kern_proc.c revision 1.76 1 /* $NetBSD: kern_proc.c,v 1.76 2004/04/17 15:15:29 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.76 2004/04/17 15:15:29 christos Exp $");
73
74 #include "opt_kstack.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/acct.h>
83 #include <sys/wait.h>
84 #include <sys/file.h>
85 #include <ufs/ufs/quota.h>
86 #include <sys/uio.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/mbuf.h>
90 #include <sys/ioctl.h>
91 #include <sys/tty.h>
92 #include <sys/signalvar.h>
93 #include <sys/ras.h>
94 #include <sys/sa.h>
95 #include <sys/savar.h>
96
97 /*
98 * Other process lists
99 */
100
101 struct proclist allproc;
102 struct proclist zombproc; /* resources have been freed */
103
104
105 /*
106 * Process list locking:
107 *
108 * We have two types of locks on the proclists: read locks and write
109 * locks. Read locks can be used in interrupt context, so while we
110 * hold the write lock, we must also block clock interrupts to
111 * lock out any scheduling changes that may happen in interrupt
112 * context.
113 *
114 * The proclist lock locks the following structures:
115 *
116 * allproc
117 * zombproc
118 * pid_table
119 */
120 struct lock proclist_lock;
121
122 /*
123 * pid to proc lookup is done by indexing the pid_table array.
124 * Since pid numbers are only allocated when an empty slot
125 * has been found, there is no need to search any lists ever.
126 * (an orphaned pgrp will lock the slot, a session will lock
127 * the pgrp with the same number.)
128 * If the table is too small it is reallocated with twice the
129 * previous size and the entries 'unzipped' into the two halves.
130 * A linked list of free entries is passed through the pt_proc
131 * field of 'free' items - set odd to be an invalid ptr.
132 */
133
134 struct pid_table {
135 struct proc *pt_proc;
136 struct pgrp *pt_pgrp;
137 };
138 #if 1 /* strongly typed cast - should be a noop */
139 static __inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
140 #else
141 #define p2u(p) ((uint)p)
142 #endif
143 #define P_VALID(p) (!(p2u(p) & 1))
144 #define P_NEXT(p) (p2u(p) >> 1)
145 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
146
147 #define INITIAL_PID_TABLE_SIZE (1 << 5)
148 static struct pid_table *pid_table;
149 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
150 static uint pid_alloc_lim; /* max we allocate before growing table */
151 static uint pid_alloc_cnt; /* number of allocated pids */
152
153 /* links through free slots - never empty! */
154 static uint next_free_pt, last_free_pt;
155 static pid_t pid_max = PID_MAX; /* largest value we allocate */
156
157 struct pool proc_pool;
158 struct pool lwp_pool;
159 struct pool lwp_uc_pool;
160 struct pool pcred_pool;
161 struct pool plimit_pool;
162 struct pool pstats_pool;
163 struct pool pgrp_pool;
164 struct pool rusage_pool;
165 struct pool ras_pool;
166 struct pool sadata_pool;
167 struct pool saupcall_pool;
168 struct pool sastack_pool;
169 struct pool savp_pool;
170 struct pool ptimer_pool;
171
172 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
173 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
174 MALLOC_DEFINE(M_SESSION, "session", "session header");
175 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
176
177 /*
178 * The process list descriptors, used during pid allocation and
179 * by sysctl. No locking on this data structure is needed since
180 * it is completely static.
181 */
182 const struct proclist_desc proclists[] = {
183 { &allproc },
184 { &zombproc },
185 { NULL },
186 };
187
188 static void orphanpg(struct pgrp *);
189 static void pg_delete(pid_t);
190
191 /*
192 * Initialize global process hashing structures.
193 */
194 void
195 procinit(void)
196 {
197 const struct proclist_desc *pd;
198 int i;
199 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
200
201 for (pd = proclists; pd->pd_list != NULL; pd++)
202 LIST_INIT(pd->pd_list);
203
204 spinlockinit(&proclist_lock, "proclk", 0);
205
206 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
207 M_PROC, M_WAITOK);
208 /* Set free list running through table...
