kern_proc.c revision 1.64 1 /* $NetBSD: kern_proc.c,v 1.64 2003/03/19 20:35:04 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.64 2003/03/19 20:35:04 dsl Exp $");
77
78 #include "opt_kstack.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/malloc.h>
92 #include <sys/pool.h>
93 #include <sys/mbuf.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/signalvar.h>
97 #include <sys/ras.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100
101 static void pg_delete(pid_t);
102
103 /*
104 * Structure associated with user cacheing.
105 */
106 struct uidinfo {
107 LIST_ENTRY(uidinfo) ui_hash;
108 uid_t ui_uid;
109 long ui_proccnt;
110 };
111 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
112 LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
113 u_long uihash; /* size of hash table - 1 */
114
115 /*
116 * Other process lists
117 */
118
119 struct proclist allproc;
120 struct proclist zombproc; /* resources have been freed */
121
122
123 /*
124 * Process list locking:
125 *
126 * We have two types of locks on the proclists: read locks and write
127 * locks. Read locks can be used in interrupt context, so while we
128 * hold the write lock, we must also block clock interrupts to
129 * lock out any scheduling changes that may happen in interrupt
130 * context.
131 *
132 * The proclist lock locks the following structures:
133 *
134 * allproc
135 * zombproc
136 * pid_table
137 */
138 struct lock proclist_lock;
139
140 /*
141 * List of processes that has called exit, but need to be reaped.
142 * Locking of this proclist is special; it's accessed in a
143 * critical section of process exit, and thus locking it can't
144 * modify interrupt state.
145 * We use a simple spin lock for this proclist.
146 * Processes on this proclist are also on zombproc.
147 */
148 struct simplelock deadproc_slock;
149 struct deadprocs deadprocs = SLIST_HEAD_INITIALIZER(deadprocs);
150
151 /*
152 * pid to proc lookup is done by indexing the pid_table array.
153 * Since pid numbers are only allocated when an empty slot
154 * has been found, there is no need to search any lists ever.
155 * (an orphaned pgrp will lock the slot, a session will lock
156 * the pgrp with the same number.)
157 * If the table is too small it is reallocated with twice the
158 * previous size and the entries 'unzipped' into the two halves.
159 * A linked list of free entries is passed through the pt_proc
160 * field of 'free' items - set odd to be an invalid ptr.
161 */
162
163 struct pid_table {
164 struct proc *pt_proc;
165 struct pgrp *pt_pgrp;
166 };
167 #if 1 /* strongly typed cast - should be a noop */
168 static __inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; };
169 #else
170 #define p2u(p) ((uint)p)
171 #endif
172 #define P_VALID(p) (!(p2u(p) & 1))
173 #define P_NEXT(p) (p2u(p) >> 1)
174 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
175
176 #define INITIAL_PID_TABLE_SIZE (1 << 5)
177 static struct pid_table *pid_table;
178 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
179 static uint pid_alloc_lim; /* max we allocate before growing table */
180 static uint pid_alloc_cnt; /* number of allocated pids */
181
182 /* links through free slots - never empty! */
183 static uint next_free_pt, last_free_pt;
184 static pid_t pid_max = PID_MAX; /* largest value we allocate */
185
186 struct pool proc_pool;
187 struct pool lwp_pool;
188 struct pool lwp_uc_pool;
189 struct pool pcred_pool;
190 struct pool plimit_pool;
191 struct pool pstats_pool;
192 struct pool pgrp_pool;
193 struct pool rusage_pool;
194 struct pool ras_pool;
195 struct pool sadata_pool;
196 struct pool saupcall_pool;
197 struct pool ptimer_pool;
198
199 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
200 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
201 MALLOC_DEFINE(M_SESSION, "session", "session header");
202 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
203
204 /*
205 * The process list descriptors, used during pid allocation and
206 * by sysctl. No locking on this data structure is needed since
207 * it is completely static.
