026
2027 /*
2028 * Find the most ``active'' lwp of a process and return it for ps display
2029 * purposes
2030 */
2031 static struct lwp *
2032 proc_active_lwp(struct proc *p)
2033 {
2034 static const int ostat[] = {
2035 0,
2036 2, /* LSIDL */
2037 6, /* LSRUN */
2038 5, /* LSSLEEP */
2039 4, /* LSSTOP */
2040 0, /* LSZOMB */
2041 1, /* LSDEAD */
2042 7, /* LSONPROC */
2043 3 /* LSSUSPENDED */
2044 };
2045
2046 struct lwp *l, *lp = NULL;
2047 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2048 KASSERT(l->l_stat >= 0);
2049 KASSERT(l->l_stat < __arraycount(ostat));
2050 if (lp == NULL ||
2051 ostat[l->l_stat] > ostat[lp->l_stat] ||
2052 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2053 l->l_cpticks > lp->l_cpticks)) {
2054 lp = l;
2055 continue;
2056 }
2057 }
2058 return lp;
2059 }
2060
2061 static int
2062 sysctl_doeproc(SYSCTLFN_ARGS)
2063 {
2064 union {
2065 struct kinfo_proc kproc;
2066 struct kinfo_proc2 kproc2;
2067 } *kbuf;
2068 struct proc *p, *next, *marker;
2069 char *where, *dp;
2070 int type, op, arg, error;
2071 u_int elem_size, kelem_size, elem_count;
2072 size_t buflen, needed;
2073 bool match, zombie, mmmbrains;
2074 const bool allowaddr = get_expose_address(curproc);
2075
2076 if (namelen == 1 && name[0] == CTL_QUERY)
2077 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2078
2079 dp = where = oldp;
2080 buflen = where != NULL ? *oldlenp : 0;
2081 error = 0;
2082 needed = 0;
2083 type = rnode->sysctl_num;
2084
2085 if (type == KERN_PROC) {
2086 if (namelen == 0)
2087 return EINVAL;
2088 switch (op = name[0]) {
2089 case KERN_PROC_ALL:
2090 if (namelen != 1)
2091 return EINVAL;
2092 arg = 0;
2093 break;
2094 default:
2095 if (namelen != 2)
2096 return EINVAL;
2097 arg = name[1];
2098 break;
2099 }
2100 elem_count = 0; /* Hush little compiler, don't you cry */
2101 kelem_size = elem_size = sizeof(kbuf->kproc);
2102 } else {
2103 if (namelen != 4)
2104 return EINVAL;
2105 op = name[0];
2106 arg = name[1];
2107 elem_size = name[2];
2108 elem_count = name[3];
2109 kelem_size = sizeof(kbuf->kproc2);
2110 }
2111
2112 sysctl_unlock();
2113
2114 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2115 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2116 marker->p_flag = PK_MARKER;
2117
2118 mutex_enter(&proc_lock);
2119 /*
2120 * Start with zombies to prevent reporting processes twice, in case they
2121 * are dying and being moved from the list of alive processes to zombies.
2122 */
2123 mmmbrains = true;
2124 for (p = LIST_FIRST(&zombproc);; p = next) {
2125 if (p == NULL) {
2126 if (mmmbrains) {
2127 p = LIST_FIRST(&allproc);
2128 mmmbrains = false;
2129 }
2130 if (p == NULL)
2131 break;
2132 }
2133 next = LIST_NEXT(p, p_list);
2134 if ((p->p_flag & PK_MARKER) != 0)
2135 continue;
2136
2137 /*
2138 * Skip embryonic processes.
2139 */
2140 if (p->p_stat == SIDL)
2141 continue;
2142
2143 mutex_enter(p->p_lock);
2144 error = kauth_authorize_process(l->l_cred,
2145 KAUTH_PROCESS_CANSEE, p,
2146 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2147 if (error != 0) {
2148 mutex_exit(p->p_lock);
2149 continue;
2150 }
2151
2152 /*
2153 * Hande all the operations in one switch on the cost of
2154 * algorithm complexity is on purpose. The win splitting this
2155 * function into several similar copies makes maintenance
2156 * burden, code grow and boost is negligible in practical
2157 * systems.
