kern_proc.c revision 1.277 1 /* $NetBSD: kern_proc.c,v 1.277 2025/03/16 15:51:34 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.277 2025/03/16 15:51:34 riastradh Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_kstack.h"
70 #include "opt_maxuprc.h"
71 #include "opt_dtrace.h"
72 #include "opt_compat_netbsd32.h"
73 #include "opt_kaslr.h"
74 #endif
75
76 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
77 && !defined(_RUMPKERNEL)
78 #define COMPAT_NETBSD32
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/types.h>
83
84 #include <sys/acct.h>
85 #include <sys/atomic.h>
86 #include <sys/buf.h>
87 #include <sys/compat_stub.h>
88 #include <sys/cpu.h>
89 #include <sys/dtrace_bsd.h>
90 #include <sys/exec.h>
91 #include <sys/file.h>
92 #include <sys/filedesc.h>
93 #include <sys/futex.h>
94 #include <sys/ioctl.h>
95 #include <sys/kauth.h>
96 #include <sys/kernel.h>
97 #include <sys/kmem.h>
98 #include <sys/namei.h>
99 #include <sys/pool.h>
100 #include <sys/proc.h>
101 #include <sys/pserialize.h>
102 #include <sys/pset.h>
103 #include <sys/ras.h>
104 #include <sys/resourcevar.h>
105 #include <sys/signalvar.h>
106 #include <sys/sleepq.h>
107 #include <sys/syscall_stats.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 #include <sys/tty.h>
111 #include <sys/uio.h>
112 #include <sys/wait.h>
113 #include <ufs/ufs/quota.h>
114
115 #include <uvm/uvm_extern.h>
116
117 /*
118 * Process lists.
119 */
120
121 struct proclist allproc __cacheline_aligned;
122 struct proclist zombproc __cacheline_aligned;
123
124 kmutex_t proc_lock __cacheline_aligned;
125 static pserialize_t proc_psz;
126
127 /*
128 * pid to lwp/proc lookup is done by indexing the pid_table array.
129 * Since pid numbers are only allocated when an empty slot
130 * has been found, there is no need to search any lists ever.
131 * (an orphaned pgrp will lock the slot, a session will lock
132 * the pgrp with the same number.)
133 * If the table is too small it is reallocated with twice the
134 * previous size and the entries 'unzipped' into the two halves.
135 * A linked list of free entries is passed through the pt_lwp
136 * field of 'free' items - set odd to be an invalid ptr. Two
137 * additional bits are also used to indicate if the slot is
138 * currently occupied by a proc or lwp, and if the PID is
139 * hidden from certain kinds of lookups. We thus require a
140 * minimum alignment for proc and lwp structures (LWPs are
141 * at least 32-byte aligned).
142 */
143
144 struct pid_table {
145 uintptr_t pt_slot;
146 struct pgrp *pt_pgrp;
147 pid_t pt_pid;
148 };
149
150 #define PT_F_FREE ((uintptr_t)__BIT(0))
151 #define PT_F_LWP 0 /* pseudo-flag */
152 #define PT_F_PROC ((uintptr_t)__BIT(1))
153
154 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
155 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
156
157 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
158 #define PT_RESERVED(s) ((s) == 0)
159 #define PT_NEXT(s) ((u_int)(s) >> 1)
160 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
161 #define PT_SET_LWP(l) ((uintptr_t)(l))
162 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
163 #define PT_SET_RESERVED 0
164 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
165 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
166 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
167 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
168 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
169
170 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
171
172 /*
173 * Table of process IDs (PIDs).
174 */
175 static struct pid_table *pid_table __read_mostly;
176
177 #define INITIAL_PID_TABLE_SIZE (1 << 5)
178
179 /* Table mask, threshold for growing and number of allocated PIDs. */
180 static u_int pid_tbl_mask __read_mostly;
181 static u_int pid_alloc_lim __read_mostly;
182 static u_int pid_alloc_cnt __cacheline_aligned;
183
184 /* Next free, last free and maximum PIDs. */
185 static u_int next_free_pt __cacheline_aligned;
186 static u_int last_free_pt __cacheline_aligned;
187 static pid_t pid_max __read_mostly;
188
189 /* Components of the first process -- never freed. */
190
191 struct session session0 = {
192 .s_count = 1,
193 .s_sid = 0,
194 };
195 struct pgrp pgrp0 = {
196 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
197 .pg_session = &session0,
198 };
199 filedesc_t filedesc0;
200 struct cwdinfo cwdi0 = {
201 .cwdi_cmask = CMASK,
202 .cwdi_refcnt = 1,
203 };
204 struct plimit limit0;
205 struct pstats pstat0;
206 struct vmspace vmspace0;
207 struct sigacts sigacts0;
208 struct proc proc0 = {
209 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
210 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
211 .p_nlwps = 1,
212 .p_nrlwps = 1,
213 .p_pgrp = &pgrp0,
214 .p_comm = "system",
215 /*
216 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
217 * when they exit. init(8) can easily wait them out for us.
218 */
219 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
220 .p_stat = SACTIVE,
221 .p_nice = NZERO,
222 .p_emul = &emul_netbsd,
223 .p_cwdi = &cwdi0,
224 .p_limit = &limit0,
225 .p_fd = &filedesc0,
226 .p_vmspace = &vmspace0,
227 .p_stats = &pstat0,
228 .p_sigacts = &sigacts0,
229 #ifdef PROC0_MD_INITIALIZERS
230 PROC0_MD_INITIALIZERS
231 #endif
232 };
233 kauth_cred_t cred0;
234
235 static const int nofile = NOFILE;
236 static const int maxuprc = MAXUPRC;
237
238 static int sysctl_doeproc(SYSCTLFN_PROTO);
239 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
240 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
241
242 #ifdef KASLR
243 static int kern_expose_address = 0;
244 #else
245 static int kern_expose_address = 1;
246 #endif
247 /*
248 * The process list descriptors, used during pid allocation and
249 * by sysctl. No locking on this data structure is needed since
250 * it is completely static.
251 */
252 const struct proclist_desc proclists[] = {
253 { &allproc },
254 { &zombproc },
255 { NULL },
256 };
257
258 static struct pgrp * pg_remove(pid_t);
259 static void pg_delete(pid_t);
260 static void orphanpg(struct pgrp *);
261
262 static specificdata_domain_t proc_specificdata_domain;
263
264 static pool_cache_t proc_cache;
265
266 static kauth_listener_t proc_listener;
267
268 static void fill_proc(const struct proc *, struct proc *, bool);
269 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
270 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
271
272 static int
273 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
274 void *arg0, void *arg1, void *arg2, void *arg3)
275 {
276 struct proc *p;
277 int result;
278
279 result = KAUTH_RESULT_DEFER;
280 p = arg0;
281
282 switch (action) {
283 case KAUTH_PROCESS_CANSEE: {
284 enum kauth_process_req req;
285
286 req = (enum kauth_process_req)(uintptr_t)arg1;
287
288 switch (req) {
289 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
290 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
291 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
292 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
293 result = KAUTH_RESULT_ALLOW;
294 break;
295
296 case KAUTH_REQ_PROCESS_CANSEE_ENV:
297 if (kauth_cred_getuid(cred) !=
298 kauth_cred_getuid(p->p_cred) ||
299 kauth_cred_getuid(cred) !=
300 kauth_cred_getsvuid(p->p_cred))
301 break;
302
303 result = KAUTH_RESULT_ALLOW;
304
305 break;
306
307 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
308 if (!kern_expose_address)
309 break;
310
311 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
312 break;
313
314 result = KAUTH_RESULT_ALLOW;
315
316 break;
317
318 default:
319 break;
320 }
321
322 break;
323 }
324
325 case KAUTH_PROCESS_FORK: {
326 int lnprocs = (int)(unsigned long)arg2;
327
328 /*
329 * Don't allow a nonprivileged user to use the last few
330 * processes. The variable lnprocs is the current number of
331 * processes, maxproc is the limit.
332 */
333 if (__predict_false((lnprocs >= maxproc - 5)))
334 break;
335
336 result = KAUTH_RESULT_ALLOW;
337
338 break;
339 }
340
341 case KAUTH_PROCESS_CORENAME:
342 case KAUTH_PROCESS_STOPFLAG:
343 if (proc_uidmatch(cred, p->p_cred) == 0)
344 result = KAUTH_RESULT_ALLOW;
345
346 break;
347
348 default:
349 break;
350 }
351
352 return result;
353 }
354
355 static int
356 proc_ctor(void *arg __unused, void *obj, int flags __unused)
357 {
358 struct proc *p = obj;
359
360 memset(p, 0, sizeof(*p));
361 klist_init(&p->p_klist);
362
363 /*
364 * There is no need for a proc_dtor() to do a klist_fini(),
365 * since knote_proc_exit() ensures that p->p_klist is empty
366 * when a process exits.
367 */
368
369 return 0;
370 }
371
372 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
373
374 /*
375 * Initialize global process hashing structures.
376 */
377 void
378 procinit(void)
379 {
380 const struct proclist_desc *pd;
381 u_int i;
382 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
383
384 for (pd = proclists; pd->pd_list != NULL; pd++)
385 LIST_INIT(pd->pd_list);
386
387 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
388
389 proc_psz = pserialize_create();
390
391 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
392 * sizeof(struct pid_table), KM_SLEEP);
393 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
394 pid_max = PID_MAX;
395
396 /* Set free list running through table...
397 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
398 for (i = 0; i <= pid_tbl_mask; i++) {
399 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
400 pid_table[i].pt_pgrp = 0;
401 pid_table[i].pt_pid = 0;
402 }
403 /* slot 0 is just grabbed */
404 next_free_pt = 1;
405 /* Need to fix last entry. */
406 last_free_pt = pid_tbl_mask;
407 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
408 /* point at which we grow table - to avoid reusing pids too often */
409 pid_alloc_lim = pid_tbl_mask - 1;
410 #undef LINK_EMPTY
411
412 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
413 mutex_enter(&proc_lock);
414 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
415 panic("failed to reserve PID 1 for init(8)");
416 mutex_exit(&proc_lock);
417
418 proc_specificdata_domain = specificdata_domain_create();
419 KASSERT(proc_specificdata_domain != NULL);
420
421 size_t proc_alignment = coherency_unit;
422 if (proc_alignment < MIN_PROC_ALIGNMENT)
423 proc_alignment = MIN_PROC_ALIGNMENT;
424
425 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
426 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
427
428 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
429 proc_listener_cb, NULL);
430 }
431
432 void
433 procinit_sysctl(void)
434 {
435 static struct sysctllog *clog;
436
437 sysctl_createv(&clog, 0, NULL, NULL,
438 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
439 CTLTYPE_INT, "expose_address",
440 SYSCTL_DESCR("Enable exposing kernel addresses"),
441 sysctl_security_expose_address, 0,
442 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
443 sysctl_createv(&clog, 0, NULL, NULL,
444 CTLFLAG_PERMANENT,
445 CTLTYPE_NODE, "proc",
446 SYSCTL_DESCR("System-wide process information"),
447 sysctl_doeproc, 0, NULL, 0,
448 CTL_KERN, KERN_PROC, CTL_EOL);
449 sysctl_createv(&clog, 0, NULL, NULL,
450 CTLFLAG_PERMANENT,
451 CTLTYPE_NODE, "proc2",
452 SYSCTL_DESCR("Machine-independent process information"),
453 sysctl_doeproc, 0, NULL, 0,
454 CTL_KERN, KERN_PROC2, CTL_EOL);
455 sysctl_createv(&clog, 0, NULL, NULL,
456 CTLFLAG_PERMANENT,
457 CTLTYPE_NODE, "proc_args",
458 SYSCTL_DESCR("Process argument information"),
459 sysctl_kern_proc_args, 0, NULL, 0,
460 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
461
462 /*
463 "nodes" under these:
464
465 KERN_PROC_ALL
466 KERN_PROC_PID pid
467 KERN_PROC_PGRP pgrp
468 KERN_PROC_SESSION sess
469 KERN_PROC_TTY tty
470 KERN_PROC_UID uid
471 KERN_PROC_RUID uid
472 KERN_PROC_GID gid
473 KERN_PROC_RGID gid
474
475 all in all, probably not worth the effort...
