kern_proc.c revision 1.278 1 /* $NetBSD: kern_proc.c,v 1.278 2025/03/16 15:52:03 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.278 2025/03/16 15:52:03 riastradh Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_kstack.h"
70 #include "opt_maxuprc.h"
71 #include "opt_dtrace.h"
72 #include "opt_compat_netbsd32.h"
73 #include "opt_kaslr.h"
74 #endif
75
76 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
77 && !defined(_RUMPKERNEL)
78 #define COMPAT_NETBSD32
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/types.h>
83
84 #include <sys/acct.h>
85 #include <sys/atomic.h>
86 #include <sys/buf.h>
87 #include <sys/compat_stub.h>
88 #include <sys/cpu.h>
89 #include <sys/dtrace_bsd.h>
90 #include <sys/exec.h>
91 #include <sys/file.h>
92 #include <sys/filedesc.h>
93 #include <sys/futex.h>
94 #include <sys/ioctl.h>
95 #include <sys/kauth.h>
96 #include <sys/kernel.h>
97 #include <sys/kmem.h>
98 #include <sys/namei.h>
99 #include <sys/pool.h>
100 #include <sys/proc.h>
101 #include <sys/pserialize.h>
102 #include <sys/pset.h>
103 #include <sys/ras.h>
104 #include <sys/resourcevar.h>
105 #include <sys/sdt.h>
106 #include <sys/signalvar.h>
107 #include <sys/sleepq.h>
108 #include <sys/syscall_stats.h>
109 #include <sys/sysctl.h>
110 #include <sys/systm.h>
111 #include <sys/tty.h>
112 #include <sys/uio.h>
113 #include <sys/wait.h>
114 #include <ufs/ufs/quota.h>
115
116 #include <uvm/uvm_extern.h>
117
118 /*
119 * Process lists.
120 */
121
122 struct proclist allproc __cacheline_aligned;
123 struct proclist zombproc __cacheline_aligned;
124
125 kmutex_t proc_lock __cacheline_aligned;
126 static pserialize_t proc_psz;
127
128 /*
129 * pid to lwp/proc lookup is done by indexing the pid_table array.
130 * Since pid numbers are only allocated when an empty slot
131 * has been found, there is no need to search any lists ever.
132 * (an orphaned pgrp will lock the slot, a session will lock
133 * the pgrp with the same number.)
134 * If the table is too small it is reallocated with twice the
135 * previous size and the entries 'unzipped' into the two halves.
136 * A linked list of free entries is passed through the pt_lwp
137 * field of 'free' items - set odd to be an invalid ptr. Two
138 * additional bits are also used to indicate if the slot is
139 * currently occupied by a proc or lwp, and if the PID is
140 * hidden from certain kinds of lookups. We thus require a
141 * minimum alignment for proc and lwp structures (LWPs are
142 * at least 32-byte aligned).
143 */
144
145 struct pid_table {
146 uintptr_t pt_slot;
147 struct pgrp *pt_pgrp;
148 pid_t pt_pid;
149 };
150
151 #define PT_F_FREE ((uintptr_t)__BIT(0))
152 #define PT_F_LWP 0 /* pseudo-flag */
153 #define PT_F_PROC ((uintptr_t)__BIT(1))
154
155 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
156 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
157
158 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
159 #define PT_RESERVED(s) ((s) == 0)
160 #define PT_NEXT(s) ((u_int)(s) >> 1)
161 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
162 #define PT_SET_LWP(l) ((uintptr_t)(l))
163 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
164 #define PT_SET_RESERVED 0
165 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
166 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
167 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
168 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
169 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
170
171 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
172
173 /*
174 * Table of process IDs (PIDs).
175 */
176 static struct pid_table *pid_table __read_mostly;
177
178 #define INITIAL_PID_TABLE_SIZE (1 << 5)
179
180 /* Table mask, threshold for growing and number of allocated PIDs. */
181 static u_int pid_tbl_mask __read_mostly;
182 static u_int pid_alloc_lim __read_mostly;
183 static u_int pid_alloc_cnt __cacheline_aligned;
184
185 /* Next free, last free and maximum PIDs. */
186 static u_int next_free_pt __cacheline_aligned;
187 static u_int last_free_pt __cacheline_aligned;
188 static pid_t pid_max __read_mostly;
189
190 /* Components of the first process -- never freed. */
191
192 struct session session0 = {
193 .s_count = 1,
194 .s_sid = 0,
195 };
196 struct pgrp pgrp0 = {
197 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
198 .pg_session = &session0,
199 };
200 filedesc_t filedesc0;
201 struct cwdinfo cwdi0 = {
202 .cwdi_cmask = CMASK,
203 .cwdi_refcnt = 1,
204 };
205 struct plimit limit0;
206 struct pstats pstat0;
207 struct vmspace vmspace0;
208 struct sigacts sigacts0;
209 struct proc proc0 = {
210 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
211 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
212 .p_nlwps = 1,
213 .p_nrlwps = 1,
214 .p_pgrp = &pgrp0,
215 .p_comm = "system",
216 /*
217 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
218 * when they exit. init(8) can easily wait them out for us.
219 */
220 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
221 .p_stat = SACTIVE,
222 .p_nice = NZERO,
223 .p_emul = &emul_netbsd,
224 .p_cwdi = &cwdi0,
225 .p_limit = &limit0,
226 .p_fd = &filedesc0,
227 .p_vmspace = &vmspace0,
228 .p_stats = &pstat0,
229 .p_sigacts = &sigacts0,
230 #ifdef PROC0_MD_INITIALIZERS
231 PROC0_MD_INITIALIZERS
232 #endif
233 };
234 kauth_cred_t cred0;
235
236 static const int nofile = NOFILE;
237 static const int maxuprc = MAXUPRC;
238
239 static int sysctl_doeproc(SYSCTLFN_PROTO);
240 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
241 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
242
243 #ifdef KASLR
244 static int kern_expose_address = 0;
245 #else
246 static int kern_expose_address = 1;
247 #endif
248 /*
249 * The process list descriptors, used during pid allocation and
250 * by sysctl. No locking on this data structure is needed since
251 * it is completely static.
252 */
253 const struct proclist_desc proclists[] = {
254 { &allproc },
255 { &zombproc },
256 { NULL },
257 };
258
259 static struct pgrp * pg_remove(pid_t);
260 static void pg_delete(pid_t);
261 static void orphanpg(struct pgrp *);
262
263 static specificdata_domain_t proc_specificdata_domain;
264
265 static pool_cache_t proc_cache;
266
267 static kauth_listener_t proc_listener;
268
269 static void fill_proc(const struct proc *, struct proc *, bool);
270 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
271 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
272
273 static int
274 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
275 void *arg0, void *arg1, void *arg2, void *arg3)
276 {
277 struct proc *p;
278 int result;
279
280 result = KAUTH_RESULT_DEFER;
281 p = arg0;
282
283 switch (action) {
284 case KAUTH_PROCESS_CANSEE: {
285 enum kauth_process_req req;
286
287 req = (enum kauth_process_req)(uintptr_t)arg1;
288
289 switch (req) {
290 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
291 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
292 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
293 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
294 result = KAUTH_RESULT_ALLOW;
295 break;
296
297 case KAUTH_REQ_PROCESS_CANSEE_ENV:
298 if (kauth_cred_getuid(cred) !=
299 kauth_cred_getuid(p->p_cred) ||
300 kauth_cred_getuid(cred) !=
301 kauth_cred_getsvuid(p->p_cred))
302 break;
303
304 result = KAUTH_RESULT_ALLOW;
305
306 break;
307
308 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
309 if (!kern_expose_address)
310 break;
311
312 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
313 break;
314
315 result = KAUTH_RESULT_ALLOW;
316
317 break;
318
319 default:
320 break;
321 }
322
323 break;
324 }
325
326 case KAUTH_PROCESS_FORK: {
327 int lnprocs = (int)(unsigned long)arg2;
328
329 /*
330 * Don't allow a nonprivileged user to use the last few
331 * processes. The variable lnprocs is the current number of
332 * processes, maxproc is the limit.
333 */
334 if (__predict_false((lnprocs >= maxproc - 5)))
335 break;
336
337 result = KAUTH_RESULT_ALLOW;
338
339 break;
340 }
341
342 case KAUTH_PROCESS_CORENAME:
343 case KAUTH_PROCESS_STOPFLAG:
344 if (proc_uidmatch(cred, p->p_cred) == 0)
345 result = KAUTH_RESULT_ALLOW;
346
347 break;
348
349 default:
350 break;
351 }
352
353 return result;
354 }
355
356 static int
357 proc_ctor(void *arg __unused, void *obj, int flags __unused)
358 {
359 struct proc *p = obj;
360
361 memset(p, 0, sizeof(*p));
362 klist_init(&p->p_klist);
363
364 /*
365 * There is no need for a proc_dtor() to do a klist_fini(),
366 * since knote_proc_exit() ensures that p->p_klist is empty
367 * when a process exits.
368 */
369
370 return 0;
371 }
372
373 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
374
375 /*
376 * Initialize global process hashing structures.
377 */
378 void
379 procinit(void)
380 {
381 const struct proclist_desc *pd;
382 u_int i;
383 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
384
385 for (pd = proclists; pd->pd_list != NULL; pd++)
386 LIST_INIT(pd->pd_list);
387
388 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
389
390 proc_psz = pserialize_create();
391
392 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
393 * sizeof(struct pid_table), KM_SLEEP);
394 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
395 pid_max = PID_MAX;
396
397 /* Set free list running through table...
398 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
399 for (i = 0; i <= pid_tbl_mask; i++) {
400 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
401 pid_table[i].pt_pgrp = 0;
402 pid_table[i].pt_pid = 0;
403 }
404 /* slot 0 is just grabbed */
405 next_free_pt = 1;
406 /* Need to fix last entry. */
407 last_free_pt = pid_tbl_mask;
408 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
409 /* point at which we grow table - to avoid reusing pids too often */
410 pid_alloc_lim = pid_tbl_mask - 1;
411 #undef LINK_EMPTY
412
413 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
414 mutex_enter(&proc_lock);
415 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
416 panic("failed to reserve PID 1 for init(8)");
417 mutex_exit(&proc_lock);
418
419 proc_specificdata_domain = specificdata_domain_create();
420 KASSERT(proc_specificdata_domain != NULL);
421
422 size_t proc_alignment = coherency_unit;
423 if (proc_alignment < MIN_PROC_ALIGNMENT)
424 proc_alignment = MIN_PROC_ALIGNMENT;
425
426 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
427 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
428
429 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
430 proc_listener_cb, NULL);
431 }
432
433 void
434 procinit_sysctl(void)
435 {
436 static struct sysctllog *clog;
437
438 sysctl_createv(&clog, 0, NULL, NULL,
439 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
440 CTLTYPE_INT, "expose_address",
441 SYSCTL_DESCR("Enable exposing kernel addresses"),
442 sysctl_security_expose_address, 0,
443 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
444 sysctl_createv(&clog, 0, NULL, NULL,
445 CTLFLAG_PERMANENT,
446 CTLTYPE_NODE, "proc",
447 SYSCTL_DESCR("System-wide process information"),
448 sysctl_doeproc, 0, NULL, 0,
449 CTL_KERN, KERN_PROC, CTL_EOL);
450 sysctl_createv(&clog, 0, NULL, NULL,
451 CTLFLAG_PERMANENT,
452 CTLTYPE_NODE, "proc2",
453 SYSCTL_DESCR("Machine-independent process information"),
454 sysctl_doeproc, 0, NULL, 0,
455 CTL_KERN, KERN_PROC2, CTL_EOL);
456 sysctl_createv(&clog, 0, NULL, NULL,
457 CTLFLAG_PERMANENT,
458 CTLTYPE_NODE, "proc_args",
459 SYSCTL_DESCR("Process argument information"),
460 sysctl_kern_proc_args, 0, NULL, 0,
461 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
462
463 /*
464 "nodes" under these:
465
466 KERN_PROC_ALL
467 KERN_PROC_PID pid
468 KERN_PROC_PGRP pgrp
469 KERN_PROC_SESSION sess
470 KERN_PROC_TTY tty
471 KERN_PROC_UID uid
472 KERN_PROC_RUID uid
473 KERN_PROC_GID gid
474 KERN_PROC_RGID gid
475
476 all in all, probably not worth the effort...