2158 */
2159 switch (op) {
2160 case KERN_PROC_PID:
2161 match = (p->p_pid == (pid_t)arg);
2162 break;
2163
2164 case KERN_PROC_PGRP:
2165 match = (p->p_pgrp->pg_id == (pid_t)arg);
2166 break;
2167
2168 case KERN_PROC_SESSION:
2169 match = (p->p_session->s_sid == (pid_t)arg);
2170 break;
2171
2172 case KERN_PROC_TTY:
2173 match = true;
2174 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2175 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2176 p->p_session->s_ttyp == NULL ||
2177 p->p_session->s_ttyvp != NULL) {
2178 match = false;
2179 }
2180 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2181 p->p_session->s_ttyp == NULL) {
2182 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2183 match = false;
2184 }
2185 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2186 match = false;
2187 }
2188 break;
2189
2190 case KERN_PROC_UID:
2191 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2192 break;
2193
2194 case KERN_PROC_RUID:
2195 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2196 break;
2197
2198 case KERN_PROC_GID:
2199 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2200 break;
2201
2202 case KERN_PROC_RGID:
2203 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2204 break;
2205
2206 case KERN_PROC_ALL:
2207 match = true;
2208 /* allow everything */
2209 break;
2210
2211 default:
2212 error = EINVAL;
2213 mutex_exit(p->p_lock);
2214 goto cleanup;
2215 }
2216 if (!match) {
2217 mutex_exit(p->p_lock);
2218 continue;
2219 }
2220
2221 /*
2222 * Grab a hold on the process.
2223 */
2224 if (mmmbrains) {
2225 zombie = true;
2226 } else {
2227 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2228 }
2229 if (zombie) {
2230 LIST_INSERT_AFTER(p, marker, p_list);
2231 }
2232
2233 if (buflen >= elem_size &&
2234 (type == KERN_PROC || elem_count > 0)) {
2235 ruspace(p); /* Update process vm resource use */
2236
2237 if (type == KERN_PROC) {
2238 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2239 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2240 allowaddr);
2241 } else {
2242 fill_kproc2(p, &kbuf->kproc2, zombie,
2243 allowaddr);
2244 elem_count--;
2245 }
2246 mutex_exit(p->p_lock);
2247 mutex_exit(&proc_lock);
2248 /*
2249 * Copy out elem_size, but not larger than kelem_size
2250 */
2251 error = sysctl_copyout(l, kbuf, dp,
2252 uimin(kelem_size, elem_size));
2253 mutex_enter(&proc_lock);
2254 if (error) {
2255 goto bah;
2256 }
2257 dp += elem_size;
2258 buflen -= elem_size;
2259 } else {
2260 mutex_exit(p->p_lock);
2261 }
2262 needed += elem_size;
2263
2264 /*
2265 * Release reference to process.
2266 */
2267 if (zombie) {
2268 next = LIST_NEXT(marker, p_list);
2269 LIST_REMOVE(marker, p_list);
2270 } else {
2271 rw_exit(&p->p_reflock);
2272 next = LIST_NEXT(p, p_list);
2273 }
2274
2275 /*
2276 * Short-circuit break quickly!
2277 */
2278 if (op == KERN_PROC_PID)
2279 break;
2280 }
2281 mutex_exit(&proc_lock);
2282
2283 if (where != NULL) {
2284 *oldlenp = dp - where;
2285 if (needed > *oldlenp) {
2286 error = ENOMEM;
2287 goto out;
2288 }
2289 } else {
2290 needed += KERN_PROCSLOP;
2291 *oldlenp = needed;
2292 }
2293 kmem_free(kbuf, sizeof(*kbuf));
2294 kmem_free(marker, sizeof(*marker));
2295 sysctl_relock();
2296 return 0;
2297 bah:
2298 if (zombie)
2299 LIST_REMOVE(marker, p_list);
2300 else
2301 rw_exit(&p->p_reflock);
2302 cleanup:
2303 mutex_exit(&proc_lock);
2304 out:
2305 kmem_free(kbuf, sizeof(*kbuf));
2306 kmem_free(marker, sizeof(*marker));
2307 sysctl_relock();
2308 return error;
2309 }
2310
2311 int
2312 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2313 {
2314 #if !defined(_RUMPKERNEL)
2315 int retval;
2316
2317 if (p->p_flag & PK_32) {
2318 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2319 enosys(), retval);
2320 return retval;
2321 }
2322 #endif /* !defined(_RUMPKERNEL) */
2323
2324 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2325 }
2326
2327 static int
2328 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2329 {
2330 void **cookie = cookie_;
2331 struct lwp *l = cookie[0];
2332 char *dst = cookie[1];
2333
2334 return sysctl_copyout(l, src, dst + off, len);
2335 }
2336
2337 /*
2338 * sysctl helper routine for kern.proc_args pseudo-subtree.