476 */
477 }
478
479 /*
480 * Initialize process 0.
481 */
482 void
483 proc0_init(void)
484 {
485 struct proc *p;
486 struct pgrp *pg;
487 struct rlimit *rlim;
488 rlim_t lim;
489 int i;
490
491 p = &proc0;
492 pg = &pgrp0;
493
494 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
495 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
496 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
497
498 rw_init(&p->p_reflock);
499 cv_init(&p->p_waitcv, "wait");
500 cv_init(&p->p_lwpcv, "lwpwait");
501
502 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
503
504 KASSERT(lwp0.l_lid == 0);
505 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
506 LIST_INSERT_HEAD(&allproc, p, p_list);
507
508 pid_table[lwp0.l_lid].pt_pgrp = pg;
509 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
510
511 #ifdef __HAVE_SYSCALL_INTERN
512 (*p->p_emul->e_syscall_intern)(p);
513 #endif
514
515 /* Create credentials. */
516 cred0 = kauth_cred_alloc();
517 p->p_cred = cred0;
518
519 /* Create the CWD info. */
520 rw_init(&cwdi0.cwdi_lock);
521
522 /* Create the limits structures. */
523 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
524
525 rlim = limit0.pl_rlimit;
526 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
527 rlim[i].rlim_cur = RLIM_INFINITY;
528 rlim[i].rlim_max = RLIM_INFINITY;
529 }
530
531 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
532 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
533
534 rlim[RLIMIT_NPROC].rlim_max = maxproc;
535 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
536
537 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
538 rlim[RLIMIT_RSS].rlim_max = lim;
539 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
540 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
541
542 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
543 rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
544
545 /* Note that default core name has zero length. */
546 limit0.pl_corename = defcorename;
547 limit0.pl_cnlen = 0;
548 limit0.pl_refcnt = 1;
549 limit0.pl_writeable = false;
550 limit0.pl_sv_limit = NULL;
551
552 /* Configure virtual memory system, set vm rlimits. */
553 uvm_init_limits(p);
554
555 /* Initialize file descriptor table for proc0. */
556 fd_init(&filedesc0);
557
558 /*
559 * Initialize proc0's vmspace, which uses the kernel pmap.
560 * All kernel processes (which never have user space mappings)
561 * share proc0's vmspace, and thus, the kernel pmap.
562 */
563 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
564 trunc_page(VM_MAXUSER_ADDRESS),
565 #ifdef __USE_TOPDOWN_VM
566 true
567 #else
568 false
569 #endif
570 );
571
572 /* Initialize signal state for proc0. XXX IPL_SCHED */
573 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
574 siginit(p);
575
576 proc_initspecific(p);
577 kdtrace_proc_ctor(NULL, p);
578 }
579
580 /*
581 * Session reference counting.
582 */
583
584 void
585 proc_sesshold(struct session *ss)
586 {
587
588 KASSERT(mutex_owned(&proc_lock));
589 ss->s_count++;
590 }
591
592 void
593 proc_sessrele(struct session *ss)
594 {
595 struct pgrp *pg;
596
597 KASSERT(mutex_owned(&proc_lock));
598 KASSERT(ss->s_count > 0);
599
600 /*
601 * We keep the pgrp with the same id as the session in order to
602 * stop a process being given the same pid. Since the pgrp holds
603 * a reference to the session, it must be a 'zombie' pgrp by now.
604 */
605 if (--ss->s_count == 0) {
606 pg = pg_remove(ss->s_sid);
607 } else {
608 pg = NULL;
609 ss = NULL;
610 }
611
612 mutex_exit(&proc_lock);
613
614 if (pg)
615 kmem_free(pg, sizeof(struct pgrp));
616 if (ss)
617 kmem_free(ss, sizeof(struct session));
618 }
619
620 /*
621 * Check that the specified process group is in the session of the
622 * specified process.
623 * Treats -ve ids as process ids.
624 * Used to validate TIOCSPGRP requests.
625 */
626 int
627 pgid_in_session(struct proc *p, pid_t pg_id)
628 {
629 struct pgrp *pgrp;
630 struct session *session;
631 int error;
632
633 if (pg_id <= INT_MIN)
634 return EINVAL;
635
636 mutex_enter(&proc_lock);
637 if (pg_id < 0) {
638 struct proc *p1 = proc_find(-pg_id);
639 if (p1 == NULL) {
640 error = EINVAL;
641 goto fail;
642 }
643 pgrp = p1->p_pgrp;
644 } else {
645 pgrp = pgrp_find(pg_id);
646 if (pgrp == NULL) {
647 error = EINVAL;
648 goto fail;
649 }
650 }
651 session = pgrp->pg_session;
652 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
653 fail:
654 mutex_exit(&proc_lock);
655 return error;
656 }
657
658 /*
659 * p_inferior: is p an inferior of q?
660 */
661 static inline bool
662 p_inferior(struct proc *p, struct proc *q)
663 {
664
665 KASSERT(mutex_owned(&proc_lock));
666
667 for (; p != q; p = p->p_pptr)
668 if (p->p_pid == 0)
669 return false;
670 return true;
671 }
672
673 /*
674 * proc_find_lwp: locate an lwp in said proc by the ID.
675 *
676 * => Must be called with p::p_lock held.
677 * => LSIDL lwps are not returned because they are only partially
678 * constructed while occupying the slot.
679 * => Callers need to be careful about lwp::l_stat of the returned
680 * lwp.
681 */
682 struct lwp *
683 proc_find_lwp(proc_t *p, pid_t pid)
684 {
685 struct pid_table *pt;
686 unsigned pt_mask;
687 struct lwp *l = NULL;
688 uintptr_t slot;
689 int s;
690
691 KASSERT(mutex_owned(p->p_lock));
692
693 /*
694 * Look in the pid_table. This is done unlocked inside a
695 * pserialize read section covering pid_table's memory
696 * allocation only, so take care to read things in the correct
697 * order:
698 *
699 * 1. First read the table mask -- this only ever increases, in
700 * expand_pid_table, so a stale value is safely
701 * conservative.
702 *
703 * 2. Next read the pid table -- this is always set _before_
704 * the mask increases, so if we see a new table and stale
705 * mask, the mask is still valid for the table.
706 */
707 s = pserialize_read_enter();
708 pt_mask = atomic_load_acquire(&pid_tbl_mask);
709 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
710 slot = atomic_load_consume(&pt->pt_slot);
711 if (__predict_false(!PT_IS_LWP(slot))) {
712 pserialize_read_exit(s);
713 return NULL;
714 }
715
716 /*
717 * Check to see if the LWP is from the correct process. We won't
718 * see entries in pid_table from a prior process that also used "p",
719 * by virtue of the fact that allocating "p" means all prior updates
720 * to dependant data structures are visible to this thread.
721 */
722 l = PT_GET_LWP(slot);
723 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
724 pserialize_read_exit(s);
725 return NULL;
726 }
727
728 /*
729 * We now know that p->p_lock holds this LWP stable.
730 *
731 * If the status is not LSIDL, it means the LWP is intended to be
732 * findable by LID and l_lid cannot change behind us.
733 *
734 * No need to acquire the LWP's lock to check for LSIDL, as
735 * p->p_lock must be held to transition in and out of LSIDL.
736 * Any other observed state of is no particular interest.
737 */
738 pserialize_read_exit(s);
739 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
740 }
741
742 /*
743 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
744 *
745 * => Called in a pserialize read section with no locks held.
746 * => LSIDL lwps are not returned because they are only partially
747 * constructed while occupying the slot.
748 * => Callers need to be careful about lwp::l_stat of the returned
749 * lwp.
750 * => If an LWP is found, it's returned locked.
751 */
752 struct lwp *
753 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
754 {
755 struct pid_table *pt;
756 unsigned pt_mask;
757 struct lwp *l = NULL;
758 uintptr_t slot;
759
760 KASSERT(pserialize_in_read_section());
761
762 /*
763 * Look in the pid_table. This is done unlocked inside a
764 * pserialize read section covering pid_table's memory
765 * allocation only, so take care to read things in the correct
766 * order:
767 *
768 * 1. First read the table mask -- this only ever increases, in
769 * expand_pid_table, so a stale value is safely
770 * conservative.
771 *
772 * 2. Next read the pid table -- this is always set _before_
773 * the mask increases, so if we see a new table and stale
774 * mask, the mask is still valid for the table.
775 */
776 pt_mask = atomic_load_acquire(&pid_tbl_mask);
777 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
778 slot = atomic_load_consume(&pt->pt_slot);
779 if (__predict_false(!PT_IS_LWP(slot))) {
780 return NULL;
781 }
782
783 /*
784 * Lock the LWP we found to get it stable. If it's embryonic or
785 * reaped (LSIDL) then none of the other fields can safely be
786 * checked.
787 */
788 l = PT_GET_LWP(slot);
789 lwp_lock(l);
790 if (__predict_false(l->l_stat == LSIDL)) {
791 lwp_unlock(l);
792 return NULL;
793 }
794
795 /*
796 * l_proc and l_lid are now known stable because the LWP is not
797 * LSIDL, so check those fields too to make sure we found the
798 * right thing.
799 */
800 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
801 lwp_unlock(l);
802 return NULL;
803 }
804
805 /* Everything checks out, return it locked. */
806 return l;
807 }
808
809 /*
810 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
811 * on its containing proc.
812 *
813 * => Similar to proc_find_lwp(), but does not require you to have
814 * the proc a priori.
815 * => Also returns proc * to caller, with p::p_lock held.
816 * => Same caveats apply.
817 */
818 struct lwp *
819 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
820 {
821 struct pid_table *pt;
822 struct proc *p = NULL;
823 struct lwp *l = NULL;
824 uintptr_t slot;
825
826 KASSERT(pp != NULL);
827 mutex_enter(&proc_lock);
828 pt = &pid_table[pid & pid_tbl_mask];
829
830 slot = pt->pt_slot;
831 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
832 l = PT_GET_LWP(slot);
833 p = l->l_proc;
834 mutex_enter(p->p_lock);
835 if (__predict_false(l->l_stat == LSIDL)) {
836 mutex_exit(p->p_lock);
837 l = NULL;
838 p = NULL;
839 }
840 }
841 mutex_exit(&proc_lock);
842
843 KASSERT(p == NULL || mutex_owned(p->p_lock));
844 *pp = p;
845 return l;
846 }
847
848 /*
849 * proc_find_raw_pid_table_locked: locate a process by the ID.