209 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
210 for (i = 0; i <= pid_tbl_mask; i++) {
211 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
212 pid_table[i].pt_pgrp = 0;
213 }
214 /* slot 0 is just grabbed */
215 next_free_pt = 1;
216 /* Need to fix last entry. */
217 last_free_pt = pid_tbl_mask;
218 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
219 /* point at which we grow table - to avoid reusing pids too often */
220 pid_alloc_lim = pid_tbl_mask - 1;
221 #undef LINK_EMPTY
222
223 LIST_INIT(&alllwp);
224
225 uihashtbl =
226 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
227
228 pool_init(&proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
229 &pool_allocator_nointr);
230 pool_init(&lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
231 &pool_allocator_nointr);
232 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
233 &pool_allocator_nointr);
234 pool_init(&pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
235 &pool_allocator_nointr);
236 pool_init(&pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
237 &pool_allocator_nointr);
238 pool_init(&plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
239 &pool_allocator_nointr);
240 pool_init(&pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
241 &pool_allocator_nointr);
242 pool_init(&rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
243 &pool_allocator_nointr);
244 pool_init(&ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
245 &pool_allocator_nointr);
246 pool_init(&sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
247 &pool_allocator_nointr);
248 pool_init(&saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0,
249 "saupcpl", &pool_allocator_nointr);
250 pool_init(&sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
251 &pool_allocator_nointr);
252 pool_init(&savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
253 &pool_allocator_nointr);
254 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
255 &pool_allocator_nointr);
256 }
257
258 /*
259 * Acquire a read lock on the proclist.
260 */
261 void
262 proclist_lock_read(void)
263 {
264 int error;
265
266 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
267 #ifdef DIAGNOSTIC
268 if (__predict_false(error != 0))
269 panic("proclist_lock_read: failed to acquire lock");
270 #endif
271 }
272
273 /*
274 * Release a read lock on the proclist.
275 */
276 void
277 proclist_unlock_read(void)
278 {
279
280 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
281 }
282
283 /*
284 * Acquire a write lock on the proclist.
285 */
286 int
287 proclist_lock_write(void)
288 {
289 int s, error;
290
291 s = splclock();
292 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
293 #ifdef DIAGNOSTIC
294 if (__predict_false(error != 0))
295 panic("proclist_lock: failed to acquire lock");
296 #endif
297 return (s);
298 }
299
300 /*
301 * Release a write lock on the proclist.
302 */
303 void
304 proclist_unlock_write(int s)
305 {
306
307 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
308 splx(s);
309 }
310
311 /*
312 * Check that the specified process group is in the session of the
313 * specified process.
314 * Treats -ve ids as process ids.
315 * Used to validate TIOCSPGRP requests.
316 */
317 int
318 pgid_in_session(struct proc *p, pid_t pg_id)
319 {
320 struct pgrp *pgrp;
321
322 if (pg_id < 0) {
323 struct proc *p1 = pfind(-pg_id);
324 if (p1 == NULL)
325 return EINVAL;
326 pgrp = p1->p_pgrp;
327 } else {
328 pgrp = pgfind(pg_id);
329 if (pgrp == NULL)
330 return EINVAL;
331 }
332 if (pgrp->pg_session != p->p_pgrp->pg_session)
333 return EPERM;
334 return 0;
335 }
336
337 /*
338 * Is p an inferior of q?