2339 */
2340 static int
2341 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2342 {
2343 struct ps_strings pss;
2344 struct proc *p;
2345 pid_t pid;
2346 int type, error;
2347 void *cookie[2];
2348
2349 if (namelen == 1 && name[0] == CTL_QUERY)
2350 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2351
2352 if (newp != NULL || namelen != 2)
2353 return (EINVAL);
2354 pid = name[0];
2355 type = name[1];
2356
2357 switch (type) {
2358 case KERN_PROC_PATHNAME:
2359 sysctl_unlock();
2360 error = fill_pathname(l, pid, oldp, oldlenp);
2361 sysctl_relock();
2362 return error;
2363
2364 case KERN_PROC_CWD:
2365 sysctl_unlock();
2366 error = fill_cwd(l, pid, oldp, oldlenp);
2367 sysctl_relock();
2368 return error;
2369
2370 case KERN_PROC_ARGV:
2371 case KERN_PROC_NARGV:
2372 case KERN_PROC_ENV:
2373 case KERN_PROC_NENV:
2374 /* ok */
2375 break;
2376 default:
2377 return (EINVAL);
2378 }
2379
2380 sysctl_unlock();
2381
2382 /* check pid */
2383 mutex_enter(&proc_lock);
2384 if ((p = proc_find(pid)) == NULL) {
2385 error = EINVAL;
2386 goto out_locked;
2387 }
2388 mutex_enter(p->p_lock);
2389
2390 /* Check permission. */
2391 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2392 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2393 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2394 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2395 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2396 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2397 else
2398 error = EINVAL; /* XXXGCC */
2399 if (error) {
2400 mutex_exit(p->p_lock);
2401 goto out_locked;
2402 }
2403
2404 if (oldp == NULL) {
2405 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2406 *oldlenp = sizeof (int);
2407 else
2408 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2409 error = 0;
2410 mutex_exit(p->p_lock);
2411 goto out_locked;
2412 }
2413
2414 /*
2415 * Zombies don't have a stack, so we can't read their psstrings.
2416 * System processes also don't have a user stack.
2417 */
2418 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2419 error = EINVAL;
2420 mutex_exit(p->p_lock);
2421 goto out_locked;
2422 }
2423
2424 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2425 mutex_exit(p->p_lock);
2426 if (error) {
2427 goto out_locked;
2428 }
2429 mutex_exit(&proc_lock);
2430
2431 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2432 int value;
2433 if ((error = copyin_psstrings(p, &pss)) == 0) {
2434 if (type == KERN_PROC_NARGV)
2435 value = pss.ps_nargvstr;
2436 else
2437 value = pss.ps_nenvstr;
2438 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2439 *oldlenp = sizeof(value);
2440 }
2441 } else {
2442 cookie[0] = l;
2443 cookie[1] = oldp;
2444 error = copy_procargs(p, type, oldlenp,
2445 copy_procargs_sysctl_cb, cookie);
2446 }
2447 rw_exit(&p->p_reflock);
2448 sysctl_relock();
2449 return error;
2450
2451 out_locked:
2452 mutex_exit(&proc_lock);
2453 sysctl_relock();
2454 return error;
2455 }
2456
2457 int
2458 copy_procargs(struct proc *p, int oid, size_t *limit,
2459 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2460 {
2461 struct ps_strings pss;
2462 size_t len, i, loaded, entry_len;
2463 struct uio auio;
2464 struct iovec aiov;
2465 int error, argvlen;
2466 char *arg;
2467 char **argv;
2468 vaddr_t user_argv;
2469 struct vmspace *vmspace;
2470
2471 /*
2472 * Allocate a temporary buffer to hold the argument vector and
2473 * the arguments themselve.