850 *
851 * => Must be called with proc_lock held.
852 */
853 static proc_t *
854 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
855 {
856 struct pid_table *pt;
857 proc_t *p = NULL;
858 uintptr_t slot;
859
860 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
861 pt = &pid_table[pid & pid_tbl_mask];
862
863 slot = pt->pt_slot;
864 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
865 /*
866 * When looking up processes, require a direct match
867 * on the PID assigned to the proc, not just one of
868 * its LWPs.
869 *
870 * N.B. We require lwp::l_proc of LSIDL LWPs to be
871 * valid here.
872 */
873 p = PT_GET_LWP(slot)->l_proc;
874 if (__predict_false(p->p_pid != pid && !any_lwpid))
875 p = NULL;
876 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
877 p = PT_GET_PROC(slot);
878 }
879 return p;
880 }
881
882 proc_t *
883 proc_find_raw(pid_t pid)
884 {
885
886 return proc_find_raw_pid_table_locked(pid, false);
887 }
888
889 static proc_t *
890 proc_find_internal(pid_t pid, bool any_lwpid)
891 {
892 proc_t *p;
893
894 KASSERT(mutex_owned(&proc_lock));
895
896 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
897 if (__predict_false(p == NULL)) {
898 return NULL;
899 }
900
901 /*
902 * Only allow live processes to be found by PID.
903 * XXX: p_stat might change, since proc unlocked.
904 */
905 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
906 return p;
907 }
908 return NULL;
909 }
910
911 proc_t *
912 proc_find(pid_t pid)
913 {
914 return proc_find_internal(pid, false);
915 }
916
917 proc_t *
918 proc_find_lwpid(pid_t pid)
919 {
920 return proc_find_internal(pid, true);
921 }
922
923 /*
924 * pgrp_find: locate a process group by the ID.
925 *
926 * => Must be called with proc_lock held.
927 */
928 struct pgrp *
929 pgrp_find(pid_t pgid)
930 {
931 struct pgrp *pg;
932
933 KASSERT(mutex_owned(&proc_lock));
934
935 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
936
937 /*
938 * Cannot look up a process group that only exists because the
939 * session has not died yet (traditional).
940 */
941 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
942 return NULL;
943 }
944 return pg;
945 }
946
947 static void
948 expand_pid_table(void)
949 {
950 size_t pt_size, tsz;
951 struct pid_table *n_pt, *new_pt;
952 uintptr_t slot;
953 struct pgrp *pgrp;
954 pid_t pid, rpid;
955 u_int i;
956 uint new_pt_mask;
957
958 KASSERT(mutex_owned(&proc_lock));
959
960 /* Unlock the pid_table briefly to allocate memory. */
961 pt_size = pid_tbl_mask + 1;
962 mutex_exit(&proc_lock);
963
964 tsz = pt_size * 2 * sizeof(struct pid_table);
965 new_pt = kmem_alloc(tsz, KM_SLEEP);
966 new_pt_mask = pt_size * 2 - 1;
967
968 /* XXX For now. The pratical limit is much lower anyway. */
969 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
970
971 mutex_enter(&proc_lock);
972 if (pt_size != pid_tbl_mask + 1) {
973 /* Another process beat us to it... */
974 mutex_exit(&proc_lock);
975 kmem_free(new_pt, tsz);
976 goto out;
977 }
978
979 /*
980 * Copy entries from old table into new one.
981 * If 'pid' is 'odd' we need to place in the upper half,
982 * even pid's to the lower half.
983 * Free items stay in the low half so we don't have to
984 * fixup the reference to them.
985 * We stuff free items on the front of the freelist
986 * because we can't write to unmodified entries.
987 * Processing the table backwards maintains a semblance
988 * of issuing pid numbers that increase with time.
989 */
990 i = pt_size - 1;
991 n_pt = new_pt + i;
992 for (; ; i--, n_pt--) {
993 slot = pid_table[i].pt_slot;
994 pgrp = pid_table[i].pt_pgrp;
995 if (!PT_VALID(slot)) {
996 /* Up 'use count' so that link is valid */
997 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
998 rpid = 0;
999 slot = PT_SET_FREE(pid);
1000 if (pgrp)
1001 pid = pgrp->pg_id;
1002 } else {
1003 pid = pid_table[i].pt_pid;
1004 rpid = pid;
1005 }
1006
1007 /* Save entry in appropriate half of table */
1008 n_pt[pid & pt_size].pt_slot = slot;
1009 n_pt[pid & pt_size].pt_pgrp = pgrp;
1010 n_pt[pid & pt_size].pt_pid = rpid;
1011
1012 /* Put other piece on start of free list */
1013 pid = (pid ^ pt_size) & ~pid_tbl_mask;
1014 n_pt[pid & pt_size].pt_slot =
1015 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1016 n_pt[pid & pt_size].pt_pgrp = 0;
1017 n_pt[pid & pt_size].pt_pid = 0;
1018
1019 next_free_pt = i | (pid & pt_size);
1020 if (i == 0)
1021 break;
1022 }
1023
1024 /* Save old table size and switch tables */
1025 tsz = pt_size * sizeof(struct pid_table);
1026 n_pt = pid_table;
1027 atomic_store_release(&pid_table, new_pt);
1028 KASSERT(new_pt_mask >= pid_tbl_mask);
1029 atomic_store_release(&pid_tbl_mask, new_pt_mask);
1030
1031 /*
1032 * pid_max starts as PID_MAX (= 30000), once we have 16384
1033 * allocated pids we need it to be larger!
1034 */
1035 if (pid_tbl_mask > PID_MAX) {
1036 pid_max = pid_tbl_mask * 2 + 1;
1037 pid_alloc_lim |= pid_alloc_lim << 1;
1038 } else
1039 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1040
1041 mutex_exit(&proc_lock);
1042
1043 /*
1044 * Make sure that unlocked access to the old pid_table is complete
1045 * and then free it.
1046 */
1047 pserialize_perform(proc_psz);
1048 kmem_free(n_pt, tsz);
1049
1050 out: /* Return with proc_lock held again. */
1051 mutex_enter(&proc_lock);
1052 }
1053
1054 struct proc *
1055 proc_alloc(void)
1056 {
1057 struct proc *p;
1058
1059 p = pool_cache_get(proc_cache, PR_WAITOK);
1060 p->p_stat = SIDL; /* protect against others */
1061 proc_initspecific(p);
1062 kdtrace_proc_ctor(NULL, p);
1063
1064 /*
1065 * Allocate a placeholder in the pid_table. When we create the
1066 * first LWP for this process, it will take ownership of the
1067 * slot.
1068 */
1069 if (__predict_false(proc_alloc_pid(p) == -1)) {
1070 /* Allocating the PID failed; unwind. */
1071 proc_finispecific(p);
1072 proc_free_mem(p);
1073 p = NULL;
1074 }
1075 return p;
1076 }
1077
1078 /*
1079 * proc_alloc_pid_slot: allocate PID and record the occupant so that
1080 * proc_find_raw() can find it by the PID.
1081 */
1082 static pid_t __noinline
1083 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1084 {
1085 struct pid_table *pt;
1086 pid_t pid;
1087 int nxt;
1088
1089 KASSERT(mutex_owned(&proc_lock));
1090
1091 for (;;expand_pid_table()) {
1092 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1093 /* ensure pids cycle through 2000+ values */
1094 continue;
1095 }
1096 /*
1097 * The first user process *must* be given PID 1.
1098 * it has already been reserved for us. This
1099 * will be coming in from the proc_alloc() call
1100 * above, and the entry will be usurped later when
1101 * the first user LWP is created.
1102 * XXX this is slightly gross.
1103 */
1104 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1105 p != &proc0)) {
1106 KASSERT(PT_IS_PROC(slot));
1107 pt = &pid_table[1];
1108 pt->pt_slot = slot;
1109 return 1;
1110 }
1111 pt = &pid_table[next_free_pt];
1112 #ifdef DIAGNOSTIC
1113 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1114 panic("proc_alloc: slot busy");
1115 #endif
1116 nxt = PT_NEXT(pt->pt_slot);
1117 if (nxt & pid_tbl_mask)
1118 break;
1119 /* Table full - expand (NB last entry not used....) */
1120 }
1121
1122 /* pid is 'saved use count' + 'size' + entry */
1123 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1124 if ((uint)pid > (uint)pid_max)
1125 pid &= pid_tbl_mask;
1126 next_free_pt = nxt & pid_tbl_mask;
1127
1128 /* XXX For now. The pratical limit is much lower anyway. */
1129 KASSERT(pid <= FUTEX_TID_MASK);
1130
1131 /* Grab table slot */
1132 pt->pt_slot = slot;
1133
1134 KASSERT(pt->pt_pid == 0);
1135 pt->pt_pid = pid;
1136 pid_alloc_cnt++;
1137
1138 return pid;
1139 }
1140
1141 pid_t
1142 proc_alloc_pid(struct proc *p)
1143 {
1144 pid_t pid;
1145
1146 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1147 KASSERT(p->p_stat == SIDL);
1148
1149 mutex_enter(&proc_lock);
1150 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1151 if (pid != -1)
1152 p->p_pid = pid;
1153 mutex_exit(&proc_lock);
1154
1155 return pid;
1156 }
1157
1158 pid_t
1159 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1160 {
1161 struct pid_table *pt;
1162 pid_t pid;
1163
1164 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1165 KASSERT(l->l_proc == p);
1166 KASSERT(l->l_stat == LSIDL);
1167
1168 /*
1169 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1170 * is globally visible before the LWP becomes visible via the
1171 * pid_table.
1172 */
1173 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1174 membar_producer();
1175 #endif
1176
1177 /*
1178 * If the slot for p->p_pid currently points to the proc,
1179 * then we should usurp this ID for the LWP. This happens
1180 * at least once per process (for the first LWP), and can
1181 * happen again if the first LWP for a process exits and
1182 * before the process creates another.
1183 */
1184 mutex_enter(&proc_lock);
1185 pid = p->p_pid;
1186 pt = &pid_table[pid & pid_tbl_mask];
1187 KASSERT(pt->pt_pid == pid);
1188 if (PT_IS_PROC(pt->pt_slot)) {
1189 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1190 l->l_lid = pid;
1191 pt->pt_slot = PT_SET_LWP(l);
1192 } else {
1193 /* Need to allocate a new slot. */
1194 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1195 if (pid != -1)
1196 l->l_lid = pid;
1197 }
1198 mutex_exit(&proc_lock);
1199
1200 return pid;
1201 }
1202
1203 static void __noinline
1204 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1205 {
1206 struct pid_table *pt;
1207
1208 KASSERT(mutex_owned(&proc_lock));
1209
1210 pt = &pid_table[pid & pid_tbl_mask];
1211
1212 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1213 KASSERT(pt->pt_pid == pid);
1214
1215 /* save pid use count in slot */
1216 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1217 pt->pt_pid = 0;
1218
1219 if (pt->pt_pgrp == NULL) {
1220 /* link last freed entry onto ours */
1221 pid &= pid_tbl_mask;
1222 pt = &pid_table[last_free_pt];
1223 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1224 pt->pt_pid = 0;
1225 last_free_pt = pid;
1226 pid_alloc_cnt--;
1227 }
1228 }
1229
1230 /*
1231 * Free a process id - called from proc_free (in kern_exit.c)
1232 *
1233 * Called with the proc_lock held.
