kern_proc.c revision 1.77 1 /* $NetBSD: kern_proc.c,v 1.77 2004/04/25 16:42:41 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.77 2004/04/25 16:42:41 simonb Exp $");
73
74 #include "opt_kstack.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/acct.h>
83 #include <sys/wait.h>
84 #include <sys/file.h>
85 #include <ufs/ufs/quota.h>
86 #include <sys/uio.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/mbuf.h>
90 #include <sys/ioctl.h>
91 #include <sys/tty.h>
92 #include <sys/signalvar.h>
93 #include <sys/ras.h>
94 #include <sys/sa.h>
95 #include <sys/savar.h>
96
97 /*
98 * Other process lists
99 */
100
101 struct proclist allproc;
102 struct proclist zombproc; /* resources have been freed */
103
104
105 /*
106 * Process list locking:
107 *
108 * We have two types of locks on the proclists: read locks and write
109 * locks. Read locks can be used in interrupt context, so while we
110 * hold the write lock, we must also block clock interrupts to
111 * lock out any scheduling changes that may happen in interrupt
112 * context.
113 *
114 * The proclist lock locks the following structures:
115 *
116 * allproc
117 * zombproc
118 * pid_table
119 */
120 struct lock proclist_lock;
121
122 /*
123 * pid to proc lookup is done by indexing the pid_table array.
124 * Since pid numbers are only allocated when an empty slot
125 * has been found, there is no need to search any lists ever.
126 * (an orphaned pgrp will lock the slot, a session will lock
127 * the pgrp with the same number.)
128 * If the table is too small it is reallocated with twice the
129 * previous size and the entries 'unzipped' into the two halves.
130 * A linked list of free entries is passed through the pt_proc
131 * field of 'free' items - set odd to be an invalid ptr.
132 */
133
134 struct pid_table {
135 struct proc *pt_proc;
136 struct pgrp *pt_pgrp;
137 };
138 #if 1 /* strongly typed cast - should be a noop */
139 static __inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
140 #else
141 #define p2u(p) ((uint)p)
142 #endif
143 #define P_VALID(p) (!(p2u(p) & 1))
144 #define P_NEXT(p) (p2u(p) >> 1)
145 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
146
147 #define INITIAL_PID_TABLE_SIZE (1 << 5)
148 static struct pid_table *pid_table;
149 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
150 static uint pid_alloc_lim; /* max we allocate before growing table */
151 static uint pid_alloc_cnt; /* number of allocated pids */
152
153 /* links through free slots - never empty! */
154 static uint next_free_pt, last_free_pt;
155 static pid_t pid_max = PID_MAX; /* largest value we allocate */
156
157 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
158 &pool_allocator_nointr);
159 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
160 &pool_allocator_nointr);
161 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
162 &pool_allocator_nointr);
163 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
164 &pool_allocator_nointr);
165 POOL_INIT(pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
166 &pool_allocator_nointr);
167 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
168 &pool_allocator_nointr);
169 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
170 &pool_allocator_nointr);
171 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
172 &pool_allocator_nointr);
173 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
174 &pool_allocator_nointr);
175 POOL_INIT(sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
176 &pool_allocator_nointr);
177 POOL_INIT(saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0, "saupcpl",
178 &pool_allocator_nointr);
179 POOL_INIT(sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
180 &pool_allocator_nointr);
181 POOL_INIT(savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
182 &pool_allocator_nointr);
183 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
184 &pool_allocator_nointr);
185 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
186 &pool_allocator_nointr);
187
188 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
189 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
190 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
191
192 /*
193 * The process list descriptors, used during pid allocation and
194 * by sysctl. No locking on this data structure is needed since
195 * it is completely static.
196 */
197 const struct proclist_desc proclists[] = {
198 { &allproc },
199 { &zombproc },
200 { NULL },
201 };
202
203 static void orphanpg(struct pgrp *);
204 static void pg_delete(pid_t);
205
206 /*
207 * Initialize global process hashing structures.
208 */
209 void
210 procinit(void)
211 {
212 const struct proclist_desc *pd;
213 int i;
214 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
215
216 for (pd = proclists; pd->pd_list != NULL; pd++)
217 LIST_INIT(pd->pd_list);
218
219 spinlockinit(&proclist_lock, "proclk", 0);
220
221 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
222 M_PROC, M_WAITOK);
223 /* Set free list running through table...