477 */
478 }
479
480 /*
481 * Initialize process 0.
482 */
483 void
484 proc0_init(void)
485 {
486 struct proc *p;
487 struct pgrp *pg;
488 struct rlimit *rlim;
489 rlim_t lim;
490 int i;
491
492 p = &proc0;
493 pg = &pgrp0;
494
495 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
496 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
497 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
498
499 rw_init(&p->p_reflock);
500 cv_init(&p->p_waitcv, "wait");
501 cv_init(&p->p_lwpcv, "lwpwait");
502
503 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
504
505 KASSERT(lwp0.l_lid == 0);
506 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
507 LIST_INSERT_HEAD(&allproc, p, p_list);
508
509 pid_table[lwp0.l_lid].pt_pgrp = pg;
510 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
511
512 #ifdef __HAVE_SYSCALL_INTERN
513 (*p->p_emul->e_syscall_intern)(p);
514 #endif
515
516 /* Create credentials. */
517 cred0 = kauth_cred_alloc();
518 p->p_cred = cred0;
519
520 /* Create the CWD info. */
521 rw_init(&cwdi0.cwdi_lock);
522
523 /* Create the limits structures. */
524 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
525
526 rlim = limit0.pl_rlimit;
527 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
528 rlim[i].rlim_cur = RLIM_INFINITY;
529 rlim[i].rlim_max = RLIM_INFINITY;
530 }
531
532 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
533 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
534
535 rlim[RLIMIT_NPROC].rlim_max = maxproc;
536 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
537
538 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
539 rlim[RLIMIT_RSS].rlim_max = lim;
540 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
541 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
542
543 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
544 rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
545
546 /* Note that default core name has zero length. */
547 limit0.pl_corename = defcorename;
548 limit0.pl_cnlen = 0;
549 limit0.pl_refcnt = 1;
550 limit0.pl_writeable = false;
551 limit0.pl_sv_limit = NULL;
552
553 /* Configure virtual memory system, set vm rlimits. */
554 uvm_init_limits(p);
555
556 /* Initialize file descriptor table for proc0. */
557 fd_init(&filedesc0);
558
559 /*
560 * Initialize proc0's vmspace, which uses the kernel pmap.
561 * All kernel processes (which never have user space mappings)
562 * share proc0's vmspace, and thus, the kernel pmap.
563 */
564 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
565 trunc_page(VM_MAXUSER_ADDRESS),
566 #ifdef __USE_TOPDOWN_VM
567 true
568 #else
569 false
570 #endif
571 );
572
573 /* Initialize signal state for proc0. XXX IPL_SCHED */
574 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
575 siginit(p);
576
577 proc_initspecific(p);
578 kdtrace_proc_ctor(NULL, p);
579 }
580
581 /*
582 * Session reference counting.
583 */
584
585 void
586 proc_sesshold(struct session *ss)
587 {
588
589 KASSERT(mutex_owned(&proc_lock));
590 ss->s_count++;
591 }
592
593 void
594 proc_sessrele(struct session *ss)
595 {
596 struct pgrp *pg;
597
598 KASSERT(mutex_owned(&proc_lock));
599 KASSERT(ss->s_count > 0);
600
601 /*
602 * We keep the pgrp with the same id as the session in order to
603 * stop a process being given the same pid. Since the pgrp holds
604 * a reference to the session, it must be a 'zombie' pgrp by now.
605 */
606 if (--ss->s_count == 0) {
607 pg = pg_remove(ss->s_sid);
608 } else {
609 pg = NULL;
610 ss = NULL;
611 }
612
613 mutex_exit(&proc_lock);
614
615 if (pg)
616 kmem_free(pg, sizeof(struct pgrp));
617 if (ss)
618 kmem_free(ss, sizeof(struct session));
619 }
620
621 /*
622 * Check that the specified process group is in the session of the
623 * specified process.
624 * Treats -ve ids as process ids.
625 * Used to validate TIOCSPGRP requests.
626 */
627 int
628 pgid_in_session(struct proc *p, pid_t pg_id)
629 {
630 struct pgrp *pgrp;
631 struct session *session;
632 int error;
633
634 if (pg_id <= INT_MIN)
635 return SET_ERROR(EINVAL);
636
637 mutex_enter(&proc_lock);
638 if (pg_id < 0) {
639 struct proc *p1 = proc_find(-pg_id);
640 if (p1 == NULL) {
641 error = SET_ERROR(EINVAL);
642 goto fail;
643 }
644 pgrp = p1->p_pgrp;
645 } else {
646 pgrp = pgrp_find(pg_id);
647 if (pgrp == NULL) {
648 error = SET_ERROR(EINVAL);
649 goto fail;
650 }
651 }
652 session = pgrp->pg_session;
653 error = (session != p->p_pgrp->pg_session) ? SET_ERROR(EPERM) : 0;
654 fail:
655 mutex_exit(&proc_lock);
656 return error;
657 }
658
659 /*
660 * p_inferior: is p an inferior of q?
661 */
662 static inline bool
663 p_inferior(struct proc *p, struct proc *q)
664 {
665
666 KASSERT(mutex_owned(&proc_lock));
667
668 for (; p != q; p = p->p_pptr)
669 if (p->p_pid == 0)
670 return false;
671 return true;
672 }
673
674 /*
675 * proc_find_lwp: locate an lwp in said proc by the ID.
676 *
677 * => Must be called with p::p_lock held.
678 * => LSIDL lwps are not returned because they are only partially
679 * constructed while occupying the slot.
680 * => Callers need to be careful about lwp::l_stat of the returned
681 * lwp.
682 */
683 struct lwp *
684 proc_find_lwp(proc_t *p, pid_t pid)
685 {
686 struct pid_table *pt;
687 unsigned pt_mask;
688 struct lwp *l = NULL;
689 uintptr_t slot;
690 int s;
691
692 KASSERT(mutex_owned(p->p_lock));
693
694 /*
695 * Look in the pid_table. This is done unlocked inside a
696 * pserialize read section covering pid_table's memory
697 * allocation only, so take care to read things in the correct
698 * order:
699 *
700 * 1. First read the table mask -- this only ever increases, in
701 * expand_pid_table, so a stale value is safely
702 * conservative.
703 *
704 * 2. Next read the pid table -- this is always set _before_
705 * the mask increases, so if we see a new table and stale
706 * mask, the mask is still valid for the table.
707 */
708 s = pserialize_read_enter();
709 pt_mask = atomic_load_acquire(&pid_tbl_mask);
710 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
711 slot = atomic_load_consume(&pt->pt_slot);
712 if (__predict_false(!PT_IS_LWP(slot))) {
713 pserialize_read_exit(s);
714 return NULL;
715 }
716
717 /*
718 * Check to see if the LWP is from the correct process. We won't
719 * see entries in pid_table from a prior process that also used "p",
720 * by virtue of the fact that allocating "p" means all prior updates
721 * to dependant data structures are visible to this thread.
722 */
723 l = PT_GET_LWP(slot);
724 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
725 pserialize_read_exit(s);
726 return NULL;
727 }
728
729 /*
730 * We now know that p->p_lock holds this LWP stable.
731 *
732 * If the status is not LSIDL, it means the LWP is intended to be
733 * findable by LID and l_lid cannot change behind us.
734 *
735 * No need to acquire the LWP's lock to check for LSIDL, as
736 * p->p_lock must be held to transition in and out of LSIDL.
737 * Any other observed state of is no particular interest.
738 */
739 pserialize_read_exit(s);
740 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
741 }
742
743 /*
744 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
745 *
746 * => Called in a pserialize read section with no locks held.
747 * => LSIDL lwps are not returned because they are only partially
748 * constructed while occupying the slot.
749 * => Callers need to be careful about lwp::l_stat of the returned
750 * lwp.
751 * => If an LWP is found, it's returned locked.
752 */
753 struct lwp *
754 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
755 {
756 struct pid_table *pt;
757 unsigned pt_mask;
758 struct lwp *l = NULL;
759 uintptr_t slot;
760
761 KASSERT(pserialize_in_read_section());
762
763 /*
764 * Look in the pid_table. This is done unlocked inside a
765 * pserialize read section covering pid_table's memory
766 * allocation only, so take care to read things in the correct
767 * order:
768 *
769 * 1. First read the table mask -- this only ever increases, in
770 * expand_pid_table, so a stale value is safely
771 * conservative.
772 *
773 * 2. Next read the pid table -- this is always set _before_
774 * the mask increases, so if we see a new table and stale
775 * mask, the mask is still valid for the table.
776 */
777 pt_mask = atomic_load_acquire(&pid_tbl_mask);
778 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
779 slot = atomic_load_consume(&pt->pt_slot);
780 if (__predict_false(!PT_IS_LWP(slot))) {
781 return NULL;
782 }
783
784 /*
785 * Lock the LWP we found to get it stable. If it's embryonic or
786 * reaped (LSIDL) then none of the other fields can safely be
787 * checked.
788 */
789 l = PT_GET_LWP(slot);
790 lwp_lock(l);
791 if (__predict_false(l->l_stat == LSIDL)) {
792 lwp_unlock(l);
793 return NULL;
794 }
795
796 /*
797 * l_proc and l_lid are now known stable because the LWP is not
798 * LSIDL, so check those fields too to make sure we found the
799 * right thing.
800 */
801 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
802 lwp_unlock(l);
803 return NULL;
804 }
805
806 /* Everything checks out, return it locked. */
807 return l;
808 }
809
810 /*
811 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
812 * on its containing proc.
813 *
814 * => Similar to proc_find_lwp(), but does not require you to have
815 * the proc a priori.
816 * => Also returns proc * to caller, with p::p_lock held.
817 * => Same caveats apply.
818 */
819 struct lwp *
820 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
821 {
822 struct pid_table *pt;
823 struct proc *p = NULL;
824 struct lwp *l = NULL;
825 uintptr_t slot;
826
827 KASSERT(pp != NULL);
828 mutex_enter(&proc_lock);
829 pt = &pid_table[pid & pid_tbl_mask];
830
831 slot = pt->pt_slot;
832 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
833 l = PT_GET_LWP(slot);
834 p = l->l_proc;
835 mutex_enter(p->p_lock);
836 if (__predict_false(l->l_stat == LSIDL)) {
837 mutex_exit(p->p_lock);
838 l = NULL;
839 p = NULL;
840 }
841 }
842 mutex_exit(&proc_lock);
843
844 KASSERT(p == NULL || mutex_owned(p->p_lock));
845 *pp = p;
846 return l;
847 }
848
849 /*
850 * proc_find_raw_pid_table_locked: locate a process by the ID.