2474 */
2475 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2476 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2477
2478 /*
2479 * Lock the process down in memory.
2480 */
2481 vmspace = p->p_vmspace;
2482 uvmspace_addref(vmspace);
2483
2484 /*
2485 * Read in the ps_strings structure.
2486 */
2487 if ((error = copyin_psstrings(p, &pss)) != 0)
2488 goto done;
2489
2490 /*
2491 * Now read the address of the argument vector.
2492 */
2493 switch (oid) {
2494 case KERN_PROC_ARGV:
2495 user_argv = (uintptr_t)pss.ps_argvstr;
2496 argvlen = pss.ps_nargvstr;
2497 break;
2498 case KERN_PROC_ENV:
2499 user_argv = (uintptr_t)pss.ps_envstr;
2500 argvlen = pss.ps_nenvstr;
2501 break;
2502 default:
2503 error = EINVAL;
2504 goto done;
2505 }
2506
2507 if (argvlen < 0) {
2508 error = EIO;
2509 goto done;
2510 }
2511
2512
2513 /*
2514 * Now copy each string.
2515 */
2516 len = 0; /* bytes written to user buffer */
2517 loaded = 0; /* bytes from argv already processed */
2518 i = 0; /* To make compiler happy */
2519 entry_len = PROC_PTRSZ(p);
2520
2521 for (; argvlen; --argvlen) {
2522 int finished = 0;
2523 vaddr_t base;
2524 size_t xlen;
2525 int j;
2526
2527 if (loaded == 0) {
2528 size_t rem = entry_len * argvlen;
2529 loaded = MIN(rem, PAGE_SIZE);
2530 error = copyin_vmspace(vmspace,
2531 (const void *)user_argv, argv, loaded);
2532 if (error)
2533 break;
2534 user_argv += loaded;
2535 i = 0;
2536 }
2537
2538 #if !defined(_RUMPKERNEL)
2539 if (p->p_flag & PK_32)
2540 MODULE_HOOK_CALL(kern_proc32_base_hook,
2541 (argv, i++), 0, base);
2542 else
2543 #endif /* !defined(_RUMPKERNEL) */
2544 base = (vaddr_t)argv[i++];
2545 loaded -= entry_len;
2546
2547 /*
2548 * The program has messed around with its arguments,
2549 * possibly deleting some, and replacing them with
2550 * NULL's. Treat this as the last argument and not
2551 * a failure.
2552 */
2553 if (base == 0)
2554 break;
2555
2556 while (!finished) {
2557 xlen = PAGE_SIZE - (base & PAGE_MASK);
2558
2559 aiov.iov_base = arg;
2560 aiov.iov_len = PAGE_SIZE;
2561 auio.uio_iov = &aiov;
2562 auio.uio_iovcnt = 1;
2563 auio.uio_offset = base;
2564 auio.uio_resid = xlen;
2565 auio.uio_rw = UIO_READ;
2566 UIO_SETUP_SYSSPACE(&auio);
2567 error = uvm_io(&vmspace->vm_map, &auio, 0);
2568 if (error)
2569 goto done;
2570
2571 /* Look for the end of the string */
2572 for (j = 0; j < xlen; j++) {
2573 if (arg[j] == '\0') {
2574 xlen = j + 1;
2575 finished = 1;
2576 break;
2577 }
2578 }
2579
2580 /* Check for user buffer overflow */
2581 if (len + xlen > *limit) {
2582 finished = 1;
2583 if (len > *limit)
2584 xlen = 0;
2585 else
2586 xlen = *limit - len;
2587 }
2588
2589 /* Copyout the page */
2590 error = (*cb)(cookie, arg, len, xlen);
2591 if (error)
2592 goto done;
2593
2594 len += xlen;
2595 base += xlen;
2596 }
2597 }
2598 *limit = len;
2599
2600 done:
2601 kmem_free(argv, PAGE_SIZE);
2602 kmem_free(arg, PAGE_SIZE);
2603 uvmspace_free(vmspace);
2604 return error;
2605 }
2606
2607 /*
2608 * Fill in a proc structure for the specified process.