224 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
225 for (i = 0; i <= pid_tbl_mask; i++) {
226 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
227 pid_table[i].pt_pgrp = 0;
228 }
229 /* slot 0 is just grabbed */
230 next_free_pt = 1;
231 /* Need to fix last entry. */
232 last_free_pt = pid_tbl_mask;
233 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
234 /* point at which we grow table - to avoid reusing pids too often */
235 pid_alloc_lim = pid_tbl_mask - 1;
236 #undef LINK_EMPTY
237
238 LIST_INIT(&alllwp);
239
240 uihashtbl =
241 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
242 }
243
244 /*
245 * Acquire a read lock on the proclist.
246 */
247 void
248 proclist_lock_read(void)
249 {
250 int error;
251
252 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
253 #ifdef DIAGNOSTIC
254 if (__predict_false(error != 0))
255 panic("proclist_lock_read: failed to acquire lock");
256 #endif
257 }
258
259 /*
260 * Release a read lock on the proclist.
261 */
262 void
263 proclist_unlock_read(void)
264 {
265
266 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
267 }
268
269 /*
270 * Acquire a write lock on the proclist.
271 */
272 int
273 proclist_lock_write(void)
274 {
275 int s, error;
276
277 s = splclock();
278 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
279 #ifdef DIAGNOSTIC
280 if (__predict_false(error != 0))
281 panic("proclist_lock: failed to acquire lock");
282 #endif
283 return (s);
284 }
285
286 /*
287 * Release a write lock on the proclist.
288 */
289 void
290 proclist_unlock_write(int s)
291 {
292
293 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
294 splx(s);
295 }
296
297 /*
298 * Check that the specified process group is in the session of the
299 * specified process.
300 * Treats -ve ids as process ids.
301 * Used to validate TIOCSPGRP requests.
302 */
303 int
304 pgid_in_session(struct proc *p, pid_t pg_id)
305 {
306 struct pgrp *pgrp;
307
308 if (pg_id < 0) {
309 struct proc *p1 = pfind(-pg_id);
310 if (p1 == NULL)
311 return EINVAL;
312 pgrp = p1->p_pgrp;
313 } else {
314 pgrp = pgfind(pg_id);
315 if (pgrp == NULL)
316 return EINVAL;
317 }
318 if (pgrp->pg_session != p->p_pgrp->pg_session)
319 return EPERM;
320 return 0;
321 }
322
323 /*
324 * Is p an inferior of q?
325 */
326 int
327 inferior(struct proc *p, struct proc *q)
328 {
329
330 for (; p != q; p = p->p_pptr)
331 if (p->p_pid == 0)
332 return (0);
333 return (1);
334 }
335
336 /*
337 * Locate a process by number
338 */
339 struct proc *
340 p_find(pid_t pid, uint flags)
341 {
342 struct proc *p;
343 char stat;
344
345 if (!(flags & PFIND_LOCKED))
346 proclist_lock_read();
347 p = pid_table[pid & pid_tbl_mask].pt_proc;
348 /* Only allow live processes to be found by pid. */
349 if (P_VALID(p) && p->p_pid == pid &&
350 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
351 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
352 if (flags & PFIND_UNLOCK_OK)
353 proclist_unlock_read();
354 return p;
355 }
356 if (flags & PFIND_UNLOCK_FAIL)
357 proclist_unlock_read();
358 return NULL;
359 }
360
361
362 /*
363 * Locate a process group by number
364 */
365 struct pgrp *
366 pg_find(pid_t pgid, uint flags)
367 {
368 struct pgrp *pg;
369
370 if (!(flags & PFIND_LOCKED))