851 *
852 * => Must be called with proc_lock held.
853 */
854 static proc_t *
855 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
856 {
857 struct pid_table *pt;
858 proc_t *p = NULL;
859 uintptr_t slot;
860
861 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
862 pt = &pid_table[pid & pid_tbl_mask];
863
864 slot = pt->pt_slot;
865 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
866 /*
867 * When looking up processes, require a direct match
868 * on the PID assigned to the proc, not just one of
869 * its LWPs.
870 *
871 * N.B. We require lwp::l_proc of LSIDL LWPs to be
872 * valid here.
873 */
874 p = PT_GET_LWP(slot)->l_proc;
875 if (__predict_false(p->p_pid != pid && !any_lwpid))
876 p = NULL;
877 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
878 p = PT_GET_PROC(slot);
879 }
880 return p;
881 }
882
883 proc_t *
884 proc_find_raw(pid_t pid)
885 {
886
887 return proc_find_raw_pid_table_locked(pid, false);
888 }
889
890 static proc_t *
891 proc_find_internal(pid_t pid, bool any_lwpid)
892 {
893 proc_t *p;
894
895 KASSERT(mutex_owned(&proc_lock));
896
897 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
898 if (__predict_false(p == NULL)) {
899 return NULL;
900 }
901
902 /*
903 * Only allow live processes to be found by PID.
904 * XXX: p_stat might change, since proc unlocked.
905 */
906 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
907 return p;
908 }
909 return NULL;
910 }
911
912 proc_t *
913 proc_find(pid_t pid)
914 {
915 return proc_find_internal(pid, false);
916 }
917
918 proc_t *
919 proc_find_lwpid(pid_t pid)
920 {
921 return proc_find_internal(pid, true);
922 }
923
924 /*
925 * pgrp_find: locate a process group by the ID.
926 *
927 * => Must be called with proc_lock held.
928 */
929 struct pgrp *
930 pgrp_find(pid_t pgid)
931 {
932 struct pgrp *pg;
933
934 KASSERT(mutex_owned(&proc_lock));
935
936 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
937
938 /*
939 * Cannot look up a process group that only exists because the
940 * session has not died yet (traditional).
941 */
942 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
943 return NULL;
944 }
945 return pg;
946 }
947
948 static void
949 expand_pid_table(void)
950 {
951 size_t pt_size, tsz;
952 struct pid_table *n_pt, *new_pt;
953 uintptr_t slot;
954 struct pgrp *pgrp;
955 pid_t pid, rpid;
956 u_int i;
957 uint new_pt_mask;
958
959 KASSERT(mutex_owned(&proc_lock));
960
961 /* Unlock the pid_table briefly to allocate memory. */
962 pt_size = pid_tbl_mask + 1;
963 mutex_exit(&proc_lock);
964
965 tsz = pt_size * 2 * sizeof(struct pid_table);
966 new_pt = kmem_alloc(tsz, KM_SLEEP);
967 new_pt_mask = pt_size * 2 - 1;
968
969 /* XXX For now. The pratical limit is much lower anyway. */
970 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
971
972 mutex_enter(&proc_lock);
973 if (pt_size != pid_tbl_mask + 1) {
974 /* Another process beat us to it... */
975 mutex_exit(&proc_lock);
976 kmem_free(new_pt, tsz);
977 goto out;
978 }
979
980 /*
981 * Copy entries from old table into new one.
982 * If 'pid' is 'odd' we need to place in the upper half,
983 * even pid's to the lower half.
984 * Free items stay in the low half so we don't have to
985 * fixup the reference to them.
986 * We stuff free items on the front of the freelist
987 * because we can't write to unmodified entries.
988 * Processing the table backwards maintains a semblance
989 * of issuing pid numbers that increase with time.
990 */
991 i = pt_size - 1;
992 n_pt = new_pt + i;
993 for (; ; i--, n_pt--) {
994 slot = pid_table[i].pt_slot;
995 pgrp = pid_table[i].pt_pgrp;
996 if (!PT_VALID(slot)) {
997 /* Up 'use count' so that link is valid */
998 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
999 rpid = 0;
1000 slot = PT_SET_FREE(pid);
1001 if (pgrp)
1002 pid = pgrp->pg_id;
1003 } else {
1004 pid = pid_table[i].pt_pid;
1005 rpid = pid;
1006 }
1007
1008 /* Save entry in appropriate half of table */
1009 n_pt[pid & pt_size].pt_slot = slot;
1010 n_pt[pid & pt_size].pt_pgrp = pgrp;
1011 n_pt[pid & pt_size].pt_pid = rpid;
1012
1013 /* Put other piece on start of free list */
1014 pid = (pid ^ pt_size) & ~pid_tbl_mask;
1015 n_pt[pid & pt_size].pt_slot =
1016 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1017 n_pt[pid & pt_size].pt_pgrp = 0;
1018 n_pt[pid & pt_size].pt_pid = 0;
1019
1020 next_free_pt = i | (pid & pt_size);
1021 if (i == 0)
1022 break;
1023 }
1024
1025 /* Save old table size and switch tables */
1026 tsz = pt_size * sizeof(struct pid_table);
1027 n_pt = pid_table;
1028 atomic_store_release(&pid_table, new_pt);
1029 KASSERT(new_pt_mask >= pid_tbl_mask);
1030 atomic_store_release(&pid_tbl_mask, new_pt_mask);
1031
1032 /*
1033 * pid_max starts as PID_MAX (= 30000), once we have 16384
1034 * allocated pids we need it to be larger!
1035 */
1036 if (pid_tbl_mask > PID_MAX) {
1037 pid_max = pid_tbl_mask * 2 + 1;
1038 pid_alloc_lim |= pid_alloc_lim << 1;
1039 } else
1040 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1041
1042 mutex_exit(&proc_lock);
1043
1044 /*
1045 * Make sure that unlocked access to the old pid_table is complete
1046 * and then free it.
1047 */
1048 pserialize_perform(proc_psz);
1049 kmem_free(n_pt, tsz);
1050
1051 out: /* Return with proc_lock held again. */
1052 mutex_enter(&proc_lock);
1053 }
1054
1055 struct proc *
1056 proc_alloc(void)
1057 {
1058 struct proc *p;
1059
1060 p = pool_cache_get(proc_cache, PR_WAITOK);
1061 p->p_stat = SIDL; /* protect against others */
1062 proc_initspecific(p);
1063 kdtrace_proc_ctor(NULL, p);
1064
1065 /*
1066 * Allocate a placeholder in the pid_table. When we create the
1067 * first LWP for this process, it will take ownership of the
1068 * slot.
1069 */
1070 if (__predict_false(proc_alloc_pid(p) == -1)) {
1071 /* Allocating the PID failed; unwind. */
1072 proc_finispecific(p);
1073 proc_free_mem(p);
1074 p = NULL;
1075 }
1076 return p;
1077 }
1078
1079 /*
1080 * proc_alloc_pid_slot: allocate PID and record the occupant so that
1081 * proc_find_raw() can find it by the PID.
1082 */
1083 static pid_t __noinline
1084 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1085 {
1086 struct pid_table *pt;
1087 pid_t pid;
1088 int nxt;
1089
1090 KASSERT(mutex_owned(&proc_lock));
1091
1092 for (;;expand_pid_table()) {
1093 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1094 /* ensure pids cycle through 2000+ values */
1095 continue;
1096 }
1097 /*
1098 * The first user process *must* be given PID 1.
1099 * it has already been reserved for us. This
1100 * will be coming in from the proc_alloc() call
1101 * above, and the entry will be usurped later when
1102 * the first user LWP is created.
1103 * XXX this is slightly gross.
1104 */
1105 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1106 p != &proc0)) {
1107 KASSERT(PT_IS_PROC(slot));
1108 pt = &pid_table[1];
1109 pt->pt_slot = slot;
1110 return 1;
1111 }
1112 pt = &pid_table[next_free_pt];
1113 #ifdef DIAGNOSTIC
1114 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1115 panic("proc_alloc: slot busy");
1116 #endif
1117 nxt = PT_NEXT(pt->pt_slot);
1118 if (nxt & pid_tbl_mask)
1119 break;
1120 /* Table full - expand (NB last entry not used....) */
1121 }
1122
1123 /* pid is 'saved use count' + 'size' + entry */
1124 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1125 if ((uint)pid > (uint)pid_max)
1126 pid &= pid_tbl_mask;
1127 next_free_pt = nxt & pid_tbl_mask;
1128
1129 /* XXX For now. The pratical limit is much lower anyway. */
1130 KASSERT(pid <= FUTEX_TID_MASK);
1131
1132 /* Grab table slot */
1133 pt->pt_slot = slot;
1134
1135 KASSERT(pt->pt_pid == 0);
1136 pt->pt_pid = pid;
1137 pid_alloc_cnt++;
1138
1139 return pid;
1140 }
1141
1142 pid_t
1143 proc_alloc_pid(struct proc *p)
1144 {
1145 pid_t pid;
1146
1147 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1148 KASSERT(p->p_stat == SIDL);
1149
1150 mutex_enter(&proc_lock);
1151 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1152 if (pid != -1)
1153 p->p_pid = pid;
1154 mutex_exit(&proc_lock);
1155
1156 return pid;
1157 }
1158
1159 pid_t
1160 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1161 {
1162 struct pid_table *pt;
1163 pid_t pid;
1164
1165 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1166 KASSERT(l->l_proc == p);
1167 KASSERT(l->l_stat == LSIDL);
1168
1169 /*
1170 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1171 * is globally visible before the LWP becomes visible via the
1172 * pid_table.
1173 */
1174 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1175 membar_producer();
1176 #endif
1177
1178 /*
1179 * If the slot for p->p_pid currently points to the proc,
1180 * then we should usurp this ID for the LWP. This happens
1181 * at least once per process (for the first LWP), and can
1182 * happen again if the first LWP for a process exits and
1183 * before the process creates another.
1184 */
1185 mutex_enter(&proc_lock);
1186 pid = p->p_pid;
1187 pt = &pid_table[pid & pid_tbl_mask];
1188 KASSERT(pt->pt_pid == pid);
1189 if (PT_IS_PROC(pt->pt_slot)) {
1190 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1191 l->l_lid = pid;
1192 pt->pt_slot = PT_SET_LWP(l);
1193 } else {
1194 /* Need to allocate a new slot. */
1195 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1196 if (pid != -1)
1197 l->l_lid = pid;
1198 }
1199 mutex_exit(&proc_lock);
1200
1201 return pid;
1202 }
1203
1204 static void __noinline
1205 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1206 {
1207 struct pid_table *pt;
1208
1209 KASSERT(mutex_owned(&proc_lock));
1210
1211 pt = &pid_table[pid & pid_tbl_mask];
1212
1213 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1214 KASSERT(pt->pt_pid == pid);
1215
1216 /* save pid use count in slot */
1217 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1218 pt->pt_pid = 0;
1219
1220 if (pt->pt_pgrp == NULL) {
1221 /* link last freed entry onto ours */
1222 pid &= pid_tbl_mask;
1223 pt = &pid_table[last_free_pt];
1224 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1225 pt->pt_pid = 0;
1226 last_free_pt = pid;
1227 pid_alloc_cnt--;
1228 }
1229 }
1230
1231 /*
1232 * Free a process id - called from proc_free (in kern_exit.c)
1233 *
1234 * Called with the proc_lock held.
