Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.80.12.3
      1 /*	$NetBSD: kern_proc.c,v 1.80.12.3 2007/02/26 09:11:08 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.80.12.3 2007/02/26 09:11:08 yamt Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include "sys/syscall_stats.h"
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_extern.h>
    104 
    105 /*
    106  * Other process lists
    107  */
    108 
    109 struct proclist allproc;
    110 struct proclist zombproc;	/* resources have been freed */
    111 
    112 /*
    113  * There are two locks on global process state.
    114  *
    115  * 1. proclist_lock is a reader/writer lock and is used when modifying or
    116  * examining process state from a process context.  It protects our internal
    117  * tables, all of the process lists, and a number of members of struct lwp
    118  * and struct proc.
    119 
    120  * 2. proclist_mutex is used when allproc must be traversed from an
    121  * interrupt context, or when we must signal processes from an interrupt
    122  * context.  The proclist_lock should always be used in preference.
    123  *
    124  *	proclist_lock	proclist_mutex	structure
    125  *	--------------- --------------- -----------------
    126  *	x				zombproc
    127  *	x		x		pid_table
    128  *	x				proc::p_pptr
    129  *	x				proc::p_sibling
    130  *	x				proc::p_children
    131  *	x		x		allproc
    132  *	x		x		proc::p_pgrp
    133  *	x		x		proc::p_pglist
    134  *	x		x		proc::p_session
    135  *	x		x		proc::p_list
    136  *			x		alllwp
    137  *			x		lwp::l_list
    138  *
    139  * The lock order for processes and LWPs is approximately as following:
    140  *
    141  * kernel_mutex
    142  * -> proclist_lock
    143  *    -> proclist_mutex
    144  *	-> proc::p_mutex
    145  *         -> proc::p_smutex
    146  */
    147 krwlock_t	proclist_lock;
    148 kmutex_t	proclist_mutex;
    149 
    150 /*
    151  * pid to proc lookup is done by indexing the pid_table array.
    152  * Since pid numbers are only allocated when an empty slot
    153  * has been found, there is no need to search any lists ever.
    154  * (an orphaned pgrp will lock the slot, a session will lock
    155  * the pgrp with the same number.)
    156  * If the table is too small it is reallocated with twice the
    157  * previous size and the entries 'unzipped' into the two halves.
    158  * A linked list of free entries is passed through the pt_proc
    159  * field of 'free' items - set odd to be an invalid ptr.
    160  */
    161 
    162 struct pid_table {
    163 	struct proc	*pt_proc;
    164 	struct pgrp	*pt_pgrp;
    165 };
    166 #if 1	/* strongly typed cast - should be a noop */
    167 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    168 #else
    169 #define p2u(p) ((uint)p)
    170 #endif
    171 #define P_VALID(p) (!(p2u(p) & 1))
    172 #define P_NEXT(p) (p2u(p) >> 1)
    173 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    174 
    175 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    176 static struct pid_table *pid_table;
    177 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    178 static uint pid_alloc_lim;	/* max we allocate before growing table */
    179 static uint pid_alloc_cnt;	/* number of allocated pids */
    180 
    181 /* links through free slots - never empty! */
    182 static uint next_free_pt, last_free_pt;
    183 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    184 
    185 /* Components of the first process -- never freed. */
    186 struct session session0;
    187 struct pgrp pgrp0;
    188 struct proc proc0;
    189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
    190 kauth_cred_t cred0;
    191 struct filedesc0 filedesc0;
    192 struct cwdinfo cwdi0;
    193 struct plimit limit0;
    194 struct pstats pstat0;
    195 struct vmspace vmspace0;
    196 struct sigacts sigacts0;
    197 struct turnstile turnstile0;
    198 
    199 extern struct user *proc0paddr;
    200 
    201 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    202 
    203 int nofile = NOFILE;
    204 int maxuprc = MAXUPRC;
    205 int cmask = CMASK;
    206 
    207 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    208     &pool_allocator_nointr);
    209 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    210     &pool_allocator_nointr);
    211 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    212     &pool_allocator_nointr);
    213 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    214     &pool_allocator_nointr);
    215 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    216     &pool_allocator_nointr);
    217 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    218     &pool_allocator_nointr);
    219 
    220 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    221 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    222 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    223 
    224 /*
    225  * The process list descriptors, used during pid allocation and
    226  * by sysctl.  No locking on this data structure is needed since
    227  * it is completely static.
    228  */
    229 const struct proclist_desc proclists[] = {
    230 	{ &allproc	},
    231 	{ &zombproc	},
    232 	{ NULL		},
    233 };
    234 
    235 static void orphanpg(struct pgrp *);
    236 static void pg_delete(pid_t);
    237 
    238 static specificdata_domain_t proc_specificdata_domain;
    239 
    240 /*
    241  * Initialize global process hashing structures.
    242  */
    243 void
    244 procinit(void)
    245 {
    246 	const struct proclist_desc *pd;
    247 	int i;
    248 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    249 
    250 	for (pd = proclists; pd->pd_list != NULL; pd++)
    251 		LIST_INIT(pd->pd_list);
    252 
    253 	/*
    254 	 * XXX p_smutex can be IPL_VM except for audio drivers
    255 	 * XXX proclist_lock must die
    256 	 */
    257 	rw_init(&proclist_lock);
    258 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
    259 
    260 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    261 			    M_PROC, M_WAITOK);
    262 	/* Set free list running through table...
    263 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    264 	for (i = 0; i <= pid_tbl_mask; i++) {
    265 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    266 		pid_table[i].pt_pgrp = 0;
    267 	}
    268 	/* slot 0 is just grabbed */
    269 	next_free_pt = 1;
    270 	/* Need to fix last entry. */
    271 	last_free_pt = pid_tbl_mask;
    272 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    273 	/* point at which we grow table - to avoid reusing pids too often */
    274 	pid_alloc_lim = pid_tbl_mask - 1;
    275 #undef LINK_EMPTY
    276 
    277 	LIST_INIT(&alllwp);
    278 
    279 	uihashtbl =
    280 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    281 
    282 	proc_specificdata_domain = specificdata_domain_create();
    283 	KASSERT(proc_specificdata_domain != NULL);
    284 }
    285 
    286 /*
    287  * Initialize process 0.