1234 */
1235 void
1236 proc_free_pid(pid_t pid)
1237 {
1238
1239 KASSERT(mutex_owned(&proc_lock));
1240 proc_free_pid_internal(pid, PT_F_PROC);
1241 }
1242
1243 /*
1244 * Free a process id used by an LWP. If this was the process's
1245 * first LWP, we convert the slot to point to the process; the
1246 * entry will get cleaned up later when the process finishes exiting.
1247 *
1248 * If not, then it's the same as proc_free_pid().
1249 */
1250 void
1251 proc_free_lwpid(struct proc *p, pid_t pid)
1252 {
1253
1254 KASSERT(mutex_owned(&proc_lock));
1255
1256 if (__predict_true(p->p_pid == pid)) {
1257 struct pid_table *pt;
1258
1259 pt = &pid_table[pid & pid_tbl_mask];
1260
1261 KASSERT(pt->pt_pid == pid);
1262 KASSERT(PT_IS_LWP(pt->pt_slot));
1263 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1264
1265 pt->pt_slot = PT_SET_PROC(p);
1266 return;
1267 }
1268 proc_free_pid_internal(pid, PT_F_LWP);
1269 }
1270
1271 void
1272 proc_free_mem(struct proc *p)
1273 {
1274
1275 kdtrace_proc_dtor(NULL, p);
1276 pool_cache_put(proc_cache, p);
1277 }
1278
1279 /*
1280 * proc_enterpgrp: move p to a new or existing process group (and session).
1281 *
1282 * If we are creating a new pgrp, the pgid should equal
1283 * the calling process' pid.
1284 * If is only valid to enter a process group that is in the session
1285 * of the process.
1286 * Also mksess should only be set if we are creating a process group
1287 *
1288 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1289 */
1290 int
1291 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1292 {
1293 struct pgrp *new_pgrp, *pgrp;
1294 struct session *sess;
1295 struct proc *p;
1296 int rval;
1297 pid_t pg_id = NO_PGID;
1298
1299 /* Allocate data areas we might need before doing any validity checks */
1300 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1301 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1302
1303 mutex_enter(&proc_lock);
1304 rval = EPERM; /* most common error (to save typing) */
1305
1306 /* Check pgrp exists or can be created */
1307 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1308 if (pgrp != NULL && pgrp->pg_id != pgid)
1309 goto done;
1310
1311 /* Can only set another process under restricted circumstances. */
1312 if (pid != curp->p_pid) {
1313 /* Must exist and be one of our children... */
1314 p = proc_find_internal(pid, false);
1315 if (p == NULL || !p_inferior(p, curp)) {
1316 rval = ESRCH;
1317 goto done;
1318 }
1319 /* ... in the same session... */
1320 if (sess != NULL || p->p_session != curp->p_session)
1321 goto done;
1322 /* ... existing pgid must be in same session ... */
1323 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1324 goto done;
1325 /* ... and not done an exec. */
1326 if (p->p_flag & PK_EXEC) {
1327 rval = EACCES;
1328 goto done;
1329 }
1330 } else {
1331 /* ... setsid() cannot re-enter a pgrp */
1332 if (mksess && (curp->p_pgid == curp->p_pid ||
1333 pgrp_find(curp->p_pid)))
1334 goto done;
1335 p = curp;
1336 }
1337
1338 /* Changing the process group/session of a session
1339 leader is definitely off limits. */
1340 if (SESS_LEADER(p)) {
1341 if (sess == NULL && p->p_pgrp == pgrp)
1342 /* unless it's a definite noop */
1343 rval = 0;
1344 goto done;
1345 }
1346
1347 /* Can only create a process group with id of process */
1348 if (pgrp == NULL && pgid != pid)
1349 goto done;
1350
1351 /* Can only create a session if creating pgrp */
1352 if (sess != NULL && pgrp != NULL)
1353 goto done;
1354
1355 /* Check we allocated memory for a pgrp... */
1356 if (pgrp == NULL && new_pgrp == NULL)
1357 goto done;
1358
1359 /* Don't attach to 'zombie' pgrp */
1360 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1361 goto done;
1362
1363 /* Expect to succeed now */
1364 rval = 0;
1365
1366 if (pgrp == p->p_pgrp)
1367 /* nothing to do */
1368 goto done;
1369
1370 /* Ok all setup, link up required structures */
1371
1372 if (pgrp == NULL) {
1373 pgrp = new_pgrp;
1374 new_pgrp = NULL;
1375 if (sess != NULL) {
1376 sess->s_sid = p->p_pid;
1377 sess->s_leader = p;
1378 sess->s_count = 1;
1379 sess->s_ttyvp = NULL;
1380 sess->s_ttyp = NULL;
1381 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1382 memcpy(sess->s_login, p->p_session->s_login,
1383 sizeof(sess->s_login));
1384 p->p_lflag &= ~PL_CONTROLT;
1385 } else {
1386 sess = p->p_pgrp->pg_session;
1387 proc_sesshold(sess);
1388 }
1389 pgrp->pg_session = sess;
1390 sess = NULL;
1391
1392 pgrp->pg_id = pgid;
1393 LIST_INIT(&pgrp->pg_members);
1394 #ifdef DIAGNOSTIC
1395 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1396 panic("enterpgrp: pgrp table slot in use");
1397 if (__predict_false(mksess && p != curp))
1398 panic("enterpgrp: mksession and p != curproc");
1399 #endif
1400 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1401 pgrp->pg_jobc = 0;
1402 }
1403
1404 /*
1405 * Adjust eligibility of affected pgrps to participate in job control.
1406 * Increment eligibility counts before decrementing, otherwise we
1407 * could reach 0 spuriously during the first call.
1408 */
1409 fixjobc(p, pgrp, 1);
1410 fixjobc(p, p->p_pgrp, 0);
1411
1412 /* Interlock with ttread(). */
1413 mutex_spin_enter(&tty_lock);
1414
1415 /* Move process to requested group. */
1416 LIST_REMOVE(p, p_pglist);
1417 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1418 /* defer delete until we've dumped the lock */
1419 pg_id = p->p_pgrp->pg_id;
1420 p->p_pgrp = pgrp;
1421 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1422
1423 /* Done with the swap; we can release the tty mutex. */
1424 mutex_spin_exit(&tty_lock);
1425
1426 done:
1427 if (pg_id != NO_PGID) {
1428 /* Releases proc_lock. */
1429 pg_delete(pg_id);
1430 } else {
1431 mutex_exit(&proc_lock);
1432 }
1433 if (sess != NULL)
1434 kmem_free(sess, sizeof(*sess));
1435 if (new_pgrp != NULL)
1436 kmem_free(new_pgrp, sizeof(*new_pgrp));
1437 #ifdef DEBUG_PGRP
1438 if (__predict_false(rval))
1439 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1440 pid, pgid, mksess, curp->p_pid, rval);
1441 #endif
1442 return rval;
1443 }
1444
1445 /*
1446 * proc_leavepgrp: remove a process from its process group.
1447 * => must be called with the proc_lock held, which will be released;
1448 */
1449 void
1450 proc_leavepgrp(struct proc *p)
1451 {
1452 struct pgrp *pgrp;
1453
1454 KASSERT(mutex_owned(&proc_lock));
1455
1456 /* Interlock with ttread() */
1457 mutex_spin_enter(&tty_lock);
1458 pgrp = p->p_pgrp;
1459 LIST_REMOVE(p, p_pglist);
1460 p->p_pgrp = NULL;
1461 mutex_spin_exit(&tty_lock);
1462
1463 if (LIST_EMPTY(&pgrp->pg_members)) {
1464 /* Releases proc_lock. */
1465 pg_delete(pgrp->pg_id);
1466 } else {
1467 mutex_exit(&proc_lock);
1468 }
1469 }
1470
1471 /*
1472 * pg_remove: remove a process group from the table.
1473 * => must be called with the proc_lock held;
1474 * => returns process group to free;
1475 */
1476 static struct pgrp *
1477 pg_remove(pid_t pg_id)
1478 {
1479 struct pgrp *pgrp;
1480 struct pid_table *pt;
1481
1482 KASSERT(mutex_owned(&proc_lock));
1483
1484 pt = &pid_table[pg_id & pid_tbl_mask];
1485 pgrp = pt->pt_pgrp;
1486
1487 KASSERT(pgrp != NULL);
1488 KASSERT(pgrp->pg_id == pg_id);
1489 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1490
1491 pt->pt_pgrp = NULL;
1492
1493 if (!PT_VALID(pt->pt_slot)) {
1494 /* Orphaned pgrp, put slot onto free list. */
1495 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1496 pg_id &= pid_tbl_mask;
1497 pt = &pid_table[last_free_pt];
1498 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1499 KASSERT(pt->pt_pid == 0);
1500 last_free_pt = pg_id;
1501 pid_alloc_cnt--;
1502 }
1503 return pgrp;
1504 }
1505
1506 /*
1507 * pg_delete: delete and free a process group.
1508 * => must be called with the proc_lock held, which will be released.
1509 */
1510 static void
1511 pg_delete(pid_t pg_id)
1512 {
1513 struct pgrp *pg;
1514 struct tty *ttyp;
1515 struct session *ss;
1516
1517 KASSERT(mutex_owned(&proc_lock));
1518
1519 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1520 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1521 mutex_exit(&proc_lock);
1522 return;
1523 }
1524
1525 ss = pg->pg_session;
1526
1527 /* Remove reference (if any) from tty to this process group */
1528 mutex_spin_enter(&tty_lock);
1529 ttyp = ss->s_ttyp;
1530 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1531 ttyp->t_pgrp = NULL;
1532 KASSERT(ttyp->t_session == ss);
1533 }
1534 mutex_spin_exit(&tty_lock);
1535
1536 /*
1537 * The leading process group in a session is freed by proc_sessrele(),
1538 * if last reference. It will also release the locks.
1539 */
1540 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1541 proc_sessrele(ss);
1542
1543 if (pg != NULL) {
1544 /* Free it, if was not done above. */
1545 kmem_free(pg, sizeof(struct pgrp));
1546 }
1547 }
1548
1549 /*
1550 * Adjust pgrp jobc counters when specified process changes process group.
1551 * We count the number of processes in each process group that "qualify"
1552 * the group for terminal job control (those with a parent in a different
1553 * process group of the same session). If that count reaches zero, the
1554 * process group becomes orphaned. Check both the specified process'
1555 * process group and that of its children.
1556 * entering == 0 => p is leaving specified group.
1557 * entering == 1 => p is entering specified group.
1558 *
1559 * Call with proc_lock held.
1560 */
1561 void
1562 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1563 {
1564 struct pgrp *hispgrp;
1565 struct session *mysession = pgrp->pg_session;
1566 struct proc *child;
1567
1568 KASSERT(mutex_owned(&proc_lock));
1569
1570 /*
1571 * Check p's parent to see whether p qualifies its own process
1572 * group; if so, adjust count for p's process group.
1573 */
1574 hispgrp = p->p_pptr->p_pgrp;
1575 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1576 if (entering) {
1577 pgrp->pg_jobc++;
1578 p->p_lflag &= ~PL_ORPHANPG;
1579 } else {
1580 /* KASSERT(pgrp->pg_jobc > 0); */
1581 if (--pgrp->pg_jobc == 0)
1582 orphanpg(pgrp);
1583 }
1584 }
1585
1586 /*
1587 * Check this process' children to see whether they qualify
1588 * their process groups; if so, adjust counts for children's
1589 * process groups.