208 */
209 const struct proclist_desc proclists[] = {
210 { &allproc },
211 { &zombproc },
212 { NULL },
213 };
214
215 static void orphanpg __P((struct pgrp *));
216 #ifdef DEBUG
217 void pgrpdump __P((void));
218 #endif
219
220 /*
221 * Initialize global process hashing structures.
222 */
223 void
224 procinit(void)
225 {
226 const struct proclist_desc *pd;
227 int i;
228 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
229
230 for (pd = proclists; pd->pd_list != NULL; pd++)
231 LIST_INIT(pd->pd_list);
232
233 spinlockinit(&proclist_lock, "proclk", 0);
234
235 simple_lock_init(&deadproc_slock);
236
237 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
238 M_PROC, M_WAITOK);
239 /* Set free list running through table...
240 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
241 for (i = 0; i <= pid_tbl_mask; i++) {
242 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
243 pid_table[i].pt_pgrp = 0;
244 }
245 /* slot 0 is just grabbed */
246 next_free_pt = 1;
247 /* Need to fix last entry. */
248 last_free_pt = pid_tbl_mask;
249 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
250 /* point at which we grow table - to avoid reusing pids too often */
251 pid_alloc_lim = pid_tbl_mask - 1;
252 #undef LINK_EMPTY
253
254 LIST_INIT(&alllwp);
255 LIST_INIT(&deadlwp);
256 LIST_INIT(&zomblwp);
257
258 uihashtbl =
259 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
260
261 pool_init(&proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
262 &pool_allocator_nointr);
263 pool_init(&lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
264 &pool_allocator_nointr);
265 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
266 &pool_allocator_nointr);
267 pool_init(&pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
268 &pool_allocator_nointr);
269 pool_init(&pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
270 &pool_allocator_nointr);
271 pool_init(&plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
272 &pool_allocator_nointr);
273 pool_init(&pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
274 &pool_allocator_nointr);
275 pool_init(&rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
276 &pool_allocator_nointr);
277 pool_init(&ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
278 &pool_allocator_nointr);
279 pool_init(&sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
280 &pool_allocator_nointr);
281 pool_init(&saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0,
282 "saupcpl",
283 &pool_allocator_nointr);
284 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
285 &pool_allocator_nointr);
286 }
287
288 /*
289 * Acquire a read lock on the proclist.
290 */
291 void
292 proclist_lock_read(void)
293 {
294 int error;
295
296 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
297 #ifdef DIAGNOSTIC
298 if (__predict_false(error != 0))
299 panic("proclist_lock_read: failed to acquire lock");
300 #endif
301 }
302
303 /*
304 * Release a read lock on the proclist.
305 */
306 void
307 proclist_unlock_read(void)
308 {
309
310 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
311 }
312
313 /*
314 * Acquire a write lock on the proclist.
315 */
316 int
317 proclist_lock_write(void)
318 {
319 int s, error;
320
321 s = splclock();
322 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
323 #ifdef DIAGNOSTIC
324 if (__predict_false(error != 0))
325 panic("proclist_lock: failed to acquire lock");
326 #endif
327 return (s);
328 }
329
330 /*
331 * Release a write lock on the proclist.
332 */
333 void
334 proclist_unlock_write(int s)
335 {
336
337 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
338 splx(s);
339 }
340
341 /*
342 * Change the count associated with number of processes
343 * a given user is using.
344 */
345 int
346 chgproccnt(uid_t uid, int diff)
347 {
348 struct uidinfo *uip;
349 struct uihashhead *uipp;
350
351 uipp = UIHASH(uid);
352
353 LIST_FOREACH(uip, uipp, ui_hash)
354 if (uip->ui_uid == uid)
355 break;
356
357 if (uip) {
358 uip->ui_proccnt += diff;
359 if (uip->ui_proccnt > 0)
360 return (uip->ui_proccnt);
361 if (uip->ui_proccnt < 0)
362 panic("chgproccnt: procs < 0");
363 LIST_REMOVE(uip, ui_hash);
364 FREE(uip, M_PROC);
365 return (0);
366 }
367 if (diff <= 0) {
368 if (diff == 0)
369 return(0);
370 panic("chgproccnt: lost user");
371 }
372 MALLOC(uip, struct uidinfo *, sizeof(*uip), M_PROC, M_WAITOK);
373 LIST_INSERT_HEAD(uipp, uip, ui_hash);
374 uip->ui_uid = uid;
375 uip->ui_proccnt = diff;
376 return (diff);
377 }
378
379 /*
380 * Check that the specifies process group in in the session of the
381 * specified process.