371 proclist_lock_read();
372 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
373 /*
374 * Can't look up a pgrp that only exists because the session
375 * hasn't died yet (traditional)
376 */
377 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
378 if (flags & PFIND_UNLOCK_FAIL)
379 proclist_unlock_read();
380 return NULL;
381 }
382
383 if (flags & PFIND_UNLOCK_OK)
384 proclist_unlock_read();
385 return pg;
386 }
387
388 /*
389 * Set entry for process 0
390 */
391 void
392 proc0_insert(struct proc *p, struct lwp *l, struct pgrp *pgrp,
393 struct session *sess)
394 {
395 int s;
396
397 simple_lock_init(&p->p_lock);
398 LIST_INIT(&p->p_lwps);
399 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
400 p->p_nlwps = 1;
401 simple_lock_init(&p->p_sigctx.ps_silock);
402 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
403
404 s = proclist_lock_write();
405
406 pid_table[0].pt_proc = p;
407 LIST_INSERT_HEAD(&allproc, p, p_list);
408 LIST_INSERT_HEAD(&alllwp, l, l_list);
409
410 p->p_pgrp = pgrp;
411 pid_table[0].pt_pgrp = pgrp;
412 LIST_INIT(&pgrp->pg_members);
413 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
414
415 pgrp->pg_session = sess;
416 sess->s_count = 1;
417 sess->s_sid = 0;
418 sess->s_leader = p;
419
420 proclist_unlock_write(s);
421 }
422
423 static void
424 expand_pid_table(void)
425 {
426 uint pt_size = pid_tbl_mask + 1;
427 struct pid_table *n_pt, *new_pt;
428 struct proc *proc;
429 struct pgrp *pgrp;
430 int i;
431 int s;
432 pid_t pid;
433
434 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
435
436 s = proclist_lock_write();
437 if (pt_size != pid_tbl_mask + 1) {
438 /* Another process beat us to it... */
439 proclist_unlock_write(s);
440 FREE(new_pt, M_PROC);
441 return;
442 }
443
444 /*
445 * Copy entries from old table into new one.
446 * If 'pid' is 'odd' we need to place in the upper half,
447 * even pid's to the lower half.
448 * Free items stay in the low half so we don't have to
449 * fixup the reference to them.
450 * We stuff free items on the front of the freelist
451 * because we can't write to unmodified entries.
452 * Processing the table backwards maintains a semblance
453 * of issueing pid numbers that increase with time.
454 */
455 i = pt_size - 1;
456 n_pt = new_pt + i;
457 for (; ; i--, n_pt--) {
458 proc = pid_table[i].pt_proc;
459 pgrp = pid_table[i].pt_pgrp;
460 if (!P_VALID(proc)) {
461 /* Up 'use count' so that link is valid */
462 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
463 proc = P_FREE(pid);
464 if (pgrp)
465 pid = pgrp->pg_id;
466 } else
467 pid = proc->p_pid;
468
469 /* Save entry in appropriate half of table */
470 n_pt[pid & pt_size].pt_proc = proc;
471 n_pt[pid & pt_size].pt_pgrp = pgrp;
472
473 /* Put other piece on start of free list */
474 pid = (pid ^ pt_size) & ~pid_tbl_mask;
475 n_pt[pid & pt_size].pt_proc =
476 P_FREE((pid & ~pt_size) | next_free_pt);
477 n_pt[pid & pt_size].pt_pgrp = 0;
478 next_free_pt = i | (pid & pt_size);
479 if (i == 0)
480 break;
481 }
482
483 /* Switch tables */
484 n_pt = pid_table;
485 pid_table = new_pt;
486 pid_tbl_mask = pt_size * 2 - 1;
487
488 /*
489 * pid_max starts as PID_MAX (= 30000), once we have 16384
490 * allocated pids we need it to be larger!