2609 */
2610 static void
2611 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2612 {
2613 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2614 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2615 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2616 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2617 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2618 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2619 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2620 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2621 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2622 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2623 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2624 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2625 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2626 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2627 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2628 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2629 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2630 p->p_exitsig = psrc->p_exitsig;
2631 p->p_flag = psrc->p_flag;
2632 p->p_sflag = psrc->p_sflag;
2633 p->p_slflag = psrc->p_slflag;
2634 p->p_lflag = psrc->p_lflag;
2635 p->p_stflag = psrc->p_stflag;
2636 p->p_stat = psrc->p_stat;
2637 p->p_trace_enabled = psrc->p_trace_enabled;
2638 p->p_pid = psrc->p_pid;
2639 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2640 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2641 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2642 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2643 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2644 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2645 p->p_nlwps = psrc->p_nlwps;
2646 p->p_nzlwps = psrc->p_nzlwps;
2647 p->p_nrlwps = psrc->p_nrlwps;
2648 p->p_nlwpwait = psrc->p_nlwpwait;
2649 p->p_ndlwps = psrc->p_ndlwps;
2650 p->p_nstopchild = psrc->p_nstopchild;
2651 p->p_waited = psrc->p_waited;
2652 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2653 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2654 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2655 p->p_estcpu = psrc->p_estcpu;
2656 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2657 p->p_forktime = psrc->p_forktime;
2658 p->p_pctcpu = psrc->p_pctcpu;
2659 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2660 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2661 p->p_rtime = psrc->p_rtime;
2662 p->p_uticks = psrc->p_uticks;
2663 p->p_sticks = psrc->p_sticks;
2664 p->p_iticks = psrc->p_iticks;
2665 p->p_xutime = psrc->p_xutime;
2666 p->p_xstime = psrc->p_xstime;
2667 p->p_traceflag = psrc->p_traceflag;
2668 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2669 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2670 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2671 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2672 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2673 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2674 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2675 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2676 allowaddr);
2677 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2678 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2679 p->p_ppid = psrc->p_ppid;
2680 p->p_oppid = psrc->p_oppid;
2681 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2682 p->p_sigctx = psrc->p_sigctx;
2683 p->p_nice = psrc->p_nice;
2684 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2685 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2686 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2687 p->p_pax = psrc->p_pax;
2688 p->p_xexit = psrc->p_xexit;
2689 p->p_xsig = psrc->p_xsig;
2690 p->p_acflag = psrc->p_acflag;
2691 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2692 p->p_stackbase = psrc->p_stackbase;
2693 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2694 }
2695
2696 /*
2697 * Fill in an eproc structure for the specified process.
2698 */
2699 void
2700 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2701 {
2702 struct tty *tp;
2703 struct lwp *l;
2704
2705 KASSERT(mutex_owned(&proc_lock));
2706 KASSERT(mutex_owned(p->p_lock));
2707
2708 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2709 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2710 if (p->p_cred) {
2711 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2712 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2713 }
2714 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2715 struct vmspace *vm = p->p_vmspace;
2716
2717 ep->e_vm.vm_rssize = vm_resident_count(vm);
2718 ep->e_vm.vm_tsize = vm->vm_tsize;
2719 ep->e_vm.vm_dsize = vm->vm_dsize;
2720 ep->e_vm.vm_ssize = vm->vm_ssize;
2721 ep->e_vm.vm_map.size = vm->vm_map.size;
2722
2723 /* Pick the primary (first) LWP */
2724 l = proc_active_lwp(p);
2725 KASSERT(l != NULL);
2726 lwp_lock(l);
2727 if (l->l_wchan)
2728 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2729 lwp_unlock(l);
2730 }
2731 ep->e_ppid = p->p_ppid;
2732 if (p->p_pgrp && p->p_session) {
2733 ep->e_pgid = p->p_pgrp->pg_id;
2734 ep->e_jobc = p->p_pgrp->pg_jobc;
2735 ep->e_sid = p->p_session->s_sid;
2736 if ((p->p_lflag & PL_CONTROLT) &&
2737 (tp = p->p_session->s_ttyp)) {
2738 ep->e_tdev = tp->t_dev;
2739 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2740 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2741 } else
2742 ep->e_tdev = (uint32_t)NODEV;
2743 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2744 if (SESS_LEADER(p))
2745 ep->e_flag |= EPROC_SLEADER;
2746 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2747 }
2748 ep->e_xsize = ep->e_xrssize = 0;
2749 ep->e_xccount = ep->e_xswrss = 0;
2750 }
2751
2752 /*
2753 * Fill in a kinfo_proc2 structure for the specified process.