1235 */
1236 void
1237 proc_free_pid(pid_t pid)
1238 {
1239
1240 KASSERT(mutex_owned(&proc_lock));
1241 proc_free_pid_internal(pid, PT_F_PROC);
1242 }
1243
1244 /*
1245 * Free a process id used by an LWP. If this was the process's
1246 * first LWP, we convert the slot to point to the process; the
1247 * entry will get cleaned up later when the process finishes exiting.
1248 *
1249 * If not, then it's the same as proc_free_pid().
1250 */
1251 void
1252 proc_free_lwpid(struct proc *p, pid_t pid)
1253 {
1254
1255 KASSERT(mutex_owned(&proc_lock));
1256
1257 if (__predict_true(p->p_pid == pid)) {
1258 struct pid_table *pt;
1259
1260 pt = &pid_table[pid & pid_tbl_mask];
1261
1262 KASSERT(pt->pt_pid == pid);
1263 KASSERT(PT_IS_LWP(pt->pt_slot));
1264 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1265
1266 pt->pt_slot = PT_SET_PROC(p);
1267 return;
1268 }
1269 proc_free_pid_internal(pid, PT_F_LWP);
1270 }
1271
1272 void
1273 proc_free_mem(struct proc *p)
1274 {
1275
1276 kdtrace_proc_dtor(NULL, p);
1277 pool_cache_put(proc_cache, p);
1278 }
1279
1280 /*
1281 * proc_enterpgrp: move p to a new or existing process group (and session).
1282 *
1283 * If we are creating a new pgrp, the pgid should equal
1284 * the calling process' pid.
1285 * If is only valid to enter a process group that is in the session
1286 * of the process.
1287 * Also mksess should only be set if we are creating a process group
1288 *
1289 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1290 */
1291 int
1292 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1293 {
1294 struct pgrp *new_pgrp, *pgrp;
1295 struct session *sess;
1296 struct proc *p;
1297 int rval;
1298 pid_t pg_id = NO_PGID;
1299
1300 /* Allocate data areas we might need before doing any validity checks */
1301 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1302 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1303
1304 mutex_enter(&proc_lock);
1305
1306 /* Check pgrp exists or can be created */
1307 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1308 if (pgrp != NULL && pgrp->pg_id != pgid)
1309 goto eperm;
1310
1311 /* Can only set another process under restricted circumstances. */
1312 if (pid != curp->p_pid) {
1313 /* Must exist and be one of our children... */
1314 p = proc_find_internal(pid, false);
1315 if (p == NULL || !p_inferior(p, curp)) {
1316 rval = SET_ERROR(ESRCH);
1317 goto done;
1318 }
1319 /* ... in the same session... */
1320 if (sess != NULL || p->p_session != curp->p_session)
1321 goto eperm;
1322 /* ... existing pgid must be in same session ... */
1323 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1324 goto eperm;
1325 /* ... and not done an exec. */
1326 if (p->p_flag & PK_EXEC) {
1327 rval = SET_ERROR(EACCES);
1328 goto done;
1329 }
1330 } else {
1331 /* ... setsid() cannot re-enter a pgrp */
1332 if (mksess && (curp->p_pgid == curp->p_pid ||
1333 pgrp_find(curp->p_pid)))
1334 goto eperm;
1335 p = curp;
1336 }
1337
1338 /* Changing the process group/session of a session
1339 leader is definitely off limits. */
1340 if (SESS_LEADER(p)) {
1341 if (sess == NULL && p->p_pgrp == pgrp)
1342 /* unless it's a definite noop */
1343 rval = 0;
1344 goto eperm;
1345 }
1346
1347 /* Can only create a process group with id of process */
1348 if (pgrp == NULL && pgid != pid)
1349 goto eperm;
1350
1351 /* Can only create a session if creating pgrp */
1352 if (sess != NULL && pgrp != NULL)
1353 goto eperm;
1354
1355 /* Check we allocated memory for a pgrp... */
1356 if (pgrp == NULL && new_pgrp == NULL)
1357 goto eperm;
1358
1359 /* Don't attach to 'zombie' pgrp */
1360 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1361 goto eperm;
1362
1363 /* Expect to succeed now */
1364 rval = 0;
1365
1366 if (pgrp == p->p_pgrp)
1367 /* nothing to do */
1368 goto eperm;
1369
1370 /* Ok all setup, link up required structures */
1371
1372 if (pgrp == NULL) {
1373 pgrp = new_pgrp;
1374 new_pgrp = NULL;
1375 if (sess != NULL) {
1376 sess->s_sid = p->p_pid;
1377 sess->s_leader = p;
1378 sess->s_count = 1;
1379 sess->s_ttyvp = NULL;
1380 sess->s_ttyp = NULL;
1381 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1382 memcpy(sess->s_login, p->p_session->s_login,
1383 sizeof(sess->s_login));
1384 p->p_lflag &= ~PL_CONTROLT;
1385 } else {
1386 sess = p->p_pgrp->pg_session;
1387 proc_sesshold(sess);
1388 }
1389 pgrp->pg_session = sess;
1390 sess = NULL;
1391
1392 pgrp->pg_id = pgid;
1393 LIST_INIT(&pgrp->pg_members);
1394 #ifdef DIAGNOSTIC
1395 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1396 panic("enterpgrp: pgrp table slot in use");
1397 if (__predict_false(mksess && p != curp))
1398 panic("enterpgrp: mksession and p != curproc");
1399 #endif
1400 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1401 pgrp->pg_jobc = 0;
1402 }
1403
1404 /*
1405 * Adjust eligibility of affected pgrps to participate in job control.
1406 * Increment eligibility counts before decrementing, otherwise we
1407 * could reach 0 spuriously during the first call.
1408 */
1409 fixjobc(p, pgrp, 1);
1410 fixjobc(p, p->p_pgrp, 0);
1411
1412 /* Interlock with ttread(). */
1413 mutex_spin_enter(&tty_lock);
1414
1415 /* Move process to requested group. */
1416 LIST_REMOVE(p, p_pglist);
1417 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1418 /* defer delete until we've dumped the lock */
1419 pg_id = p->p_pgrp->pg_id;
1420 p->p_pgrp = pgrp;
1421 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1422
1423 /* Done with the swap; we can release the tty mutex. */
1424 mutex_spin_exit(&tty_lock);
1425 goto done;
1426
1427 eperm:
1428 rval = SET_ERROR(EPERM);
1429 done:
1430 if (pg_id != NO_PGID) {
1431 /* Releases proc_lock. */
1432 pg_delete(pg_id);
1433 } else {
1434 mutex_exit(&proc_lock);
1435 }
1436 if (sess != NULL)
1437 kmem_free(sess, sizeof(*sess));
1438 if (new_pgrp != NULL)
1439 kmem_free(new_pgrp, sizeof(*new_pgrp));
1440 #ifdef DEBUG_PGRP
1441 if (__predict_false(rval))
1442 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1443 pid, pgid, mksess, curp->p_pid, rval);
1444 #endif
1445 return rval;
1446 }
1447
1448 /*
1449 * proc_leavepgrp: remove a process from its process group.
1450 * => must be called with the proc_lock held, which will be released;
1451 */
1452 void
1453 proc_leavepgrp(struct proc *p)
1454 {
1455 struct pgrp *pgrp;
1456
1457 KASSERT(mutex_owned(&proc_lock));
1458
1459 /* Interlock with ttread() */
1460 mutex_spin_enter(&tty_lock);
1461 pgrp = p->p_pgrp;
1462 LIST_REMOVE(p, p_pglist);
1463 p->p_pgrp = NULL;
1464 mutex_spin_exit(&tty_lock);
1465
1466 if (LIST_EMPTY(&pgrp->pg_members)) {
1467 /* Releases proc_lock. */
1468 pg_delete(pgrp->pg_id);
1469 } else {
1470 mutex_exit(&proc_lock);
1471 }
1472 }
1473
1474 /*
1475 * pg_remove: remove a process group from the table.
1476 * => must be called with the proc_lock held;
1477 * => returns process group to free;
1478 */
1479 static struct pgrp *
1480 pg_remove(pid_t pg_id)
1481 {
1482 struct pgrp *pgrp;
1483 struct pid_table *pt;
1484
1485 KASSERT(mutex_owned(&proc_lock));
1486
1487 pt = &pid_table[pg_id & pid_tbl_mask];
1488 pgrp = pt->pt_pgrp;
1489
1490 KASSERT(pgrp != NULL);
1491 KASSERT(pgrp->pg_id == pg_id);
1492 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1493
1494 pt->pt_pgrp = NULL;
1495
1496 if (!PT_VALID(pt->pt_slot)) {
1497 /* Orphaned pgrp, put slot onto free list. */
1498 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1499 pg_id &= pid_tbl_mask;
1500 pt = &pid_table[last_free_pt];
1501 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1502 KASSERT(pt->pt_pid == 0);
1503 last_free_pt = pg_id;
1504 pid_alloc_cnt--;
1505 }
1506 return pgrp;
1507 }
1508
1509 /*
1510 * pg_delete: delete and free a process group.
1511 * => must be called with the proc_lock held, which will be released.
1512 */
1513 static void
1514 pg_delete(pid_t pg_id)
1515 {
1516 struct pgrp *pg;
1517 struct tty *ttyp;
1518 struct session *ss;
1519
1520 KASSERT(mutex_owned(&proc_lock));
1521
1522 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1523 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1524 mutex_exit(&proc_lock);
1525 return;
1526 }
1527
1528 ss = pg->pg_session;
1529
1530 /* Remove reference (if any) from tty to this process group */
1531 mutex_spin_enter(&tty_lock);
1532 ttyp = ss->s_ttyp;
1533 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1534 ttyp->t_pgrp = NULL;
1535 KASSERT(ttyp->t_session == ss);
1536 }
1537 mutex_spin_exit(&tty_lock);
1538
1539 /*
1540 * The leading process group in a session is freed by proc_sessrele(),
1541 * if last reference. It will also release the locks.
1542 */
1543 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1544 proc_sessrele(ss);
1545
1546 if (pg != NULL) {
1547 /* Free it, if was not done above. */
1548 kmem_free(pg, sizeof(struct pgrp));
1549 }
1550 }
1551
1552 /*
1553 * Adjust pgrp jobc counters when specified process changes process group.
1554 * We count the number of processes in each process group that "qualify"
1555 * the group for terminal job control (those with a parent in a different
1556 * process group of the same session). If that count reaches zero, the
1557 * process group becomes orphaned. Check both the specified process'
1558 * process group and that of its children.
1559 * entering == 0 => p is leaving specified group.
1560 * entering == 1 => p is entering specified group.
1561 *
1562 * Call with proc_lock held.
1563 */
1564 void
1565 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1566 {
1567 struct pgrp *hispgrp;
1568 struct session *mysession = pgrp->pg_session;
1569 struct proc *child;
1570
1571 KASSERT(mutex_owned(&proc_lock));
1572
1573 /*
1574 * Check p's parent to see whether p qualifies its own process
1575 * group; if so, adjust count for p's process group.
1576 */
1577 hispgrp = p->p_pptr->p_pgrp;
1578 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1579 if (entering) {
1580 pgrp->pg_jobc++;
1581 p->p_lflag &= ~PL_ORPHANPG;
1582 } else {
1583 /* KASSERT(pgrp->pg_jobc > 0); */
1584 if (--pgrp->pg_jobc == 0)
1585 orphanpg(pgrp);
1586 }
1587 }
1588
1589 /*
1590 * Check this process' children to see whether they qualify
1591 * their process groups; if so, adjust counts for children's
1592 * process groups.