491 */
492 if (pid_tbl_mask > PID_MAX) {
493 pid_max = pid_tbl_mask * 2 + 1;
494 pid_alloc_lim |= pid_alloc_lim << 1;
495 } else
496 pid_alloc_lim <<= 1; /* doubles number of free slots... */
497
498 proclist_unlock_write(s);
499 FREE(n_pt, M_PROC);
500 }
501
502 struct proc *
503 proc_alloc(void)
504 {
505 struct proc *p;
506 int s;
507 int nxt;
508 pid_t pid;
509 struct pid_table *pt;
510
511 p = pool_get(&proc_pool, PR_WAITOK);
512 p->p_stat = SIDL; /* protect against others */
513
514 /* allocate next free pid */
515
516 for (;;expand_pid_table()) {
517 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
518 /* ensure pids cycle through 2000+ values */
519 continue;
520 s = proclist_lock_write();
521 pt = &pid_table[next_free_pt];
522 #ifdef DIAGNOSTIC
523 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
524 panic("proc_alloc: slot busy");
525 #endif
526 nxt = P_NEXT(pt->pt_proc);
527 if (nxt & pid_tbl_mask)
528 break;
529 /* Table full - expand (NB last entry not used....) */
530 proclist_unlock_write(s);
531 }
532
533 /* pid is 'saved use count' + 'size' + entry */
534 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
535 if ((uint)pid > (uint)pid_max)
536 pid &= pid_tbl_mask;
537 p->p_pid = pid;
538 next_free_pt = nxt & pid_tbl_mask;
539
540 /* Grab table slot */
541 pt->pt_proc = p;
542 pid_alloc_cnt++;
543
544 proclist_unlock_write(s);
545
546 return p;
547 }
548
549 /*
550 * Free last resources of a process - called from proc_free (in kern_exit.c)
551 */
552 void
553 proc_free_mem(struct proc *p)
554 {
555 int s;
556 pid_t pid = p->p_pid;
557 struct pid_table *pt;
558
559 s = proclist_lock_write();
560
561 pt = &pid_table[pid & pid_tbl_mask];
562 #ifdef DIAGNOSTIC
563 if (__predict_false(pt->pt_proc != p))
564 panic("proc_free: pid_table mismatch, pid %x, proc %p",
565 pid, p);
566 #endif
567 /* save pid use count in slot */
568 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
569
570 if (pt->pt_pgrp == NULL) {
571 /* link last freed entry onto ours */
572 pid &= pid_tbl_mask;
573 pt = &pid_table[last_free_pt];
574 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
575 last_free_pt = pid;
576 pid_alloc_cnt--;
577 }
578
579 nprocs--;
580 proclist_unlock_write(s);
581
582 pool_put(&proc_pool, p);
583 }
584
585 /*
586 * Move p to a new or existing process group (and session)
587 *
588 * If we are creating a new pgrp, the pgid should equal
589 * the calling process' pid.
590 * If is only valid to enter a process group that is in the session
591 * of the process.
592 * Also mksess should only be set if we are creating a process group
593 *
594 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
595 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
596 */
597 int
598 enterpgrp(struct proc *p, pid_t pgid, int mksess)
599 {
600 struct pgrp *new_pgrp, *pgrp;
601 struct session *sess;
602 struct proc *curp = curproc;
603 pid_t pid = p->p_pid;
604 int rval;
605 int s;
606 pid_t pg_id = NO_PGID;
607
608 /* Allocate data areas we might need before doing any validity checks */
609 proclist_lock_read(); /* Because pid_table might change */
610 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
611 proclist_unlock_read();
612 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
613 } else {
614 proclist_unlock_read();
615 new_pgrp = NULL;
616 }
617 if (mksess)
618 sess = pool_get(&session_pool, M_WAITOK);
619 else
620 sess = NULL;
621
622 s = proclist_lock_write();
623 rval = EPERM; /* most common error (to save typing) */
624
625 /* Check pgrp exists or can be created */
626 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
627 if (pgrp != NULL && pgrp->pg_id != pgid)
628 goto done;
629
630 /* Can only set another process under restricted circumstances. */
631 if (p != curp) {
632 /* must exist and be one of our children... */
633 if (p != pid_table[pid & pid_tbl_mask].pt_proc
634 || !inferior(p, curp)) {
635 rval = ESRCH;
636 goto done;
637 }
638 /* ... in the same session... */
639 if (sess != NULL || p->p_session != curp->p_session)
640 goto done;
641 /* ... existing pgid must be in same session ... */
642 if (pgrp != NULL && pgrp->pg_session != p->p_session)
643 goto done;
644 /* ... and not done an exec. */
645 if (p->p_flag & P_EXEC) {
646 rval = EACCES;
647 goto done;
648 }
649 }
650
651 /* Changing the process group/session of a session
652 leader is definitely off limits. */
653 if (SESS_LEADER(p)) {
654 if (sess == NULL && p->p_pgrp == pgrp)
655 /* unless it's a definite noop */
656 rval = 0;
657 goto done;
658 }
659
660 /* Can only create a process group with id of process */