    288  */
    289 void
    290 proc0_init(void)
    291 {
    292 	struct proc *p;
    293 	struct pgrp *pg;
    294 	struct session *sess;
    295 	struct lwp *l;
    296 	u_int i;
    297 	rlim_t lim;
    298 
    299 	p = &proc0;
    300 	pg = &pgrp0;
    301 	sess = &session0;
    302 	l = &lwp0;
    303 
    304 	/* XXX p_smutex can be IPL_VM except for audio drivers */
    305 	mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
    306 	mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
    307 	mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
    308 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    309 	cv_init(&p->p_refcv, "drainref");
    310 	cv_init(&p->p_waitcv, "wait");
    311 	cv_init(&p->p_lwpcv, "lwpwait");
    312 
    313 	LIST_INIT(&p->p_lwps);
    314 	LIST_INIT(&p->p_sigwaiters);
    315 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    316 
    317 	p->p_nlwps = 1;
    318 	p->p_nrlwps = 1;
    319 	p->p_refcnt = 1;
    320 
    321 	pid_table[0].pt_proc = p;
    322 	LIST_INSERT_HEAD(&allproc, p, p_list);
    323 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    324 
    325 	p->p_pgrp = pg;
    326 	pid_table[0].pt_pgrp = pg;
    327 	LIST_INIT(&pg->pg_members);
    328 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    329 
    330 	pg->pg_session = sess;
    331 	sess->s_count = 1;
    332 	sess->s_sid = 0;
    333 	sess->s_leader = p;
    334 
    335 	/*
    336 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    337 	 * init(8) when they exit.  init(8) can easily wait them out
    338 	 * for us.
    339 	 */
    340 	p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
    341 	p->p_stat = SACTIVE;
    342 	p->p_nice = NZERO;
    343 	p->p_emul = &emul_netbsd;
    344 #ifdef __HAVE_SYSCALL_INTERN
    345 	(*p->p_emul->e_syscall_intern)(p);
    346 #endif
    347 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    348 
    349 	l->l_mutex = &sched_mutex;
    350 	l->l_flag = LW_INMEM | LW_SYSTEM;
    351 	l->l_stat = LSONPROC;
    352 	l->l_ts = &turnstile0;
    353 	l->l_syncobj = &sched_syncobj;
    354 	l->l_refcnt = 1;
    355 	l->l_cpu = curcpu();
    356 	l->l_priority = PRIBIO;
    357 	l->l_usrpri = PRIBIO;
    358 
    359 	callout_init(&l->l_tsleep_ch);
    360 	cv_init(&l->l_sigcv, "sigwait");
    361 
    362 	/* Create credentials. */
    363 	cred0 = kauth_cred_alloc();
    364 	p->p_cred = cred0;
    365 	kauth_cred_hold(cred0);
    366 	l->l_cred = cred0;
    367 
    368 	/* Create the CWD info. */
    369 	p->p_cwdi = &cwdi0;
    370 	cwdi0.cwdi_cmask = cmask;
    371 	cwdi0.cwdi_refcnt = 1;
    372 	simple_lock_init(&cwdi0.cwdi_slock);
    373 
    374 	/* Create the limits structures. */
    375 	p->p_limit = &limit0;
    376 	simple_lock_init(&limit0.p_slock);
    377 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    378 		limit0.pl_rlimit[i].rlim_cur =
    379 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    380 
    381 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    382 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    383 	    maxfiles < nofile ? maxfiles : nofile;
    384 
    385 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    386 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    387 	    maxproc < maxuprc ? maxproc : maxuprc;
    388 
    389 	lim = ptoa(uvmexp.free);
    390 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    391 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    392 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    393 	limit0.pl_corename = defcorename;
    394 	limit0.p_refcnt = 1;
    395 
    396 	/* Configure virtual memory system, set vm rlimits. */
    397 	uvm_init_limits(p);
    398 
    399 	/* Initialize file descriptor table for proc0. */
    400 	p->p_fd = &filedesc0.fd_fd;
    401 	fdinit1(&filedesc0);
    402 
    403 	/*
    404 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    405 	 * All kernel processes (which never have user space mappings)
    406 	 * share proc0's vmspace, and thus, the kernel pmap.
    407 	 */
    408 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    409 	    trunc_page(VM_MAX_ADDRESS));
    410 	p->p_vmspace = &vmspace0;
    411 
    412 	l->l_addr = proc0paddr;				/* XXX */
    413 
    414 	p->p_stats = &pstat0;
    415 
    416 	/* Initialize signal state for proc0. */
    417 	p->p_sigacts = &sigacts0;
    418 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
    419 	siginit(p);
    420 
    421 	proc_initspecific(p);
    422 	lwp_initspecific(l);
    423 
    424 	SYSCALL_TIME_LWP_INIT(l);
    425 }
    426 
    427 /*
    428  * Check that the specified process group is in the session of the
    429  * specified process.
    430  * Treats -ve ids as process ids.
    431  * Used to validate TIOCSPGRP requests.
    432  */
    433 int
    434 pgid_in_session(struct proc *p, pid_t pg_id)
    435 {
    436 	struct pgrp *pgrp;
    437 	struct session *session;
    438 
    439 	rw_enter(&proclist_lock, RW_READER);
    440 
    441 	if (pg_id < 0) {
    442 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    443 		if (p1 == NULL)
    444 			return EINVAL;
    445 		pgrp = p1->p_pgrp;
    446 	} else {
    447 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
    448 		if (pgrp == NULL)
    449 			return EINVAL;
    450 	}
    451 	session = pgrp->pg_session;
    452 	rw_exit(&proclist_lock);
    453 	if (session != p->p_pgrp->pg_session)
    454 		return EPERM;
    455 	return 0;
    456 }
    457 
    458 /*
    459  * Is p an inferior of q?