1590 */
1591 LIST_FOREACH(child, &p->p_children, p_sibling) {
1592 hispgrp = child->p_pgrp;
1593 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1594 !P_ZOMBIE(child)) {
1595 if (entering) {
1596 child->p_lflag &= ~PL_ORPHANPG;
1597 hispgrp->pg_jobc++;
1598 } else {
1599 KASSERT(hispgrp->pg_jobc > 0);
1600 if (--hispgrp->pg_jobc == 0)
1601 orphanpg(hispgrp);
1602 }
1603 }
1604 }
1605 }
1606
1607 /*
1608 * A process group has become orphaned;
1609 * if there are any stopped processes in the group,
1610 * hang-up all process in that group.
1611 *
1612 * Call with proc_lock held.
1613 */
1614 static void
1615 orphanpg(struct pgrp *pg)
1616 {
1617 struct proc *p;
1618
1619 KASSERT(mutex_owned(&proc_lock));
1620
1621 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1622 if (p->p_stat == SSTOP) {
1623 p->p_lflag |= PL_ORPHANPG;
1624 psignal(p, SIGHUP);
1625 psignal(p, SIGCONT);
1626 }
1627 }
1628 }
1629
1630 #ifdef DDB
1631 #include <ddb/db_output.h>
1632 void pidtbl_dump(void);
1633 void
1634 pidtbl_dump(void)
1635 {
1636 struct pid_table *pt;
1637 struct proc *p;
1638 struct pgrp *pgrp;
1639 uintptr_t slot;
1640 int id;
1641
1642 db_printf("pid table %p size %x, next %x, last %x\n",
1643 pid_table, pid_tbl_mask+1,
1644 next_free_pt, last_free_pt);
1645 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1646 slot = pt->pt_slot;
1647 if (!PT_VALID(slot) && !pt->pt_pgrp)
1648 continue;
1649 if (PT_IS_LWP(slot)) {
1650 p = PT_GET_LWP(slot)->l_proc;
1651 } else if (PT_IS_PROC(slot)) {
1652 p = PT_GET_PROC(slot);
1653 } else {
1654 p = NULL;
1655 }
1656 db_printf(" id %x: ", id);
1657 if (p != NULL)
1658 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1659 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1660 else
1661 db_printf("next %x use %x\n",
1662 PT_NEXT(slot) & pid_tbl_mask,
1663 PT_NEXT(slot) & ~pid_tbl_mask);
1664 if ((pgrp = pt->pt_pgrp)) {
1665 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1666 pgrp->pg_session, pgrp->pg_session->s_sid,
1667 pgrp->pg_session->s_count,
1668 pgrp->pg_session->s_login);
1669 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1670 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1671 LIST_FIRST(&pgrp->pg_members));
1672 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1673 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1674 p->p_pid, p, p->p_pgrp, p->p_comm);
1675 }
1676 }
1677 }
1678 }
1679 #endif /* DDB */
1680
1681 #ifdef KSTACK_CHECK_MAGIC
1682
1683 #define KSTACK_MAGIC 0xdeadbeaf
1684
1685 /* XXX should be per process basis? */
1686 static int kstackleftmin = KSTACK_SIZE;
1687 static int kstackleftthres = KSTACK_SIZE / 8;
1688
1689 void
1690 kstack_setup_magic(const struct lwp *l)
1691 {
1692 uint32_t *ip;
1693 uint32_t const *end;
1694
1695 KASSERT(l != NULL);
1696 KASSERT(l != &lwp0);
1697
1698 /*
1699 * fill all the stack with magic number
1700 * so that later modification on it can be detected.
1701 */
1702 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1703 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1704 for (; ip < end; ip++) {
1705 *ip = KSTACK_MAGIC;
1706 }
1707 }
1708
1709 void
1710 kstack_check_magic(const struct lwp *l)
1711 {
1712 uint32_t const *ip, *end;
1713 int stackleft;
1714
1715 KASSERT(l != NULL);
1716
1717 /* don't check proc0 */ /*XXX*/
1718 if (l == &lwp0)
1719 return;
1720
1721 #ifdef __MACHINE_STACK_GROWS_UP
1722 /* stack grows upwards (eg. hppa) */
1723 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1724 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1725 for (ip--; ip >= end; ip--)
1726 if (*ip != KSTACK_MAGIC)
1727 break;
1728
1729 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1730 #else /* __MACHINE_STACK_GROWS_UP */
1731 /* stack grows downwards (eg. i386) */
1732 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1733 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1734 for (; ip < end; ip++)
1735 if (*ip != KSTACK_MAGIC)
1736 break;
1737
1738 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1739 #endif /* __MACHINE_STACK_GROWS_UP */
1740
1741 if (kstackleftmin > stackleft) {
1742 kstackleftmin = stackleft;
1743 if (stackleft < kstackleftthres)
1744 printf("warning: kernel stack left %d bytes"
1745 "(pid %u:lid %u)\n", stackleft,
1746 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1747 }
1748
1749 if (stackleft <= 0) {
1750 panic("magic on the top of kernel stack changed for "
1751 "pid %u, lid %u: maybe kernel stack overflow",
1752 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1753 }
1754 }
1755 #endif /* KSTACK_CHECK_MAGIC */
1756
1757 int
1758 proclist_foreach_call(struct proclist *list,
1759 int (*callback)(struct proc *, void *arg), void *arg)
1760 {
1761 struct proc marker;
1762 struct proc *p;
1763 int ret = 0;
1764
1765 marker.p_flag = PK_MARKER;
1766 mutex_enter(&proc_lock);
1767 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1768 if (p->p_flag & PK_MARKER) {
1769 p = LIST_NEXT(p, p_list);
1770 continue;
1771 }
1772 LIST_INSERT_AFTER(p, &marker, p_list);
1773 ret = (*callback)(p, arg);
1774 KASSERT(mutex_owned(&proc_lock));
1775 p = LIST_NEXT(&marker, p_list);
1776 LIST_REMOVE(&marker, p_list);
1777 }
1778 mutex_exit(&proc_lock);
1779
1780 return ret;
1781 }
1782
1783 int
1784 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1785 {
1786
1787 /* XXXCDC: how should locking work here? */
1788
1789 /* curproc exception is for coredump. */
1790
1791 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1792 (p->p_vmspace->vm_refcnt < 1)) {
1793 return EFAULT;
1794 }
1795
1796 uvmspace_addref(p->p_vmspace);
1797 *vm = p->p_vmspace;
1798
1799 return 0;
1800 }
1801
1802 /*
1803 * Acquire a write lock on the process credential.
1804 */
1805 void
1806 proc_crmod_enter(void)
1807 {
1808 struct lwp *l = curlwp;
1809 struct proc *p = l->l_proc;
1810 kauth_cred_t oc;
1811
1812 /* Reset what needs to be reset in plimit. */
1813 if (p->p_limit->pl_corename != defcorename) {
1814 lim_setcorename(p, defcorename, 0);
1815 }
1816
1817 mutex_enter(p->p_lock);
1818
1819 /* Ensure the LWP cached credentials are up to date. */
1820 if ((oc = l->l_cred) != p->p_cred) {
1821 l->l_cred = kauth_cred_hold(p->p_cred);
1822 kauth_cred_free(oc);
1823 }
1824 }
1825
1826 /*
1827 * Set in a new process credential, and drop the write lock. The credential
1828 * must have a reference already. Optionally, free a no-longer required
1829 * credential.
1830 */
1831 void
1832 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1833 {
1834 struct lwp *l = curlwp, *l2;
1835 struct proc *p = l->l_proc;
1836 kauth_cred_t oc;
1837
1838 KASSERT(mutex_owned(p->p_lock));
1839
1840 /* Is there a new credential to set in? */
1841 if (scred != NULL) {
1842 p->p_cred = scred;
1843 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1844 if (l2 != l) {
1845 lwp_lock(l2);
1846 l2->l_flag |= LW_CACHECRED;
1847 lwp_need_userret(l2);
1848 lwp_unlock(l2);
1849 }
1850 }
1851
1852 /* Ensure the LWP cached credentials are up to date. */
1853 if ((oc = l->l_cred) != scred) {
1854 l->l_cred = kauth_cred_hold(scred);
1855 }
1856 } else
1857 oc = NULL; /* XXXgcc */
1858
1859 if (sugid) {
1860 /*
1861 * Mark process as having changed credentials, stops
1862 * tracing etc.
1863 */
1864 p->p_flag |= PK_SUGID;
1865 }
1866
1867 mutex_exit(p->p_lock);
1868
1869 /* If there is a credential to be released, free it now. */
1870 if (fcred != NULL) {
1871 KASSERT(scred != NULL);
1872 kauth_cred_free(fcred);
1873 if (oc != scred)
1874 kauth_cred_free(oc);
1875 }
1876 }
1877
1878 /*
1879 * proc_specific_key_create --
1880 * Create a key for subsystem proc-specific data.
1881 */
1882 int
1883 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1884 {
1885
1886 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1887 }
1888
1889 /*
1890 * proc_specific_key_delete --
1891 * Delete a key for subsystem proc-specific data.
1892 */
1893 void
1894 proc_specific_key_delete(specificdata_key_t key)
1895 {
1896
1897 specificdata_key_delete(proc_specificdata_domain, key);
1898 }
1899
1900 /*
1901 * proc_initspecific --
1902 * Initialize a proc's specificdata container.
1903 */
1904 void
1905 proc_initspecific(struct proc *p)
1906 {
1907 int error __diagused;
1908
1909 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1910 KASSERT(error == 0);
1911 }
1912
1913 /*
1914 * proc_finispecific --
1915 * Finalize a proc's specificdata container.
1916 */
1917 void
1918 proc_finispecific(struct proc *p)
1919 {
1920
1921 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1922 }
1923
1924 /*
1925 * proc_getspecific --
1926 * Return proc-specific data corresponding to the specified key.
1927 */
1928 void *
1929 proc_getspecific(struct proc *p, specificdata_key_t key)
1930 {
1931
1932 return (specificdata_getspecific(proc_specificdata_domain,
1933 &p->p_specdataref, key));
1934 }
1935
1936 /*
1937 * proc_setspecific --
1938 * Set proc-specific data corresponding to the specified key.