661 if (pgrp == NULL && pgid != pid)
662 goto done;
663
664 /* Can only create a session if creating pgrp */
665 if (sess != NULL && pgrp != NULL)
666 goto done;
667
668 /* Check we allocated memory for a pgrp... */
669 if (pgrp == NULL && new_pgrp == NULL)
670 goto done;
671
672 /* Don't attach to 'zombie' pgrp */
673 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
674 goto done;
675
676 /* Expect to succeed now */
677 rval = 0;
678
679 if (pgrp == p->p_pgrp)
680 /* nothing to do */
681 goto done;
682
683 /* Ok all setup, link up required structures */
684 if (pgrp == NULL) {
685 pgrp = new_pgrp;
686 new_pgrp = 0;
687 if (sess != NULL) {
688 sess->s_sid = p->p_pid;
689 sess->s_leader = p;
690 sess->s_count = 1;
691 sess->s_ttyvp = NULL;
692 sess->s_ttyp = NULL;
693 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
694 memcpy(sess->s_login, p->p_session->s_login,
695 sizeof(sess->s_login));
696 p->p_flag &= ~P_CONTROLT;
697 } else {
698 sess = p->p_pgrp->pg_session;
699 SESSHOLD(sess);
700 }
701 pgrp->pg_session = sess;
702 sess = 0;
703
704 pgrp->pg_id = pgid;
705 LIST_INIT(&pgrp->pg_members);
706 #ifdef DIAGNOSTIC
707 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
708 panic("enterpgrp: pgrp table slot in use");
709 if (__predict_false(mksess && p != curp))
710 panic("enterpgrp: mksession and p != curproc");
711 #endif
712 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
713 pgrp->pg_jobc = 0;
714 }
715
716 /*
717 * Adjust eligibility of affected pgrps to participate in job control.
718 * Increment eligibility counts before decrementing, otherwise we
719 * could reach 0 spuriously during the first call.
720 */
721 fixjobc(p, pgrp, 1);
722 fixjobc(p, p->p_pgrp, 0);
723
724 /* Move process to requested group */
725 LIST_REMOVE(p, p_pglist);
726 if (LIST_EMPTY(&p->p_pgrp->pg_members))
727 /* defer delete until we've dumped the lock */
728 pg_id = p->p_pgrp->pg_id;
729 p->p_pgrp = pgrp;
730 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
731
732 done:
733 proclist_unlock_write(s);
734 if (sess != NULL)
735 pool_put(&session_pool, sess);
736 if (new_pgrp != NULL)
737 pool_put(&pgrp_pool, new_pgrp);
738 if (pg_id != NO_PGID)
739 pg_delete(pg_id);
740 #ifdef DEBUG_PGRP
741 if (__predict_false(rval))
742 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
743 pid, pgid, mksess, curp->p_pid, rval);
744 #endif
745 return rval;
746 }
747
748 /*
749 * remove process from process group
750 */
751 int
752 leavepgrp(struct proc *p)
753 {
754 int s;
755 struct pgrp *pgrp;
756 pid_t pg_id;
757
758 s = proclist_lock_write();
759 pgrp = p->p_pgrp;
760 LIST_REMOVE(p, p_pglist);
761 p->p_pgrp = 0;
762 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
763 proclist_unlock_write(s);
764
765 if (pg_id != NO_PGID)
766 pg_delete(pg_id);
767 return 0;
768 }
769
770 static void
771 pg_free(pid_t pg_id)
772 {
773 struct pgrp *pgrp;
774 struct pid_table *pt;
775 int s;
776
777 s = proclist_lock_write();
778 pt = &pid_table[pg_id & pid_tbl_mask];
779 pgrp = pt->pt_pgrp;
780 #ifdef DIAGNOSTIC
781 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
782 || !LIST_EMPTY(&pgrp->pg_members)))
783 panic("pg_free: process group absent or has members");
784 #endif
785 pt->pt_pgrp = 0;
786
787 if (!P_VALID(pt->pt_proc)) {
788 /* orphaned pgrp, put slot onto free list */
789 #ifdef DIAGNOSTIC
790 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
791 panic("pg_free: process slot on free list");
792 #endif
793
794 pg_id &= pid_tbl_mask;
795 pt = &pid_table[last_free_pt];
796 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
797 last_free_pt = pg_id;
798 pid_alloc_cnt--;
799 }
800 proclist_unlock_write(s);
801
802 pool_put(&pgrp_pool, pgrp);
803 }
804
805 /*
806 * delete a process group
807 */
808 static void
809 pg_delete(pid_t pg_id)
810 {
811 struct pgrp *pgrp;
812 struct tty *ttyp;
813 struct session *ss;
814 int s, is_pgrp_leader;
815
816 s = proclist_lock_write();
817 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
818 if (pgrp == NULL || pgrp->pg_id != pg_id ||
819 !LIST_EMPTY(&pgrp->pg_members)) {
820 proclist_unlock_write(s);
821 return;
822 }
823
824 ss = pgrp->pg_session;
825
826 /* Remove reference (if any) from tty to this process group */
827 ttyp = ss->s_ttyp;
828 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
829 ttyp->t_pgrp = NULL;
830 #ifdef DIAGNOSTIC
831 if (ttyp->t_session != ss)
832 panic("pg_delete: wrong session on terminal");
833 #endif
834 }
835
836 /*
837 * The leading process group in a session is freed
838 * by sessdelete() if last reference.