    460  *
    461  * Call with the proclist_lock held.
    462  */
    463 int
    464 inferior(struct proc *p, struct proc *q)
    465 {
    466 
    467 	for (; p != q; p = p->p_pptr)
    468 		if (p->p_pid == 0)
    469 			return 0;
    470 	return 1;
    471 }
    472 
    473 /*
    474  * Locate a process by number
    475  */
    476 struct proc *
    477 p_find(pid_t pid, uint flags)
    478 {
    479 	struct proc *p;
    480 	char stat;
    481 
    482 	if (!(flags & PFIND_LOCKED))
    483 		rw_enter(&proclist_lock, RW_READER);
    484 
    485 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    486 
    487 	/* Only allow live processes to be found by pid. */
    488 	/* XXXSMP p_stat */
    489 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    490 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    491 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    492 		if (flags & PFIND_UNLOCK_OK)
    493 			 rw_exit(&proclist_lock);
    494 		return p;
    495 	}
    496 	if (flags & PFIND_UNLOCK_FAIL)
    497 		rw_exit(&proclist_lock);
    498 	return NULL;
    499 }
    500 
    501 
    502 /*
    503  * Locate a process group by number
    504  */
    505 struct pgrp *
    506 pg_find(pid_t pgid, uint flags)
    507 {
    508 	struct pgrp *pg;
    509 
    510 	if (!(flags & PFIND_LOCKED))
    511 		rw_enter(&proclist_lock, RW_READER);
    512 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    513 	/*
    514 	 * Can't look up a pgrp that only exists because the session
    515 	 * hasn't died yet (traditional)
    516 	 */
    517 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    518 		if (flags & PFIND_UNLOCK_FAIL)
    519 			 rw_exit(&proclist_lock);
    520 		return NULL;
    521 	}
    522 
    523 	if (flags & PFIND_UNLOCK_OK)
    524 		rw_exit(&proclist_lock);
    525 	return pg;
    526 }
    527 
    528 static void
    529 expand_pid_table(void)
    530 {
    531 	uint pt_size = pid_tbl_mask + 1;
    532 	struct pid_table *n_pt, *new_pt;
    533 	struct proc *proc;
    534 	struct pgrp *pgrp;
    535 	int i;
    536 	pid_t pid;
    537 
    538 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    539 
    540 	rw_enter(&proclist_lock, RW_WRITER);
    541 	if (pt_size != pid_tbl_mask + 1) {
    542 		/* Another process beat us to it... */
    543 		rw_exit(&proclist_lock);
    544 		FREE(new_pt, M_PROC);
    545 		return;
    546 	}
    547 
    548 	/*
    549 	 * Copy entries from old table into new one.
    550 	 * If 'pid' is 'odd' we need to place in the upper half,
    551 	 * even pid's to the lower half.
    552 	 * Free items stay in the low half so we don't have to
    553 	 * fixup the reference to them.
    554 	 * We stuff free items on the front of the freelist
    555 	 * because we can't write to unmodified entries.
    556 	 * Processing the table backwards maintains a semblance
    557 	 * of issueing pid numbers that increase with time.
    558 	 */
    559 	i = pt_size - 1;
    560 	n_pt = new_pt + i;
    561 	for (; ; i--, n_pt--) {
    562 		proc = pid_table[i].pt_proc;
    563 		pgrp = pid_table[i].pt_pgrp;
    564 		if (!P_VALID(proc)) {
    565 			/* Up 'use count' so that link is valid */
    566 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    567 			proc = P_FREE(pid);
    568 			if (pgrp)
    569 				pid = pgrp->pg_id;
    570 		} else
    571 			pid = proc->p_pid;
    572 
    573 		/* Save entry in appropriate half of table */
    574 		n_pt[pid & pt_size].pt_proc = proc;
    575 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    576 
    577 		/* Put other piece on start of free list */
    578 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    579 		n_pt[pid & pt_size].pt_proc =
    580 				    P_FREE((pid & ~pt_size) | next_free_pt);
    581 		n_pt[pid & pt_size].pt_pgrp = 0;
    582 		next_free_pt = i | (pid & pt_size);
    583 		if (i == 0)
    584 			break;
    585 	}
    586 
    587 	/* Switch tables */
    588 	mutex_enter(&proclist_mutex);
    589 	n_pt = pid_table;
    590 	pid_table = new_pt;
    591 	mutex_exit(&proclist_mutex);
    592 	pid_tbl_mask = pt_size * 2 - 1;
    593 
    594 	/*
    595 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    596 	 * allocated pids we need it to be larger!