1939 */
1940 void
1941 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1942 {
1943
1944 specificdata_setspecific(proc_specificdata_domain,
1945 &p->p_specdataref, key, data);
1946 }
1947
1948 int
1949 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1950 {
1951 int r = 0;
1952
1953 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1954 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1955 /*
1956 * suid proc of ours or proc not ours
1957 */
1958 r = EPERM;
1959 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1960 /*
1961 * sgid proc has sgid back to us temporarily
1962 */
1963 r = EPERM;
1964 } else {
1965 /*
1966 * our rgid must be in target's group list (ie,
1967 * sub-processes started by a sgid process)
1968 */
1969 int ismember = 0;
1970
1971 if (kauth_cred_ismember_gid(cred,
1972 kauth_cred_getgid(target), &ismember) != 0 ||
1973 !ismember)
1974 r = EPERM;
1975 }
1976
1977 return (r);
1978 }
1979
1980 /*
1981 * sysctl stuff
1982 */
1983
1984 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1985
1986 static const u_int sysctl_flagmap[] = {
1987 PK_ADVLOCK, P_ADVLOCK,
1988 PK_EXEC, P_EXEC,
1989 PK_NOCLDWAIT, P_NOCLDWAIT,
1990 PK_32, P_32,
1991 PK_CLDSIGIGN, P_CLDSIGIGN,
1992 PK_SUGID, P_SUGID,
1993 0
1994 };
1995
1996 static const u_int sysctl_sflagmap[] = {
1997 PS_NOCLDSTOP, P_NOCLDSTOP,
1998 PS_WEXIT, P_WEXIT,
1999 PS_STOPFORK, P_STOPFORK,
2000 PS_STOPEXEC, P_STOPEXEC,
2001 PS_STOPEXIT, P_STOPEXIT,
2002 0
2003 };
2004
2005 static const u_int sysctl_slflagmap[] = {
2006 PSL_TRACED, P_TRACED,
2007 PSL_CHTRACED, P_CHTRACED,
2008 PSL_SYSCALL, P_SYSCALL,
2009 0
2010 };
2011
2012 static const u_int sysctl_lflagmap[] = {
2013 PL_CONTROLT, P_CONTROLT,
2014 PL_PPWAIT, P_PPWAIT,
2015 0
2016 };
2017
2018 static const u_int sysctl_stflagmap[] = {
2019 PST_PROFIL, P_PROFIL,
2020 0
2021
2022 };
2023
2024 /* used by kern_lwp also */
2025 const u_int sysctl_lwpflagmap[] = {
2026 LW_SINTR, L_SINTR,
2027 LW_SYSTEM, L_SYSTEM,
2028 0
2029 };
2030
2031 /*
2032 * Find the most ``active'' lwp of a process and return it for ps display
2033 * purposes
2034 */
2035 static struct lwp *
2036 proc_active_lwp(struct proc *p)
2037 {
2038 static const int ostat[] = {
2039 0,
2040 2, /* LSIDL */
2041 6, /* LSRUN */
2042 5, /* LSSLEEP */
2043 4, /* LSSTOP */
2044 0, /* LSZOMB */
2045 1, /* LSDEAD */
2046 7, /* LSONPROC */
2047 3 /* LSSUSPENDED */
2048 };
2049
2050 struct lwp *l, *lp = NULL;
2051 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2052 KASSERT(l->l_stat >= 0);
2053 KASSERT(l->l_stat < __arraycount(ostat));
2054 if (lp == NULL ||
2055 ostat[l->l_stat] > ostat[lp->l_stat] ||
2056 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2057 l->l_cpticks > lp->l_cpticks)) {
2058 lp = l;
2059 continue;
2060 }
2061 }
2062 return lp;
2063 }
2064
2065 static int
2066 sysctl_doeproc(SYSCTLFN_ARGS)
2067 {
2068 union {
2069 struct kinfo_proc kproc;
2070 struct kinfo_proc2 kproc2;
2071 } *kbuf;
2072 struct proc *p, *next, *marker;
2073 char *where, *dp;
2074 int type, op, arg, error;
2075 u_int elem_size, kelem_size, elem_count;
2076 size_t buflen, needed;
2077 bool match, zombie, mmmbrains;
2078 const bool allowaddr = get_expose_address(curproc);
2079
2080 if (namelen == 1 && name[0] == CTL_QUERY)
2081 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2082
2083 dp = where = oldp;
2084 buflen = where != NULL ? *oldlenp : 0;
2085 error = 0;
2086 needed = 0;
2087 type = rnode->sysctl_num;
2088
2089 if (type == KERN_PROC) {
2090 if (namelen == 0)
2091 return EINVAL;
2092 switch (op = name[0]) {
2093 case KERN_PROC_ALL:
2094 if (namelen != 1)
2095 return EINVAL;
2096 arg = 0;
2097 break;
2098 default:
2099 if (namelen != 2)
2100 return EINVAL;
2101 arg = name[1];
2102 break;
2103 }
2104 elem_count = 0; /* Hush little compiler, don't you cry */
2105 kelem_size = elem_size = sizeof(kbuf->kproc);
2106 } else {
2107 if (namelen != 4)
2108 return EINVAL;
2109 op = name[0];
2110 arg = name[1];
2111 elem_size = name[2];
2112 elem_count = name[3];
2113 kelem_size = sizeof(kbuf->kproc2);
2114 }
2115
2116 sysctl_unlock();
2117
2118 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2119 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2120 marker->p_flag = PK_MARKER;
2121
2122 mutex_enter(&proc_lock);
2123 /*
2124 * Start with zombies to prevent reporting processes twice, in case they
2125 * are dying and being moved from the list of alive processes to zombies.
2126 */
2127 mmmbrains = true;
2128 for (p = LIST_FIRST(&zombproc);; p = next) {
2129 if (p == NULL) {
2130 if (mmmbrains) {
2131 p = LIST_FIRST(&allproc);
2132 mmmbrains = false;
2133 }
2134 if (p == NULL)
2135 break;
2136 }
2137 next = LIST_NEXT(p, p_list);
2138 if ((p->p_flag & PK_MARKER) != 0)
2139 continue;
2140
2141 /*
2142 * Skip embryonic processes.
2143 */
2144 if (p->p_stat == SIDL)
2145 continue;
2146
2147 mutex_enter(p->p_lock);
2148 error = kauth_authorize_process(l->l_cred,
2149 KAUTH_PROCESS_CANSEE, p,
2150 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2151 if (error != 0) {
2152 mutex_exit(p->p_lock);
2153 continue;
2154 }
2155
2156 /*
2157 * Hande all the operations in one switch on the cost of
2158 * algorithm complexity is on purpose. The win splitting this
2159 * function into several similar copies makes maintenance
2160 * burden, code grow and boost is negligible in practical
2161 * systems.
2162 */
2163 switch (op) {
2164 case KERN_PROC_PID:
2165 match = (p->p_pid == (pid_t)arg);
2166 break;
2167
2168 case KERN_PROC_PGRP:
2169 match = (p->p_pgrp->pg_id == (pid_t)arg);
2170 break;
2171
2172 case KERN_PROC_SESSION:
2173 match = (p->p_session->s_sid == (pid_t)arg);
2174 break;
2175
2176 case KERN_PROC_TTY:
2177 match = true;
2178 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2179 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2180 p->p_session->s_ttyp == NULL ||
2181 p->p_session->s_ttyvp != NULL) {
2182 match = false;
2183 }
2184 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2185 p->p_session->s_ttyp == NULL) {
2186 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2187 match = false;
2188 }
2189 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2190 match = false;
2191 }
2192 break;
2193
2194 case KERN_PROC_UID:
2195 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2196 break;
2197
2198 case KERN_PROC_RUID:
2199 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2200 break;
2201
2202 case KERN_PROC_GID:
2203 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2204 break;
2205
2206 case KERN_PROC_RGID:
2207 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2208 break;
2209
2210 case KERN_PROC_ALL:
2211 match = true;
2212 /* allow everything */
2213 break;
2214
2215 default:
2216 error = EINVAL;
2217 mutex_exit(p->p_lock);
2218 goto cleanup;
2219 }
2220 if (!match) {
2221 mutex_exit(p->p_lock);
2222 continue;
2223 }
2224
2225 /*
2226 * Grab a hold on the process.
2227 */
2228 if (mmmbrains) {
2229 zombie = true;
2230 } else {
2231 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2232 }
2233 if (zombie) {
2234 LIST_INSERT_AFTER(p, marker, p_list);
2235 }
2236
2237 if (buflen >= elem_size &&
2238 (type == KERN_PROC || elem_count > 0)) {
2239 ruspace(p); /* Update process vm resource use */
2240
2241 if (type == KERN_PROC) {
2242 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2243 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2244 allowaddr);
2245 } else {
2246 fill_kproc2(p, &kbuf->kproc2, zombie,
2247 allowaddr);
2248 elem_count--;
2249 }
2250 mutex_exit(p->p_lock);
2251 mutex_exit(&proc_lock);
2252 /*
2253 * Copy out elem_size, but not larger than kelem_size
2254 */
2255 error = sysctl_copyout(l, kbuf, dp,
2256 uimin(kelem_size, elem_size));
2257 mutex_enter(&proc_lock);
2258 if (error) {
2259 goto bah;
2260 }
2261 dp += elem_size;
2262 buflen -= elem_size;
2263 } else {
2264 mutex_exit(p->p_lock);
2265 }
2266 needed += elem_size;
2267
2268 /*
2269 * Release reference to process.
2270 */
2271 if (zombie) {
2272 next = LIST_NEXT(marker, p_list);
2273 LIST_REMOVE(marker, p_list);
2274 } else {
2275 rw_exit(&p->p_reflock);
2276 next = LIST_NEXT(p, p_list);
2277 }
2278
2279 /*
2280 * Short-circuit break quickly!
2281 */
2282 if (op == KERN_PROC_PID)
2283 break;
2284 }
2285 mutex_exit(&proc_lock);
2286
2287 if (where != NULL) {
2288 *oldlenp = dp - where;
2289 if (needed > *oldlenp) {
2290 error = ENOMEM;
2291 goto out;
2292 }
2293 } else {
2294 needed += KERN_PROCSLOP;
2295 *oldlenp = needed;
2296 }
2297 kmem_free(kbuf, sizeof(*kbuf));
2298 kmem_free(marker, sizeof(*marker));
2299 sysctl_relock();
2300 return 0;
2301 bah:
2302 if (zombie)
2303 LIST_REMOVE(marker, p_list);
2304 else
2305 rw_exit(&p->p_reflock);
2306 cleanup:
2307 mutex_exit(&proc_lock);
2308 out:
2309 kmem_free(kbuf, sizeof(*kbuf));
2310 kmem_free(marker, sizeof(*marker));
2311 sysctl_relock();
2312 return error;
2313 }
2314
2315 int
2316 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2317 {
2318 #if !defined(_RUMPKERNEL)
2319 int retval;
2320
2321 if (p->p_flag & PK_32) {
2322 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2323 enosys(), retval);
2324 return retval;
2325 }
2326 #endif /* !defined(_RUMPKERNEL) */
2327
2328 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2329 }
2330
2331 static int
2332 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2333 {
2334 void **cookie = cookie_;
2335 struct lwp *l = cookie[0];
2336 char *dst = cookie[1];
2337
2338 return sysctl_copyout(l, src, dst + off, len);
2339 }
2340
2341 /*
2342 * sysctl helper routine for kern.proc_args pseudo-subtree.