839 */
840 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
841 proclist_unlock_write(s);
842 SESSRELE(ss);
843
844 if (is_pgrp_leader)
845 return;
846
847 pg_free(pg_id);
848 }
849
850 /*
851 * Delete session - called from SESSRELE when s_count becomes zero.
852 */
853 void
854 sessdelete(struct session *ss)
855 {
856 /*
857 * We keep the pgrp with the same id as the session in
858 * order to stop a process being given the same pid.
859 * Since the pgrp holds a reference to the session, it
860 * must be a 'zombie' pgrp by now.
861 */
862
863 pg_free(ss->s_sid);
864
865 pool_put(&session_pool, ss);
866 }
867
868 /*
869 * Adjust pgrp jobc counters when specified process changes process group.
870 * We count the number of processes in each process group that "qualify"
871 * the group for terminal job control (those with a parent in a different
872 * process group of the same session). If that count reaches zero, the
873 * process group becomes orphaned. Check both the specified process'
874 * process group and that of its children.
875 * entering == 0 => p is leaving specified group.
876 * entering == 1 => p is entering specified group.
877 *
878 * Call with proclist_lock held.
879 */
880 void
881 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
882 {
883 struct pgrp *hispgrp;
884 struct session *mysession = pgrp->pg_session;
885 struct proc *child;
886
887 /*
888 * Check p's parent to see whether p qualifies its own process
889 * group; if so, adjust count for p's process group.
890 */
891 hispgrp = p->p_pptr->p_pgrp;
892 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
893 if (entering)
894 pgrp->pg_jobc++;
895 else if (--pgrp->pg_jobc == 0)
896 orphanpg(pgrp);
897 }
898
899 /*
900 * Check this process' children to see whether they qualify
901 * their process groups; if so, adjust counts for children's
902 * process groups.
903 */
904 LIST_FOREACH(child, &p->p_children, p_sibling) {
905 hispgrp = child->p_pgrp;
906 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
907 !P_ZOMBIE(child)) {
908 if (entering)
909 hispgrp->pg_jobc++;
910 else if (--hispgrp->pg_jobc == 0)
911 orphanpg(hispgrp);
912 }
913 }
914 }
915
916 /*
917 * A process group has become orphaned;
918 * if there are any stopped processes in the group,
919 * hang-up all process in that group.
920 *
921 * Call with proclist_lock held.