339 */
340 int
341 inferior(struct proc *p, struct proc *q)
342 {
343
344 for (; p != q; p = p->p_pptr)
345 if (p->p_pid == 0)
346 return (0);
347 return (1);
348 }
349
350 /*
351 * Locate a process by number
352 */
353 struct proc *
354 p_find(pid_t pid, uint flags)
355 {
356 struct proc *p;
357 char stat;
358
359 if (!(flags & PFIND_LOCKED))
360 proclist_lock_read();
361 p = pid_table[pid & pid_tbl_mask].pt_proc;
362 /* Only allow live processes to be found by pid. */
363 if (P_VALID(p) && p->p_pid == pid &&
364 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
365 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
366 if (flags & PFIND_UNLOCK_OK)
367 proclist_unlock_read();
368 return p;
369 }
370 if (flags & PFIND_UNLOCK_FAIL)
371 proclist_unlock_read();
372 return NULL;
373 }
374
375
376 /*
377 * Locate a process group by number
378 */
379 struct pgrp *
380 pg_find(pid_t pgid, uint flags)
381 {
382 struct pgrp *pg;
383
384 if (!(flags & PFIND_LOCKED))
385 proclist_lock_read();
386 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
387 /*
388 * Can't look up a pgrp that only exists because the session
389 * hasn't died yet (traditional)
390 */
391 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
392 if (flags & PFIND_UNLOCK_FAIL)
393 proclist_unlock_read();
394 return NULL;
395 }
396
397 if (flags & PFIND_UNLOCK_OK)
398 proclist_unlock_read();
399 return pg;
400 }
401
402 /*
403 * Set entry for process 0
404 */
405 void
406 proc0_insert(struct proc *p, struct lwp *l, struct pgrp *pgrp,
407 struct session *sess)
408 {
409 int s;
410
411 simple_lock_init(&p->p_lock);
412 LIST_INIT(&p->p_lwps);
413 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
414 p->p_nlwps = 1;
415 simple_lock_init(&p->p_sigctx.ps_silock);
416 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
417
418 s = proclist_lock_write();
419
420 pid_table[0].pt_proc = p;
421 LIST_INSERT_HEAD(&allproc, p, p_list);
422 LIST_INSERT_HEAD(&alllwp, l, l_list);
423
424 p->p_pgrp = pgrp;
425 pid_table[0].pt_pgrp = pgrp;
426 LIST_INIT(&pgrp->pg_members);
427 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
428
429 pgrp->pg_session = sess;
430 sess->s_count = 1;
431 sess->s_sid = 0;
432 sess->s_leader = p;
433
434 proclist_unlock_write(s);
435 }
436
437 static void
438 expand_pid_table(void)
439 {
440 uint pt_size = pid_tbl_mask + 1;
441 struct pid_table *n_pt, *new_pt;
442 struct proc *proc;
443 struct pgrp *pgrp;
444 int i;
445 int s;
446 pid_t pid;
447
448 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
449
450 s = proclist_lock_write();
451 if (pt_size != pid_tbl_mask + 1) {
452 /* Another process beat us to it... */
453 proclist_unlock_write(s);
454 FREE(new_pt, M_PROC);
455 return;
456 }
457
458 /*
459 * Copy entries from old table into new one.
460 * If 'pid' is 'odd' we need to place in the upper half,
461 * even pid's to the lower half.
462 * Free items stay in the low half so we don't have to
463 * fixup the reference to them.
464 * We stuff free items on the front of the freelist
465 * because we can't write to unmodified entries.
466 * Processing the table backwards maintains a semblance
467 * of issueing pid numbers that increase with time.
468 */
469 i = pt_size - 1;
470 n_pt = new_pt + i;
471 for (; ; i--, n_pt--) {
472 proc = pid_table[i].pt_proc;
473 pgrp = pid_table[i].pt_pgrp;
474 if (!P_VALID(proc)) {
475 /* Up 'use count' so that link is valid */
476 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
477 proc = P_FREE(pid);
478 if (pgrp)
479 pid = pgrp->pg_id;
480 } else
481 pid = proc->p_pid;
482
483 /* Save entry in appropriate half of table */
484 n_pt[pid & pt_size].pt_proc = proc;
485 n_pt[pid & pt_size].pt_pgrp = pgrp;
486
487 /* Put other piece on start of free list */
488 pid = (pid ^ pt_size) & ~pid_tbl_mask;
489 n_pt[pid & pt_size].pt_proc =
490 P_FREE((pid & ~pt_size) | next_free_pt);
491 n_pt[pid & pt_size].pt_pgrp = 0;
492 next_free_pt = i | (pid & pt_size);
493 if (i == 0)
494 break;
495 }
496
497 /* Switch tables */
498 n_pt = pid_table;
499 pid_table = new_pt;
500 pid_tbl_mask = pt_size * 2 - 1;
501
502 /*
503 * pid_max starts as PID_MAX (= 30000), once we have 16384
504 * allocated pids we need it to be larger!