1593 */
1594 LIST_FOREACH(child, &p->p_children, p_sibling) {
1595 hispgrp = child->p_pgrp;
1596 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1597 !P_ZOMBIE(child)) {
1598 if (entering) {
1599 child->p_lflag &= ~PL_ORPHANPG;
1600 hispgrp->pg_jobc++;
1601 } else {
1602 KASSERT(hispgrp->pg_jobc > 0);
1603 if (--hispgrp->pg_jobc == 0)
1604 orphanpg(hispgrp);
1605 }
1606 }
1607 }
1608 }
1609
1610 /*
1611 * A process group has become orphaned;
1612 * if there are any stopped processes in the group,
1613 * hang-up all process in that group.
1614 *
1615 * Call with proc_lock held.
1616 */
1617 static void
1618 orphanpg(struct pgrp *pg)
1619 {
1620 struct proc *p;
1621
1622 KASSERT(mutex_owned(&proc_lock));
1623
1624 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1625 if (p->p_stat == SSTOP) {
1626 p->p_lflag |= PL_ORPHANPG;
1627 psignal(p, SIGHUP);
1628 psignal(p, SIGCONT);
1629 }
1630 }
1631 }
1632
1633 #ifdef DDB
1634 #include <ddb/db_output.h>
1635 void pidtbl_dump(void);
1636 void
1637 pidtbl_dump(void)
1638 {
1639 struct pid_table *pt;
1640 struct proc *p;
1641 struct pgrp *pgrp;
1642 uintptr_t slot;
1643 int id;
1644
1645 db_printf("pid table %p size %x, next %x, last %x\n",
1646 pid_table, pid_tbl_mask+1,
1647 next_free_pt, last_free_pt);
1648 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1649 slot = pt->pt_slot;
1650 if (!PT_VALID(slot) && !pt->pt_pgrp)
1651 continue;
1652 if (PT_IS_LWP(slot)) {
1653 p = PT_GET_LWP(slot)->l_proc;
1654 } else if (PT_IS_PROC(slot)) {
1655 p = PT_GET_PROC(slot);
1656 } else {
1657 p = NULL;
1658 }
1659 db_printf(" id %x: ", id);
1660 if (p != NULL)
1661 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1662 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1663 else
1664 db_printf("next %x use %x\n",
1665 PT_NEXT(slot) & pid_tbl_mask,
1666 PT_NEXT(slot) & ~pid_tbl_mask);
1667 if ((pgrp = pt->pt_pgrp)) {
1668 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1669 pgrp->pg_session, pgrp->pg_session->s_sid,
1670 pgrp->pg_session->s_count,
1671 pgrp->pg_session->s_login);
1672 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1673 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1674 LIST_FIRST(&pgrp->pg_members));
1675 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1676 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1677 p->p_pid, p, p->p_pgrp, p->p_comm);
1678 }
1679 }
1680 }
1681 }
1682 #endif /* DDB */
1683
1684 #ifdef KSTACK_CHECK_MAGIC
1685
1686 #define KSTACK_MAGIC 0xdeadbeaf
1687
1688 /* XXX should be per process basis? */
1689 static int kstackleftmin = KSTACK_SIZE;
1690 static int kstackleftthres = KSTACK_SIZE / 8;
1691
1692 void
1693 kstack_setup_magic(const struct lwp *l)
1694 {
1695 uint32_t *ip;
1696 uint32_t const *end;
1697
1698 KASSERT(l != NULL);
1699 KASSERT(l != &lwp0);
1700
1701 /*
1702 * fill all the stack with magic number
1703 * so that later modification on it can be detected.
1704 */
1705 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1706 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1707 for (; ip < end; ip++) {
1708 *ip = KSTACK_MAGIC;
1709 }
1710 }
1711
1712 void
1713 kstack_check_magic(const struct lwp *l)
1714 {
1715 uint32_t const *ip, *end;
1716 int stackleft;
1717
1718 KASSERT(l != NULL);
1719
1720 /* don't check proc0 */ /*XXX*/
1721 if (l == &lwp0)
1722 return;
1723
1724 #ifdef __MACHINE_STACK_GROWS_UP
1725 /* stack grows upwards (eg. hppa) */
1726 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1727 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1728 for (ip--; ip >= end; ip--)
1729 if (*ip != KSTACK_MAGIC)
1730 break;
1731
1732 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1733 #else /* __MACHINE_STACK_GROWS_UP */
1734 /* stack grows downwards (eg. i386) */
1735 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1736 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1737 for (; ip < end; ip++)
1738 if (*ip != KSTACK_MAGIC)
1739 break;
1740
1741 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1742 #endif /* __MACHINE_STACK_GROWS_UP */
1743
1744 if (kstackleftmin > stackleft) {
1745 kstackleftmin = stackleft;
1746 if (stackleft < kstackleftthres)
1747 printf("warning: kernel stack left %d bytes"
1748 "(pid %u:lid %u)\n", stackleft,
1749 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1750 }
1751
1752 if (stackleft <= 0) {
1753 panic("magic on the top of kernel stack changed for "
1754 "pid %u, lid %u: maybe kernel stack overflow",
1755 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1756 }
1757 }
1758 #endif /* KSTACK_CHECK_MAGIC */
1759
1760 int
1761 proclist_foreach_call(struct proclist *list,
1762 int (*callback)(struct proc *, void *arg), void *arg)
1763 {
1764 struct proc marker;
1765 struct proc *p;
1766 int ret = 0;
1767
1768 marker.p_flag = PK_MARKER;
1769 mutex_enter(&proc_lock);
1770 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1771 if (p->p_flag & PK_MARKER) {
1772 p = LIST_NEXT(p, p_list);
1773 continue;
1774 }
1775 LIST_INSERT_AFTER(p, &marker, p_list);
1776 ret = (*callback)(p, arg);
1777 KASSERT(mutex_owned(&proc_lock));
1778 p = LIST_NEXT(&marker, p_list);
1779 LIST_REMOVE(&marker, p_list);
1780 }
1781 mutex_exit(&proc_lock);
1782
1783 return ret;
1784 }
1785
1786 int
1787 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1788 {
1789
1790 /* XXXCDC: how should locking work here? */
1791
1792 /* curproc exception is for coredump. */
1793
1794 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1795 (p->p_vmspace->vm_refcnt < 1)) {
1796 return SET_ERROR(EFAULT);
1797 }
1798
1799 uvmspace_addref(p->p_vmspace);
1800 *vm = p->p_vmspace;
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * Acquire a write lock on the process credential.
1807 */
1808 void
1809 proc_crmod_enter(void)
1810 {
1811 struct lwp *l = curlwp;
1812 struct proc *p = l->l_proc;
1813 kauth_cred_t oc;
1814
1815 /* Reset what needs to be reset in plimit. */
1816 if (p->p_limit->pl_corename != defcorename) {
1817 lim_setcorename(p, defcorename, 0);
1818 }
1819
1820 mutex_enter(p->p_lock);
1821
1822 /* Ensure the LWP cached credentials are up to date. */
1823 if ((oc = l->l_cred) != p->p_cred) {
1824 l->l_cred = kauth_cred_hold(p->p_cred);
1825 kauth_cred_free(oc);
1826 }
1827 }
1828
1829 /*
1830 * Set in a new process credential, and drop the write lock. The credential
1831 * must have a reference already. Optionally, free a no-longer required
1832 * credential.
1833 */
1834 void
1835 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1836 {
1837 struct lwp *l = curlwp, *l2;
1838 struct proc *p = l->l_proc;
1839 kauth_cred_t oc;
1840
1841 KASSERT(mutex_owned(p->p_lock));
1842
1843 /* Is there a new credential to set in? */
1844 if (scred != NULL) {
1845 p->p_cred = scred;
1846 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1847 if (l2 != l) {
1848 lwp_lock(l2);
1849 l2->l_flag |= LW_CACHECRED;
1850 lwp_need_userret(l2);
1851 lwp_unlock(l2);
1852 }
1853 }
1854
1855 /* Ensure the LWP cached credentials are up to date. */
1856 if ((oc = l->l_cred) != scred) {
1857 l->l_cred = kauth_cred_hold(scred);
1858 }
1859 } else
1860 oc = NULL; /* XXXgcc */
1861
1862 if (sugid) {
1863 /*
1864 * Mark process as having changed credentials, stops
1865 * tracing etc.
1866 */
1867 p->p_flag |= PK_SUGID;
1868 }
1869
1870 mutex_exit(p->p_lock);
1871
1872 /* If there is a credential to be released, free it now. */
1873 if (fcred != NULL) {
1874 KASSERT(scred != NULL);
1875 kauth_cred_free(fcred);
1876 if (oc != scred)
1877 kauth_cred_free(oc);
1878 }
1879 }
1880
1881 /*
1882 * proc_specific_key_create --
1883 * Create a key for subsystem proc-specific data.
1884 */
1885 int
1886 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1887 {
1888
1889 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1890 }
1891
1892 /*
1893 * proc_specific_key_delete --
1894 * Delete a key for subsystem proc-specific data.
1895 */
1896 void
1897 proc_specific_key_delete(specificdata_key_t key)
1898 {
1899
1900 specificdata_key_delete(proc_specificdata_domain, key);
1901 }
1902
1903 /*
1904 * proc_initspecific --
1905 * Initialize a proc's specificdata container.
1906 */
1907 void
1908 proc_initspecific(struct proc *p)
1909 {
1910 int error __diagused;
1911
1912 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1913 KASSERT(error == 0);
1914 }
1915
1916 /*
1917 * proc_finispecific --
1918 * Finalize a proc's specificdata container.
1919 */
1920 void
1921 proc_finispecific(struct proc *p)
1922 {
1923
1924 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1925 }
1926
1927 /*
1928 * proc_getspecific --
1929 * Return proc-specific data corresponding to the specified key.
1930 */
1931 void *
1932 proc_getspecific(struct proc *p, specificdata_key_t key)
1933 {
1934
1935 return (specificdata_getspecific(proc_specificdata_domain,
1936 &p->p_specdataref, key));
1937 }
1938
1939 /*
1940 * proc_setspecific --
1941 * Set proc-specific data corresponding to the specified key.
