Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.64.2.6
      1 /*	$NetBSD: kern_proc.c,v 1.64.2.6 2005/12/11 10:29:11 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.64.2.6 2005/12/11 10:29:11 christos Exp $");
     73 
     74 #include "opt_kstack.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/buf.h>
     82 #include <sys/acct.h>
     83 #include <sys/wait.h>
     84 #include <sys/file.h>
     85 #include <ufs/ufs/quota.h>
     86 #include <sys/uio.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/tty.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/ras.h>
     94 #include <sys/sa.h>
     95 #include <sys/savar.h>
     96 #include <sys/filedesc.h>
     97 
     98 #include <uvm/uvm.h>
     99 #include <uvm/uvm_extern.h>
    100 
    101 /*
    102  * Other process lists
    103  */
    104 
    105 struct proclist allproc;
    106 struct proclist zombproc;	/* resources have been freed */
    107 
    108 
    109 /*
    110  * Process list locking:
    111  *
    112  * We have two types of locks on the proclists: read locks and write
    113  * locks.  Read locks can be used in interrupt context, so while we
    114  * hold the write lock, we must also block clock interrupts to
    115  * lock out any scheduling changes that may happen in interrupt
    116  * context.
    117  *
    118  * The proclist lock locks the following structures:
    119  *
    120  *	allproc
    121  *	zombproc
    122  *	pid_table
    123  */
    124 struct lock proclist_lock;
    125 
    126 /*
    127  * pid to proc lookup is done by indexing the pid_table array.
    128  * Since pid numbers are only allocated when an empty slot
    129  * has been found, there is no need to search any lists ever.
    130  * (an orphaned pgrp will lock the slot, a session will lock
    131  * the pgrp with the same number.)
    132  * If the table is too small it is reallocated with twice the
    133  * previous size and the entries 'unzipped' into the two halves.
    134  * A linked list of free entries is passed through the pt_proc
    135  * field of 'free' items - set odd to be an invalid ptr.
    136  */
    137 
    138 struct pid_table {
    139 	struct proc	*pt_proc;
    140 	struct pgrp	*pt_pgrp;
    141 };
    142 #if 1	/* strongly typed cast - should be a noop */
    143 static __inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    144 #else
    145 #define p2u(p) ((uint)p)
    146 #endif
    147 #define P_VALID(p) (!(p2u(p) & 1))
    148 #define P_NEXT(p) (p2u(p) >> 1)
    149 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    150 
    151 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    152 static struct pid_table *pid_table;
    153 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    154 static uint pid_alloc_lim;	/* max we allocate before growing table */
    155 static uint pid_alloc_cnt;	/* number of allocated pids */
    156 
    157 /* links through free slots - never empty! */
    158 static uint next_free_pt, last_free_pt;
    159 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    160 
    161 /* Components of the first process -- never freed. */
    162 struct session session0;
    163 struct pgrp pgrp0;
    164 struct proc proc0;
    165 struct lwp lwp0;
    166 struct pcred cred0;
    167 struct filedesc0 filedesc0;
    168 struct cwdinfo cwdi0;
    169 struct plimit limit0;
    170 struct pstats pstat0;
    171 struct vmspace vmspace0;
    172 struct sigacts sigacts0;
    173 
    174 extern struct user *proc0paddr;
    175 
    176 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    177 
    178 int nofile = NOFILE;
    179 int maxuprc = MAXUPRC;
    180 int cmask = CMASK;
    181 
    182 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    183     &pool_allocator_nointr);
    184 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
    185     &pool_allocator_nointr);
    186 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    187     &pool_allocator_nointr);
    188 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    189     &pool_allocator_nointr);
    190 POOL_INIT(pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
    191     &pool_allocator_nointr);
    192 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    193     &pool_allocator_nointr);
    194 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    195     &pool_allocator_nointr);
    196 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    197     &pool_allocator_nointr);
    198 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
    199     &pool_allocator_nointr);
    200 POOL_INIT(sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
    201     &pool_allocator_nointr);
    202 POOL_INIT(saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0, "saupcpl",
    203     &pool_allocator_nointr);
    204 POOL_INIT(sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
    205     &pool_allocator_nointr);
    206 POOL_INIT(savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
    207     &pool_allocator_nointr);
    208 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    209     &pool_allocator_nointr);
    210 
    211 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    212 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    213 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    214 
    215 /*
    216  * The process list descriptors, used during pid allocation and
    217  * by sysctl.  No locking on this data structure is needed since
    218  * it is completely static.
    219  */
    220 const struct proclist_desc proclists[] = {
    221 	{ &allproc	},
    222 	{ &zombproc	},
    223 	{ NULL		},
    224 };
    225 
    226 static void orphanpg(struct pgrp *);
    227 static void pg_delete(pid_t);
    228 
    229 /*
    230  * Initialize global process hashing structures.