505 */
506 if (pid_tbl_mask > PID_MAX) {
507 pid_max = pid_tbl_mask * 2 + 1;
508 pid_alloc_lim |= pid_alloc_lim << 1;
509 } else
510 pid_alloc_lim <<= 1; /* doubles number of free slots... */
511
512 proclist_unlock_write(s);
513 FREE(n_pt, M_PROC);
514 }
515
516 struct proc *
517 proc_alloc(void)
518 {
519 struct proc *p;
520 int s;
521 int nxt;
522 pid_t pid;
523 struct pid_table *pt;
524
525 p = pool_get(&proc_pool, PR_WAITOK);
526 p->p_stat = SIDL; /* protect against others */
527
528 /* allocate next free pid */
529
530 for (;;expand_pid_table()) {
531 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
532 /* ensure pids cycle through 2000+ values */
533 continue;
534 s = proclist_lock_write();
535 pt = &pid_table[next_free_pt];
536 #ifdef DIAGNOSTIC
537 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
538 panic("proc_alloc: slot busy");
539 #endif
540 nxt = P_NEXT(pt->pt_proc);
541 if (nxt & pid_tbl_mask)
542 break;
543 /* Table full - expand (NB last entry not used....) */
544 proclist_unlock_write(s);
545 }
546
547 /* pid is 'saved use count' + 'size' + entry */
548 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
549 if ((uint)pid > (uint)pid_max)
550 pid &= pid_tbl_mask;
551 p->p_pid = pid;
552 next_free_pt = nxt & pid_tbl_mask;
553
554 /* Grab table slot */
555 pt->pt_proc = p;
556 pid_alloc_cnt++;
557
558 proclist_unlock_write(s);
559
560 return p;
561 }
562
563 /*
564 * Free last resources of a process - called from proc_free (in kern_exit.c)
565 */
566 void
567 proc_free_mem(struct proc *p)
568 {
569 int s;
570 pid_t pid = p->p_pid;
571 struct pid_table *pt;
572
573 s = proclist_lock_write();
574
575 pt = &pid_table[pid & pid_tbl_mask];
576 #ifdef DIAGNOSTIC
577 if (__predict_false(pt->pt_proc != p))
578 panic("proc_free: pid_table mismatch, pid %x, proc %p",
579 pid, p);
580 #endif
581 /* save pid use count in slot */
582 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
583
584 if (pt->pt_pgrp == NULL) {
585 /* link last freed entry onto ours */
586 pid &= pid_tbl_mask;
587 pt = &pid_table[last_free_pt];
588 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
589 last_free_pt = pid;
590 pid_alloc_cnt--;
591 }
592
593 nprocs--;
594 proclist_unlock_write(s);
595
596 pool_put(&proc_pool, p);
597 }
598
599 /*
600 * Move p to a new or existing process group (and session)
601 *
602 * If we are creating a new pgrp, the pgid should equal
603 * the calling process' pid.
604 * If is only valid to enter a process group that is in the session
605 * of the process.
606 * Also mksess should only be set if we are creating a process group
607 *
608 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
609 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
610 */
611 int
612 enterpgrp(struct proc *p, pid_t pgid, int mksess)
613 {
614 struct pgrp *new_pgrp, *pgrp;
615 struct session *sess;
616 struct proc *curp = curproc;
617 pid_t pid = p->p_pid;
618 int rval;
619 int s;
620 pid_t pg_id = NO_PGID;
621
622 /* Allocate data areas we might need before doing any validity checks */
623 proclist_lock_read(); /* Because pid_table might change */
624 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
625 proclist_unlock_read();
626 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
627 } else {
628 proclist_unlock_read();
629 new_pgrp = NULL;
630 }
631 if (mksess)
632 MALLOC(sess, struct session *, sizeof(struct session),
633 M_SESSION, M_WAITOK);
634 else
635 sess = NULL;
636
637 s = proclist_lock_write();
638 rval = EPERM; /* most common error (to save typing) */
639
640 /* Check pgrp exists or can be created */
641 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
642 if (pgrp != NULL && pgrp->pg_id != pgid)
643 goto done;
644
645 /* Can only set another process under restricted circumstances. */
646 if (p != curp) {
647 /* must exist and be one of our children... */