922 */
923 static void
924 orphanpg(struct pgrp *pg)
925 {
926 struct proc *p;
927
928 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
929 if (p->p_stat == SSTOP) {
930 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
931 psignal(p, SIGHUP);
932 psignal(p, SIGCONT);
933 }
934 return;
935 }
936 }
937 }
938
939 /* mark process as suid/sgid, reset some values to defaults */
940 void
941 p_sugid(struct proc *p)
942 {
943 struct plimit *newlim;
944
945 p->p_flag |= P_SUGID;
946 /* reset what needs to be reset in plimit */
947 if (p->p_limit->pl_corename != defcorename) {
948 if (p->p_limit->p_refcnt > 1 &&
949 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
950 newlim = limcopy(p->p_limit);
951 limfree(p->p_limit);
952 p->p_limit = newlim;
953 }
954 free(p->p_limit->pl_corename, M_TEMP);
955 p->p_limit->pl_corename = defcorename;
956 }
957 }
958
959 #ifdef DDB
960 #include <ddb/db_output.h>
961 void pidtbl_dump(void);
962 void
963 pidtbl_dump(void)
964 {
965 struct pid_table *pt;
966 struct proc *p;
967 struct pgrp *pgrp;
968 int id;
969
970 db_printf("pid table %p size %x, next %x, last %x\n",
971 pid_table, pid_tbl_mask+1,
972 next_free_pt, last_free_pt);
973 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
974 p = pt->pt_proc;
975 if (!P_VALID(p) && !pt->pt_pgrp)
976 continue;
977 db_printf(" id %x: ", id);
978 if (P_VALID(p))
979 db_printf("proc %p id %d (0x%x) %s\n",
980 p, p->p_pid, p->p_pid, p->p_comm);
981 else
982 db_printf("next %x use %x\n",
983 P_NEXT(p) & pid_tbl_mask,
984 P_NEXT(p) & ~pid_tbl_mask);
985 if ((pgrp = pt->pt_pgrp)) {
986 db_printf("\tsession %p, sid %d, count %d, login %s\n",
987 pgrp->pg_session, pgrp->pg_session->s_sid,
988 pgrp->pg_session->s_count,
989 pgrp->pg_session->s_login);
990 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
991 pgrp, pgrp->pg_id, pgrp->pg_jobc,
992 pgrp->pg_members.lh_first);
993 for (p = pgrp->pg_members.lh_first; p != 0;
994 p = p->p_pglist.le_next) {
995 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
996 p->p_pid, p, p->p_pgrp, p->p_comm);
997 }
998 }
999 }
1000 }
1001 #endif /* DDB */
1002
1003 #ifdef KSTACK_CHECK_MAGIC
1004 #include <sys/user.h>
1005
1006 #define KSTACK_MAGIC 0xdeadbeaf
1007
1008 /* XXX should be per process basis? */
1009 int kstackleftmin = KSTACK_SIZE;
1010 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1011 less than this */
1012
1013 void
1014 kstack_setup_magic(const struct lwp *l)
1015 {
1016 u_int32_t *ip;
1017 u_int32_t const *end;
1018
1019 KASSERT(l != NULL);
1020 KASSERT(l != &lwp0);
1021
1022 /*
1023 * fill all the stack with magic number
1024 * so that later modification on it can be detected.
1025 */
1026 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1027 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1028 for (; ip < end; ip++) {
1029 *ip = KSTACK_MAGIC;
1030 }
1031 }
1032
1033 void
1034 kstack_check_magic(const struct lwp *l)
1035 {
1036 u_int32_t const *ip, *end;
1037 int stackleft;
1038
1039 KASSERT(l != NULL);
1040
1041 /* don't check proc0 */ /*XXX*/
1042 if (l == &lwp0)
1043 return;
1044
1045 #ifdef __MACHINE_STACK_GROWS_UP
1046 /* stack grows upwards (eg. hppa) */
1047 ip = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1048 end = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1049 for (ip--; ip >= end; ip--)
1050 if (*ip != KSTACK_MAGIC)
1051 break;
1052
1053 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1054 #else /* __MACHINE_STACK_GROWS_UP */
1055 /* stack grows downwards (eg. i386) */
1056 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1057 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1058 for (; ip < end; ip++)
1059 if (*ip != KSTACK_MAGIC)
1060 break;
1061
1062 stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
1063 #endif /* __MACHINE_STACK_GROWS_UP */
1064
1065 if (kstackleftmin > stackleft) {
1066 kstackleftmin = stackleft;
1067 if (stackleft < kstackleftthres)
1068 printf("warning: kernel stack left %d bytes"
1069 "(pid %u:lid %u)\n", stackleft,
1070 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1071 }
1072
1073 if (stackleft <= 0) {
1074 panic("magic on the top of kernel stack changed for "
1075 "pid %u, lid %u: maybe kernel stack overflow",
1076 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1077 }
1078 }
1079 #endif /* KSTACK_CHECK_MAGIC */
1080