2754 */
2755 void
2756 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2757 {
2758 struct tty *tp;
2759 struct lwp *l;
2760 struct timeval ut, st, rt;
2761 sigset_t ss1, ss2;
2762 struct rusage ru;
2763 struct vmspace *vm;
2764
2765 KASSERT(mutex_owned(&proc_lock));
2766 KASSERT(mutex_owned(p->p_lock));
2767
2768 sigemptyset(&ss1);
2769 sigemptyset(&ss2);
2770
2771 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2772 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2773 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2774 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2775 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2776 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2777 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2778 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2779 ki->p_tsess = 0; /* may be changed if controlling tty below */
2780 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2781 ki->p_eflag = 0;
2782 ki->p_exitsig = p->p_exitsig;
2783 ki->p_flag = L_INMEM; /* Process never swapped out */
2784 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2785 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2786 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2787 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2788 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2789 ki->p_pid = p->p_pid;
2790 ki->p_ppid = p->p_ppid;
2791 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2792 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2793 ki->p_gid = kauth_cred_getegid(p->p_cred);
2794 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2795 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2796 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2797 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2798 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2799 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2800 UIO_SYSSPACE);
2801
2802 ki->p_uticks = p->p_uticks;
2803 ki->p_sticks = p->p_sticks;
2804 ki->p_iticks = p->p_iticks;
2805 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2806 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2807 ki->p_traceflag = p->p_traceflag;
2808
2809 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2810 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2811
2812 ki->p_cpticks = 0;
2813 ki->p_pctcpu = p->p_pctcpu;
2814 ki->p_estcpu = 0;
2815 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2816 ki->p_realstat = p->p_stat;
2817 ki->p_nice = p->p_nice;
2818 ki->p_xstat = P_WAITSTATUS(p);
2819 ki->p_acflag = p->p_acflag;
2820
2821 strncpy(ki->p_comm, p->p_comm,
2822 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2823 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2824
2825 ki->p_nlwps = p->p_nlwps;
2826 ki->p_realflag = ki->p_flag;
2827
2828 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2829 vm = p->p_vmspace;
2830 ki->p_vm_rssize = vm_resident_count(vm);
2831 ki->p_vm_tsize = vm->vm_tsize;
2832 ki->p_vm_dsize = vm->vm_dsize;
2833 ki->p_vm_ssize = vm->vm_ssize;
2834 ki->p_vm_vsize = atop(vm->vm_map.size);
2835 /*
2836 * Since the stack is initially mapped mostly with
2837 * PROT_NONE and grown as needed, adjust the "mapped size"
2838 * to skip the unused stack portion.