2343 */
2344 static int
2345 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2346 {
2347 struct ps_strings pss;
2348 struct proc *p;
2349 pid_t pid;
2350 int type, error;
2351 void *cookie[2];
2352
2353 if (namelen == 1 && name[0] == CTL_QUERY)
2354 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2355
2356 if (newp != NULL || namelen != 2)
2357 return (EINVAL);
2358 pid = name[0];
2359 type = name[1];
2360
2361 switch (type) {
2362 case KERN_PROC_PATHNAME:
2363 sysctl_unlock();
2364 error = fill_pathname(l, pid, oldp, oldlenp);
2365 sysctl_relock();
2366 return error;
2367
2368 case KERN_PROC_CWD:
2369 sysctl_unlock();
2370 error = fill_cwd(l, pid, oldp, oldlenp);
2371 sysctl_relock();
2372 return error;
2373
2374 case KERN_PROC_ARGV:
2375 case KERN_PROC_NARGV:
2376 case KERN_PROC_ENV:
2377 case KERN_PROC_NENV:
2378 /* ok */
2379 break;
2380 default:
2381 return (EINVAL);
2382 }
2383
2384 sysctl_unlock();
2385
2386 /* check pid */
2387 mutex_enter(&proc_lock);
2388 if ((p = proc_find(pid)) == NULL) {
2389 error = EINVAL;
2390 goto out_locked;
2391 }
2392 mutex_enter(p->p_lock);
2393
2394 /* Check permission. */
2395 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2396 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2397 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2398 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2399 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2400 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2401 else
2402 error = EINVAL; /* XXXGCC */
2403 if (error) {
2404 mutex_exit(p->p_lock);
2405 goto out_locked;
2406 }
2407
2408 if (oldp == NULL) {
2409 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2410 *oldlenp = sizeof (int);
2411 else
2412 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2413 error = 0;
2414 mutex_exit(p->p_lock);
2415 goto out_locked;
2416 }
2417
2418 /*
2419 * Zombies don't have a stack, so we can't read their psstrings.
2420 * System processes also don't have a user stack.
2421 */
2422 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2423 error = EINVAL;
2424 mutex_exit(p->p_lock);
2425 goto out_locked;
2426 }
2427
2428 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2429 mutex_exit(p->p_lock);
2430 if (error) {
2431 goto out_locked;
2432 }
2433 mutex_exit(&proc_lock);
2434
2435 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2436 int value;
2437 if ((error = copyin_psstrings(p, &pss)) == 0) {
2438 if (type == KERN_PROC_NARGV)
2439 value = pss.ps_nargvstr;
2440 else
2441 value = pss.ps_nenvstr;
2442 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2443 *oldlenp = sizeof(value);
2444 }
2445 } else {
2446 cookie[0] = l;
2447 cookie[1] = oldp;
2448 error = copy_procargs(p, type, oldlenp,
2449 copy_procargs_sysctl_cb, cookie);
2450 }
2451 rw_exit(&p->p_reflock);
2452 sysctl_relock();
2453 return error;
2454
2455 out_locked:
2456 mutex_exit(&proc_lock);
2457 sysctl_relock();
2458 return error;
2459 }
2460
2461 int
2462 copy_procargs(struct proc *p, int oid, size_t *limit,
2463 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2464 {
2465 struct ps_strings pss;
2466 size_t len, i, loaded, entry_len;
2467 struct uio auio;
2468 struct iovec aiov;
2469 int error, argvlen;
2470 char *arg;
2471 char **argv;
2472 vaddr_t user_argv;
2473 struct vmspace *vmspace;
2474
2475 /*
2476 * Allocate a temporary buffer to hold the argument vector and
2477 * the arguments themselve.
2478 */
2479 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2480 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2481
2482 /*
2483 * Lock the process down in memory.
2484 */
2485 vmspace = p->p_vmspace;
2486 uvmspace_addref(vmspace);
2487
2488 /*
2489 * Read in the ps_strings structure.
2490 */
2491 if ((error = copyin_psstrings(p, &pss)) != 0)
2492 goto done;
2493
2494 /*
2495 * Now read the address of the argument vector.
2496 */
2497 switch (oid) {
2498 case KERN_PROC_ARGV:
2499 user_argv = (uintptr_t)pss.ps_argvstr;
2500 argvlen = pss.ps_nargvstr;
2501 break;
2502 case KERN_PROC_ENV:
2503 user_argv = (uintptr_t)pss.ps_envstr;
2504 argvlen = pss.ps_nenvstr;
2505 break;
2506 default:
2507 error = EINVAL;
2508 goto done;
2509 }
2510
2511 if (argvlen < 0) {
2512 error = EIO;
2513 goto done;
2514 }
2515
2516
2517 /*
2518 * Now copy each string.
2519 */
2520 len = 0; /* bytes written to user buffer */
2521 loaded = 0; /* bytes from argv already processed */
2522 i = 0; /* To make compiler happy */
2523 entry_len = PROC_PTRSZ(p);
2524
2525 for (; argvlen; --argvlen) {
2526 int finished = 0;
2527 vaddr_t base;
2528 size_t xlen;
2529 int j;
2530
2531 if (loaded == 0) {
2532 size_t rem = entry_len * argvlen;
2533 loaded = MIN(rem, PAGE_SIZE);
2534 error = copyin_vmspace(vmspace,
2535 (const void *)user_argv, argv, loaded);
2536 if (error)
2537 break;
2538 user_argv += loaded;
2539 i = 0;
2540 }
2541
2542 #if !defined(_RUMPKERNEL)
2543 if (p->p_flag & PK_32)
2544 MODULE_HOOK_CALL(kern_proc32_base_hook,
2545 (argv, i++), 0, base);
2546 else
2547 #endif /* !defined(_RUMPKERNEL) */
2548 base = (vaddr_t)argv[i++];
2549 loaded -= entry_len;
2550
2551 /*
2552 * The program has messed around with its arguments,
2553 * possibly deleting some, and replacing them with
2554 * NULL's. Treat this as the last argument and not
2555 * a failure.
2556 */
2557 if (base == 0)
2558 break;
2559
2560 while (!finished) {
2561 xlen = PAGE_SIZE - (base & PAGE_MASK);
2562
2563 aiov.iov_base = arg;
2564 aiov.iov_len = PAGE_SIZE;
2565 auio.uio_iov = &aiov;
2566 auio.uio_iovcnt = 1;
2567 auio.uio_offset = base;
2568 auio.uio_resid = xlen;
2569 auio.uio_rw = UIO_READ;
2570 UIO_SETUP_SYSSPACE(&auio);
2571 error = uvm_io(&vmspace->vm_map, &auio, 0);
2572 if (error)
2573 goto done;
2574
2575 /* Look for the end of the string */
2576 for (j = 0; j < xlen; j++) {
2577 if (arg[j] == '\0') {
2578 xlen = j + 1;
2579 finished = 1;
2580 break;
2581 }
2582 }
2583
2584 /* Check for user buffer overflow */
2585 if (len + xlen > *limit) {
2586 finished = 1;
2587 if (len > *limit)
2588 xlen = 0;
2589 else
2590 xlen = *limit - len;
2591 }
2592
2593 /* Copyout the page */
2594 error = (*cb)(cookie, arg, len, xlen);
2595 if (error)
2596 goto done;
2597
2598 len += xlen;
2599 base += xlen;
2600 }
2601 }
2602 *limit = len;
2603
2604 done:
2605 kmem_free(argv, PAGE_SIZE);
2606 kmem_free(arg, PAGE_SIZE);
2607 uvmspace_free(vmspace);
2608 return error;
2609 }
2610
2611 /*
2612 * Fill in a proc structure for the specified process.
2613 */
2614 static void
2615 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2616 {
2617 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2618 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2619 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2620 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2621 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2622 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2623 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2624 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2625 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2626 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2627 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2628 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2629 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2630 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2631 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2632 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2633 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2634 p->p_exitsig = psrc->p_exitsig;
2635 p->p_flag = psrc->p_flag;
2636 p->p_sflag = psrc->p_sflag;
2637 p->p_slflag = psrc->p_slflag;
2638 p->p_lflag = psrc->p_lflag;
2639 p->p_stflag = psrc->p_stflag;
2640 p->p_stat = psrc->p_stat;
2641 p->p_trace_enabled = psrc->p_trace_enabled;
2642 p->p_pid = psrc->p_pid;
2643 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2644 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2645 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2646 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2647 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2648 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2649 p->p_nlwps = psrc->p_nlwps;
2650 p->p_nzlwps = psrc->p_nzlwps;
2651 p->p_nrlwps = psrc->p_nrlwps;
2652 p->p_nlwpwait = psrc->p_nlwpwait;
2653 p->p_ndlwps = psrc->p_ndlwps;
2654 p->p_nstopchild = psrc->p_nstopchild;
2655 p->p_waited = psrc->p_waited;
2656 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2657 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2658 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2659 p->p_estcpu = psrc->p_estcpu;
2660 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2661 p->p_forktime = psrc->p_forktime;
2662 p->p_pctcpu = psrc->p_pctcpu;
2663 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2664 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2665 p->p_rtime = psrc->p_rtime;
2666 p->p_uticks = psrc->p_uticks;
2667 p->p_sticks = psrc->p_sticks;
2668 p->p_iticks = psrc->p_iticks;
2669 p->p_xutime = psrc->p_xutime;
2670 p->p_xstime = psrc->p_xstime;
2671 p->p_traceflag = psrc->p_traceflag;
2672 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2673 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2674 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2675 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2676 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2677 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2678 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2679 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2680 allowaddr);
2681 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2682 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2683 p->p_ppid = psrc->p_ppid;
2684 p->p_oppid = psrc->p_oppid;
2685 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2686 p->p_sigctx = psrc->p_sigctx;
2687 p->p_nice = psrc->p_nice;
2688 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2689 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2690 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2691 p->p_pax = psrc->p_pax;
2692 p->p_xexit = psrc->p_xexit;
2693 p->p_xsig = psrc->p_xsig;
2694 p->p_acflag = psrc->p_acflag;
2695 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2696 p->p_stackbase = psrc->p_stackbase;
2697 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2698 }
2699
2700 /*
2701 * Fill in an eproc structure for the specified process.
2702 */
2703 void
2704 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2705 {
2706 struct tty *tp;
2707 struct lwp *l;
2708
2709 KASSERT(mutex_owned(&proc_lock));
2710 KASSERT(mutex_owned(p->p_lock));
2711
2712 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2713 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2714 if (p->p_cred) {
2715 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2716 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2717 }
2718 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2719 struct vmspace *vm = p->p_vmspace;
2720
2721 ep->e_vm.vm_rssize = vm_resident_count(vm);
2722 ep->e_vm.vm_tsize = vm->vm_tsize;
2723 ep->e_vm.vm_dsize = vm->vm_dsize;
2724 ep->e_vm.vm_ssize = vm->vm_ssize;
2725 ep->e_vm.vm_map.size = vm->vm_map.size;
2726
2727 /* Pick the primary (first) LWP */
2728 l = proc_active_lwp(p);
2729 KASSERT(l != NULL);
2730 lwp_lock(l);
2731 if (l->l_wchan)
2732 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2733 lwp_unlock(l);
2734 }
2735 ep->e_ppid = p->p_ppid;
2736 if (p->p_pgrp && p->p_session) {
2737 ep->e_pgid = p->p_pgrp->pg_id;
2738 ep->e_jobc = p->p_pgrp->pg_jobc;
2739 ep->e_sid = p->p_session->s_sid;
2740 if ((p->p_lflag & PL_CONTROLT) &&
2741 (tp = p->p_session->s_ttyp)) {
2742 ep->e_tdev = tp->t_dev;
2743 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2744 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2745 } else
2746 ep->e_tdev = (uint32_t)NODEV;
2747 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2748 if (SESS_LEADER(p))
2749 ep->e_flag |= EPROC_SLEADER;
2750 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2751 }
2752 ep->e_xsize = ep->e_xrssize = 0;
2753 ep->e_xccount = ep->e_xswrss = 0;
2754 }
2755
2756 /*
2757 * Fill in a kinfo_proc2 structure for the specified process.