1942 */
1943 void
1944 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1945 {
1946
1947 specificdata_setspecific(proc_specificdata_domain,
1948 &p->p_specdataref, key, data);
1949 }
1950
1951 int
1952 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1953 {
1954
1955 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1956 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1957 /*
1958 * suid proc of ours or proc not ours
1959 */
1960 return SET_ERROR(EPERM);
1961 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1962 /*
1963 * sgid proc has sgid back to us temporarily
1964 */
1965 return SET_ERROR(EPERM);
1966 } else {
1967 /*
1968 * our rgid must be in target's group list (ie,
1969 * sub-processes started by a sgid process)
1970 */
1971 int ismember = 0;
1972
1973 if (kauth_cred_ismember_gid(cred,
1974 kauth_cred_getgid(target), &ismember) != 0 ||
1975 !ismember)
1976 return SET_ERROR(EPERM);
1977 }
1978
1979 return 0;
1980 }
1981
1982 /*
1983 * sysctl stuff
1984 */
1985
1986 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1987
1988 static const u_int sysctl_flagmap[] = {
1989 PK_ADVLOCK, P_ADVLOCK,
1990 PK_EXEC, P_EXEC,
1991 PK_NOCLDWAIT, P_NOCLDWAIT,
1992 PK_32, P_32,
1993 PK_CLDSIGIGN, P_CLDSIGIGN,
1994 PK_SUGID, P_SUGID,
1995 0
1996 };
1997
1998 static const u_int sysctl_sflagmap[] = {
1999 PS_NOCLDSTOP, P_NOCLDSTOP,
2000 PS_WEXIT, P_WEXIT,
2001 PS_STOPFORK, P_STOPFORK,
2002 PS_STOPEXEC, P_STOPEXEC,
2003 PS_STOPEXIT, P_STOPEXIT,
2004 0
2005 };
2006
2007 static const u_int sysctl_slflagmap[] = {
2008 PSL_TRACED, P_TRACED,
2009 PSL_CHTRACED, P_CHTRACED,
2010 PSL_SYSCALL, P_SYSCALL,
2011 0
2012 };
2013
2014 static const u_int sysctl_lflagmap[] = {
2015 PL_CONTROLT, P_CONTROLT,
2016 PL_PPWAIT, P_PPWAIT,
2017 0
2018 };
2019
2020 static const u_int sysctl_stflagmap[] = {
2021 PST_PROFIL, P_PROFIL,
2022 0
2023
2024 };
2025
2026 /* used by kern_lwp also */
2027 const u_int sysctl_lwpflagmap[] = {
2028 LW_SINTR, L_SINTR,
2029 LW_SYSTEM, L_SYSTEM,
2030 0
2031 };
2032
2033 /*
2034 * Find the most ``active'' lwp of a process and return it for ps display
2035 * purposes
2036 */
2037 static struct lwp *
2038 proc_active_lwp(struct proc *p)
2039 {
2040 static const int ostat[] = {
2041 0,
2042 2, /* LSIDL */
2043 6, /* LSRUN */
2044 5, /* LSSLEEP */
2045 4, /* LSSTOP */
2046 0, /* LSZOMB */
2047 1, /* LSDEAD */
2048 7, /* LSONPROC */
2049 3 /* LSSUSPENDED */
2050 };
2051
2052 struct lwp *l, *lp = NULL;
2053 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2054 KASSERT(l->l_stat >= 0);
2055 KASSERT(l->l_stat < __arraycount(ostat));
2056 if (lp == NULL ||
2057 ostat[l->l_stat] > ostat[lp->l_stat] ||
2058 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2059 l->l_cpticks > lp->l_cpticks)) {
2060 lp = l;
2061 continue;
2062 }
2063 }
2064 return lp;
2065 }
2066
2067 static int
2068 sysctl_doeproc(SYSCTLFN_ARGS)
2069 {
2070 union {
2071 struct kinfo_proc kproc;
2072 struct kinfo_proc2 kproc2;
2073 } *kbuf;
2074 struct proc *p, *next, *marker;
2075 char *where, *dp;
2076 int type, op, arg, error;
2077 u_int elem_size, kelem_size, elem_count;
2078 size_t buflen, needed;
2079 bool match, zombie, mmmbrains;
2080 const bool allowaddr = get_expose_address(curproc);
2081
2082 if (namelen == 1 && name[0] == CTL_QUERY)
2083 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2084
2085 dp = where = oldp;
2086 buflen = where != NULL ? *oldlenp : 0;
2087 error = 0;
2088 needed = 0;
2089 type = rnode->sysctl_num;
2090
2091 if (type == KERN_PROC) {
2092 if (namelen == 0)
2093 return SET_ERROR(EINVAL);
2094 switch (op = name[0]) {
2095 case KERN_PROC_ALL:
2096 if (namelen != 1)
2097 return SET_ERROR(EINVAL);
2098 arg = 0;
2099 break;
2100 default:
2101 if (namelen != 2)
2102 return SET_ERROR(EINVAL);
2103 arg = name[1];
2104 break;
2105 }
2106 elem_count = 0; /* Hush little compiler, don't you cry */
2107 kelem_size = elem_size = sizeof(kbuf->kproc);
2108 } else {
2109 if (namelen != 4)
2110 return SET_ERROR(EINVAL);
2111 op = name[0];
2112 arg = name[1];
2113 elem_size = name[2];
2114 elem_count = name[3];
2115 kelem_size = sizeof(kbuf->kproc2);
2116 }
2117
2118 sysctl_unlock();
2119
2120 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2121 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2122 marker->p_flag = PK_MARKER;
2123
2124 mutex_enter(&proc_lock);
2125 /*
2126 * Start with zombies to prevent reporting processes twice, in case they
2127 * are dying and being moved from the list of alive processes to zombies.
2128 */
2129 mmmbrains = true;
2130 for (p = LIST_FIRST(&zombproc);; p = next) {
2131 if (p == NULL) {
2132 if (mmmbrains) {
2133 p = LIST_FIRST(&allproc);
2134 mmmbrains = false;
2135 }
2136 if (p == NULL)
2137 break;
2138 }
2139 next = LIST_NEXT(p, p_list);
2140 if ((p->p_flag & PK_MARKER) != 0)
2141 continue;
2142
2143 /*
2144 * Skip embryonic processes.
2145 */
2146 if (p->p_stat == SIDL)
2147 continue;
2148
2149 mutex_enter(p->p_lock);
2150 error = kauth_authorize_process(l->l_cred,
2151 KAUTH_PROCESS_CANSEE, p,
2152 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2153 if (error != 0) {
2154 mutex_exit(p->p_lock);
2155 continue;
2156 }
2157
2158 /*
2159 * Hande all the operations in one switch on the cost of
2160 * algorithm complexity is on purpose. The win splitting this
2161 * function into several similar copies makes maintenance
2162 * burden, code grow and boost is negligible in practical
2163 * systems.
2164 */
2165 switch (op) {
2166 case KERN_PROC_PID:
2167 match = (p->p_pid == (pid_t)arg);
2168 break;
2169
2170 case KERN_PROC_PGRP:
2171 match = (p->p_pgrp->pg_id == (pid_t)arg);
2172 break;
2173
2174 case KERN_PROC_SESSION:
2175 match = (p->p_session->s_sid == (pid_t)arg);
2176 break;
2177
2178 case KERN_PROC_TTY:
2179 match = true;
2180 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2181 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2182 p->p_session->s_ttyp == NULL ||
2183 p->p_session->s_ttyvp != NULL) {
2184 match = false;
2185 }
2186 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2187 p->p_session->s_ttyp == NULL) {
2188 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2189 match = false;
2190 }
2191 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2192 match = false;
2193 }
2194 break;
2195
2196 case KERN_PROC_UID:
2197 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2198 break;
2199
2200 case KERN_PROC_RUID:
2201 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2202 break;
2203
2204 case KERN_PROC_GID:
2205 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2206 break;
2207
2208 case KERN_PROC_RGID:
2209 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2210 break;
2211
2212 case KERN_PROC_ALL:
2213 match = true;
2214 /* allow everything */
2215 break;
2216
2217 default:
2218 error = SET_ERROR(EINVAL);
2219 mutex_exit(p->p_lock);
2220 goto cleanup;
2221 }
2222 if (!match) {
2223 mutex_exit(p->p_lock);
2224 continue;
2225 }
2226
2227 /*
2228 * Grab a hold on the process.
2229 */
2230 if (mmmbrains) {
2231 zombie = true;
2232 } else {
2233 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2234 }
2235 if (zombie) {
2236 LIST_INSERT_AFTER(p, marker, p_list);
2237 }
2238
2239 if (buflen >= elem_size &&
2240 (type == KERN_PROC || elem_count > 0)) {
2241 ruspace(p); /* Update process vm resource use */
2242
2243 if (type == KERN_PROC) {
2244 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2245 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2246 allowaddr);
2247 } else {
2248 fill_kproc2(p, &kbuf->kproc2, zombie,
2249 allowaddr);
2250 elem_count--;
2251 }
2252 mutex_exit(p->p_lock);
2253 mutex_exit(&proc_lock);
2254 /*
2255 * Copy out elem_size, but not larger than kelem_size
2256 */
2257 error = sysctl_copyout(l, kbuf, dp,
2258 uimin(kelem_size, elem_size));
2259 mutex_enter(&proc_lock);
2260 if (error) {
2261 goto bah;
2262 }
2263 dp += elem_size;
2264 buflen -= elem_size;
2265 } else {
2266 mutex_exit(p->p_lock);
2267 }
2268 needed += elem_size;
2269
2270 /*
2271 * Release reference to process.
2272 */
2273 if (zombie) {
2274 next = LIST_NEXT(marker, p_list);
2275 LIST_REMOVE(marker, p_list);
2276 } else {
2277 rw_exit(&p->p_reflock);
2278 next = LIST_NEXT(p, p_list);
2279 }
2280
2281 /*
2282 * Short-circuit break quickly!
2283 */
2284 if (op == KERN_PROC_PID)
2285 break;
2286 }
2287 mutex_exit(&proc_lock);
2288
2289 if (where != NULL) {
2290 *oldlenp = dp - where;
2291 if (needed > *oldlenp) {
2292 error = SET_ERROR(ENOMEM);
2293 goto out;
2294 }
2295 } else {
2296 needed += KERN_PROCSLOP;
2297 *oldlenp = needed;
2298 }
2299 kmem_free(kbuf, sizeof(*kbuf));
2300 kmem_free(marker, sizeof(*marker));
2301 sysctl_relock();
2302 return 0;
2303 bah:
2304 if (zombie)
2305 LIST_REMOVE(marker, p_list);
2306 else
2307 rw_exit(&p->p_reflock);
2308 cleanup:
2309 mutex_exit(&proc_lock);
2310 out:
2311 kmem_free(kbuf, sizeof(*kbuf));
2312 kmem_free(marker, sizeof(*marker));
2313 sysctl_relock();
2314 return error;
2315 }
2316
2317 int
2318 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2319 {
2320 #if !defined(_RUMPKERNEL)
2321 int retval;
2322
2323 if (p->p_flag & PK_32) {
2324 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2325 enosys(), retval);
2326 return retval;
2327 }
2328 #endif /* !defined(_RUMPKERNEL) */
2329
2330 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2331 }
2332
2333 static int
2334 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2335 {
2336 void **cookie = cookie_;
2337 struct lwp *l = cookie[0];
2338 char *dst = cookie[1];
2339
2340 return sysctl_copyout(l, src, dst + off, len);
2341 }
2342
2343 /*
2344 * sysctl helper routine for kern.proc_args pseudo-subtree.