382 * Treats -ve ids as process ids.
383 * Used to validate TIOCSPGRP requests.
384 */
385 int
386 pgid_in_session(struct proc *p, pid_t pg_id)
387 {
388 struct pgrp *pgrp;
389
390 if (pg_id < 0) {
391 struct proc *p1 = pfind(-pg_id);
392 if (p1 == NULL)
393 return EINVAL;
394 pgrp = p1->p_pgrp;
395 } else {
396 pgrp = pgfind(pg_id);
397 if (pgrp == NULL)
398 return EINVAL;
399 }
400 if (pgrp->pg_session != p->p_pgrp->pg_session)
401 return EPERM;
402 return 0;
403 }
404
405 /*
406 * Is p an inferior of q?
407 */
408 int
409 inferior(struct proc *p, struct proc *q)
410 {
411
412 for (; p != q; p = p->p_pptr)
413 if (p->p_pid == 0)
414 return (0);
415 return (1);
416 }
417
418 /*
419 * Locate a process by number
420 */
421 struct proc *
422 pfind(pid_t pid)
423 {
424 struct proc *p;
425
426 proclist_lock_read();
427 p = pid_table[pid & pid_tbl_mask].pt_proc;
428 /* Only allow live processes to be found by pid. */
429 if (!P_VALID(p) || p->p_pid != pid ||
430 !((1 << SACTIVE | 1 << SSTOP) & 1 << p->p_stat))
431 p = 0;
432
433 /* XXX MP - need to have a reference count... */
434 proclist_unlock_read();
435 return p;
436 }
437
438
439 /*
440 * Locate a process group by number
441 */
442 struct pgrp *
443 pgfind(pid_t pgid)
444 {
445 struct pgrp *pgrp;
446
447 proclist_lock_read();
448 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
449 /*
450 * Can't look up a pgrp that only exists because the session
451 * hasn't died yet (traditional)
452 */
453 if (pgrp == NULL || pgrp->pg_id != pgid
454 || LIST_EMPTY(&pgrp->pg_members))
455 pgrp = 0;
456
457 /* XXX MP - need to have a reference count... */
458 proclist_unlock_read();
459 return pgrp;
460 }
461
462 /*
463 * Set entry for process 0
464 */
465 void
466 proc0_insert(struct proc *p, struct lwp *l, struct pgrp *pgrp,
467 struct session *sess)
468 {
469 int s;
470
471 LIST_INIT(&p->p_lwps);
472 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
473 p->p_nlwps = 1;
474
475 s = proclist_lock_write();
476
477 pid_table[0].pt_proc = p;
478 LIST_INSERT_HEAD(&allproc, p, p_list);
479 LIST_INSERT_HEAD(&alllwp, l, l_list);
480
481 p->p_pgrp = pgrp;
482 pid_table[0].pt_pgrp = pgrp;
483 LIST_INIT(&pgrp->pg_members);
484 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
485
486 pgrp->pg_session = sess;
487 sess->s_count = 1;
488 sess->s_sid = 0;
489 sess->s_leader = p;
490
491 proclist_unlock_write(s);
492 }
493
494 static void
495 expand_pid_table(void)
496 {
497 uint pt_size = pid_tbl_mask + 1;
498 struct pid_table *n_pt, *new_pt;
499 struct proc *proc;
500 struct pgrp *pgrp;
501 int i;
502 int s;
503 pid_t pid;
504
505 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
506
507 s = proclist_lock_write();
508 if (pt_size != pid_tbl_mask + 1) {
509 /* Another process beat us to it... */
510 proclist_unlock_write(s);
511 FREE(new_pt, M_PROC);
512 return;
513 }
514
515 /*
516 * Copy entries from old table into new one.