2839 */
2840 ki->p_vm_msize =
2841 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2842
2843 /* Pick the primary (first) LWP */
2844 l = proc_active_lwp(p);
2845 KASSERT(l != NULL);
2846 lwp_lock(l);
2847 ki->p_nrlwps = p->p_nrlwps;
2848 ki->p_forw = 0;
2849 ki->p_back = 0;
2850 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2851 ki->p_stat = l->l_stat;
2852 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2853 ki->p_swtime = l->l_swtime;
2854 ki->p_slptime = l->l_slptime;
2855 if (l->l_stat == LSONPROC)
2856 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2857 else
2858 ki->p_schedflags = 0;
2859 ki->p_priority = lwp_eprio(l);
2860 ki->p_usrpri = l->l_priority;
2861 if (l->l_wchan)
2862 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2863 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2864 ki->p_cpuid = cpu_index(l->l_cpu);
2865 lwp_unlock(l);
2866 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2867 /* This is hardly correct, but... */
2868 sigplusset(&l->l_sigpend.sp_set, &ss1);
2869 sigplusset(&l->l_sigmask, &ss2);
2870 ki->p_cpticks += l->l_cpticks;
2871 ki->p_pctcpu += l->l_pctcpu;
2872 ki->p_estcpu += l->l_estcpu;
2873 }
2874 }
2875 sigplusset(&p->p_sigpend.sp_set, &ss1);
2876 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2877 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2878
2879 if (p->p_session != NULL) {
2880 ki->p_sid = p->p_session->s_sid;
2881 ki->p__pgid = p->p_pgrp->pg_id;
2882 if (p->p_session->s_ttyvp)
2883 ki->p_eflag |= EPROC_CTTY;
2884 if (SESS_LEADER(p))
2885 ki->p_eflag |= EPROC_SLEADER;
2886 strncpy(ki->p_login, p->p_session->s_login,
2887 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2888 ki->p_jobc = p->p_pgrp->pg_jobc;
2889 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2890 ki->p_tdev = tp->t_dev;
2891 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2892 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2893 allowaddr);
2894 } else {
2895 ki->p_tdev = (int32_t)NODEV;
2896 }
2897 }
2898
2899 if (!P_ZOMBIE(p) && !zombie) {
2900 ki->p_uvalid = 1;
2901 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2902 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2903
2904 calcru(p, &ut, &st, NULL, &rt);
2905 ki->p_rtime_sec = rt.tv_sec;
2906 ki->p_rtime_usec = rt.tv_usec;
2907 ki->p_uutime_sec = ut.tv_sec;
2908 ki->p_uutime_usec = ut.tv_usec;
2909 ki->p_ustime_sec = st.tv_sec;
2910 ki->p_ustime_usec = st.tv_usec;
2911
2912 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2913 rulwps(p, &ru);
2914 ki->p_uru_nvcsw = ru.ru_nvcsw;
2915 ki->p_uru_nivcsw = ru.ru_nivcsw;
2916 ki->p_uru_maxrss = ru.ru_maxrss;
2917 ki->p_uru_ixrss = ru.ru_ixrss;
2918 ki->p_uru_idrss = ru.ru_idrss;
2919 ki->p_uru_isrss = ru.ru_isrss;
2920 ki->p_uru_minflt = ru.ru_minflt;
2921 ki->p_uru_majflt = ru.ru_majflt;
2922 ki->p_uru_nswap = ru.ru_nswap;
2923 ki->p_uru_inblock = ru.ru_inblock;
2924 ki->p_uru_oublock = ru.ru_oublock;
2925 ki->p_uru_msgsnd = ru.ru_msgsnd;
2926 ki->p_uru_msgrcv = ru.ru_msgrcv;
2927 ki->p_uru_nsignals = ru.ru_nsignals;
2928
2929 timeradd(&p->p_stats->p_cru.ru_utime,
2930 &p->p_stats->p_cru.ru_stime, &ut);
2931 ki->p_uctime_sec = ut.tv_sec;
2932 ki->p_uctime_usec = ut.tv_usec;
2933 }
2934 }
2935
2936
2937 int
2938 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2939 {
2940 int error;
2941
2942 mutex_enter(&proc_lock);
2943 if (pid == -1)
2944 *p = l->l_proc;
2945 else
2946 *p = proc_find(pid);
2947
2948 if (*p == NULL) {
2949 if (pid != -1)
2950 mutex_exit(&proc_lock);
2951 return ESRCH;
2952 }
2953 if (pid != -1)
2954 mutex_enter((*p)->p_lock);