648 if (p != pid_table[pid & pid_tbl_mask].pt_proc
649 || !inferior(p, curp)) {
650 rval = ESRCH;
651 goto done;
652 }
653 /* ... in the same session... */
654 if (sess != NULL || p->p_session != curp->p_session)
655 goto done;
656 /* ... existing pgid must be in same session ... */
657 if (pgrp != NULL && pgrp->pg_session != p->p_session)
658 goto done;
659 /* ... and not done an exec. */
660 if (p->p_flag & P_EXEC) {
661 rval = EACCES;
662 goto done;
663 }
664 }
665
666 /* Changing the process group/session of a session
667 leader is definitely off limits. */
668 if (SESS_LEADER(p)) {
669 if (sess == NULL && p->p_pgrp == pgrp)
670 /* unless it's a definite noop */
671 rval = 0;
672 goto done;
673 }
674
675 /* Can only create a process group with id of process */
676 if (pgrp == NULL && pgid != pid)
677 goto done;
678
679 /* Can only create a session if creating pgrp */
680 if (sess != NULL && pgrp != NULL)
681 goto done;
682
683 /* Check we allocated memory for a pgrp... */
684 if (pgrp == NULL && new_pgrp == NULL)
685 goto done;
686
687 /* Don't attach to 'zombie' pgrp */
688 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
689 goto done;
690
691 /* Expect to succeed now */
692 rval = 0;
693
694 if (pgrp == p->p_pgrp)
695 /* nothing to do */
696 goto done;
697
698 /* Ok all setup, link up required structures */
699 if (pgrp == NULL) {
700 pgrp = new_pgrp;
701 new_pgrp = 0;
702 if (sess != NULL) {
703 sess->s_sid = p->p_pid;
704 sess->s_leader = p;
705 sess->s_count = 1;
706 sess->s_ttyvp = NULL;
707 sess->s_ttyp = NULL;
708 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
709 memcpy(sess->s_login, p->p_session->s_login,
710 sizeof(sess->s_login));
711 p->p_flag &= ~P_CONTROLT;
712 } else {
713 sess = p->p_pgrp->pg_session;
714 SESSHOLD(sess);
715 }
716 pgrp->pg_session = sess;
717 sess = 0;
718
719 pgrp->pg_id = pgid;
720 LIST_INIT(&pgrp->pg_members);
721 #ifdef DIAGNOSTIC
722 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
723 panic("enterpgrp: pgrp table slot in use");
724 if (__predict_false(mksess && p != curp))
725 panic("enterpgrp: mksession and p != curproc");
726 #endif
727 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
728 pgrp->pg_jobc = 0;
729 }
730
731 /*
732 * Adjust eligibility of affected pgrps to participate in job control.
733 * Increment eligibility counts before decrementing, otherwise we
734 * could reach 0 spuriously during the first call.
735 */
736 fixjobc(p, pgrp, 1);
737 fixjobc(p, p->p_pgrp, 0);
738
739 /* Move process to requested group */
740 LIST_REMOVE(p, p_pglist);
741 if (LIST_EMPTY(&p->p_pgrp->pg_members))
742 /* defer delete until we've dumped the lock */
743 pg_id = p->p_pgrp->pg_id;
744 p->p_pgrp = pgrp;
745 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
746
747 done:
748 proclist_unlock_write(s);
749 if (sess != NULL)
750 free(sess, M_SESSION);
751 if (new_pgrp != NULL)
752 pool_put(&pgrp_pool, new_pgrp);
753 if (pg_id != NO_PGID)
754 pg_delete(pg_id);
755 #ifdef DEBUG_PGRP
756 if (__predict_false(rval))
757 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
758 pid, pgid, mksess, curp->p_pid, rval);
759 #endif
760 return rval;
761 }
762
763 /*
764 * remove process from process group
765 */
766 int
767 leavepgrp(struct proc *p)
768 {
769 int s;
770 struct pgrp *pgrp;
771 pid_t pg_id;
772
773 s = proclist_lock_write();
774 pgrp = p->p_pgrp;
775 LIST_REMOVE(p, p_pglist);
776 p->p_pgrp = 0;
777 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
778 proclist_unlock_write(s);
779
780 if (pg_id != NO_PGID)
781 pg_delete(pg_id);
782 return 0;
783 }
784
785 static void
786 pg_free(pid_t pg_id)
787 {
788 struct pgrp *pgrp;
789 struct pid_table *pt;
790 int s;
791
792 s = proclist_lock_write();
793 pt = &pid_table[pg_id & pid_tbl_mask];
794 pgrp = pt->pt_pgrp;
795 #ifdef DIAGNOSTIC