517 * If 'pid' is 'odd' we need to place in the upper half,
518 * even pid's to the lower half.
519 * Free items stay in the low half so we don't have to
520 * fixup the reference to them.
521 * We stuff free items on the front of the freelist
522 * because we can't write to unmodified entries.
523 * Processing the table backwards maintians a semblance
524 * of issueing pid numbers that increase with time.
525 */
526 i = pt_size - 1;
527 n_pt = new_pt + i;
528 for (; ; i--, n_pt--) {
529 proc = pid_table[i].pt_proc;
530 pgrp = pid_table[i].pt_pgrp;
531 if (!P_VALID(proc)) {
532 /* Up 'use count' so that link is valid */
533 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
534 proc = P_FREE(pid);
535 if (pgrp)
536 pid = pgrp->pg_id;
537 } else
538 pid = proc->p_pid;
539
540 /* Save entry in appropriate half of table */
541 n_pt[pid & pt_size].pt_proc = proc;
542 n_pt[pid & pt_size].pt_pgrp = pgrp;
543
544 /* Put other piece on start of free list */
545 pid = (pid ^ pt_size) & ~pid_tbl_mask;
546 n_pt[pid & pt_size].pt_proc =
547 P_FREE((pid & ~pt_size) | next_free_pt);
548 n_pt[pid & pt_size].pt_pgrp = 0;
549 next_free_pt = i | (pid & pt_size);
550 if (i == 0)
551 break;
552 }
553
554 /* Switch tables */
555 n_pt = pid_table;
556 pid_table = new_pt;
557 pid_tbl_mask = pt_size * 2 - 1;
558
559 /*
560 * pid_max starts as PID_MAX (= 30000), once we have 16384
561 * allocated pids we need it to be larger!
562 */
563 if (pid_tbl_mask > PID_MAX) {
564 pid_max = pid_tbl_mask * 2 + 1;
565 pid_alloc_lim |= pid_alloc_lim << 1;
566 } else
567 pid_alloc_lim <<= 1; /* doubles number of free slots... */
568
569 proclist_unlock_write(s);
570 FREE(n_pt, M_PROC);
571 }
572
573 struct proc *
574 proc_alloc(void)
575 {
576 struct proc *p;
577 int s;
578 int nxt;
579 pid_t pid;
580 struct pid_table *pt;
581
582 p = pool_get(&proc_pool, PR_WAITOK);
583 p->p_stat = SIDL; /* protect against others */
584
585 /* allocate next free pid */
586
587 for (;;expand_pid_table()) {
588 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
589 /* ensure pids cycle through 2000+ values */
590 continue;
591 s = proclist_lock_write();
592 pt = &pid_table[next_free_pt];
593 #ifdef DIAGNOSTIC
594 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
595 panic("proc_alloc: slot busy");
596 #endif
597 nxt = P_NEXT(pt->pt_proc);
598 if (nxt & pid_tbl_mask)
599 break;
600 /* Table full - expand (NB last entry not used....) */
601 proclist_unlock_write(s);
602 }
603
604 /* pid is 'saved use count' + 'size' + entry */
605 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
606 if ((uint)pid > (uint)pid_max)
607 pid &= pid_tbl_mask;
608 p->p_pid = pid;
609 next_free_pt = nxt & pid_tbl_mask;
610
611 /* Grab table slot */
612 pt->pt_proc = p;
613 pid_alloc_cnt++;
614
615 proclist_unlock_write(s);
616
617 return p;
618 }
619
620 /*
621 * Free last resources of a process - called from proc_free (in kern_exit.c)
622 */
623 void
624 proc_free_mem(struct proc *p)
625 {
626 int s;
627 pid_t pid = p->p_pid;
628 struct pid_table *pt;
629
630 s = proclist_lock_write();
631
632 pt = &pid_table[pid & pid_tbl_mask];
633 #ifdef DIAGNOSTIC
634 if (__predict_false(pt->pt_proc != p))
635 panic("proc_free: pid_table mismatch, pid %x, proc %p",
636 pid, p);
637 #endif
638 /* save pid use count in slot */
639 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
640
641 if (pt->pt_pgrp == NULL) {
642 /* link last freed entry onto ours */
643 pid &= pid_tbl_mask;
644 pt = &pid_table[last_free_pt];
645 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
646 last_free_pt = pid;
647 pid_alloc_cnt--;
648 }
649
650 nprocs--;
651 proclist_unlock_write(s);
652
653 pool_put(&proc_pool, p);
654 }
655
656 /*
657 * Move p to a new or existing process group (and session)
658 *
659 * If we are creating a new pgrp, the pgid should equal
660 * the calling processes pid.