    231  */
    232 void
    233 procinit(void)
    234 {
    235 	const struct proclist_desc *pd;
    236 	int i;
    237 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    238 
    239 	for (pd = proclists; pd->pd_list != NULL; pd++)
    240 		LIST_INIT(pd->pd_list);
    241 
    242 	spinlockinit(&proclist_lock, "proclk", 0);
    243 
    244 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    245 			    M_PROC, M_WAITOK);
    246 	/* Set free list running through table...
    247 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    248 	for (i = 0; i <= pid_tbl_mask; i++) {
    249 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    250 		pid_table[i].pt_pgrp = 0;
    251 	}
    252 	/* slot 0 is just grabbed */
    253 	next_free_pt = 1;
    254 	/* Need to fix last entry. */
    255 	last_free_pt = pid_tbl_mask;
    256 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    257 	/* point at which we grow table - to avoid reusing pids too often */
    258 	pid_alloc_lim = pid_tbl_mask - 1;
    259 #undef LINK_EMPTY
    260 
    261 	LIST_INIT(&alllwp);
    262 
    263 	uihashtbl =
    264 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    265 }
    266 
    267 /*
    268  * Initialize process 0.
    269  */
    270 void
    271 proc0_init(void)
    272 {
    273 	struct proc *p;
    274 	struct pgrp *pg;
    275 	struct session *sess;
    276 	struct lwp *l;
    277 	int s;
    278 	u_int i;
    279 	rlim_t lim;
    280 
    281 	p = &proc0;
    282 	pg = &pgrp0;
    283 	sess = &session0;
    284 	l = &lwp0;
    285 
    286 	simple_lock_init(&p->p_lock);
    287 	LIST_INIT(&p->p_lwps);
    288 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    289 	p->p_nlwps = 1;
    290 	simple_lock_init(&p->p_sigctx.ps_silock);
    291 	CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
    292 
    293 	s = proclist_lock_write();
    294 
    295 	pid_table[0].pt_proc = p;
    296 	LIST_INSERT_HEAD(&allproc, p, p_list);
    297 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    298 
    299 	p->p_pgrp = pg;
    300 	pid_table[0].pt_pgrp = pg;
    301 	LIST_INIT(&pg->pg_members);
    302 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    303 
    304 	pg->pg_session = sess;
    305 	sess->s_count = 1;
    306 	sess->s_sid = 0;
    307 	sess->s_leader = p;
    308 
    309 	proclist_unlock_write(s);
    310 
    311 	/*
    312 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    313 	 * init(8) when they exit.  init(8) can easily wait them out
    314 	 * for us.
    315 	 */
    316 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
    317 	p->p_stat = SACTIVE;
    318 	p->p_nice = NZERO;
    319 	p->p_emul = &emul_netbsd;
    320 #ifdef __HAVE_SYSCALL_INTERN
    321 	(*p->p_emul->e_syscall_intern)(p);
    322 #endif
    323 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    324 
    325 	l->l_flag = L_INMEM;
    326 	l->l_stat = LSONPROC;
    327 	p->p_nrlwps = 1;
    328 
    329 	callout_init(&l->l_tsleep_ch);
    330 
    331 	/* Create credentials. */
    332 	cred0.p_refcnt = 1;
    333 	p->p_cred = &cred0;
    334 	p->p_ucred = crget();
    335 	p->p_ucred->cr_ngroups = 1;	/* group 0 */
    336 
    337 	/* Create the CWD info. */
    338 	p->p_cwdi = &cwdi0;
    339 	cwdi0.cwdi_cmask = cmask;
    340 	cwdi0.cwdi_refcnt = 1;
    341 	simple_lock_init(&cwdi0.cwdi_slock);
    342 
    343 	/* Create the limits structures. */
    344 	p->p_limit = &limit0;
    345 	simple_lock_init(&limit0.p_slock);
    346 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    347 		limit0.pl_rlimit[i].rlim_cur =
    348 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    349 
    350 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    351 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    352 	    maxfiles < nofile ? maxfiles : nofile;
    353 
    354 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    355 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    356 	    maxproc < maxuprc ? maxproc : maxuprc;
    357 
    358 	lim = ptoa(uvmexp.free);
    359 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    360 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    361 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    362 	limit0.pl_corename = defcorename;
    363 	limit0.p_refcnt = 1;
    364 
    365 	/* Configure virtual memory system, set vm rlimits. */
    366 	uvm_init_limits(p);
    367 
    368 	/* Initialize file descriptor table for proc0. */
    369 	p->p_fd = &filedesc0.fd_fd;
    370 	fdinit1(&filedesc0);
    371 
    372 	/*
    373 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    374 	 * All kernel processes (which never have user space mappings)
    375 	 * share proc0's vmspace, and thus, the kernel pmap.