2758 */
2759 void
2760 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2761 {
2762 struct tty *tp;
2763 struct lwp *l;
2764 struct timeval ut, st, rt;
2765 sigset_t ss1, ss2;
2766 struct rusage ru;
2767 struct vmspace *vm;
2768
2769 KASSERT(mutex_owned(&proc_lock));
2770 KASSERT(mutex_owned(p->p_lock));
2771
2772 sigemptyset(&ss1);
2773 sigemptyset(&ss2);
2774
2775 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2776 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2777 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2778 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2779 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2780 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2781 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2782 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2783 ki->p_tsess = 0; /* may be changed if controlling tty below */
2784 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2785 ki->p_eflag = 0;
2786 ki->p_exitsig = p->p_exitsig;
2787 ki->p_flag = L_INMEM; /* Process never swapped out */
2788 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2789 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2790 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2791 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2792 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2793 ki->p_pid = p->p_pid;
2794 ki->p_ppid = p->p_ppid;
2795 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2796 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2797 ki->p_gid = kauth_cred_getegid(p->p_cred);
2798 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2799 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2800 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2801 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2802 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2803 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2804 UIO_SYSSPACE);
2805
2806 ki->p_uticks = p->p_uticks;
2807 ki->p_sticks = p->p_sticks;
2808 ki->p_iticks = p->p_iticks;
2809 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2810 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2811 ki->p_traceflag = p->p_traceflag;
2812
2813 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2814 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2815
2816 ki->p_cpticks = 0;
2817 ki->p_pctcpu = p->p_pctcpu;
2818 ki->p_estcpu = 0;
2819 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2820 ki->p_realstat = p->p_stat;
2821 ki->p_nice = p->p_nice;
2822 ki->p_xstat = P_WAITSTATUS(p);
2823 ki->p_acflag = p->p_acflag;
2824
2825 strncpy(ki->p_comm, p->p_comm,
2826 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2827 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2828
2829 ki->p_nlwps = p->p_nlwps;
2830 ki->p_realflag = ki->p_flag;
2831
2832 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2833 vm = p->p_vmspace;
2834 ki->p_vm_rssize = vm_resident_count(vm);
2835 ki->p_vm_tsize = vm->vm_tsize;
2836 ki->p_vm_dsize = vm->vm_dsize;
2837 ki->p_vm_ssize = vm->vm_ssize;
2838 ki->p_vm_vsize = atop(vm->vm_map.size);
2839 /*
2840 * Since the stack is initially mapped mostly with
2841 * PROT_NONE and grown as needed, adjust the "mapped size"
2842 * to skip the unused stack portion.
2843 */
2844 ki->p_vm_msize =
2845 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2846
2847 /* Pick the primary (first) LWP */
2848 l = proc_active_lwp(p);
2849 KASSERT(l != NULL);
2850 lwp_lock(l);
2851 ki->p_nrlwps = p->p_nrlwps;
2852 ki->p_forw = 0;
2853 ki->p_back = 0;
2854 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2855 ki->p_stat = l->l_stat;
2856 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2857 ki->p_swtime = l->l_swtime;
2858 ki->p_slptime = l->l_slptime;
2859 if (l->l_stat == LSONPROC)
2860 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2861 else
2862 ki->p_schedflags = 0;
2863 ki->p_priority = lwp_eprio(l);
2864 ki->p_usrpri = l->l_priority;
2865 if (l->l_wchan)
2866 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2867 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2868 ki->p_cpuid = cpu_index(l->l_cpu);
2869 lwp_unlock(l);
2870 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2871 /* This is hardly correct, but... */
2872 sigplusset(&l->l_sigpend.sp_set, &ss1);
2873 sigplusset(&l->l_sigmask, &ss2);
2874 ki->p_cpticks += l->l_cpticks;
2875 ki->p_pctcpu += l->l_pctcpu;
2876 ki->p_estcpu += l->l_estcpu;
2877 }
2878 }
2879 sigplusset(&p->p_sigpend.sp_set, &ss1);
2880 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2881 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2882
2883 if (p->p_session != NULL) {
2884 ki->p_sid = p->p_session->s_sid;
2885 ki->p__pgid = p->p_pgrp->pg_id;
2886 if (p->p_session->s_ttyvp)
2887 ki->p_eflag |= EPROC_CTTY;
2888 if (SESS_LEADER(p))
2889 ki->p_eflag |= EPROC_SLEADER;
2890 strncpy(ki->p_login, p->p_session->s_login,
2891 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2892 ki->p_jobc = p->p_pgrp->pg_jobc;
2893 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2894 ki->p_tdev = tp->t_dev;
2895 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2896 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2897 allowaddr);
2898 } else {
2899 ki->p_tdev = (int32_t)NODEV;
2900 }
2901 }
2902
2903 if (!P_ZOMBIE(p) && !zombie) {
2904 ki->p_uvalid = 1;
2905 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2906 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2907
2908 calcru(p, &ut, &st, NULL, &rt);
2909 ki->p_rtime_sec = rt.tv_sec;
2910 ki->p_rtime_usec = rt.tv_usec;
2911 ki->p_uutime_sec = ut.tv_sec;
2912 ki->p_uutime_usec = ut.tv_usec;
2913 ki->p_ustime_sec = st.tv_sec;
2914 ki->p_ustime_usec = st.tv_usec;
2915
2916 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2917 rulwps(p, &ru);
2918 ki->p_uru_nvcsw = ru.ru_nvcsw;
2919 ki->p_uru_nivcsw = ru.ru_nivcsw;
2920 ki->p_uru_maxrss = ru.ru_maxrss;
2921 ki->p_uru_ixrss = ru.ru_ixrss;
2922 ki->p_uru_idrss = ru.ru_idrss;
2923 ki->p_uru_isrss = ru.ru_isrss;
2924 ki->p_uru_minflt = ru.ru_minflt;
2925 ki->p_uru_majflt = ru.ru_majflt;
2926 ki->p_uru_nswap = ru.ru_nswap;
2927 ki->p_uru_inblock = ru.ru_inblock;
2928 ki->p_uru_oublock = ru.ru_oublock;
2929 ki->p_uru_msgsnd = ru.ru_msgsnd;
2930 ki->p_uru_msgrcv = ru.ru_msgrcv;
2931 ki->p_uru_nsignals = ru.ru_nsignals;
2932
2933 timeradd(&p->p_stats->p_cru.ru_utime,
2934 &p->p_stats->p_cru.ru_stime, &ut);
2935 ki->p_uctime_sec = ut.tv_sec;
2936 ki->p_uctime_usec = ut.tv_usec;
2937 }
2938 }
2939
2940
2941 int
2942 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2943 {
2944 int error;
2945
2946 mutex_enter(&proc_lock);
2947 if (pid == -1)
2948 *p = l->l_proc;
2949 else
2950 *p = proc_find(pid);
2951
2952 if (*p == NULL) {
2953 if (pid != -1)
2954 mutex_exit(&proc_lock);
2955 return ESRCH;
2956 }
2957 if (pid != -1)
2958 mutex_enter((*p)->p_lock);
2959 mutex_exit(&proc_lock);
2960
2961 error = kauth_authorize_process(l->l_cred,
2962 KAUTH_PROCESS_CANSEE, *p,
2963 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2964 if (error) {
2965 if (pid != -1)
2966 mutex_exit((*p)->p_lock);
2967 }
2968 return error;
2969 }
2970
2971 static int
2972 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2973 {
2974 int error;
2975 struct proc *p;
2976
2977 if ((error = proc_find_locked(l, &p, pid)) != 0)
2978 return error;
2979
2980 if (p->p_path == NULL) {
2981 if (pid != -1)
2982 mutex_exit(p->p_lock);
2983 return ENOENT;
2984 }
2985
2986 size_t len = strlen(p->p_path) + 1;
2987 if (oldp != NULL) {
2988 size_t copylen = uimin(len, *oldlenp);
2989 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2990 if (error == 0 && *oldlenp < len)
2991 error = ENOSPC;
2992 }
2993 *oldlenp = len;
2994 if (pid != -1)
2995 mutex_exit(p->p_lock);
2996 return error;
2997 }
2998
2999 static int
3000 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
3001 {
3002 int error;
3003 struct proc *p;
3004 char *path;
3005 char *bp, *bend;
3006 struct cwdinfo *cwdi;
3007 struct vnode *vp;
3008 size_t len, lenused;
3009
3010 if ((error = proc_find_locked(l, &p, pid)) != 0)
3011 return error;
3012
3013 len = MAXPATHLEN * 4;
3014
3015 path = kmem_alloc(len, KM_SLEEP);
3016
3017 bp = &path[len];
3018 bend = bp;
3019 *(--bp) = '\0';
3020
3021 cwdi = p->p_cwdi;
3022 rw_enter(&cwdi->cwdi_lock, RW_READER);
3023 vp = cwdi->cwdi_cdir;
3024 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3025 rw_exit(&cwdi->cwdi_lock);
3026
3027 if (error)
3028 goto out;
3029
3030 lenused = bend - bp;
3031
3032 if (oldp != NULL) {
3033 size_t copylen = uimin(lenused, *oldlenp);
3034 error = sysctl_copyout(l, bp, oldp, copylen);
3035 if (error == 0 && *oldlenp < lenused)
3036 error = ENOSPC;
3037 }
3038 *oldlenp = lenused;
3039 out:
3040 if (pid != -1)
3041 mutex_exit(p->p_lock);
3042 kmem_free(path, len);
3043 return error;
3044 }
3045
3046 int
3047 proc_getauxv(struct proc *p, void **buf, size_t *len)
3048 {
3049 struct ps_strings pss;
3050 int error;
3051 void *uauxv, *kauxv;
3052 size_t size;
3053
3054 if ((error = copyin_psstrings(p, &pss)) != 0)
3055 return error;
3056 if (pss.ps_envstr == NULL)
3057 return EIO;
3058
3059 size = p->p_execsw->es_arglen;
3060 if (size == 0)
3061 return EIO;
3062
3063 size_t ptrsz = PROC_PTRSZ(p);
3064 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3065
3066 kauxv = kmem_alloc(size, KM_SLEEP);
3067
3068 error = copyin_proc(p, uauxv, kauxv, size);
3069 if (error) {
3070 kmem_free(kauxv, size);
3071 return error;
3072 }
3073
3074 *buf = kauxv;
3075 *len = size;
3076
3077 return 0;
3078 }
3079
3080
3081 static int
3082 sysctl_security_expose_address(SYSCTLFN_ARGS)
3083 {
3084 int expose_address, error;
3085 struct sysctlnode node;
3086
3087 node = *rnode;
3088 node.sysctl_data = &expose_address;
3089 expose_address = *(int *)rnode->sysctl_data;
3090 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3091 if (error || newp == NULL)
3092 return error;
3093
3094 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3095 0, NULL, NULL, NULL))
3096 return EPERM;
3097
3098 switch (expose_address) {
3099 case 0:
3100 case 1:
3101 case 2:
3102 break;
3103 default:
3104 return EINVAL;
3105 }
3106
3107 *(int *)rnode->sysctl_data = expose_address;
3108
3109 return 0;
3110 }
3111
3112 bool
3113 get_expose_address(struct proc *p)
3114 {
3115 /* allow only if sysctl variable is set or privileged */
3116 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3117 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3118 }
3119