661 * If is only valid to enter a process group that is in the session
662 * of the process.
663 * Also mksess should only be set if we are creating a process group
664 *
665 * Only called from sys_setsid, sys_setpgid/sys_setprp and the
666 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
667 */
668 int
669 enterpgrp(struct proc *p, pid_t pgid, int mksess)
670 {
671 struct pgrp *new_pgrp, *pgrp;
672 struct session *sess;
673 struct proc *curp = curproc;
674 pid_t pid = p->p_pid;
675 int rval;
676 int s;
677 pid_t pg_id = NO_PGID;
678
679 /* Allocate data areas we might need before doing any validity checks */
680 proclist_lock_read(); /* Because pid_table might change */
681 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
682 proclist_unlock_read();
683 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
684 } else {
685 proclist_unlock_read();
686 new_pgrp = NULL;
687 }
688 if (mksess)
689 MALLOC(sess, struct session *, sizeof(struct session),
690 M_SESSION, M_WAITOK);
691 else
692 sess = NULL;
693
694 s = proclist_lock_write();
695 rval = EPERM; /* most common error (to save typing) */
696
697 /* Check pgrp exists or can be created */
698 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
699 if (pgrp != NULL && pgrp->pg_id != pgid)
700 goto done;
701
702 /* Can only set another process under restricted circumstances. */
703 if (p != curp) {
704 /* must exist and be one of our children... */
705 if (p != pid_table[pid & pid_tbl_mask].pt_proc
706 || !inferior(p, curp)) {
707 rval = ESRCH;
708 goto done;
709 }
710 /* ... in the same session... */
711 if (sess != NULL || p->p_session != curp->p_session)
712 goto done;
713 /* ... existing pgid must be in same session ... */
714 if (pgrp != NULL && pgrp->pg_session != p->p_session)
715 goto done;
716 /* ... and not done an exec. */
717 if (p->p_flag & P_EXEC) {
718 rval = EACCES;
719 goto done;
720 }
721 }
722
723 /* Changing the process group/session of a session
724 leader is definitely off limits. */
725 if (SESS_LEADER(p)) {
726 if (sess == NULL && p->p_pgrp == pgrp)
727 /* unless it's a definite noop */
728 rval = 0;
729 goto done;
730 }
731
732 /* Can only create a process group with id of process */
733 if (pgrp == NULL && pgid != pid)
734 goto done;
735
736 /* Can only create a session if creating pgrp */
737 if (sess != NULL && pgrp != NULL)
738 goto done;
739
740 /* Check we allocated memory for a pgrp... */
741 if (pgrp == NULL && new_pgrp == NULL)
742 goto done;
743
744 /* Don't attach to 'zombie' pgrp */
745 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
746 goto done;
747
748 /* Expect to succeed now */
749 rval = 0;
750
751 if (pgrp == p->p_pgrp)
752 /* nothing to do */
753 goto done;
754
755 /* Ok all setup, link up required structures */
756 if (pgrp == NULL) {
757 pgrp = new_pgrp;
758 new_pgrp = 0;
759 if (sess != NULL) {
760 sess->s_sid = p->p_pid;
761 sess->s_leader = p;
762 sess->s_count = 1;
763 sess->s_ttyvp = NULL;
764 sess->s_ttyp = NULL;
765 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
766 memcpy(sess->s_login, p->p_session->s_login,
767 sizeof(sess->s_login));
768 p->p_flag &= ~P_CONTROLT;
769 } else {
770 sess = p->p_pgrp->pg_session;
771 SESSHOLD(sess);
772 }
773 pgrp->pg_session = sess;
774 sess = 0;
775
776 pgrp->pg_id = pgid;
777 LIST_INIT(&pgrp->pg_members);
778 #ifdef DIAGNOSTIC
779 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
780 panic("enterpgrp: pgrp table slot in use");
781 if (__predict_false(mksess && p != curp))
782 panic("enterpgrp: mksession and p != curproc");
783 #endif
784 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
785 pgrp->pg_jobc = 0;
786 }
787
788 /*
789 * Adjust eligibility of affected pgrps to participate in job control.