796 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
797 || !LIST_EMPTY(&pgrp->pg_members)))
798 panic("pg_free: process group absent or has members");
799 #endif
800 pt->pt_pgrp = 0;
801
802 if (!P_VALID(pt->pt_proc)) {
803 /* orphaned pgrp, put slot onto free list */
804 #ifdef DIAGNOSTIC
805 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
806 panic("pg_free: process slot on free list");
807 #endif
808
809 pg_id &= pid_tbl_mask;
810 pt = &pid_table[last_free_pt];
811 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
812 last_free_pt = pg_id;
813 pid_alloc_cnt--;
814 }
815 proclist_unlock_write(s);
816
817 pool_put(&pgrp_pool, pgrp);
818 }
819
820 /*
821 * delete a process group
822 */
823 static void
824 pg_delete(pid_t pg_id)
825 {
826 struct pgrp *pgrp;
827 struct tty *ttyp;
828 struct session *ss;
829 int s, is_pgrp_leader;
830
831 s = proclist_lock_write();
832 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
833 if (pgrp == NULL || pgrp->pg_id != pg_id ||
834 !LIST_EMPTY(&pgrp->pg_members)) {
835 proclist_unlock_write(s);
836 return;
837 }
838
839 ss = pgrp->pg_session;
840
841 /* Remove reference (if any) from tty to this process group */
842 ttyp = ss->s_ttyp;
843 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
844 ttyp->t_pgrp = NULL;
845 #ifdef DIAGNOSTIC
846 if (ttyp->t_session != ss)
847 panic("pg_delete: wrong session on terminal");
848 #endif
849 }
850
851 /*
852 * The leading process group in a session is freed
853 * by sessdelete() if last reference.
854 */
855 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
856 proclist_unlock_write(s);
857 SESSRELE(ss);
858
859 if (is_pgrp_leader)
860 return;
861
862 pg_free(pg_id);
863 }
864
865 /*
866 * Delete session - called from SESSRELE when s_count becomes zero.
867 */
868 void
869 sessdelete(struct session *ss)
870 {
871 /*
872 * We keep the pgrp with the same id as the session in
873 * order to stop a process being given the same pid.
874 * Since the pgrp holds a reference to the session, it
875 * must be a 'zombie' pgrp by now.
876 */
877
878 pg_free(ss->s_sid);
879
880 FREE(ss, M_SESSION);
881 }
882
883 /*
884 * Adjust pgrp jobc counters when specified process changes process group.
885 * We count the number of processes in each process group that "qualify"
886 * the group for terminal job control (those with a parent in a different
887 * process group of the same session). If that count reaches zero, the
888 * process group becomes orphaned. Check both the specified process'
889 * process group and that of its children.
890 * entering == 0 => p is leaving specified group.
891 * entering == 1 => p is entering specified group.
892 *
893 * Call with proclist_lock held.
894 */
895 void
896 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
897 {
898 struct pgrp *hispgrp;
899 struct session *mysession = pgrp->pg_session;
900 struct proc *child;
901
902 /*
903 * Check p's parent to see whether p qualifies its own process
904 * group; if so, adjust count for p's process group.
905 */
906 hispgrp = p->p_pptr->p_pgrp;
907 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
908 if (entering)
909 pgrp->pg_jobc++;
910 else if (--pgrp->pg_jobc == 0)
911 orphanpg(pgrp);
912 }
913
914 /*
915 * Check this process' children to see whether they qualify
916 * their process groups; if so, adjust counts for children's
917 * process groups.
918 */
919 LIST_FOREACH(child, &p->p_children, p_sibling) {
920 hispgrp = child->p_pgrp;
921 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
922 !P_ZOMBIE(child)) {
923 if (entering)
924 hispgrp->pg_jobc++;
925 else if (--hispgrp->pg_jobc == 0)
926 orphanpg(hispgrp);
927 }
928 }
929 }
930
931 /*
932 * A process group has become orphaned;
933 * if there are any stopped processes in the group,
934 * hang-up all process in that group.
935 *
936 * Call with proclist_lock held.