    376 	 */
    377 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    378 	    trunc_page(VM_MAX_ADDRESS));
    379 	p->p_vmspace = &vmspace0;
    380 
    381 	l->l_addr = proc0paddr;				/* XXX */
    382 
    383 	p->p_stats = &pstat0;
    384 
    385 	/* Initialize signal state for proc0. */
    386 	p->p_sigacts = &sigacts0;
    387 	siginit(p);
    388 }
    389 
    390 /*
    391  * Acquire a read lock on the proclist.
    392  */
    393 void
    394 proclist_lock_read(void)
    395 {
    396 	int error;
    397 
    398 	error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
    399 #ifdef DIAGNOSTIC
    400 	if (__predict_false(error != 0))
    401 		panic("proclist_lock_read: failed to acquire lock");
    402 #endif
    403 }
    404 
    405 /*
    406  * Release a read lock on the proclist.
    407  */
    408 void
    409 proclist_unlock_read(void)
    410 {
    411 
    412 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
    413 }
    414 
    415 /*
    416  * Acquire a write lock on the proclist.
    417  */
    418 int
    419 proclist_lock_write(void)
    420 {
    421 	int s, error;
    422 
    423 	s = splclock();
    424 	error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
    425 #ifdef DIAGNOSTIC
    426 	if (__predict_false(error != 0))
    427 		panic("proclist_lock: failed to acquire lock");
    428 #endif
    429 	return s;
    430 }
    431 
    432 /*
    433  * Release a write lock on the proclist.
    434  */
    435 void
    436 proclist_unlock_write(int s)
    437 {
    438 
    439 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
    440 	splx(s);
    441 }
    442 
    443 /*
    444  * Check that the specified process group is in the session of the
    445  * specified process.
    446  * Treats -ve ids as process ids.
    447  * Used to validate TIOCSPGRP requests.
    448  */
    449 int
    450 pgid_in_session(struct proc *p, pid_t pg_id)
    451 {
    452 	struct pgrp *pgrp;
    453 
    454 	if (pg_id < 0) {
    455 		struct proc *p1 = pfind(-pg_id);
    456 		if (p1 == NULL)
    457 			return EINVAL;
    458 		pgrp = p1->p_pgrp;
    459 	} else {
    460 		pgrp = pgfind(pg_id);
    461 		if (pgrp == NULL)
    462 			return EINVAL;
    463 	}
    464 	if (pgrp->pg_session != p->p_pgrp->pg_session)
    465 		return EPERM;
    466 	return 0;
    467 }
    468 
    469 /*
    470  * Is p an inferior of q?
    471  */
    472 int
    473 inferior(struct proc *p, struct proc *q)
    474 {
    475 
    476 	for (; p != q; p = p->p_pptr)
    477 		if (p->p_pid == 0)
    478 			return 0;
    479 	return 1;
    480 }
    481 
    482 /*
    483  * Locate a process by number
    484  */
    485 struct proc *
    486 p_find(pid_t pid, uint flags)
    487 {
    488 	struct proc *p;
    489 	char stat;
    490 
    491 	if (!(flags & PFIND_LOCKED))
    492 		proclist_lock_read();
    493 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    494 	/* Only allow live processes to be found by pid. */
    495 	if (P_VALID(p) && p->p_pid == pid &&
    496 	    ((stat = p->p_stat) == SACTIVE || stat == SSTOP
    497 		    || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
    498 		if (flags & PFIND_UNLOCK_OK)
    499 			 proclist_unlock_read();
    500 		return p;
    501 	}
    502 	if (flags & PFIND_UNLOCK_FAIL)
    503 		 proclist_unlock_read();
    504 	return NULL;
    505 }
    506 
    507 
    508 /*
    509  * Locate a process group by number
    510  */
    511 struct pgrp *
    512 pg_find(pid_t pgid, uint flags)
    513 {
    514 	struct pgrp *pg;
    515 
    516 	if (!(flags & PFIND_LOCKED))
    517 		proclist_lock_read();
    518 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    519 	/*
    520 	 * Can't look up a pgrp that only exists because the session
    521 	 * hasn't died yet (traditional)
    522 	 */
    523 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    524 		if (flags & PFIND_UNLOCK_FAIL)
    525 			 proclist_unlock_read();
    526 		return NULL;
    527 	}
    528 
    529 	if (flags & PFIND_UNLOCK_OK)
    530 		proclist_unlock_read();
    531 	return pg;
    532 }
    533 
    534 static void
    535 expand_pid_table(void)
    536 {
    537 	uint pt_size = pid_tbl_mask + 1;
    538 	struct pid_table *n_pt, *new_pt;
    539 	struct proc *proc;
    540 	struct pgrp *pgrp;
    541 	int i;
    542 	int s;
    543 	pid_t pid;
    544 
    545 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    546 
    547 	s = proclist_lock_write();
    548 	if (pt_size != pid_tbl_mask + 1) {
    549 		/* Another process beat us to it... */
    550 		proclist_unlock_write(s);
    551 		FREE(new_pt, M_PROC);
    552 		return;
    553 	}
    554 
    555 	/*
    556 	 * Copy entries from old table into new one.