790 * Increment eligibility counts before decrementing, otherwise we
791 * could reach 0 spuriously during the first call.
792 */
793 fixjobc(p, pgrp, 1);
794 fixjobc(p, p->p_pgrp, 0);
795
796 /* Move process to requested group */
797 LIST_REMOVE(p, p_pglist);
798 if (LIST_EMPTY(&p->p_pgrp->pg_members))
799 /* defer delete until we've dumped the lock */
800 pg_id = p->p_pgrp->pg_id;
801 p->p_pgrp = pgrp;
802 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
803
804 done:
805 proclist_unlock_write(s);
806 if (sess != NULL)
807 free(sess, M_SESSION);
808 if (new_pgrp != NULL)
809 pool_put(&pgrp_pool, new_pgrp);
810 if (pg_id != NO_PGID)
811 pg_delete(pg_id);
812 #ifdef DEBUG_PGRP
813 if (__predict_false(rval))
814 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
815 pid, pgid, mksess, curp->p_pid, rval);
816 #endif
817 return rval;
818 }
819
820 /*
821 * remove process from process group
822 */
823 int
824 leavepgrp(struct proc *p)
825 {
826 int s = proclist_lock_write();
827 struct pgrp *pgrp;
828 pid_t pg_id;
829
830 pgrp = p->p_pgrp;
831 LIST_REMOVE(p, p_pglist);
832 p->p_pgrp = 0;
833 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
834 proclist_unlock_write(s);
835
836 if (pg_id != NO_PGID)
837 pg_delete(pg_id);
838 return 0;
839 }
840
841 static void
842 pg_free(pid_t pg_id)
843 {
844 struct pgrp *pgrp;
845 struct pid_table *pt;
846 int s;
847
848 s = proclist_lock_write();
849 pt = &pid_table[pg_id & pid_tbl_mask];
850 pgrp = pt->pt_pgrp;
851 #ifdef DIAGNOSTIC
852 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
853 || !LIST_EMPTY(&pgrp->pg_members)))
854 panic("pg_free: process group absent or has members");
855 #endif
856 pt->pt_pgrp = 0;
857
858 if (!P_VALID(pt->pt_proc)) {
859 /* orphaned pgrp, put slot onto free list */
860 #ifdef DIAGNOSTIC
861 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
862 panic("pg_free: process slot on free list");
863 #endif
864
865 pg_id &= pid_tbl_mask;
866 pt = &pid_table[last_free_pt];
867 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
868 last_free_pt = pg_id;
869 pid_alloc_cnt--;
870 }
871 proclist_unlock_write(s);
872
873 pool_put(&pgrp_pool, pgrp);
874 }
875
876 /*
877 * delete a process group
878 */
879 static void
880 pg_delete(pid_t pg_id)
881 {
882 struct pgrp *pgrp;
883 struct tty *ttyp;
884 struct session *ss;
885 int s;
886
887 s = proclist_lock_write();
888 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
889 if (pgrp == NULL || pgrp->pg_id != pg_id ||
890 !LIST_EMPTY(&pgrp->pg_members)) {
891 proclist_unlock_write(s);
892 return;
893 }
894
895 /* Remove reference (if any) from tty to this process group */
896 ttyp = pgrp->pg_session->s_ttyp;
897 if (ttyp != NULL && ttyp->t_pgrp == pgrp)
898 ttyp->t_pgrp = NULL;
899
900 ss = pgrp->pg_session;
901
902 if (ss->s_sid == pgrp->pg_id) {
903 proclist_unlock_write(s);
904 SESSRELE(ss);
905 /* pgrp freed by sessdelete() if last reference */
906 return;
907 }
908
909 proclist_unlock_write(s);
910 SESSRELE(ss);
911 pg_free(pg_id);
912 }
913
914 /*
915 * Delete session - called from SESSRELE when s_count becomes zero.