    597 	 */
    598 	if (pid_tbl_mask > PID_MAX) {
    599 		pid_max = pid_tbl_mask * 2 + 1;
    600 		pid_alloc_lim |= pid_alloc_lim << 1;
    601 	} else
    602 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    603 
    604 	rw_exit(&proclist_lock);
    605 	FREE(n_pt, M_PROC);
    606 }
    607 
    608 struct proc *
    609 proc_alloc(void)
    610 {
    611 	struct proc *p;
    612 	int nxt;
    613 	pid_t pid;
    614 	struct pid_table *pt;
    615 
    616 	p = pool_get(&proc_pool, PR_WAITOK);
    617 	p->p_stat = SIDL;			/* protect against others */
    618 
    619 	proc_initspecific(p);
    620 	/* allocate next free pid */
    621 
    622 	for (;;expand_pid_table()) {
    623 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    624 			/* ensure pids cycle through 2000+ values */
    625 			continue;
    626 		rw_enter(&proclist_lock, RW_WRITER);
    627 		pt = &pid_table[next_free_pt];
    628 #ifdef DIAGNOSTIC
    629 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    630 			panic("proc_alloc: slot busy");
    631 #endif
    632 		nxt = P_NEXT(pt->pt_proc);
    633 		if (nxt & pid_tbl_mask)
    634 			break;
    635 		/* Table full - expand (NB last entry not used....) */
    636 		rw_exit(&proclist_lock);
    637 	}
    638 
    639 	/* pid is 'saved use count' + 'size' + entry */
    640 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    641 	if ((uint)pid > (uint)pid_max)
    642 		pid &= pid_tbl_mask;
    643 	p->p_pid = pid;
    644 	next_free_pt = nxt & pid_tbl_mask;
    645 
    646 	/* Grab table slot */
    647 	mutex_enter(&proclist_mutex);
    648 	pt->pt_proc = p;
    649 	mutex_exit(&proclist_mutex);
    650 	pid_alloc_cnt++;
    651 
    652 	rw_exit(&proclist_lock);
    653 
    654 	return p;
    655 }
    656 
    657 /*
    658  * Free last resources of a process - called from proc_free (in kern_exit.c)
    659  *
    660  * Called with the proclist_lock write held, and releases upon exit.
    661  */
    662 void
    663 proc_free_mem(struct proc *p)
    664 {
    665 	pid_t pid = p->p_pid;
    666 	struct pid_table *pt;
    667 
    668 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    669 
    670 	pt = &pid_table[pid & pid_tbl_mask];
    671 #ifdef DIAGNOSTIC
    672 	if (__predict_false(pt->pt_proc != p))
    673 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    674 			pid, p);
    675 #endif
    676 	mutex_enter(&proclist_mutex);
    677 	/* save pid use count in slot */
    678 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    679 
    680 	if (pt->pt_pgrp == NULL) {
    681 		/* link last freed entry onto ours */
    682 		pid &= pid_tbl_mask;
    683 		pt = &pid_table[last_free_pt];
    684 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    685 		last_free_pt = pid;
    686 		pid_alloc_cnt--;
    687 	}
    688 	mutex_exit(&proclist_mutex);
    689 
    690 	nprocs--;
    691 	rw_exit(&proclist_lock);
    692 
    693 	pool_put(&proc_pool, p);
    694 }
    695 
    696 /*
    697  * Move p to a new or existing process group (and session)
    698  *
    699  * If we are creating a new pgrp, the pgid should equal
    700  * the calling process' pid.
    701  * If is only valid to enter a process group that is in the session
    702  * of the process.
    703  * Also mksess should only be set if we are creating a process group
    704  *
    705  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    706  * SYSV setpgrp support for hpux.
    707  */
    708 int
    709 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    710 {
    711 	struct pgrp *new_pgrp, *pgrp;
    712 	struct session *sess;
    713 	struct proc *p;
    714 	int rval;
    715 	pid_t pg_id = NO_PGID;
    716 
    717 	/* Allocate data areas we might need before doing any validity checks */
    718 	rw_enter(&proclist_lock, RW_READER);		/* Because pid_table might change */
    719 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    720 		rw_exit(&proclist_lock);
    721 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    722 	} else {
    723 		rw_exit(&proclist_lock);
    724 		new_pgrp = NULL;
    725 	}
    726 	if (mksess)
    727 		sess = pool_get(&session_pool, PR_WAITOK);
    728 	else
    729 		sess = NULL;
    730 
    731 	rw_enter(&proclist_lock, RW_WRITER);
    732 	rval = EPERM;	/* most common error (to save typing) */
    733 
    734 	/* Check pgrp exists or can be created */
    735 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    736 	if (pgrp != NULL && pgrp->pg_id != pgid)
    737 		goto done;
    738 
    739 	/* Can only set another process under restricted circumstances. */
    740 	if (pid != curp->p_pid) {
    741 		/* must exist and be one of our children... */
    742 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    743 		    !inferior(p, curp)) {
    744 			rval = ESRCH;
    745 			goto done;
    746 		}
    747 		/* ... in the same session... */
    748 		if (sess != NULL || p->p_session != curp->p_session)
    749 			goto done;
    750 		/* ... existing pgid must be in same session ... */
    751 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    752 			goto done;
    753 		/* ... and not done an exec. */
    754 		if (p->p_flag & PK_EXEC) {
    755 			rval = EACCES;
    756 			goto done;
    757 		}
    758 	} else {
    759 		/* ... setsid() cannot re-enter a pgrp */
    760 		if (mksess && (curp->p_pgid == curp->p_pid ||
    761 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    762 			goto done;
    763 		p = curp;
    764 	}
    765 
    766 	/* Changing the process group/session of a session
    767 	   leader is definitely off limits. */
    768 	if (SESS_LEADER(p)) {
    769 		if (sess == NULL && p->p_pgrp == pgrp)
    770 			/* unless it's a definite noop */
    771 			rval = 0;
    772 		goto done;
    773 	}
    774 
    775 	/* Can only create a process group with id of process */
    776 	if (pgrp == NULL && pgid != pid)
    777 		goto done;
    778 
    779 	/* Can only create a session if creating pgrp */
    780 	if (sess != NULL && pgrp != NULL)
    781 		goto done;
    782 
    783 	/* Check we allocated memory for a pgrp... */
    784 	if (pgrp == NULL && new_pgrp == NULL)
    785 		goto done;
    786 
    787 	/* Don't attach to 'zombie' pgrp */
    788 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    789 		goto done;
    790 
    791 	/* Expect to succeed now */
    792 	rval = 0;
    793 
    794 	if (pgrp == p->p_pgrp)
    795 		/* nothing to do */
    796 		goto done;
    797 
    798 	/* Ok all setup, link up required structures */
    799 
    800 	if (pgrp == NULL) {
    801 		pgrp = new_pgrp;
    802 		new_pgrp = 0;
    803 		if (sess != NULL) {
    804 			sess->s_sid = p->p_pid;
    805 			sess->s_leader = p;
    806 			sess->s_count = 1;
    807 			sess->s_ttyvp = NULL;
    808 			sess->s_ttyp = NULL;
    809 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    810 			memcpy(sess->s_login, p->p_session->s_login,
    811 			    sizeof(sess->s_login));
    812 			p->p_lflag &= ~PL_CONTROLT;
    813 		} else {
    814 			sess = p->p_pgrp->pg_session;
    815 			SESSHOLD(sess);
    816 		}
    817 		pgrp->pg_session = sess;
    818 		sess = 0;
    819 
    820 		pgrp->pg_id = pgid;
    821 		LIST_INIT(&pgrp->pg_members);
    822 #ifdef DIAGNOSTIC
    823 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    824 			panic("enterpgrp: pgrp table slot in use");
    825 		if (__predict_false(mksess && p != curp))
    826 			panic("enterpgrp: mksession and p != curproc");
    827 #endif
    828 		mutex_enter(&proclist_mutex);
    829 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    830 		pgrp->pg_jobc = 0;
    831 	} else
    832 		mutex_enter(&proclist_mutex);
    833 
    834 #ifdef notyet
    835 	/*
    836 	 * If there's a controlling terminal for the current session, we
    837 	 * have to interlock with it.  See ttread().