    557 	 * If 'pid' is 'odd' we need to place in the upper half,
    558 	 * even pid's to the lower half.
    559 	 * Free items stay in the low half so we don't have to
    560 	 * fixup the reference to them.
    561 	 * We stuff free items on the front of the freelist
    562 	 * because we can't write to unmodified entries.
    563 	 * Processing the table backwards maintains a semblance
    564 	 * of issueing pid numbers that increase with time.
    565 	 */
    566 	i = pt_size - 1;
    567 	n_pt = new_pt + i;
    568 	for (; ; i--, n_pt--) {
    569 		proc = pid_table[i].pt_proc;
    570 		pgrp = pid_table[i].pt_pgrp;
    571 		if (!P_VALID(proc)) {
    572 			/* Up 'use count' so that link is valid */
    573 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    574 			proc = P_FREE(pid);
    575 			if (pgrp)
    576 				pid = pgrp->pg_id;
    577 		} else
    578 			pid = proc->p_pid;
    579 
    580 		/* Save entry in appropriate half of table */
    581 		n_pt[pid & pt_size].pt_proc = proc;
    582 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    583 
    584 		/* Put other piece on start of free list */
    585 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    586 		n_pt[pid & pt_size].pt_proc =
    587 				    P_FREE((pid & ~pt_size) | next_free_pt);
    588 		n_pt[pid & pt_size].pt_pgrp = 0;
    589 		next_free_pt = i | (pid & pt_size);
    590 		if (i == 0)
    591 			break;
    592 	}
    593 
    594 	/* Switch tables */
    595 	n_pt = pid_table;
    596 	pid_table = new_pt;
    597 	pid_tbl_mask = pt_size * 2 - 1;
    598 
    599 	/*
    600 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    601 	 * allocated pids we need it to be larger!
    602 	 */
    603 	if (pid_tbl_mask > PID_MAX) {
    604 		pid_max = pid_tbl_mask * 2 + 1;
    605 		pid_alloc_lim |= pid_alloc_lim << 1;
    606 	} else
    607 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    608 
    609 	proclist_unlock_write(s);
    610 	FREE(n_pt, M_PROC);
    611 }
    612 
    613 struct proc *
    614 proc_alloc(void)
    615 {
    616 	struct proc *p;
    617 	int s;
    618 	int nxt;
    619 	pid_t pid;
    620 	struct pid_table *pt;
    621 
    622 	p = pool_get(&proc_pool, PR_WAITOK);
    623 	p->p_stat = SIDL;			/* protect against others */
    624 
    625 	/* allocate next free pid */
    626 
    627 	for (;;expand_pid_table()) {
    628 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    629 			/* ensure pids cycle through 2000+ values */
    630 			continue;
    631 		s = proclist_lock_write();
    632 		pt = &pid_table[next_free_pt];
    633 #ifdef DIAGNOSTIC
    634 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    635 			panic("proc_alloc: slot busy");
    636 #endif
    637 		nxt = P_NEXT(pt->pt_proc);
    638 		if (nxt & pid_tbl_mask)
    639 			break;
    640 		/* Table full - expand (NB last entry not used....) */
    641 		proclist_unlock_write(s);
    642 	}
    643 
    644 	/* pid is 'saved use count' + 'size' + entry */
    645 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    646 	if ((uint)pid > (uint)pid_max)
    647 		pid &= pid_tbl_mask;
    648 	p->p_pid = pid;
    649 	next_free_pt = nxt & pid_tbl_mask;
    650 
    651 	/* Grab table slot */
    652 	pt->pt_proc = p;
    653 	pid_alloc_cnt++;
    654 
    655 	proclist_unlock_write(s);
    656 
    657 	return p;
    658 }
    659 
    660 /*
    661  * Free last resources of a process - called from proc_free (in kern_exit.c)
    662  */
    663 void
    664 proc_free_mem(struct proc *p)
    665 {
    666 	int s;
    667 	pid_t pid = p->p_pid;
    668 	struct pid_table *pt;
    669 
    670 	s = proclist_lock_write();
    671 
    672 	pt = &pid_table[pid & pid_tbl_mask];
    673 #ifdef DIAGNOSTIC
    674 	if (__predict_false(pt->pt_proc != p))
    675 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    676 			pid, p);
    677 #endif
    678 	/* save pid use count in slot */
    679 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    680 
    681 	if (pt->pt_pgrp == NULL) {
    682 		/* link last freed entry onto ours */
    683 		pid &= pid_tbl_mask;
    684 		pt = &pid_table[last_free_pt];
    685 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    686 		last_free_pt = pid;
    687 		pid_alloc_cnt--;
    688 	}
    689 
    690 	nprocs--;
    691 	proclist_unlock_write(s);
    692 
    693 	pool_put(&proc_pool, p);
    694 }
    695 
    696 /*
    697  * Move p to a new or existing process group (and session)
    698  *
    699  * If we are creating a new pgrp, the pgid should equal
    700  * the calling process' pid.