916 */
917 void
918 sessdelete(struct session *ss)
919 {
920 /*
921 * We keep the pgrp with the same id as the session in
922 * order to stop a process being given the same pid.
923 * Since the pgrp holds a reference to the session, it
924 * must be a 'zombie' pgrp by now.
925 */
926
927 pg_free(ss->s_sid);
928
929 FREE(ss, M_SESSION);
930 }
931
932 /*
933 * Adjust pgrp jobc counters when specified process changes process group.
934 * We count the number of processes in each process group that "qualify"
935 * the group for terminal job control (those with a parent in a different
936 * process group of the same session). If that count reaches zero, the
937 * process group becomes orphaned. Check both the specified process'
938 * process group and that of its children.
939 * entering == 0 => p is leaving specified group.
940 * entering == 1 => p is entering specified group.
941 */
942 void
943 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
944 {
945 struct pgrp *hispgrp;
946 struct session *mysession = pgrp->pg_session;
947
948 /*
949 * Check p's parent to see whether p qualifies its own process
950 * group; if so, adjust count for p's process group.
951 */
952 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
953 hispgrp->pg_session == mysession) {
954 if (entering)
955 pgrp->pg_jobc++;
956 else if (--pgrp->pg_jobc == 0)
957 orphanpg(pgrp);
958 }
959
960 /*
961 * Check this process' children to see whether they qualify
962 * their process groups; if so, adjust counts for children's
963 * process groups.
964 */
965 LIST_FOREACH(p, &p->p_children, p_sibling) {
966 if ((hispgrp = p->p_pgrp) != pgrp &&
967 hispgrp->pg_session == mysession &&
968 P_ZOMBIE(p) == 0) {
969 if (entering)
970 hispgrp->pg_jobc++;
971 else if (--hispgrp->pg_jobc == 0)
972 orphanpg(hispgrp);
973 }
974 }
975 }
976
977 /*
978 * A process group has become orphaned;
979 * if there are any stopped processes in the group,
980 * hang-up all process in that group.