2345 */
2346 static int
2347 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2348 {
2349 struct ps_strings pss;
2350 struct proc *p;
2351 pid_t pid;
2352 int type, error;
2353 void *cookie[2];
2354
2355 if (namelen == 1 && name[0] == CTL_QUERY)
2356 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2357
2358 if (newp != NULL || namelen != 2)
2359 return SET_ERROR(EINVAL);
2360 pid = name[0];
2361 type = name[1];
2362
2363 switch (type) {
2364 case KERN_PROC_PATHNAME:
2365 sysctl_unlock();
2366 error = fill_pathname(l, pid, oldp, oldlenp);
2367 sysctl_relock();
2368 return error;
2369
2370 case KERN_PROC_CWD:
2371 sysctl_unlock();
2372 error = fill_cwd(l, pid, oldp, oldlenp);
2373 sysctl_relock();
2374 return error;
2375
2376 case KERN_PROC_ARGV:
2377 case KERN_PROC_NARGV:
2378 case KERN_PROC_ENV:
2379 case KERN_PROC_NENV:
2380 /* ok */
2381 break;
2382 default:
2383 return SET_ERROR(EINVAL);
2384 }
2385
2386 sysctl_unlock();
2387
2388 /* check pid */
2389 mutex_enter(&proc_lock);
2390 if ((p = proc_find(pid)) == NULL) {
2391 error = SET_ERROR(EINVAL);
2392 goto out_locked;
2393 }
2394 mutex_enter(p->p_lock);
2395
2396 /* Check permission. */
2397 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2398 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2399 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2400 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2401 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2402 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2403 else
2404 error = SET_ERROR(EINVAL); /* XXXGCC */
2405 if (error) {
2406 mutex_exit(p->p_lock);
2407 goto out_locked;
2408 }
2409
2410 if (oldp == NULL) {
2411 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2412 *oldlenp = sizeof (int);
2413 else
2414 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2415 error = 0;
2416 mutex_exit(p->p_lock);
2417 goto out_locked;
2418 }
2419
2420 /*
2421 * Zombies don't have a stack, so we can't read their psstrings.
2422 * System processes also don't have a user stack.
2423 */
2424 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2425 error = SET_ERROR(EINVAL);
2426 mutex_exit(p->p_lock);
2427 goto out_locked;
2428 }
2429
2430 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : SET_ERROR(EBUSY);
2431 mutex_exit(p->p_lock);
2432 if (error) {
2433 goto out_locked;
2434 }
2435 mutex_exit(&proc_lock);
2436
2437 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2438 int value;
2439 if ((error = copyin_psstrings(p, &pss)) == 0) {
2440 if (type == KERN_PROC_NARGV)
2441 value = pss.ps_nargvstr;
2442 else
2443 value = pss.ps_nenvstr;
2444 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2445 *oldlenp = sizeof(value);
2446 }
2447 } else {
2448 cookie[0] = l;
2449 cookie[1] = oldp;
2450 error = copy_procargs(p, type, oldlenp,
2451 copy_procargs_sysctl_cb, cookie);
2452 }
2453 rw_exit(&p->p_reflock);
2454 sysctl_relock();
2455 return error;
2456
2457 out_locked:
2458 mutex_exit(&proc_lock);
2459 sysctl_relock();
2460 return error;
2461 }
2462
2463 int
2464 copy_procargs(struct proc *p, int oid, size_t *limit,
2465 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2466 {
2467 struct ps_strings pss;
2468 size_t len, i, loaded, entry_len;
2469 struct uio auio;
2470 struct iovec aiov;
2471 int error, argvlen;
2472 char *arg;
2473 char **argv;
2474 vaddr_t user_argv;
2475 struct vmspace *vmspace;
2476
2477 /*
2478 * Allocate a temporary buffer to hold the argument vector and
2479 * the arguments themselve.
2480 */
2481 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2482 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2483
2484 /*
2485 * Lock the process down in memory.
2486 */
2487 vmspace = p->p_vmspace;
2488 uvmspace_addref(vmspace);
2489
2490 /*
2491 * Read in the ps_strings structure.
2492 */
2493 if ((error = copyin_psstrings(p, &pss)) != 0)
2494 goto done;
2495
2496 /*
2497 * Now read the address of the argument vector.
2498 */
2499 switch (oid) {
2500 case KERN_PROC_ARGV:
2501 user_argv = (uintptr_t)pss.ps_argvstr;
2502 argvlen = pss.ps_nargvstr;
2503 break;
2504 case KERN_PROC_ENV:
2505 user_argv = (uintptr_t)pss.ps_envstr;
2506 argvlen = pss.ps_nenvstr;
2507 break;
2508 default:
2509 error = SET_ERROR(EINVAL);
2510 goto done;
2511 }
2512
2513 if (argvlen < 0) {
2514 error = SET_ERROR(EIO);
2515 goto done;
2516 }
2517
2518
2519 /*
2520 * Now copy each string.
2521 */
2522 len = 0; /* bytes written to user buffer */
2523 loaded = 0; /* bytes from argv already processed */
2524 i = 0; /* To make compiler happy */
2525 entry_len = PROC_PTRSZ(p);
2526
2527 for (; argvlen; --argvlen) {
2528 int finished = 0;
2529 vaddr_t base;
2530 size_t xlen;
2531 int j;
2532
2533 if (loaded == 0) {
2534 size_t rem = entry_len * argvlen;
2535 loaded = MIN(rem, PAGE_SIZE);
2536 error = copyin_vmspace(vmspace,
2537 (const void *)user_argv, argv, loaded);
2538 if (error)
2539 break;
2540 user_argv += loaded;
2541 i = 0;
2542 }
2543
2544 #if !defined(_RUMPKERNEL)
2545 if (p->p_flag & PK_32)
2546 MODULE_HOOK_CALL(kern_proc32_base_hook,
2547 (argv, i++), 0, base);
2548 else
2549 #endif /* !defined(_RUMPKERNEL) */
2550 base = (vaddr_t)argv[i++];
2551 loaded -= entry_len;
2552
2553 /*
2554 * The program has messed around with its arguments,
2555 * possibly deleting some, and replacing them with
2556 * NULL's. Treat this as the last argument and not
2557 * a failure.
2558 */
2559 if (base == 0)
2560 break;
2561
2562 while (!finished) {
2563 xlen = PAGE_SIZE - (base & PAGE_MASK);
2564
2565 aiov.iov_base = arg;
2566 aiov.iov_len = PAGE_SIZE;
2567 auio.uio_iov = &aiov;
2568 auio.uio_iovcnt = 1;
2569 auio.uio_offset = base;
2570 auio.uio_resid = xlen;
2571 auio.uio_rw = UIO_READ;
2572 UIO_SETUP_SYSSPACE(&auio);
2573 error = uvm_io(&vmspace->vm_map, &auio, 0);
2574 if (error)
2575 goto done;
2576
2577 /* Look for the end of the string */
2578 for (j = 0; j < xlen; j++) {
2579 if (arg[j] == '\0') {
2580 xlen = j + 1;
2581 finished = 1;
2582 break;
2583 }
2584 }
2585
2586 /* Check for user buffer overflow */
2587 if (len + xlen > *limit) {
2588 finished = 1;
2589 if (len > *limit)
2590 xlen = 0;
2591 else
2592 xlen = *limit - len;
2593 }
2594
2595 /* Copyout the page */
2596 error = (*cb)(cookie, arg, len, xlen);
2597 if (error)
2598 goto done;
2599
2600 len += xlen;
2601 base += xlen;
2602 }
2603 }
2604 *limit = len;
2605
2606 done:
2607 kmem_free(argv, PAGE_SIZE);
2608 kmem_free(arg, PAGE_SIZE);
2609 uvmspace_free(vmspace);
2610 return error;
2611 }
2612
2613 /*
2614 * Fill in a proc structure for the specified process.
2615 */
2616 static void
2617 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2618 {
2619 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2620 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2621 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2622 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2623 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2624 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2625 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2626 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2627 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2628 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2629 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2630 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2631 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2632 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2633 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2634 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2635 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2636 p->p_exitsig = psrc->p_exitsig;
2637 p->p_flag = psrc->p_flag;
2638 p->p_sflag = psrc->p_sflag;
2639 p->p_slflag = psrc->p_slflag;
2640 p->p_lflag = psrc->p_lflag;
2641 p->p_stflag = psrc->p_stflag;
2642 p->p_stat = psrc->p_stat;
2643 p->p_trace_enabled = psrc->p_trace_enabled;
2644 p->p_pid = psrc->p_pid;
2645 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2646 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2647 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2648 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2649 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2650 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2651 p->p_nlwps = psrc->p_nlwps;
2652 p->p_nzlwps = psrc->p_nzlwps;
2653 p->p_nrlwps = psrc->p_nrlwps;
2654 p->p_nlwpwait = psrc->p_nlwpwait;
2655 p->p_ndlwps = psrc->p_ndlwps;
2656 p->p_nstopchild = psrc->p_nstopchild;
2657 p->p_waited = psrc->p_waited;
2658 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2659 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2660 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2661 p->p_estcpu = psrc->p_estcpu;
2662 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2663 p->p_forktime = psrc->p_forktime;
2664 p->p_pctcpu = psrc->p_pctcpu;
2665 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2666 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2667 p->p_rtime = psrc->p_rtime;
2668 p->p_uticks = psrc->p_uticks;
2669 p->p_sticks = psrc->p_sticks;
2670 p->p_iticks = psrc->p_iticks;
2671 p->p_xutime = psrc->p_xutime;
2672 p->p_xstime = psrc->p_xstime;
2673 p->p_traceflag = psrc->p_traceflag;
2674 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2675 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2676 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2677 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2678 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2679 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2680 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2681 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2682 allowaddr);
2683 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2684 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2685 p->p_ppid = psrc->p_ppid;
2686 p->p_oppid = psrc->p_oppid;
2687 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2688 p->p_sigctx = psrc->p_sigctx;
2689 p->p_nice = psrc->p_nice;
2690 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2691 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2692 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2693 p->p_pax = psrc->p_pax;
2694 p->p_xexit = psrc->p_xexit;
2695 p->p_xsig = psrc->p_xsig;
2696 p->p_acflag = psrc->p_acflag;
2697 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2698 p->p_stackbase = psrc->p_stackbase;
2699 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2700 }
2701
2702 /*
2703 * Fill in an eproc structure for the specified process.
2704 */
2705 void
2706 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2707 {
2708 struct tty *tp;
2709 struct lwp *l;
2710
2711 KASSERT(mutex_owned(&proc_lock));
2712 KASSERT(mutex_owned(p->p_lock));
2713
2714 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2715 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2716 if (p->p_cred) {
2717 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2718 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2719 }
2720 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2721 struct vmspace *vm = p->p_vmspace;
2722
2723 ep->e_vm.vm_rssize = vm_resident_count(vm);
2724 ep->e_vm.vm_tsize = vm->vm_tsize;
2725 ep->e_vm.vm_dsize = vm->vm_dsize;
2726 ep->e_vm.vm_ssize = vm->vm_ssize;
2727 ep->e_vm.vm_map.size = vm->vm_map.size;
2728
2729 /* Pick the primary (first) LWP */
2730 l = proc_active_lwp(p);
2731 KASSERT(l != NULL);
2732 lwp_lock(l);
2733 if (l->l_wchan)
2734 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2735 lwp_unlock(l);
2736 }
2737 ep->e_ppid = p->p_ppid;
2738 if (p->p_pgrp && p->p_session) {
2739 ep->e_pgid = p->p_pgrp->pg_id;
2740 ep->e_jobc = p->p_pgrp->pg_jobc;
2741 ep->e_sid = p->p_session->s_sid;
2742 if ((p->p_lflag & PL_CONTROLT) &&
2743 (tp = p->p_session->s_ttyp)) {
2744 ep->e_tdev = tp->t_dev;
2745 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2746 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2747 } else
2748 ep->e_tdev = (uint32_t)NODEV;
2749 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2750 if (SESS_LEADER(p))
2751 ep->e_flag |= EPROC_SLEADER;
2752 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2753 }
2754 ep->e_xsize = ep->e_xrssize = 0;
2755 ep->e_xccount = ep->e_xswrss = 0;
2756 }
2757
2758 /*
2759 * Fill in a kinfo_proc2 structure for the specified process.