    701  * If is only valid to enter a process group that is in the session
    702  * of the process.
    703  * Also mksess should only be set if we are creating a process group
    704  *
    705  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    706  * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
    707  */
    708 int
    709 enterpgrp(struct proc *p, pid_t pgid, int mksess)
    710 {
    711 	struct pgrp *new_pgrp, *pgrp;
    712 	struct session *sess;
    713 	struct proc *curp = curproc;
    714 	pid_t pid = p->p_pid;
    715 	int rval;
    716 	int s;
    717 	pid_t pg_id = NO_PGID;
    718 
    719 	/* Allocate data areas we might need before doing any validity checks */
    720 	proclist_lock_read();		/* Because pid_table might change */
    721 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    722 		proclist_unlock_read();
    723 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    724 	} else {
    725 		proclist_unlock_read();
    726 		new_pgrp = NULL;
    727 	}
    728 	if (mksess)
    729 		sess = pool_get(&session_pool, M_WAITOK);
    730 	else
    731 		sess = NULL;
    732 
    733 	s = proclist_lock_write();
    734 	rval = EPERM;	/* most common error (to save typing) */
    735 
    736 	/* Check pgrp exists or can be created */
    737 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    738 	if (pgrp != NULL && pgrp->pg_id != pgid)
    739 		goto done;
    740 
    741 	/* Can only set another process under restricted circumstances. */
    742 	if (p != curp) {
    743 		/* must exist and be one of our children... */
    744 		if (p != pid_table[pid & pid_tbl_mask].pt_proc
    745 		    || !inferior(p, curp)) {
    746 			rval = ESRCH;
    747 			goto done;
    748 		}
    749 		/* ... in the same session... */
    750 		if (sess != NULL || p->p_session != curp->p_session)
    751 			goto done;
    752 		/* ... existing pgid must be in same session ... */
    753 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    754 			goto done;
    755 		/* ... and not done an exec. */
    756 		if (p->p_flag & P_EXEC) {
    757 			rval = EACCES;
    758 			goto done;
    759 		}
    760 	}
    761 
    762 	/* Changing the process group/session of a session
    763 	   leader is definitely off limits. */
    764 	if (SESS_LEADER(p)) {
    765 		if (sess == NULL && p->p_pgrp == pgrp)
    766 			/* unless it's a definite noop */
    767 			rval = 0;
    768 		goto done;
    769 	}
    770 
    771 	/* Can only create a process group with id of process */
    772 	if (pgrp == NULL && pgid != pid)
    773 		goto done;
    774 
    775 	/* Can only create a session if creating pgrp */
    776 	if (sess != NULL && pgrp != NULL)
    777 		goto done;
    778 
    779 	/* Check we allocated memory for a pgrp... */
    780 	if (pgrp == NULL && new_pgrp == NULL)
    781 		goto done;
    782 
    783 	/* Don't attach to 'zombie' pgrp */
    784 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    785 		goto done;
    786 
    787 	/* Expect to succeed now */
    788 	rval = 0;
    789 
    790 	if (pgrp == p->p_pgrp)
    791 		/* nothing to do */
    792 		goto done;
    793 
    794 	/* Ok all setup, link up required structures */
    795 	if (pgrp == NULL) {
    796 		pgrp = new_pgrp;
    797 		new_pgrp = 0;
    798 		if (sess != NULL) {
    799 			sess->s_sid = p->p_pid;
    800 			sess->s_leader = p;
    801 			sess->s_count = 1;
    802 			sess->s_ttyvp = NULL;
    803 			sess->s_ttyp = NULL;
    804 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    805 			memcpy(sess->s_login, p->p_session->s_login,
    806 			    sizeof(sess->s_login));
    807 			p->p_flag &= ~P_CONTROLT;
    808 		} else {
    809 			sess = p->p_pgrp->pg_session;
    810 			SESSHOLD(sess);
    811 		}
    812 		pgrp->pg_session = sess;
    813 		sess = 0;
    814 
    815 		pgrp->pg_id = pgid;
    816 		LIST_INIT(&pgrp->pg_members);
    817 #ifdef DIAGNOSTIC
    818 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    819 			panic("enterpgrp: pgrp table slot in use");
    820 		if (__predict_false(mksess && p != curp))
    821 			panic("enterpgrp: mksession and p != curproc");
    822 #endif
    823 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    824 		pgrp->pg_jobc = 0;
    825 	}
    826 
    827 	/*
    828 	 * Adjust eligibility of affected pgrps to participate in job control.