    838 	 */
    839 	if (p->p_session->s_ttyvp != NULL) {
    840 		tp = p->p_session->s_ttyp;
    841 		mutex_enter(&tp->t_mutex);
    842 	} else
    843 		tp = NULL;
    844 #endif
    845 
    846 	/*
    847 	 * Adjust eligibility of affected pgrps to participate in job control.
    848 	 * Increment eligibility counts before decrementing, otherwise we
    849 	 * could reach 0 spuriously during the first call.
    850 	 */
    851 	fixjobc(p, pgrp, 1);
    852 	fixjobc(p, p->p_pgrp, 0);
    853 
    854 	/* Move process to requested group. */
    855 	LIST_REMOVE(p, p_pglist);
    856 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    857 		/* defer delete until we've dumped the lock */
    858 		pg_id = p->p_pgrp->pg_id;
    859 	p->p_pgrp = pgrp;
    860 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    861 	mutex_exit(&proclist_mutex);
    862 
    863 #ifdef notyet
    864 	/* Done with the swap; we can release the tty mutex. */
    865 	if (tp != NULL)
    866 		mutex_exit(&tp->t_mutex);
    867 #endif
    868 
    869     done:
    870 	if (pg_id != NO_PGID)
    871 		pg_delete(pg_id);
    872 	rw_exit(&proclist_lock);
    873 	if (sess != NULL)
    874 		pool_put(&session_pool, sess);
    875 	if (new_pgrp != NULL)
    876 		pool_put(&pgrp_pool, new_pgrp);
    877 #ifdef DEBUG_PGRP
    878 	if (__predict_false(rval))
    879 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    880 			pid, pgid, mksess, curp->p_pid, rval);
    881 #endif
    882 	return rval;
    883 }
    884 
    885 /*
    886  * Remove a process from its process group.  Must be called with the
    887  * proclist_lock write held.
    888  */
    889 void
    890 leavepgrp(struct proc *p)
    891 {
    892 	struct pgrp *pgrp;
    893 
    894 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    895 
    896 	/*
    897 	 * If there's a controlling terminal for the session, we have to
    898 	 * interlock with it.  See ttread().
    899 	 */
    900 	mutex_enter(&proclist_mutex);
    901 #ifdef notyet
    902 	if (p_>p_session->s_ttyvp != NULL) {
    903 		tp = p->p_session->s_ttyp;
    904 		mutex_enter(&tp->t_mutex);
    905 	} else
    906 		tp = NULL;
    907 #endif
    908 
    909 	pgrp = p->p_pgrp;
    910 	LIST_REMOVE(p, p_pglist);
    911 	p->p_pgrp = NULL;
    912 
    913 #ifdef notyet
    914 	if (tp != NULL)
    915 		mutex_exit(&tp->t_mutex);
    916 #endif
    917 	mutex_exit(&proclist_mutex);
    918 
    919 	if (LIST_EMPTY(&pgrp->pg_members))
    920 		pg_delete(pgrp->pg_id);
    921 }
    922 
    923 /*
    924  * Free a process group.  Must be called with the proclist_lock write held.
    925  */
    926 static void
    927 pg_free(pid_t pg_id)
    928 {
    929 	struct pgrp *pgrp;
    930 	struct pid_table *pt;
    931 
    932 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    933 
    934 	pt = &pid_table[pg_id & pid_tbl_mask];
    935 	pgrp = pt->pt_pgrp;
    936 #ifdef DIAGNOSTIC
    937 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    938 	    || !LIST_EMPTY(&pgrp->pg_members)))
    939 		panic("pg_free: process group absent or has members");
    940 #endif
    941 	pt->pt_pgrp = 0;
    942 
    943 	if (!P_VALID(pt->pt_proc)) {
    944 		/* orphaned pgrp, put slot onto free list */
    945 #ifdef DIAGNOSTIC
    946 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    947 			panic("pg_free: process slot on free list");
    948 #endif
    949 		mutex_enter(&proclist_mutex);
    950 		pg_id &= pid_tbl_mask;
    951 		pt = &pid_table[last_free_pt];
    952 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    953 		mutex_exit(&proclist_mutex);
    954 		last_free_pt = pg_id;
    955 		pid_alloc_cnt--;
    956 	}
    957 	pool_put(&pgrp_pool, pgrp);
    958 }
    959 
    960 /*
    961  * Delete a process group.  Must be called with the proclist_lock write
    962  * held.