2760 */
2761 void
2762 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2763 {
2764 struct tty *tp;
2765 struct lwp *l;
2766 struct timeval ut, st, rt;
2767 sigset_t ss1, ss2;
2768 struct rusage ru;
2769 struct vmspace *vm;
2770
2771 KASSERT(mutex_owned(&proc_lock));
2772 KASSERT(mutex_owned(p->p_lock));
2773
2774 sigemptyset(&ss1);
2775 sigemptyset(&ss2);
2776
2777 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2778 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2779 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2780 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2781 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2782 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2783 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2784 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2785 ki->p_tsess = 0; /* may be changed if controlling tty below */
2786 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2787 ki->p_eflag = 0;
2788 ki->p_exitsig = p->p_exitsig;
2789 ki->p_flag = L_INMEM; /* Process never swapped out */
2790 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2791 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2792 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2793 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2794 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2795 ki->p_pid = p->p_pid;
2796 ki->p_ppid = p->p_ppid;
2797 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2798 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2799 ki->p_gid = kauth_cred_getegid(p->p_cred);
2800 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2801 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2802 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2803 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2804 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2805 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2806 UIO_SYSSPACE);
2807
2808 ki->p_uticks = p->p_uticks;
2809 ki->p_sticks = p->p_sticks;
2810 ki->p_iticks = p->p_iticks;
2811 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2812 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2813 ki->p_traceflag = p->p_traceflag;
2814
2815 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2816 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2817
2818 ki->p_cpticks = 0;
2819 ki->p_pctcpu = p->p_pctcpu;
2820 ki->p_estcpu = 0;
2821 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2822 ki->p_realstat = p->p_stat;
2823 ki->p_nice = p->p_nice;
2824 ki->p_xstat = P_WAITSTATUS(p);
2825 ki->p_acflag = p->p_acflag;
2826
2827 strncpy(ki->p_comm, p->p_comm,
2828 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2829 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2830
2831 ki->p_nlwps = p->p_nlwps;
2832 ki->p_realflag = ki->p_flag;
2833
2834 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2835 vm = p->p_vmspace;
2836 ki->p_vm_rssize = vm_resident_count(vm);
2837 ki->p_vm_tsize = vm->vm_tsize;
2838 ki->p_vm_dsize = vm->vm_dsize;
2839 ki->p_vm_ssize = vm->vm_ssize;
2840 ki->p_vm_vsize = atop(vm->vm_map.size);
2841 /*
2842 * Since the stack is initially mapped mostly with
2843 * PROT_NONE and grown as needed, adjust the "mapped size"
2844 * to skip the unused stack portion.
2845 */
2846 ki->p_vm_msize =
2847 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2848
2849 /* Pick the primary (first) LWP */
2850 l = proc_active_lwp(p);
2851 KASSERT(l != NULL);
2852 lwp_lock(l);
2853 ki->p_nrlwps = p->p_nrlwps;
2854 ki->p_forw = 0;
2855 ki->p_back = 0;
2856 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2857 ki->p_stat = l->l_stat;
2858 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2859 ki->p_swtime = l->l_swtime;
2860 ki->p_slptime = l->l_slptime;
2861 if (l->l_stat == LSONPROC)
2862 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2863 else
2864 ki->p_schedflags = 0;
2865 ki->p_priority = lwp_eprio(l);
2866 ki->p_usrpri = l->l_priority;
2867 if (l->l_wchan)
2868 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2869 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2870 ki->p_cpuid = cpu_index(l->l_cpu);
2871 lwp_unlock(l);
2872 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2873 /* This is hardly correct, but... */
2874 sigplusset(&l->l_sigpend.sp_set, &ss1);
2875 sigplusset(&l->l_sigmask, &ss2);
2876 ki->p_cpticks += l->l_cpticks;
2877 ki->p_pctcpu += l->l_pctcpu;
2878 ki->p_estcpu += l->l_estcpu;
2879 }
2880 }
2881 sigplusset(&p->p_sigpend.sp_set, &ss1);
2882 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2883 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2884
2885 if (p->p_session != NULL) {
2886 ki->p_sid = p->p_session->s_sid;
2887 ki->p__pgid = p->p_pgrp->pg_id;
2888 if (p->p_session->s_ttyvp)
2889 ki->p_eflag |= EPROC_CTTY;
2890 if (SESS_LEADER(p))
2891 ki->p_eflag |= EPROC_SLEADER;
2892 strncpy(ki->p_login, p->p_session->s_login,
2893 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2894 ki->p_jobc = p->p_pgrp->pg_jobc;
2895 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2896 ki->p_tdev = tp->t_dev;
2897 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2898 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2899 allowaddr);
2900 } else {
2901 ki->p_tdev = (int32_t)NODEV;
2902 }
2903 }
2904
2905 if (!P_ZOMBIE(p) && !zombie) {
2906 ki->p_uvalid = 1;
2907 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2908 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2909
2910 calcru(p, &ut, &st, NULL, &rt);
2911 ki->p_rtime_sec = rt.tv_sec;
2912 ki->p_rtime_usec = rt.tv_usec;
2913 ki->p_uutime_sec = ut.tv_sec;
2914 ki->p_uutime_usec = ut.tv_usec;
2915 ki->p_ustime_sec = st.tv_sec;
2916 ki->p_ustime_usec = st.tv_usec;
2917
2918 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2919 rulwps(p, &ru);
2920 ki->p_uru_nvcsw = ru.ru_nvcsw;
2921 ki->p_uru_nivcsw = ru.ru_nivcsw;
2922 ki->p_uru_maxrss = ru.ru_maxrss;
2923 ki->p_uru_ixrss = ru.ru_ixrss;
2924 ki->p_uru_idrss = ru.ru_idrss;
2925 ki->p_uru_isrss = ru.ru_isrss;
2926 ki->p_uru_minflt = ru.ru_minflt;
2927 ki->p_uru_majflt = ru.ru_majflt;
2928 ki->p_uru_nswap = ru.ru_nswap;
2929 ki->p_uru_inblock = ru.ru_inblock;
2930 ki->p_uru_oublock = ru.ru_oublock;
2931 ki->p_uru_msgsnd = ru.ru_msgsnd;
2932 ki->p_uru_msgrcv = ru.ru_msgrcv;
2933 ki->p_uru_nsignals = ru.ru_nsignals;
2934
2935 timeradd(&p->p_stats->p_cru.ru_utime,
2936 &p->p_stats->p_cru.ru_stime, &ut);
2937 ki->p_uctime_sec = ut.tv_sec;
2938 ki->p_uctime_usec = ut.tv_usec;
2939 }
2940 }
2941
2942
2943 int
2944 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2945 {
2946 int error;
2947
2948 mutex_enter(&proc_lock);
2949 if (pid == -1)
2950 *p = l->l_proc;
2951 else
2952 *p = proc_find(pid);
2953
2954 if (*p == NULL) {
2955 if (pid != -1)
2956 mutex_exit(&proc_lock);
2957 return SET_ERROR(ESRCH);
2958 }
2959 if (pid != -1)
2960 mutex_enter((*p)->p_lock);
2961 mutex_exit(&proc_lock);
2962
2963 error = kauth_authorize_process(l->l_cred,
2964 KAUTH_PROCESS_CANSEE, *p,
2965 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2966 if (error) {
2967 if (pid != -1)
2968 mutex_exit((*p)->p_lock);
2969 }
2970 return error;
2971 }
2972
2973 static int
2974 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2975 {
2976 int error;
2977 struct proc *p;
2978
2979 if ((error = proc_find_locked(l, &p, pid)) != 0)
2980 return error;
2981
2982 if (p->p_path == NULL) {
2983 if (pid != -1)
2984 mutex_exit(p->p_lock);
2985 return SET_ERROR(ENOENT);
2986 }
2987
2988 size_t len = strlen(p->p_path) + 1;
2989 if (oldp != NULL) {
2990 size_t copylen = uimin(len, *oldlenp);
2991 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2992 if (error == 0 && *oldlenp < len)
2993 error = SET_ERROR(ENOSPC);
2994 }
2995 *oldlenp = len;
2996 if (pid != -1)
2997 mutex_exit(p->p_lock);
2998 return error;
2999 }
3000
3001 static int
3002 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
3003 {
3004 int error;
3005 struct proc *p;
3006 char *path;
3007 char *bp, *bend;
3008 struct cwdinfo *cwdi;
3009 struct vnode *vp;
3010 size_t len, lenused;
3011
3012 if ((error = proc_find_locked(l, &p, pid)) != 0)
3013 return error;
3014
3015 len = MAXPATHLEN * 4;
3016
3017 path = kmem_alloc(len, KM_SLEEP);
3018
3019 bp = &path[len];
3020 bend = bp;
3021 *(--bp) = '\0';
3022
3023 cwdi = p->p_cwdi;
3024 rw_enter(&cwdi->cwdi_lock, RW_READER);
3025 vp = cwdi->cwdi_cdir;
3026 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3027 rw_exit(&cwdi->cwdi_lock);
3028
3029 if (error)
3030 goto out;
3031
3032 lenused = bend - bp;
3033
3034 if (oldp != NULL) {
3035 size_t copylen = uimin(lenused, *oldlenp);
3036 error = sysctl_copyout(l, bp, oldp, copylen);
3037 if (error == 0 && *oldlenp < lenused)
3038 error = SET_ERROR(ENOSPC);
3039 }
3040 *oldlenp = lenused;
3041 out:
3042 if (pid != -1)
3043 mutex_exit(p->p_lock);
3044 kmem_free(path, len);
3045 return error;
3046 }
3047
3048 int
3049 proc_getauxv(struct proc *p, void **buf, size_t *len)
3050 {
3051 struct ps_strings pss;
3052 int error;
3053 void *uauxv, *kauxv;
3054 size_t size;
3055
3056 if ((error = copyin_psstrings(p, &pss)) != 0)
3057 return error;
3058 if (pss.ps_envstr == NULL)
3059 return SET_ERROR(EIO);
3060
3061 size = p->p_execsw->es_arglen;
3062 if (size == 0)
3063 return SET_ERROR(EIO);
3064
3065 size_t ptrsz = PROC_PTRSZ(p);
3066 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3067
3068 kauxv = kmem_alloc(size, KM_SLEEP);
3069
3070 error = copyin_proc(p, uauxv, kauxv, size);
3071 if (error) {
3072 kmem_free(kauxv, size);
3073 return error;
3074 }
3075
3076 *buf = kauxv;
3077 *len = size;
3078
3079 return 0;
3080 }
3081
3082
3083 static int
3084 sysctl_security_expose_address(SYSCTLFN_ARGS)
3085 {
3086 int expose_address, error;
3087 struct sysctlnode node;
3088
3089 node = *rnode;
3090 node.sysctl_data = &expose_address;
3091 expose_address = *(int *)rnode->sysctl_data;
3092 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3093 if (error || newp == NULL)
3094 return error;
3095
3096 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3097 0, NULL, NULL, NULL))
3098 return SET_ERROR(EPERM);
3099
3100 switch (expose_address) {
3101 case 0:
3102 case 1:
3103 case 2:
3104 break;
3105 default:
3106 return SET_ERROR(EINVAL);
3107 }
3108
3109 *(int *)rnode->sysctl_data = expose_address;
3110
3111 return 0;
3112 }
3113
3114 bool
3115 get_expose_address(struct proc *p)
3116 {
3117 /* allow only if sysctl variable is set or privileged */
3118 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3119 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3120 }
3121