937 */
938 static void
939 orphanpg(struct pgrp *pg)
940 {
941 struct proc *p;
942
943 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
944 if (p->p_stat == SSTOP) {
945 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
946 psignal(p, SIGHUP);
947 psignal(p, SIGCONT);
948 }
949 return;
950 }
951 }
952 }
953
954 /* mark process as suid/sgid, reset some values to defaults */
955 void
956 p_sugid(struct proc *p)
957 {
958 struct plimit *newlim;
959
960 p->p_flag |= P_SUGID;
961 /* reset what needs to be reset in plimit */
962 if (p->p_limit->pl_corename != defcorename) {
963 if (p->p_limit->p_refcnt > 1 &&
964 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
965 newlim = limcopy(p->p_limit);
966 limfree(p->p_limit);
967 p->p_limit = newlim;
968 }
969 free(p->p_limit->pl_corename, M_TEMP);
970 p->p_limit->pl_corename = defcorename;
971 }
972 }
973
974 #ifdef DDB
975 #include <ddb/db_output.h>
976 void pidtbl_dump(void);
977 void
978 pidtbl_dump(void)
979 {
980 struct pid_table *pt;
981 struct proc *p;
982 struct pgrp *pgrp;
983 int id;
984
985 db_printf("pid table %p size %x, next %x, last %x\n",
986 pid_table, pid_tbl_mask+1,
987 next_free_pt, last_free_pt);
988 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
989 p = pt->pt_proc;
990 if (!P_VALID(p) && !pt->pt_pgrp)
991 continue;
992 db_printf(" id %x: ", id);
993 if (P_VALID(p))
994 db_printf("proc %p id %d (0x%x) %s\n",
995 p, p->p_pid, p->p_pid, p->p_comm);
996 else
997 db_printf("next %x use %x\n",
998 P_NEXT(p) & pid_tbl_mask,
999 P_NEXT(p) & ~pid_tbl_mask);
1000 if ((pgrp = pt->pt_pgrp)) {
1001 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1002 pgrp->pg_session, pgrp->pg_session->s_sid,
1003 pgrp->pg_session->s_count,
1004 pgrp->pg_session->s_login);
1005 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1006 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1007 pgrp->pg_members.lh_first);
1008 for (p = pgrp->pg_members.lh_first; p != 0;
1009 p = p->p_pglist.le_next) {
1010 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1011 p->p_pid, p, p->p_pgrp, p->p_comm);
1012 }
1013 }
1014 }
1015 }
1016 #endif /* DDB */
1017
1018 #ifdef KSTACK_CHECK_MAGIC
1019 #include <sys/user.h>
1020
1021 #define KSTACK_MAGIC 0xdeadbeaf
1022
1023 /* XXX should be per process basis? */
1024 int kstackleftmin = KSTACK_SIZE;
1025 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1026 less than this */
1027
1028 void
1029 kstack_setup_magic(const struct lwp *l)
1030 {
1031 u_int32_t *ip;
1032 u_int32_t const *end;
1033
1034 KASSERT(l != NULL);
1035 KASSERT(l != &lwp0);
1036
1037 /*
1038 * fill all the stack with magic number
1039 * so that later modification on it can be detected.
1040 */
1041 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1042 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1043 for (; ip < end; ip++) {
1044 *ip = KSTACK_MAGIC;
1045 }
1046 }
1047
1048 void
1049 kstack_check_magic(const struct lwp *l)
1050 {
1051 u_int32_t const *ip, *end;
1052 int stackleft;
1053
1054 KASSERT(l != NULL);
1055
1056 /* don't check proc0 */ /*XXX*/
1057 if (l == &lwp0)
1058 return;
1059
1060 #ifdef __MACHINE_STACK_GROWS_UP
1061 /* stack grows upwards (eg. hppa) */
1062 ip = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1063 end = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1064 for (ip--; ip >= end; ip--)
1065 if (*ip != KSTACK_MAGIC)
1066 break;
1067
1068 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1069 #else /* __MACHINE_STACK_GROWS_UP */
1070 /* stack grows downwards (eg. i386) */
1071 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1072 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1073 for (; ip < end; ip++)
1074 if (*ip != KSTACK_MAGIC)
1075 break;
1076
1077 stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
1078 #endif /* __MACHINE_STACK_GROWS_UP */
1079
1080 if (kstackleftmin > stackleft) {
1081 kstackleftmin = stackleft;
1082 if (stackleft < kstackleftthres)
1083 printf("warning: kernel stack left %d bytes"
1084 "(pid %u:lid %u)\n", stackleft,
1085 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1086 }
1087
1088 if (stackleft <= 0) {
1089 panic("magic on the top of kernel stack changed for "
1090 "pid %u, lid %u: maybe kernel stack overflow",
1091 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1092 }
1093 }
1094 #endif /* KSTACK_CHECK_MAGIC */
1095