    963  */
    964 static void
    965 pg_delete(pid_t pg_id)
    966 {
    967 	struct pgrp *pgrp;
    968 	struct tty *ttyp;
    969 	struct session *ss;
    970 	int is_pgrp_leader;
    971 
    972 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    973 
    974 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    975 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    976 	    !LIST_EMPTY(&pgrp->pg_members))
    977 		return;
    978 
    979 	ss = pgrp->pg_session;
    980 
    981 	/* Remove reference (if any) from tty to this process group */
    982 	ttyp = ss->s_ttyp;
    983 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    984 		ttyp->t_pgrp = NULL;
    985 #ifdef DIAGNOSTIC
    986 		if (ttyp->t_session != ss)
    987 			panic("pg_delete: wrong session on terminal");
    988 #endif
    989 	}
    990 
    991 	/*
    992 	 * The leading process group in a session is freed
    993 	 * by sessdelete() if last reference.
    994 	 */
    995 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    996 	SESSRELE(ss);
    997 
    998 	if (is_pgrp_leader)
    999 		return;
   1000 
   1001 	pg_free(pg_id);
   1002 }
   1003 
   1004 /*
   1005  * Delete session - called from SESSRELE when s_count becomes zero.
   1006  * Must be called with the proclist_lock write held.
   1007  */
   1008 void
   1009 sessdelete(struct session *ss)
   1010 {
   1011 
   1012 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1013 
   1014 	/*
   1015 	 * We keep the pgrp with the same id as the session in
   1016 	 * order to stop a process being given the same pid.
   1017 	 * Since the pgrp holds a reference to the session, it
   1018 	 * must be a 'zombie' pgrp by now.
   1019 	 */
   1020 	pg_free(ss->s_sid);
   1021 	pool_put(&session_pool, ss);
   1022 }
   1023 
   1024 /*
   1025  * Adjust pgrp jobc counters when specified process changes process group.
   1026  * We count the number of processes in each process group that "qualify"
   1027  * the group for terminal job control (those with a parent in a different
   1028  * process group of the same session).  If that count reaches zero, the
   1029  * process group becomes orphaned.  Check both the specified process'
   1030  * process group and that of its children.
   1031  * entering == 0 => p is leaving specified group.
   1032  * entering == 1 => p is entering specified group.
   1033  *
   1034  * Call with proclist_lock write held.
   1035  */
   1036 void
   1037 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1038 {
   1039 	struct pgrp *hispgrp;
   1040 	struct session *mysession = pgrp->pg_session;
   1041 	struct proc *child;
   1042 
   1043 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1044 	LOCK_ASSERT(mutex_owned(&proclist_mutex));
   1045 
   1046 	/*
   1047 	 * Check p's parent to see whether p qualifies its own process
   1048 	 * group; if so, adjust count for p's process group.
   1049 	 */
   1050 	hispgrp = p->p_pptr->p_pgrp;
   1051 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1052 		if (entering) {
   1053 			mutex_enter(&p->p_smutex);
   1054 			p->p_sflag &= ~PS_ORPHANPG;
   1055 			mutex_exit(&p->p_smutex);
   1056 			pgrp->pg_jobc++;
   1057 		} else if (--pgrp->pg_jobc == 0)
   1058 			orphanpg(pgrp);
   1059 	}
   1060 
   1061 	/*
   1062 	 * Check this process' children to see whether they qualify
   1063 	 * their process groups; if so, adjust counts for children's
   1064 	 * process groups.
   1065 	 */
   1066 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1067 		hispgrp = child->p_pgrp;
   1068 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1069 		    !P_ZOMBIE(child)) {
   1070 			if (entering) {
   1071 				mutex_enter(&child->p_smutex);
   1072 				child->p_sflag &= ~PS_ORPHANPG;
   1073 				mutex_exit(&child->p_smutex);
   1074 				hispgrp->pg_jobc++;
   1075 			} else if (--hispgrp->pg_jobc == 0)
   1076 				orphanpg(hispgrp);
   1077 		}
   1078 	}
   1079 }
   1080 
   1081 /*
   1082  * A process group has become orphaned;
   1083  * if there are any stopped processes in the group,
   1084  * hang-up all process in that group.
   1085  *
   1086  * Call with proclist_lock write held.
   1087  */
   1088 static void
   1089 orphanpg(struct pgrp *pg)
   1090 {
   1091 	struct proc *p;
   1092 	int doit;
   1093 
   1094 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1095 	LOCK_ASSERT(mutex_owned(&proclist_mutex));
   1096 
   1097 	doit = 0;
   1098 
   1099 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1100 		mutex_enter(&p->p_smutex);
   1101 		if (p->p_stat == SSTOP) {
   1102 			doit = 1;
   1103 			p->p_sflag |= PS_ORPHANPG;
   1104 		}
   1105 		mutex_exit(&p->p_smutex);
   1106 	}
   1107 
   1108 	if (doit) {
   1109 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1110 			psignal(p, SIGHUP);
   1111 			psignal(p, SIGCONT);
   1112 		}
   1113 	}
   1114 }
   1115 
   1116 #ifdef DDB
   1117 #include <ddb/db_output.h>
   1118 void pidtbl_dump(void);
   1119 void
   1120 pidtbl_dump(void)
   1121 {
   1122 	struct pid_table *pt;
   1123 	struct proc *p;
   1124 	struct pgrp *pgrp;
   1125 	int id;
   1126 
   1127 	db_printf("pid table %p size %x, next %x, last %x\n",
   1128 		pid_table, pid_tbl_mask+1,
   1129 		next_free_pt, last_free_pt);
   1130 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1131 		p = pt->pt_proc;
   1132 		if (!P_VALID(p) && !pt->pt_pgrp)
   1133 			continue;
   1134 		db_printf("  id %x: ", id);
   1135 		if (P_VALID(p))
   1136 			db_printf("proc %p id %d (0x%x) %s\n",
   1137 				p, p->p_pid, p->p_pid, p->p_comm);
   1138 		else
   1139 			db_printf("next %x use %x\n",
   1140 				P_NEXT(p) & pid_tbl_mask,
   1141 				P_NEXT(p) & ~pid_tbl_mask);
   1142 		if ((pgrp = pt->pt_pgrp)) {
   1143 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1144 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1145 			    pgrp->pg_session->s_count,
   1146 			    pgrp->pg_session->s_login);
   1147 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1148 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1149 			    pgrp->pg_members.lh_first);
   1150 			for (p = pgrp->pg_members.lh_first; p != 0;
   1151 			    p = p->p_pglist.le_next) {
   1152 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1153 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1154 			}
   1155 		}
   1156 	}
   1157 }
   1158 #endif /* DDB */
   1159 
   1160 #ifdef KSTACK_CHECK_MAGIC
   1161 #include <sys/user.h>
   1162 
   1163 #define	KSTACK_MAGIC	0xdeadbeaf
   1164 
   1165 /* XXX should be per process basis? */
   1166 int kstackleftmin = KSTACK_SIZE;
   1167 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1168 					  less than this */
   1169 
   1170 void
   1171 kstack_setup_magic(const struct lwp *l)
   1172 {
   1173 	uint32_t *ip;
   1174 	uint32_t const *end;
   1175 
   1176 	KASSERT(l != NULL);
   1177 	KASSERT(l != &lwp0);
   1178 
   1179 	/*
   1180 	 * fill all the stack with magic number
   1181 	 * so that later modification on it can be detected.