2955 mutex_exit(&proc_lock);
2956
2957 error = kauth_authorize_process(l->l_cred,
2958 KAUTH_PROCESS_CANSEE, *p,
2959 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2960 if (error) {
2961 if (pid != -1)
2962 mutex_exit((*p)->p_lock);
2963 }
2964 return error;
2965 }
2966
2967 static int
2968 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2969 {
2970 int error;
2971 struct proc *p;
2972
2973 if ((error = proc_find_locked(l, &p, pid)) != 0)
2974 return error;
2975
2976 if (p->p_path == NULL) {
2977 if (pid != -1)
2978 mutex_exit(p->p_lock);
2979 return ENOENT;
2980 }
2981
2982 size_t len = strlen(p->p_path) + 1;
2983 if (oldp != NULL) {
2984 size_t copylen = uimin(len, *oldlenp);
2985 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2986 if (error == 0 && *oldlenp < len)
2987 error = ENOSPC;
2988 }
2989 *oldlenp = len;
2990 if (pid != -1)
2991 mutex_exit(p->p_lock);
2992 return error;
2993 }
2994
2995 static int
2996 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2997 {
2998 int error;
2999 struct proc *p;
3000 char *path;
3001 char *bp, *bend;
3002 struct cwdinfo *cwdi;
3003 struct vnode *vp;
3004 size_t len, lenused;
3005
3006 if ((error = proc_find_locked(l, &p, pid)) != 0)
3007 return error;
3008
3009 len = MAXPATHLEN * 4;
3010
3011 path = kmem_alloc(len, KM_SLEEP);
3012
3013 bp = &path[len];
3014 bend = bp;
3015 *(--bp) = '\0';
3016
3017 cwdi = p->p_cwdi;
3018 rw_enter(&cwdi->cwdi_lock, RW_READER);
3019 vp = cwdi->cwdi_cdir;
3020 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3021 rw_exit(&cwdi->cwdi_lock);
3022
3023 if (error)
3024 goto out;
3025
3026 lenused = bend - bp;
3027
3028 if (oldp != NULL) {
3029 size_t copylen = uimin(lenused, *oldlenp);
3030 error = sysctl_copyout(l, bp, oldp, copylen);
3031 if (error == 0 && *oldlenp < lenused)
3032 error = ENOSPC;
3033 }
3034 *oldlenp = lenused;
3035 out:
3036 if (pid != -1)
3037 mutex_exit(p->p_lock);
3038 kmem_free(path, len);
3039 return error;
3040 }
3041
3042 int
3043 proc_getauxv(struct proc *p, void **buf, size_t *len)
3044 {
3045 struct ps_strings pss;
3046 int error;
3047 void *uauxv, *kauxv;
3048 size_t size;
3049
3050 if ((error = copyin_psstrings(p, &pss)) != 0)
3051 return error;
3052 if (pss.ps_envstr == NULL)
3053 return EIO;
3054
3055 size = p->p_execsw->es_arglen;
3056 if (size == 0)
3057 return EIO;
3058
3059 size_t ptrsz = PROC_PTRSZ(p);
3060 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3061
3062 kauxv = kmem_alloc(size, KM_SLEEP);
3063
3064 error = copyin_proc(p, uauxv, kauxv, size);
3065 if (error) {
3066 kmem_free(kauxv, size);
3067 return error;
3068 }
3069
3070 *buf = kauxv;
3071 *len = size;
3072
3073 return 0;
3074 }
3075
3076
3077 static int
3078 sysctl_security_expose_address(SYSCTLFN_ARGS)
3079 {
3080 int expose_address, error;
3081 struct sysctlnode node;
3082
3083 node = *rnode;
3084 node.sysctl_data = &expose_address;
3085 expose_address = *(int *)rnode->sysctl_data;
3086 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3087 if (error || newp == NULL)
3088 return error;
3089
3090 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3091 0, NULL, NULL, NULL))
3092 return EPERM;
3093
3094 switch (expose_address) {
3095 case 0:
3096 case 1:
3097 case 2:
3098 break;
3099 default:
3100 return EINVAL;
3101 }
3102
3103 *(int *)rnode->sysctl_data = expose_address;
3104
3105 return 0;
3106 }
3107
3108 bool
3109 get_expose_address(struct proc *p)
3110 {
3111 /* allow only if sysctl variable is set or privileged */
3112 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3113 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3114 }
3115