    829 	 * Increment eligibility counts before decrementing, otherwise we
    830 	 * could reach 0 spuriously during the first call.
    831 	 */
    832 	fixjobc(p, pgrp, 1);
    833 	fixjobc(p, p->p_pgrp, 0);
    834 
    835 	/* Move process to requested group */
    836 	LIST_REMOVE(p, p_pglist);
    837 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    838 		/* defer delete until we've dumped the lock */
    839 		pg_id = p->p_pgrp->pg_id;
    840 	p->p_pgrp = pgrp;
    841 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    842 
    843     done:
    844 	proclist_unlock_write(s);
    845 	if (sess != NULL)
    846 		pool_put(&session_pool, sess);
    847 	if (new_pgrp != NULL)
    848 		pool_put(&pgrp_pool, new_pgrp);
    849 	if (pg_id != NO_PGID)
    850 		pg_delete(pg_id);
    851 #ifdef DEBUG_PGRP
    852 	if (__predict_false(rval))
    853 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    854 			pid, pgid, mksess, curp->p_pid, rval);
    855 #endif
    856 	return rval;
    857 }
    858 
    859 /*
    860  * remove process from process group
    861  */
    862 int
    863 leavepgrp(struct proc *p)
    864 {
    865 	int s;
    866 	struct pgrp *pgrp;
    867 	pid_t pg_id;
    868 
    869 	s = proclist_lock_write();
    870 	pgrp = p->p_pgrp;
    871 	LIST_REMOVE(p, p_pglist);
    872 	p->p_pgrp = 0;
    873 	pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
    874 	proclist_unlock_write(s);
    875 
    876 	if (pg_id != NO_PGID)
    877 		pg_delete(pg_id);
    878 	return 0;
    879 }
    880 
    881 static void
    882 pg_free(pid_t pg_id)
    883 {
    884 	struct pgrp *pgrp;
    885 	struct pid_table *pt;
    886 	int s;
    887 
    888 	s = proclist_lock_write();
    889 	pt = &pid_table[pg_id & pid_tbl_mask];
    890 	pgrp = pt->pt_pgrp;
    891 #ifdef DIAGNOSTIC
    892 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    893 	    || !LIST_EMPTY(&pgrp->pg_members)))
    894 		panic("pg_free: process group absent or has members");
    895 #endif
    896 	pt->pt_pgrp = 0;
    897 
    898 	if (!P_VALID(pt->pt_proc)) {
    899 		/* orphaned pgrp, put slot onto free list */
    900 #ifdef DIAGNOSTIC
    901 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    902 			panic("pg_free: process slot on free list");
    903 #endif
    904 
    905 		pg_id &= pid_tbl_mask;
    906 		pt = &pid_table[last_free_pt];
    907 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    908 		last_free_pt = pg_id;
    909 		pid_alloc_cnt--;
    910 	}
    911 	proclist_unlock_write(s);
    912 
    913 	pool_put(&pgrp_pool, pgrp);
    914 }
    915 
    916 /*
    917  * delete a process group
    918  */
    919 static void
    920 pg_delete(pid_t pg_id)
    921 {
    922 	struct pgrp *pgrp;
    923 	struct tty *ttyp;
    924 	struct session *ss;
    925 	int s, is_pgrp_leader;
    926 
    927 	s = proclist_lock_write();
    928 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    929 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    930 	    !LIST_EMPTY(&pgrp->pg_members)) {
    931 		proclist_unlock_write(s);
    932 		return;
    933 	}
    934 
    935 	ss = pgrp->pg_session;
    936 
    937 	/* Remove reference (if any) from tty to this process group */
    938 	ttyp = ss->s_ttyp;
    939 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    940 		ttyp->t_pgrp = NULL;
    941 #ifdef DIAGNOSTIC
    942 		if (ttyp->t_session != ss)
    943 			panic("pg_delete: wrong session on terminal");
    944 #endif
    945 	}
    946 
    947 	/*
    948 	 * The leading process group in a session is freed
    949 	 * by sessdelete() if last reference.
    950 	 */
    951 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    952 	proclist_unlock_write(s);
    953 	SESSRELE(ss);
    954 
    955 	if (is_pgrp_leader)
    956 		return;
    957 
    958 	pg_free(pg_id);
    959 }
    960 
    961 /*
    962  * Delete session - called from SESSRELE when s_count becomes zero.