   1182 	 */
   1183 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1184 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1185 	for (; ip < end; ip++) {
   1186 		*ip = KSTACK_MAGIC;
   1187 	}
   1188 }
   1189 
   1190 void
   1191 kstack_check_magic(const struct lwp *l)
   1192 {
   1193 	uint32_t const *ip, *end;
   1194 	int stackleft;
   1195 
   1196 	KASSERT(l != NULL);
   1197 
   1198 	/* don't check proc0 */ /*XXX*/
   1199 	if (l == &lwp0)
   1200 		return;
   1201 
   1202 #ifdef __MACHINE_STACK_GROWS_UP
   1203 	/* stack grows upwards (eg. hppa) */
   1204 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1205 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1206 	for (ip--; ip >= end; ip--)
   1207 		if (*ip != KSTACK_MAGIC)
   1208 			break;
   1209 
   1210 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1211 #else /* __MACHINE_STACK_GROWS_UP */
   1212 	/* stack grows downwards (eg. i386) */
   1213 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1214 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1215 	for (; ip < end; ip++)
   1216 		if (*ip != KSTACK_MAGIC)
   1217 			break;
   1218 
   1219 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1220 #endif /* __MACHINE_STACK_GROWS_UP */
   1221 
   1222 	if (kstackleftmin > stackleft) {
   1223 		kstackleftmin = stackleft;
   1224 		if (stackleft < kstackleftthres)
   1225 			printf("warning: kernel stack left %d bytes"
   1226 			    "(pid %u:lid %u)\n", stackleft,
   1227 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1228 	}
   1229 
   1230 	if (stackleft <= 0) {
   1231 		panic("magic on the top of kernel stack changed for "
   1232 		    "pid %u, lid %u: maybe kernel stack overflow",
   1233 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1234 	}
   1235 }
   1236 #endif /* KSTACK_CHECK_MAGIC */
   1237 
   1238 /*
   1239  * XXXSMP this is bust, it grabs a read lock and then messes about
   1240  * with allproc.
   1241  */
   1242 int
   1243 proclist_foreach_call(struct proclist *list,
   1244     int (*callback)(struct proc *, void *arg), void *arg)
   1245 {
   1246 	struct proc marker;
   1247 	struct proc *p;
   1248 	struct lwp * const l = curlwp;
   1249 	int ret = 0;
   1250 
   1251 	marker.p_flag = PK_MARKER;
   1252 	PHOLD(l);
   1253 	rw_enter(&proclist_lock, RW_READER);
   1254 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1255 		if (p->p_flag & PK_MARKER) {
   1256 			p = LIST_NEXT(p, p_list);
   1257 			continue;
   1258 		}
   1259 		LIST_INSERT_AFTER(p, &marker, p_list);
   1260 		ret = (*callback)(p, arg);
   1261 		KASSERT(rw_read_held(&proclist_lock));
   1262 		p = LIST_NEXT(&marker, p_list);
   1263 		LIST_REMOVE(&marker, p_list);
   1264 	}
   1265 	rw_exit(&proclist_lock);
   1266 	PRELE(l);
   1267 
   1268 	return ret;
   1269 }
   1270 
   1271 int
   1272 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1273 {
   1274 
   1275 	/* XXXCDC: how should locking work here? */
   1276 
   1277 	/* curproc exception is for coredump. */
   1278 
   1279 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1280 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1281 		return EFAULT;
   1282 	}
   1283 
   1284 	uvmspace_addref(p->p_vmspace);
   1285 	*vm = p->p_vmspace;
   1286 
   1287 	return 0;
   1288 }
   1289 
   1290 /*
   1291  * Acquire a write lock on the process credential.