981 */
982 static void
983 orphanpg(struct pgrp *pg)
984 {
985 struct proc *p;
986
987 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
988 if (p->p_stat == SSTOP) {
989 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
990 psignal(p, SIGHUP);
991 psignal(p, SIGCONT);
992 }
993 return;
994 }
995 }
996 }
997
998 /* mark process as suid/sgid, reset some values to defaults */
999 void
1000 p_sugid(struct proc *p)
1001 {
1002 struct plimit *newlim;
1003
1004 p->p_flag |= P_SUGID;
1005 /* reset what needs to be reset in plimit */
1006 if (p->p_limit->pl_corename != defcorename) {
1007 if (p->p_limit->p_refcnt > 1 &&
1008 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
1009 newlim = limcopy(p->p_limit);
1010 limfree(p->p_limit);
1011 p->p_limit = newlim;
1012 }
1013 free(p->p_limit->pl_corename, M_TEMP);
1014 p->p_limit->pl_corename = defcorename;
1015 }
1016 }
1017
1018 #ifdef DDB
1019 #include <ddb/db_output.h>
1020 void pidtbl_dump(void);
1021 void
1022 pidtbl_dump(void)
1023 {
1024 struct pid_table *pt;
1025 struct proc *p;
1026 struct pgrp *pgrp;
1027 int id;
1028
1029 db_printf("pid table %p size %x, next %x, last %x\n",
1030 pid_table, pid_tbl_mask+1,
1031 next_free_pt, last_free_pt);
1032 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1033 p = pt->pt_proc;
1034 if (!P_VALID(p) && !pt->pt_pgrp)
1035 continue;
1036 db_printf(" id %x: ", id);
1037 if (P_VALID(p))
1038 db_printf("proc %p id %d (0x%x) %s\n",
1039 p, p->p_pid, p->p_pid, p->p_comm);
1040 else
1041 db_printf("next %x use %x\n",
1042 P_NEXT(p) & pid_tbl_mask,
1043 P_NEXT(p) & ~pid_tbl_mask);
1044 if ((pgrp = pt->pt_pgrp)) {
1045 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1046 pgrp->pg_session, pgrp->pg_session->s_sid,
1047 pgrp->pg_session->s_count,
1048 pgrp->pg_session->s_login);
1049 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1050 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1051 pgrp->pg_members.lh_first);
1052 for (p = pgrp->pg_members.lh_first; p != 0;
1053 p = p->p_pglist.le_next) {
1054 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1055 p->p_pid, p, p->p_pgrp, p->p_comm);
1056 }
1057 }
1058 }
1059 }
1060 #endif /* DDB */
1061
1062 #ifdef KSTACK_CHECK_MAGIC
1063 #include <sys/user.h>
1064
1065 #define KSTACK_MAGIC 0xdeadbeaf
1066
1067 /* XXX should be per process basis? */
1068 int kstackleftmin = KSTACK_SIZE;
1069 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1070 less than this */
1071
1072 void
1073 kstack_setup_magic(const struct lwp *l)
1074 {
1075 u_int32_t *ip;
1076 u_int32_t const *end;
1077
1078 KASSERT(l != NULL);
1079 KASSERT(l != &lwp0);
1080
1081 /*
1082 * fill all the stack with magic number
1083 * so that later modification on it can be detected.
1084 */
1085 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1086 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1087 for (; ip < end; ip++) {
1088 *ip = KSTACK_MAGIC;
1089 }
1090 }
1091
1092 void
1093 kstack_check_magic(const struct lwp *l)
1094 {
1095 u_int32_t const *ip, *end;
1096 int stackleft;
1097
1098 KASSERT(l != NULL);
1099
1100 /* don't check proc0 */ /*XXX*/
1101 if (l == &lwp0)
1102 return;
1103
1104 #ifdef __MACHINE_STACK_GROWS_UP
1105 /* stack grows upwards (eg. hppa) */
1106 ip = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1107 end = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1108 for (ip--; ip >= end; ip--)
1109 if (*ip != KSTACK_MAGIC)
1110 break;
1111
1112 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1113 #else /* __MACHINE_STACK_GROWS_UP */
1114 /* stack grows downwards (eg. i386) */
1115 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1116 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1117 for (; ip < end; ip++)
1118 if (*ip != KSTACK_MAGIC)
1119 break;
1120
1121 stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
1122 #endif /* __MACHINE_STACK_GROWS_UP */
1123
1124 if (kstackleftmin > stackleft) {
1125 kstackleftmin = stackleft;
1126 if (stackleft < kstackleftthres)
1127 printf("warning: kernel stack left %d bytes"
1128 "(pid %u:lid %u)\n", stackleft,
1129 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1130 }
1131
1132 if (stackleft <= 0) {
1133 panic("magic on the top of kernel stack changed for "
1134 "pid %u, lid %u: maybe kernel stack overflow",
1135 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1136 }
1137 }
1138 #endif /* KSTACK_CHECK_MAGIC */
1139