    963  */
    964 void
    965 sessdelete(struct session *ss)
    966 {
    967 	/*
    968 	 * We keep the pgrp with the same id as the session in
    969 	 * order to stop a process being given the same pid.
    970 	 * Since the pgrp holds a reference to the session, it
    971 	 * must be a 'zombie' pgrp by now.
    972 	 */
    973 
    974 	pg_free(ss->s_sid);
    975 
    976 	pool_put(&session_pool, ss);
    977 }
    978 
    979 /*
    980  * Adjust pgrp jobc counters when specified process changes process group.
    981  * We count the number of processes in each process group that "qualify"
    982  * the group for terminal job control (those with a parent in a different
    983  * process group of the same session).  If that count reaches zero, the
    984  * process group becomes orphaned.  Check both the specified process'
    985  * process group and that of its children.
    986  * entering == 0 => p is leaving specified group.
    987  * entering == 1 => p is entering specified group.
    988  *
    989  * Call with proclist_lock held.
    990  */
    991 void
    992 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    993 {
    994 	struct pgrp *hispgrp;
    995 	struct session *mysession = pgrp->pg_session;
    996 	struct proc *child;
    997 
    998 	/*
    999 	 * Check p's parent to see whether p qualifies its own process
   1000 	 * group; if so, adjust count for p's process group.
   1001 	 */
   1002 	hispgrp = p->p_pptr->p_pgrp;
   1003 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1004 		if (entering)
   1005 			pgrp->pg_jobc++;
   1006 		else if (--pgrp->pg_jobc == 0)
   1007 			orphanpg(pgrp);
   1008 	}
   1009 
   1010 	/*
   1011 	 * Check this process' children to see whether they qualify
   1012 	 * their process groups; if so, adjust counts for children's
   1013 	 * process groups.
   1014 	 */
   1015 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1016 		hispgrp = child->p_pgrp;
   1017 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1018 		    !P_ZOMBIE(child)) {
   1019 			if (entering)
   1020 				hispgrp->pg_jobc++;
   1021 			else if (--hispgrp->pg_jobc == 0)
   1022 				orphanpg(hispgrp);
   1023 		}
   1024 	}
   1025 }
   1026 
   1027 /*
   1028  * A process group has become orphaned;
   1029  * if there are any stopped processes in the group,
   1030  * hang-up all process in that group.
   1031  *
   1032  * Call with proclist_lock held.
   1033  */
   1034 static void
   1035 orphanpg(struct pgrp *pg)
   1036 {
   1037 	struct proc *p;
   1038 
   1039 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1040 		if (p->p_stat == SSTOP) {
   1041 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1042 				psignal(p, SIGHUP);
   1043 				psignal(p, SIGCONT);
   1044 			}
   1045 			return;
   1046 		}
   1047 	}
   1048 }
   1049 
   1050 /* mark process as suid/sgid, reset some values to defaults */
   1051 void
   1052 p_sugid(struct proc *p)
   1053 {
   1054 	struct plimit *lim;
   1055 	char *cn;
   1056 
   1057 	p->p_flag |= P_SUGID;
   1058 	/* reset what needs to be reset in plimit */
   1059 	lim = p->p_limit;
   1060 	if (lim->pl_corename != defcorename) {
   1061 		if (lim->p_refcnt > 1 &&
   1062 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1063 			p->p_limit = limcopy(lim);
   1064 			limfree(lim);
   1065 			lim = p->p_limit;
   1066 		}
   1067 		simple_lock(&lim->p_slock);
   1068 		cn = lim->pl_corename;
   1069 		lim->pl_corename = defcorename;
   1070 		simple_unlock(&lim->p_slock);
   1071 		if (cn != defcorename)
   1072 			free(cn, M_TEMP);
   1073 	}
   1074 }
   1075 
   1076 #ifdef DDB
   1077 #include <ddb/db_output.h>
   1078 void pidtbl_dump(void);
   1079 void
   1080 pidtbl_dump(void)
   1081 {
   1082 	struct pid_table *pt;
   1083 	struct proc *p;
   1084 	struct pgrp *pgrp;
   1085 	int id;
   1086 
   1087 	db_printf("pid table %p size %x, next %x, last %x\n",
   1088 		pid_table, pid_tbl_mask+1,
   1089 		next_free_pt, last_free_pt);
   1090 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1091 		p = pt->pt_proc;
   1092 		if (!P_VALID(p) && !pt->pt_pgrp)
   1093 			continue;
   1094 		db_printf("  id %x: ", id);
   1095 		if (P_VALID(p))
   1096 			db_printf("proc %p id %d (0x%x) %s\n",
   1097 				p, p->p_pid, p->p_pid, p->p_comm);
   1098 		else
   1099 			db_printf("next %x use %x\n",
   1100 				P_NEXT(p) & pid_tbl_mask,