   1292  */
   1293 void
   1294 proc_crmod_enter(void)
   1295 {
   1296 	struct lwp *l = curlwp;
   1297 	struct proc *p = l->l_proc;
   1298 	struct plimit *lim;
   1299 	kauth_cred_t oc;
   1300 	char *cn;
   1301 
   1302 	mutex_enter(&p->p_mutex);
   1303 
   1304 	/* Ensure the LWP cached credentials are up to date. */
   1305 	if ((oc = l->l_cred) != p->p_cred) {
   1306 		kauth_cred_hold(p->p_cred);
   1307 		l->l_cred = p->p_cred;
   1308 		kauth_cred_free(oc);
   1309 	}
   1310 
   1311 	/* Reset what needs to be reset in plimit. */
   1312 	lim = p->p_limit;
   1313 	if (lim->pl_corename != defcorename) {
   1314 		if (lim->p_refcnt > 1 &&
   1315 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1316 			p->p_limit = limcopy(p);
   1317 			limfree(lim);
   1318 			lim = p->p_limit;
   1319 		}
   1320 		simple_lock(&lim->p_slock);
   1321 		cn = lim->pl_corename;
   1322 		lim->pl_corename = defcorename;
   1323 		simple_unlock(&lim->p_slock);
   1324 		if (cn != defcorename)
   1325 			free(cn, M_TEMP);
   1326 	}
   1327 }
   1328 
   1329 /*
   1330  * Set in a new process credential, and drop the write lock.  The credential
   1331  * must have a reference already.  Optionally, free a no-longer required
   1332  * credential.  The scheduler also needs to inspect p_cred, so we also
   1333  * briefly acquire the sched state mutex.
   1334  */
   1335 void
   1336 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
   1337 {
   1338 	struct lwp *l = curlwp;
   1339 	struct proc *p = l->l_proc;
   1340 	kauth_cred_t oc;
   1341 
   1342 	/* Is there a new credential to set in? */
   1343 	if (scred != NULL) {
   1344 		mutex_enter(&p->p_smutex);
   1345 		p->p_cred = scred;
   1346 		mutex_exit(&p->p_smutex);
   1347 
   1348 		/* Ensure the LWP cached credentials are up to date. */
   1349 		if ((oc = l->l_cred) != scred) {
   1350 			kauth_cred_hold(scred);
   1351 			l->l_cred = scred;
   1352 		}
   1353 	} else
   1354 		oc = NULL;	/* XXXgcc */
   1355 
   1356 	if (sugid) {
   1357 		/*
   1358 		 * Mark process as having changed credentials, stops
   1359 		 * tracing etc.
   1360 		 */
   1361 		p->p_flag |= PK_SUGID;
   1362 	}
   1363 
   1364 	mutex_exit(&p->p_mutex);
   1365 
   1366 	/* If there is a credential to be released, free it now. */
   1367 	if (fcred != NULL) {
   1368 		KASSERT(scred != NULL);
   1369 		kauth_cred_free(fcred);
   1370 		if (oc != scred)
   1371 			kauth_cred_free(oc);
   1372 	}
   1373 }
   1374 
   1375 /*
   1376  * Acquire a reference on a process, to prevent it from exiting or execing.
   1377  */
   1378 int
   1379 proc_addref(struct proc *p)
   1380 {
   1381 
   1382 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1383 
   1384 	if (p->p_refcnt <= 0)
   1385 		return EAGAIN;
   1386 	p->p_refcnt++;
   1387 
   1388 	return 0;
   1389 }
   1390 
   1391 /*
   1392  * Release a reference on a process.
   1393  */
   1394 void
   1395 proc_delref(struct proc *p)
   1396 {
   1397 
   1398 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1399 
   1400 	if (p->p_refcnt < 0) {
   1401 		if (++p->p_refcnt == 0)
   1402 			cv_broadcast(&p->p_refcv);
   1403 	} else {
   1404 		p->p_refcnt--;
   1405 		KASSERT(p->p_refcnt != 0);
   1406 	}
   1407 }
   1408 
   1409 /*
   1410  * Wait for all references on the process to drain, and prevent new
   1411  * references from being acquired.
   1412  */
   1413 void
   1414 proc_drainrefs(struct proc *p)
   1415 {
   1416 
   1417 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1418 	KASSERT(p->p_refcnt > 0);
   1419 
   1420 	/*
   1421 	 * The process itself holds the last reference.  Once it's released,
   1422 	 * no new references will be granted.  If we have already locked out
   1423 	 * new references (refcnt <= 0), potentially due to a failed exec,
   1424 	 * there is nothing more to do.
   1425 	 */
   1426 	p->p_refcnt = 1 - p->p_refcnt;
   1427 	while (p->p_refcnt != 0)
   1428 		cv_wait(&p->p_refcv, &p->p_mutex);
   1429 }
   1430 
   1431 /*
   1432  * proc_specific_key_create --
   1433  *	Create a key for subsystem proc-specific data.
   1434  */
   1435 int
   1436 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1437 {
   1438 
   1439 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1440 }
   1441 
   1442 /*
   1443  * proc_specific_key_delete --
   1444  *	Delete a key for subsystem proc-specific data.
   1445  */
   1446 void
   1447 proc_specific_key_delete(specificdata_key_t key)
   1448 {
   1449 
   1450 	specificdata_key_delete(proc_specificdata_domain, key);
   1451 }
   1452 
   1453 /*
   1454  * proc_initspecific --
   1455  *	Initialize a proc's specificdata container.
   1456  */
   1457 void
   1458 proc_initspecific(struct proc *p)
   1459 {
   1460 	int error;
   1461 
   1462 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1463 	KASSERT(error == 0);
   1464 }
   1465 
   1466 /*
   1467  * proc_finispecific --
   1468  *	Finalize a proc's specificdata container.
   1469  */
   1470 void
   1471 proc_finispecific(struct proc *p)
   1472 {
   1473 
   1474 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1475 }
   1476 
   1477 /*
   1478  * proc_getspecific --
   1479  *	Return proc-specific data corresponding to the specified key.
   1480  */
   1481 void *
   1482 proc_getspecific(struct proc *p, specificdata_key_t key)
   1483 {
   1484 
   1485 	return (specificdata_getspecific(proc_specificdata_domain,
   1486 					 &p->p_specdataref, key));
   1487 }
   1488 
   1489 /*
   1490  * proc_setspecific --
   1491  *	Set proc-specific data corresponding to the specified key.
   1492  */
   1493 void
   1494 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1495 {
   1496 
   1497 	specificdata_setspecific(proc_specificdata_domain,
   1498 				 &p->p_specdataref, key, data);
   1499 }
   1500