   1101 				P_NEXT(p) & ~pid_tbl_mask);
   1102 		if ((pgrp = pt->pt_pgrp)) {
   1103 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1104 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1105 			    pgrp->pg_session->s_count,
   1106 			    pgrp->pg_session->s_login);
   1107 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1108 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1109 			    pgrp->pg_members.lh_first);
   1110 			for (p = pgrp->pg_members.lh_first; p != 0;
   1111 			    p = p->p_pglist.le_next) {
   1112 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1113 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1114 			}
   1115 		}
   1116 	}
   1117 }
   1118 #endif /* DDB */
   1119 
   1120 #ifdef KSTACK_CHECK_MAGIC
   1121 #include <sys/user.h>
   1122 
   1123 #define	KSTACK_MAGIC	0xdeadbeaf
   1124 
   1125 /* XXX should be per process basis? */
   1126 int kstackleftmin = KSTACK_SIZE;
   1127 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1128 					  less than this */
   1129 
   1130 void
   1131 kstack_setup_magic(const struct lwp *l)
   1132 {
   1133 	u_int32_t *ip;
   1134 	u_int32_t const *end;
   1135 
   1136 	KASSERT(l != NULL);
   1137 	KASSERT(l != &lwp0);
   1138 
   1139 	/*
   1140 	 * fill all the stack with magic number
   1141 	 * so that later modification on it can be detected.
   1142 	 */
   1143 	ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
   1144 	end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1145 	for (; ip < end; ip++) {
   1146 		*ip = KSTACK_MAGIC;
   1147 	}
   1148 }
   1149 
   1150 void
   1151 kstack_check_magic(const struct lwp *l)
   1152 {
   1153 	u_int32_t const *ip, *end;
   1154 	int stackleft;
   1155 
   1156 	KASSERT(l != NULL);
   1157 
   1158 	/* don't check proc0 */ /*XXX*/
   1159 	if (l == &lwp0)
   1160 		return;
   1161 
   1162 #ifdef __MACHINE_STACK_GROWS_UP
   1163 	/* stack grows upwards (eg. hppa) */
   1164 	ip = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1165 	end = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
   1166 	for (ip--; ip >= end; ip--)
   1167 		if (*ip != KSTACK_MAGIC)
   1168 			break;
   1169 
   1170 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1171 #else /* __MACHINE_STACK_GROWS_UP */
   1172 	/* stack grows downwards (eg. i386) */
   1173 	ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
   1174 	end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1175 	for (; ip < end; ip++)
   1176 		if (*ip != KSTACK_MAGIC)
   1177 			break;
   1178 
   1179 	stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
   1180 #endif /* __MACHINE_STACK_GROWS_UP */
   1181 
   1182 	if (kstackleftmin > stackleft) {
   1183 		kstackleftmin = stackleft;
   1184 		if (stackleft < kstackleftthres)
   1185 			printf("warning: kernel stack left %d bytes"
   1186 			    "(pid %u:lid %u)\n", stackleft,
   1187 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1188 	}
   1189 
   1190 	if (stackleft <= 0) {
   1191 		panic("magic on the top of kernel stack changed for "
   1192 		    "pid %u, lid %u: maybe kernel stack overflow",
   1193 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1194 	}
   1195 }
   1196 #endif /* KSTACK_CHECK_MAGIC */
   1197 
   1198 /* XXX shouldn't be here */
   1199 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1200 #define	PROCLIST_ASSERT_LOCKED_READ()	\
   1201 	KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
   1202 #else
   1203 #define	PROCLIST_ASSERT_LOCKED_READ()	/* nothing */
   1204 #endif
   1205 
   1206 int
   1207 proclist_foreach_call(struct proclist *list,
   1208     int (*callback)(struct proc *, void *arg), void *arg)
   1209 {
   1210 	struct proc marker;
   1211 	struct proc *p;
   1212 	struct lwp * const l = curlwp;
   1213 	int ret = 0;
   1214 
   1215 	marker.p_flag = P_MARKER;
   1216 	PHOLD(l);
   1217 	proclist_lock_read();
   1218 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1219 		if (p->p_flag & P_MARKER) {
   1220 			p = LIST_NEXT(p, p_list);
   1221 			continue;
   1222 		}
   1223 		LIST_INSERT_AFTER(p, &marker, p_list);
   1224 		ret = (*callback)(p, arg);
   1225 		PROCLIST_ASSERT_LOCKED_READ();
   1226 		p = LIST_NEXT(&marker, p_list);
   1227 		LIST_REMOVE(&marker, p_list);
   1228 	}
   1229 	proclist_unlock_read();
   1230 	PRELE(l);
   1231 
   1232 	return ret;
   1233 }
   1234